Prof. Dr. Moritz Diehl - moritz.diehl@imtek.uni-freiburg.de
The course’s aim is to give an introduction into numerical methods for the solution of optimization problems in science and engineering. It is intended for students from two faculties, mathematics and physics on the one hand, and engineering and computer science on the other hand. The focus is on continuous nonlinear optimization in finite dimensions, covering both convex and nonconvex problems. The lecture is divided into four major parts:
- Fundamental Concepts of Optimization: Definitions, Types of Optimization Problems, Convexity, Duality.
- Unconstrained Optimization and Newton Type Algorithms: Stability of Solutions, Gradient and Conjugate Gradient, Exact Newton, Quasi-Newton, BFGS and Limited Memory BFGS, and Gauss-Newton, Line Search and Trust Region Methods, Algorithmic Differentiation.
- Equality Constrained Optimization Algorithms: Newton Lagrange and Generalized Gauss-Newton, Range and Null Space Methods, Quasi-Newton and Adjoint Based Inexact Newton Methods.
- Inequality Constrained Optimization Algorithms: Karush-Kuhn-Tucker Conditions, Linear and Quadratic Programming, Active Set Methods, Interior Point Methods, Sequential Quadratic and Convex Programming, Quadratic and Nonlinear Parametric Optimization.
The lecture (6 ECTS) is accompanied by intensive weekly computer exercises (based on MATLAB) and a project in the last third of the semester. The project (3 ECTS), which is obligatory for students of mathematics but optional for students of engineering, consists in the formulation and implementation of a self-chosen optimization problem and numerical solution method, resulting in documented computer code, a project report, and a public presentation.
Time and place
To equally benefit students from both faculties, the lectures are in the “Institutsviertel” while the exercises take place on “Campus Flugplatz”.
- Lecture: Tuesdays 14:15 - 16:00 and Fridays 14:00 - 15:45 at Albertstrasse 23b, HS 2.
- Exercises: Wednesdays 16:00 - 18:00 at Georges-Koehler-Allee 101, SR 01-016.
The first lecture is on Oct. 23 and the first exercise on Oct. 28, 2015.
Announcements
- There is no exercise session on Dec. 23, 2016.
- First lecture after Christmas is on Jan. 8, 2016.
- All subsequent Fridays (namely, 15.01, 22.01, 29.01, 5.02) are dedicated to project work.
- For the dates above, a room is reserved for you at Georges-Koehler-Allee 101, SR 01-009/13.
- On Jan. 13 and Jan 15, 2016, there will be no supervision for the project work (due to a team workshop).
- Timetable for project presentations (12.02.2016)
- EXAM: 15.03.2016, 11:00, GKA 101, 010/14
- A past exam can be found here.
- Reminder from sheet 0:
"The final exam is a closed book exam. Only pencil, paper, a calculator and four single A4 pages of self-chosen formulas are allowed."
Teaching assistants
- Dimitris Kouzoupis - dimitris.kouzoupis@imtek.uni-freiburg.de
- Andrea Zanelli - andrea.zanelli@imtek.uni-freiburg.de
Office hours: Wednesdays 14:00 - 16:00 at Georges-Koehler-Allee 102, 01-211.
Homework policy
Each Friday a new exercise sheet is distributed and some hints may be given. Students can then prepare themselves for the exercise session, where they can complete the tasks in teams of 1 to 4 people and show the results to the teaching assistant. Groups that require more time or cannot make it to the exercise session may send their solutions by email to the teaching assistant until the upcoming Friday at 12:00. Groups that complete the tasks during the exercise session do not need to send a report by email.
Assignments
Please fill in your data (if missing) and form groups for the exercises using this sheet. Groups for the exercises are allowed to change during the semester.
Exercise 0: General Information
Exercise 1: Introduction to YALMIP
Exercise 2: Convex Optimization
Exercise 3: Duality Theory and Semidefinite Programming
Exercise 4: Estimation and Fitting Problems
Exercise 5: Unconstrained Newton-type Optimization
Exercise 6: Newton Type Optimization and Globalization Strategies
Exercise 7: Calculation of Derivatives
Exercise 8: Equality Constrained Optimization
Exercise 10: Inequality Constrained Optimization
Recordings
We try our best to upload the recordings from the lecture the soonest possible after they take place. However, the workflow is still under development so there can be some delays the first weeks. Please visit the whole series here, or use the direct-links below.
Note: Please use the links in the Download column.
Lecture No. | Date | Stream | Download | Content |
---|---|---|---|---|
1 | 23/10/15 | Part1 / Part2 | Part1 / Part2 | Introduction to Section 1.3 (Mathematical formulation) |
2 | 27/10/15 | Part1 / Part2 | Part1 / Part2 | Section 1.4 (Definitions) to 2.7 (Mixed-Integer-Programming) |
3 | 30/10/15 | Part1 / Part2 | Part1 / Part2 | Section 3.1 (How to check convexity) to 3.5 (Standard form of convex opt. problems) |
4 | 03/11/15 | Part1 / Part2 | Part1 / Part2 | Section 3.6 (Semidefinite Programming) to Example 4.2 (Dual of LP) |
5 | 06/11/15 | Part1 / Part2 | Part1 / Part2 | Example 4.3 (Dual decomposition) to Chapter 6 introduction |
6 | 10/11/15 | Part1 / Part2 | Part1 / Part2 | Section 6.1 (Linear Least Squares) to 6.5 (L1-Estimation) |
7 | 13/11/15 | Part1 / Part2 | Part1 / Part2 | Section 6.6 (Gauss-Newton method) to 7.2 (Local convergence rates) |
8 | 17/11/15 | Part1 / Part2 | Part1 / Part2 | Section 7.3 (Newton-Type methods) to 8.1 (Local contraction) |
9 | 20/11/15 | Part1 / Part2 | Part1 / Part2 | Section 8.2 (Affine invariance) to 9.1 (Line search) |
10 | 24/11/15 | Part1 / Part2 | Part1 / Part2 | Section 9.2 (Wolfe conditions) to 9.3 (Global convergence of line search) |
11 | 27/11/15 | Part1 / Part2 | Part1 / Part2 | Section 9.4 (Trust-Region methods) to 9.5 (The Cauchi-Point) |
12 | 01/12/15 | Part1 / Part2 | Part1 / Part2 | Section 10.1 (Algorithmic Differentiation) to 10.3 (Backward AD) |
13 | 04/12/15 | Part1 / Part2 | Part1 / Part2 | Section 10.4 to Chapter 11 introduction |
14 | 08/12/15 | Part1 / Part2 | Part1 / Part2 | Section 11.1 (LICQ and linearized feasible cone) to 11.2 (SONC) |
15 | 11/12/15 | Part1 / Part2 | Part1 / Part2 | Section 12.1 (Optimality conditions) to 12.5 (Constrained Gauss-Newton) |
16 | 15/12/15 | Part1 / Part2 | Part1 / Part2 | Section 11.3 (Perturbation analysis) and 12.7 (Local convergence) |
17 | 18/12/15 | Part1 / Part2 | Part1 / Part2 | Section 12.6 (General constrained NT-Algorithm) to 12.9 (Careful BFGS updating) |
18 | 22/12/15 | Part1 / Part2 | Part1 / Part2 | Section 13.1 to 13.2 (Active constraints and LICQ) |
19 | 08/01/16 | Part1 / - | Part1 / - | Section 13.3 (Convex Problems) |
20 | 12/01/16 | Part1 / Part2 | Part1 / Part2 | Section 13.4 (Complementarity) to 14.1 (QPs via Active Set Method) |
21 | 19/01/16 | Part1 / Part2 | Part1 / Part2 | Section 14.2 (SQP) to 14.4 (Interior Point methods) |
22 | 26/01/16 | Part1 / Part2 | Part1 / Part2 | Section 14.4 (Barrier problem interpretation, SCP) to 15.5 (Simultaneous optimal control) |
23 | 02/02/16 | Part1 / Part2 | Part1 / Part2 | Problem reformulations and useful function approximations |
24 | 09/02/16 | Part1 / Part2 | Part1 / Part2 | Summary of the course |
Literature
- Jorge Nocedal and Stephen J. Wright, Numerical Optimization, Springer, 2006.
- Amir Beck, Introduction to Nonlinear Optimization, MOS-SIAM Optimization, 2014.
- Stephen Boyd and Lieven Vandenberghe, Convex Optimization, Cambridge Univ. Press, 2004.
- Moritz Diehl, Lecture Notes on Numerical Optimization, Leuven-Freiburg 2007-2015 (last update: 02.02.2016).