
Lecture Notes on Numerical Optimization

(Preliminary Draft)

Moritz Diehl
Department of Microsystems Engineering and Department of Mathematics,

University of Freiburg, Germany
moritz.diehl@imtek.uni-freiburg.de

March 3, 2016



1

Preface

This course’s aim is to give an introduction into numerical methods for the solution of optimization
problems in science and engineering. It is intended for students from two faculties, mathematics
and physics on the one hand, and engineering and computer science on the other hand. The
course’s focus is on continuous optimization (rather than discrete optimization) with special em-
phasis on nonlinear programming. For this reason, the course is in large parts based on the
excellent text book “Numerical Optimization” by Jorge Nocedal and Steve Wright [4]. This book
appeared in Springer Verlag and is available at the ACCO book shop as well as at VTK and rec-
ommended to the students. Besides nonlinear programming, we discuss important and beautiful
concepts from the field of convex optimization that we believe to be important to all users and
developers of optimization methods. These contents and much more are covered by the equally
excellent text book “Convex Optimization” by Stephen Boyd and Lieven Vandenberghe [2], that
was published by Cambridge University Press (CUP). Fortunately, this book is also freely avail-
able and can be downloaded from the home page of Stephen Boyd in form of a completely legal
PDF copy of the CUP book. An excellent textbook on nonlinear optimization that contains also
many MATLAB exercises was recently written by Amir Beck [1].

The course is divided into four major parts:

• Fundamental Concepts of Optimization

• Unconstrained Optimization and Newton-Type Algorithms

• Equality Constrained Optimization

• Inequality Constrained Optimization

followed by two appendices, the first containing the description of one student project done during
the course exercises, and some remarks intended to help with exam preparation (including a list
of questions and answers).

The writing of this lecture manuscript started at the Optimization in Engineering Center OPTEC
of KU Leuven in 2007, with major help of Jan Bouckaert (who did, among other, most of the the
figures), David Ariens, and Laurent Sorber. Dr. Carlo Savorgnan and to many students helped
with feedback and with spotting errors in the last years. The latest version was compiled at the
University of Freiburg with the help of Dimitris Kouzoupis.

Moritz Diehl,
Leuven and Freiburg,
October 2015.

moritz.diehl@imtek.uni-freiburg.de



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I Fundamental Concepts of Optimization 5

1 Fundamental Concepts of Optimization 6
1.1 Why Optimization? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 What Characterizes an Optimization Problem? . . . . . . . . . . . . . . . . . . . . 6
1.3 Mathematical Formulation in Standard Form . . . . . . . . . . . . . . . . . . . . . 7
1.4 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 When Do Minimizers Exist? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Mathematical Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Types of Optimization Problems 11
2.1 Nonlinear Programming (NLP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Linear Programming (LP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Quadratic Programming (QP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 General Convex Optimization Problems . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Unconstrained Optimization Problems . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Non-Differentiable Optimization Problems . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 Mixed-Integer Programming (MIP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Convex Optimization 20
3.1 How to Check Convexity of Functions? . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Which Sets are Convex, and which Operations Preserve Convexity? . . . . . . . . . 23
3.3 Examples for Convex Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Which Operations Preserve Convexity of Functions? . . . . . . . . . . . . . . . . . 24
3.5 Standard Form of a Convex Optimization Problem . . . . . . . . . . . . . . . . . . 24
3.6 Semidefinite Programming (SDP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7 An Optimality Condition for Convex Problems . . . . . . . . . . . . . . . . . . . . 26

4 The Lagrangian Function and Duality 28
4.1 Lagrange Dual Function and Weak Duality . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Strong Duality for Convex Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2



CONTENTS 3

II Unconstrained Optimization and Newton-Type Algorithms 36

5 Optimality Conditions 37
5.1 Necessary Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Sufficient Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Perturbation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Estimation and Fitting Problems 41
6.1 Linear Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2 Ill Posed Linear Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Regularization for Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.4 Statistical Derivation of Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.5 L1-Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.6 Gauss-Newton (GN) Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.7 Levenberg-Marquardt (LM) Method . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7 Newton Type Optimization 51
7.1 Exact Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2 Local Convergence Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.3 Newton Type Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8 Local Convergence of General Newton Type Iterations 58
8.1 A Local Contraction Theorem for Newton Type Iterations . . . . . . . . . . . . . . 59
8.2 Affine Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.3 Local Convergence for Newton Type Optimization Methods . . . . . . . . . . . . . 61
8.4 Necessary and Sufficient Conditions for Local Convergence . . . . . . . . . . . . . . 62

9 Globalization Strategies 65
9.1 Line-Search based on Armijo Condition with Backtracking . . . . . . . . . . . . . . 65
9.2 Alternative: Line Search based on the Wolfe Conditions . . . . . . . . . . . . . . . 67
9.3 Global Convergence of Line Search with Armijo Backtracking . . . . . . . . . . . . 69
9.4 Trust-Region Methods (TR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
9.5 The Cauchy Point and How to Compute the TR Step . . . . . . . . . . . . . . . . 71

10 Calculating Derivatives 74
10.1 Algorithmic Differentiation (AD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
10.2 The Forward Mode of AD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
10.3 The Backward Mode of AD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
10.4 Algorithmic Differentiation Software . . . . . . . . . . . . . . . . . . . . . . . . . . 83

III Equality Constrained Optimization 84

11 Optimality Conditions for Equality Constrained Problems 85
11.1 Constraint Qualification and Linearized Feasible Cone . . . . . . . . . . . . . . . . 86
11.2 Second Order Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
11.3 Perturbation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



CONTENTS 4

12 Equality Constrained Optimization Algorithms 93
12.1 Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
12.2 Equality Constrained QP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

12.2.1 Solving the KKT System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
12.3 Newton Lagrange Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
12.4 Quadratic Model Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
12.5 Constrained Gauss-Newton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
12.6 An Equality Constrained BFGS Method . . . . . . . . . . . . . . . . . . . . . . . . 99
12.7 Local Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
12.8 Globalization by Line Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
12.9 Careful BFGS Updating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

IV Inequality Constrained Optimization 105

13 Optimality Conditions for Constrained Optimization 106
13.1 Karush-Kuhn-Tucker (KKT) Necessary Optimality Conditions . . . . . . . . . . . 107
13.2 Active Constraints and Constraint Qualification . . . . . . . . . . . . . . . . . . . . 108
13.3 Convex Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
13.4 Complementarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
13.5 Second Order Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

14 Inequality Constrained Optimization Algorithms 119
14.1 Quadratic Programming via Active Set Method . . . . . . . . . . . . . . . . . . . . 119
14.2 Sequential Quadratic Programming (SQP) . . . . . . . . . . . . . . . . . . . . . . . 122
14.3 Powell’s Classical SQP Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
14.4 Interior Point Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

15 Optimal Control Problems 127
15.1 Optimal Control Problem (OCP) Formulation . . . . . . . . . . . . . . . . . . . . . 128
15.2 KKT Conditions of Optimal Control Problems . . . . . . . . . . . . . . . . . . . . 128
15.3 Sequential Approach to Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . 130
15.4 Backward Differentiation of Sequential Lagrangian . . . . . . . . . . . . . . . . . . 130
15.5 Simultaneous Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A Example Report on Student Optimization Projects 134
A.1 Optimal Trajectory Design for a Servo Pneumatic Traction System . . . . . . . . . 134

A.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
A.1.2 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B Exam Preparation 139
B.1 Study Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
B.2 Rehearsal Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
B.3 Answers to Rehearsal Questions by Xu Gang . . . . . . . . . . . . . . . . . . . . . 143

Bibliography 162



Part I

Fundamental Concepts of
Optimization

5



Chapter 1

Fundamental Concepts of
Optimization

1.1 Why Optimization?

Optimization algorithms are used in many applications from diverse areas.

• Business: Allocation of resources in logistics, investment, etc.

• Science: Estimation and fitting of models to measurement data, design of experiments.

• Engineering: Design and operation of technical systems/ e.g. bridges, cars, aircraft, digital
devices, etc.

1.2 What Characterizes an Optimization Problem?

An optimization problem consists of the following three ingredients.

• An objective function, f(x), that shall be minimized or maximized,

• decision variables, x, that can be chosen, and

• constraints that shall be respected, e.g. of the form g(x) = 0 (equality constraints) or
h(x) ≥ 0 (inequality constraints).

6



CHAPTER 1. FUNDAMENTAL CONCEPTS OF OPTIMIZATION 7

1.3 Mathematical Formulation in Standard Form

minimize
x ∈ Rn

f(x) (1.1)

subject to g(x) = 0, (1.2)

h(x) ≥ 0. (1.3)

Here, f : Rn → R, g : Rn → Rp, h : Rn → Rq, are usually assumed to be differentiable. Note that
the inequalities hold for all components, i.e.

h(x) ≥ 0 ⇔ hi(x) ≥ 0, i = 1, . . . , q. (1.4)

Example 1.1 (A two dimensional example):

minimize
x ∈ R2

x2
1 + x2

2 (1.5)

subject to x2 − 1− x2
1 ≥ 0, (1.6)

x1 − 1 ≥ 0. (1.7)

x1

x2

1

1

x2 ≥ x21 + 1

x1 > 1

Ω

Figure 1.1: Visualization of Example 1.1, Ω is defined in Definition 1.2



CHAPTER 1. FUNDAMENTAL CONCEPTS OF OPTIMIZATION 8

1.4 Definitions

Definition 1.1
The set {x ∈ Rn|f(x) = c} is the “Level set” of f for the value c.

Definition 1.2
The “feasible set” Ω is {x ∈ Rn|g(x) = 0, h(x) ≥ 0}.

Definition 1.3
The point x∗ ∈ Rn is a “global minimizer” (often also called a “global minimum”) if and only if
(iff) x∗ ∈ Ω and ∀x ∈ Ω : f(x) ≥ f(x∗).

Definition 1.4
The point x∗ ∈ Rn is a “strict global minimizer” iff x∗ ∈ Ω and ∀x ∈ Ω \ {x∗} : f(x) > f(x∗).

Definition 1.5
The point x∗ ∈ Rn is a “local minimizer” iff x∗ ∈ Ω and there exists a neighborhood N of x∗ (e.g.
an open ball around x∗) so that ∀x ∈ Ω ∩N : f(x) ≥ f(x∗).

Definition 1.6
The point x∗ ∈ Rn is a “strict local minimizer” iff x∗ ∈ Ω and there exists a neighborhood N of
x∗ so that ∀x ∈ (Ω ∩N ) \ {x∗} : f(x) > f(x∗).

Example 1.2 (A one dimensional example): Note that this example is not convex.

minimize
x ∈ R

sin(x) exp(x) (1.8)

subject to x ≥ 0, (1.9)

x ≤ 4π. (1.10)

• Ω = {x ∈ R|x ≥ 0, x ≤ 4π} = [0, 4π]

• Three local minimizers (which?)

• One global minimizer (which?)



CHAPTER 1. FUNDAMENTAL CONCEPTS OF OPTIMIZATION 9

4π

Figure 1.2: Visualization of Example 1.2

1.5 When Do Minimizers Exist?

Theorem 1.1 (Weierstrass): If Ω ⊂ Rn is non-empty and compact (i.e. bounded and closed)
and f : Ω→ R is continuous then there exists a global minimizer of the optimization problem

minimize
x ∈ Rn

f(x) subject to x ∈ Ω. (1.11)

Proof. Regard the graph of f , G = {(x, s) ∈ Rn × R|x ∈ Ω, s = f(x)}. G is a compact set, and
so is the projection of G onto its last coordinate, the set G̃ = {s ∈ R|∃x such that (x, s) ∈ G},
which is a compact interval [fmin, fmax] ⊂ R. By construction, there must be at least one x∗ so
that (x∗, fmin) ∈ G.

Thus, minimizers exist under fairly mild circumstances. Though the proof was constructive, it
does not lend itself to an efficient algorithm. The topic of this lecture is how to practically find
minimizers with help of computer algorithms.

1.6 Mathematical Notation

Within this lecture we use R for the set of real numbers, R+ for the non-negative ones and R++ for
the positive ones, Z for the set of integers, and N for the set of natural numbers including zero, i.e.
we identify N = Z+. The set of real-valued vectors of dimension n is denoted by Rn, and Rn×m
denotes the set of matrices with n rows and m columns. By default, all vectors are assumed to
be column vectors, i.e. we identify Rn = Rn×1. We usually use square brackets when presenting
vectors and matrices elementwise. Because will often deal with concatenations of several vectors,
say x ∈ Rn and y ∈ Rm, yielding a vector in Rn+m, we abbreviate this concatenation sometimes



CHAPTER 1. FUNDAMENTAL CONCEPTS OF OPTIMIZATION 10

as (x, y) in the text, instead of the correct but more clumsy equivalent notations [x>, y>]> or[
x
y

]
.

Square and round brackets are also used in a very different context, namely for intervals in R,
where for two real numbers a < b the expression [a, b] ⊂ R denotes the closed interval containing
both boundaries a and b, while an open boundary is denoted by a round bracket, e.g. (a, b)
denotes the open interval and [a, b) the half open interval containing a but not b.

When dealing with norms of vectors x ∈ Rn, we denote by ‖x‖ an arbitrary norm, and by ‖x‖2
the Euclidean norm, i.e. we have ‖x‖22 = x>x. We denote a weighted Euclidean norm with a
positive definite weighting matrix Q ∈ Rn×n by ‖x‖Q, i.e. we have ‖x‖2Q = x>Qx. The L1 and
L∞ norms are defined by ‖x‖1 =

∑n
i=1 |xi| and ‖x‖∞ = max{|x1|, . . . , |xn|}. Matrix norms are

the induced operator norms, if not stated otherwise, and the Frobenius norm ‖A‖F of a matrix
A ∈ Rn×m is defined by ‖A‖2F = trace(AA>) =

∑n
i=1

∑m
j=1AijAij .

When we deal with derivatives of functions f with several real inputs and several real outputs,
i.e. functions f : Rn → Rm, x 7→ f(x), we define the Jacobian matrix ∂f

∂x (x) as a matrix in Rm×n,
following standard conventions. For scalar functions with m = 1, we denote the gradient vector
as ∇f(x) ∈ Rn, a column vector, also following standard conventions. Slightly less standard, we
generalize the gradient symbol to all functions f : Rn → Rm even with m > 1, i.e. we generally
define in this lecture

∇f(x) =
∂f

∂x
(x)> ∈ Rn×m.

Using this notation, the first order Taylor series is e.g. written as

f(x) = f(x̄) +∇f(x̄)>(x− x̄) + o(‖x− x̄‖)

The second derivative, or Hessian matrix will only be defined for scalar functions f : Rn → R and
be denoted by ∇2f(x).

For any symmetric matrix A we write A<0 if it is a positive semi-definite matrix, i.e. all its
eigenvalues are larger or equal to zero, and A�0 if it is positive definite, i.e. all its eigenvalues are
positive. This notation is also used for matrix inequalities that allow us to compare two symmetric
matrices A,B of identical dimension, where we define for example A<B by A−B<0.

When using logical symbols, A ⇒ B is used when a proposition A implies a proposition B. In
words the same is expressed by “If A then B”. We write A⇔ B for “A if and only if B”, and we
sometimes shorten this to “A iff B”, with a double “f”, following standard practice.



Chapter 2

Types of Optimization Problems

In order to choose the right algorithm for a practical problem, we should know how to classify
it and which mathematical structures can be exploited. Replacing an inadequate algorithm by a
suitable one can make solution times many orders of magnitude shorter.

2.1 Nonlinear Programming (NLP)

In this lecture we mainly treat algorithms for general Nonlinear Programming problems or Non-
linear Programs (NLP), which are given in the form

minimize
x ∈ Rn

f(x) (2.1a)

subject to g(x) = 0, (2.1b)

h(x) ≥ 0, (2.1c)

where f : Rn → R, g : Rn → Rp, h : Rn → Rq, are assumed to be continuously differentiable at
least once, often twice and sometimes more. Differentiability of all problem functions allows us to
use algorithms that are based on derivatives, in particular the so called “Newton-type optimization
methods” which are the main topic of this course.

But many problems have more structure, which we should recognize and exploit in order to solve
problems faster.

2.2 Linear Programming (LP)

When the functions f, g, h are affine in the general formulation (2.1), the general NLP gets some-
thing easier to solve, namely a Linear Program (LP). Explicitly, an LP can be written as follows:

11



CHAPTER 2. TYPES OF OPTIMIZATION PROBLEMS 12

minimize
x ∈ Rn

cTx (2.2a)

subject to Ax− b = 0, (2.2b)

Cx− d ≥ 0. (2.2c)

Here, the problem data is given by c ∈ Rn, A ∈ Rp×n, b ∈ Rp, C ∈ Rq×n, and d ∈ Rq. Note that we
could also have a constant contribution to the objective, i.e. f(x) = cTx + c0, without affecting
the minimizers x∗.

LPs can be solved very efficiently since the 1940’s, when G. Dantzig invented the famous “simplex
method”, an “active set method”, which is still widely used, but got an equally efficient competitor
in the so called “interior point methods”. LPs can nowadays be solved even if they have millions
of variables and constraints. Every business student knows how to use them, and LPs arise
in myriads of applications. LP algorithms are not treated in detail in this lecture, but please
recognize them if you encounter them in practice and use the right software.

Example 2.1 (LP resulting from oil shipment cost minimization): We regard a typical logistics
problem that an oil production and distribution company might encounter. We want to minimize
the costs of transporting oil from the oil producing countries to the oil consuming countries, as
visualized in Figure 2.1.

Europe

Japan

US

China

Venezuela

Russia

Saudi Arabia

Figure 2.1: A traditional example of a LP problem: minimize the oil shipment costs while satis-
fying the demands on the right and not exceeding the production capabilities on the left.

More specifically, given a set of n oil production facilities with production capacities pi with
i = 1, . . . , n, and given a set of m customer locations with oil demands dj with j = 1, . . . ,m, and
given shipment costs cij for all possible routes between each i and j, we want to decide how much
oil should be transported along each route. These quantities, which we call xij , are our decision
variables, in total nm real valued variables. The problem can be written as the following linear



CHAPTER 2. TYPES OF OPTIMIZATION PROBLEMS 13

program.

minimize
x∈Rn×m

n∑
i=1

m∑
j=1

cijxij

subject to
m∑
j=1

xij ≤ pi, i = 1, . . . , n,

n∑
i=1

xij ≥ dj , j = 1, . . . ,m,

xij ≥ 0, i = 1, . . . , n, j = 1, . . . ,m.

(2.3)

Software for solving linear programs: CPLEX, SOPLEX, lp solve, lingo. MATLAB: lin-
prog.

2.3 Quadratic Programming (QP)

If in the general NLP formulation (2.1) the constraints g, h are affine (as for an LP), but the
objective is a linear-quadratic function, we call the resulting problem a Quadratic Programming
Problem or Quadratic Program (QP). A general QP can be formulated as follows.

minimize
x ∈ Rn

cTx+
1

2
xTBx (2.4a)

subject to Ax− b = 0, (2.4b)

Cx− d ≥ 0. (2.4c)

Here, in addition to the same problem data as in the LP c ∈ Rn, A ∈ Rp×n, b ∈ Rp, C ∈ Rq×n, d ∈
Rq, we also have the “Hessian matrix” B ∈ Rn×n. Its name stems from the fact that ∇2f(x) = B
for f(x) = cTx+ 1

2x
TBx.

Definition 2.1 (Convex QP)
If the Hessian matrix B is positive semi-definite (i.e. if ∀z ∈ Rn : zTBz ≥ 0) we call the QP (2.4)
a “convex QP”. Convex QPs are tremendously easier to solve globally than “non-convex QPs”
(i.e. where the Hessian B is not positive semi-definite), which might have different local minima
(i.e. have a non-convex solution set, see next section).

Definition 2.2 (Strictly convex QP)
If the Hessian matrix B is positive definite (i.e. if ∀z ∈ Rn \{0} : zTBz > 0) we call the QP (2.4)
a “strictly convex QP”. Strictly convex QPs are a subclass of convex QPs, but often still a bit
easier to solve than not-strictly convex QPs.



CHAPTER 2. TYPES OF OPTIMIZATION PROBLEMS 14

Example 2.2 (A non-convex QP):

minimize
x ∈ R2

[
0 2

]
x+

1

2
xT
[

5 0
0 −1

]
x (2.5)

subject to −1 ≤ x1 ≤ 1, (2.6)

−1 ≤ x2 ≤ 10. (2.7)

This problem has local minimizers at x∗a = (0,−1)T and x∗b = (0, 10)T , but only x∗b is a global
minimizer.

Example 2.3 (A strictly convex QP):

minimize
x ∈ R2

[
0 2

]
x+

1

2
xT
[

5 0
0 1

]
x (2.8)

subject to −1 ≤ x1 ≤ 1, (2.9)

−1 ≤ x2 ≤ 10. (2.10)

This problem has only one (strict) local minimizer at x∗ = (0,−1)T that is also global minimizer.

Software for solving quadratic programs: CPLEX, MOSEK, qpOASES (open), OOQP
(open), MATLAB: quadprog.

2.4 General Convex Optimization Problems

“The great watershed in optimization is not between linearity and nonlinearity, but convexity and
nonconvexity”

R. Tyrrell Rockafellar

Both, LPs and convex QPs, are part of an important class of optimization problems, namely
the “convex optimization problems”. In order to define them and understand why they are so
important, we first recall what is a convex set and a convex function.

Definition 2.3 (Convex Set)
A set Ω ⊂ Rn is convex if

∀x, y ∈ Ω, t ∈ [0, 1] : x+ t(y − x) ∈ Ω. (2.11)

(“all connecting lines lie inside set”)



CHAPTER 2. TYPES OF OPTIMIZATION PROBLEMS 15

Figure 2.2: An example of a convex set Figure 2.3: An example of a non convex set

Definition 2.4 (Convex Function)
A function f : Ω→ R is convex, if Ω is convex and if

∀x, y ∈ Ω, t ∈ [0, 1] : f(x+ t(y − x)) ≤ f(x) + t(f(y)− f(x)). (2.12)

(“all secants are above graph”). This definition is equivalent to saying that the Epigraph of f ,
i.e. the set {(x, s) ∈ Rn × R|x ∈ Ω, s ≥ f(x)}, is a convex set.

(y, f(y))

(x, f(x))

Figure 2.4: For a convex function, the line seg-
ment between any two points on the graph lies
above the graph

f(x)

x

Figure 2.5: For a convex function, the Epigraph
of the function (grey color) is always convex



CHAPTER 2. TYPES OF OPTIMIZATION PROBLEMS 16

Definition 2.5 (Convex Optimization Problem)
An optimization problem with convex feasible set Ω and convex objective function f : Ω → R is
called a “convex optimization problem”.

Theorem 2.1 (Local Implies Global Optimality for Convex Problems): For a convex optimization
problem, every local minimum is also a global one.

x

y

Figure 2.6: Every local minimum is also a
global one for a convex function

x

y

Figure 2.7: Not every local minimum is also a
global one for this nonconvex function

Proof. Regard a local minimum x∗ of the convex optimization problem

min
x∈Rn

f(x) s.t. x ∈ Ω.

We will show that for any given point y ∈ Ω it holds f(y) ≥ f(x∗). Regard Figure 2.8 for a
visualization of the proof.

First we choose, using local optimality, a neighborhood N of x∗ so that for all x̃ ∈ Ω∩N it holds
f(x̃) ≥ f(x∗). Second, we regard the connecting line between x∗ and y. This line is completely
contained in Ω due to convexity of Ω. Now we choose a point x̃ on this line that is in the
neighboorhood N , but not equal to x∗, i.e. we have x̃ = x∗ + t(y − x∗) with t > 0, t ≤ 1, and
x̃ ∈ Ω ∩N . Due to local optimality, we have f(x∗) ≤ f(x̃), and due to convexity we have

f(x̃) = f(x∗ + t(y − x∗)) ≤ f(x∗) + t(f(y)− f(x∗)).

It follows that t(f(y)− f(x∗)) ≥ 0 with t > 0, implying f(y)− f(x∗) ≥ 0, as desired.

We will discuss convexity in more detail in the following chapter.

Software for solving convex optimization problems: An environment to formulate and
solve general convex optimization problems in MATLAB is CVX. On the other hand, many
very specific solvers exist for more specific convex problems. For LPs and QPs we gave already
software above, while many additional solvers for more general convex problems are conveniently
accessible via YALMIP (which uses solvers such as SDPT3, SeDuMi and nearly all the ones
mentioned above).



CHAPTER 2. TYPES OF OPTIMIZATION PROBLEMS 17

Ω
y

x̃

x∗
N

Figure 2.8: Visualization for the proof of Theorem 2.1.

2.5 Unconstrained Optimization Problems

Any NLP without constraints is called an “unconstrained optimization problem”. It has the
general form

min
x∈Rn

f(x), (2.13)

with usually once or twice differentiable objective function f . Unconstrained nonlinear optimiza-
tion will be the focus of Part II of this lecture, while general constrained optimization problems
are the focus of Parts III and IV.

2.6 Non-Differentiable Optimization Problems

If one or more of the problem functions f, g, h are not differentiable in an optimization prob-
lem (2.1), we speak of a “non-differentiable” or “non-smooth” optimization problem. Non-
differentiable optimization problems are much harder to solve than general NLPs. A few solvers
exist (Microsoft Excel solver, Nelder-Mead method, random search, genetic algorihms...), but are
typically orders of magnitude slower than derivative-based methods (which are the topic of this
course).

x1

x2

Figure 2.9: Visualization of a non-smooth objective.



CHAPTER 2. TYPES OF OPTIMIZATION PROBLEMS 18

2.7 Mixed-Integer Programming (MIP)

A Mixed-Integer Programming problem or Mixed-Integer Program (MIP) is a problem with both
real and integer decision variables. A MIP can be formulated as follows:

minimize
x∈Rn
z∈Zm

f(x, z) (2.14a)

subject to g(x, z) = 0, (2.14b)

h(x, z) ≥ 0. (2.14c)

z2

z1

Figure 2.10: Visualization of the feasible set of an integer problem with linear constraints.

Definition 2.6 (Mixed-Integer Nonlinear Program (MINLP))
If f , g, h are twice differentiable in x and z we speak of a Mixed-Integer Nonlinear Program.
Generally speaking, these problems are very hard to solve, due to the combinatorial nature of the
variables z.

However, if a relaxed problem, where the variables z are no longer restricted to the integers, but
to the real numbers, is convex, often very efficient solution algorithms exist. More specifically, we
would require that the following problem is convex:

minimize
x∈Rn
z∈Rm

f(x, z) (2.15a)

subject to g(x, z) = 0, (2.15b)

h(x, z) ≥ 0. (2.15c)

The efficient solution algorithms are often based on the technique of “branch-and-bound”, which
uses partially relaxed problems where some of the z are fixed to specific integer values and some of
them are relaxed. This technique then exploits the fact that the solution of the relaxed solutions
can only be better than the best integer solution. This way, the search through the combinatorial
tree can be made more efficient than pure enumeration. Two important examples of such problems
are given in the following.



CHAPTER 2. TYPES OF OPTIMIZATION PROBLEMS 19

Definition 2.7 (Mixed-Integer Linear Program (MILP))
If f , g, h are affine in both x and z we speak of a Mixed-Integer Linear Program. These problems
can efficiently be solved with codes such as the commercial code CPLEX or the free code lp_solve

with a nice manual http://lpsolve.sourceforge.net/5.5/. A famous problem in this class
is the “travelling salesman problem”, which has only discrete decision variables. Linear integer
programming is often just called “Integer programming (IP)”. It is one of the largest research
areas in the discrete optimization community.

Definition 2.8 (Mixed-Integer Quadratic Program (MIQP))
If g, h are affine and f convex quadratic in both x and z we speak of a Mixed-Integer QP (MIQP).
These problems are also efficiently solvable, mostly by commercial solvers (e.g. CPLEX).



Chapter 3

Convex Optimization

We have already discovered the favourable fact that a convex optimization problem has no local
minima that are not also global. But how can we detect convexity of functions or sets?

3.1 How to Check Convexity of Functions?

Theorem 3.1 (Convexity for C1 Functions): Assume that f : Ω → R is continuously differen-
tiable and Ω convex. Then it holds that f is convex if and only if

∀x, y ∈ Ω : f(y) ≥ f(x) +∇f(x)T (y − x), (3.1)

i.e. tangents lie below the graph.

f(y)

(x, f(x))

f(x) +∇f(x)T (y − x)

Figure 3.1: If f is convex and differentiable, then f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ Ω

Proof. “⇒”: Due to convexity of f it holds for given x, y ∈ Ω and for any t ∈ [0, 1] that

f(x+ t(y − x))− f(x) ≤ t(f(y)− f(x))

and therefore that

∇f(x)T (y − x) = lim
t→0

f(x+ t(y − x))− f(x)

t
≤ f(y)− f(x).

20



CHAPTER 3. CONVEX OPTIMIZATION 21

“⇐”: To prove that for z = x+ t(y − x) = (1− t)x+ ty it holds that f(z) ≤ (1− t)f(x) + tf(y)
let us use Eq. (3.1) twice at z, in order to obtain f(x) ≥ f(z) + ∇f(z)T (x − z) and f(y) ≥
f(z) +∇f(z)T (y − z) which yield, when weighted with (1− t) and t and added to each other,

(1− t)f(x) + tf(y) ≥ f(z) +∇f(z)T [(1− t)(x− z) + t(y − z)]︸ ︷︷ ︸
=(1−t)x+ty−z=0

.

Definition 3.1 (Generalized Inequality for Symmetric Matrices)
We write for a symmetric matrix B = BT , B ∈ Rn×n that “B<0” if and only if B is positive
semi-definite i.e., ∀z ∈ Rn : zTBz ≥ 0, or, equivalently, if all (real) eigenvalues of the symmetric
matrix B are non-negative:

B<0⇐⇒ min eig (B) ≥ 0.

We write for two such symmetric matrices that “A<B” iff A − B<0, and “A4B” iff B<A. We
say B�0 iff B is positive definite, i.e. ∀z ∈ Rn \ {0} : zTBz > 0, or that all eigenvalues of B are
positive

B�0⇐⇒ min eig(B) > 0.

Definition 3.2 (Definition of O(·) and o(·))
For a function f : Rn → Rm, we write f(x) = O(g(x)) iff there exists a constant C > 0 and a
neighborhood N of 0 so that

∀x ∈ N : ‖f(x)‖ ≤ Cg(x). (3.2)

We write f(x) = o(g(x)) iff there exists a neighborhood N of 0 and a function c : N → R with
limx→0 c(x) = 0 so that

∀x ∈ N : ‖f(x)‖ ≤ c(x)g(x). (3.3)

In a sloppy way, we could say for O(·): “f shrinks as fast as g”, for o(·): “f shrinks faster than
g”.

Theorem 3.2 (Convexity for C2 Functions): Assume that f : Ω → R is twice continuously
differentiable and Ω convex and open. Then it holds that f is convex if and only if for all x ∈ Ω
the Hessian is positive semi-definite, i.e.

∀x ∈ Ω : ∇2f(x)<0. (3.4)

Proof. To prove (3.1) ⇒ (3.4) we use a second order Taylor expansion of f at x in an arbitrary
direction p:

f(x+ tp) = f(x) + t∇f(x)T p+
1

2
t2pT∇2f(x)p+ o(t2‖p‖2).



CHAPTER 3. CONVEX OPTIMIZATION 22

From this we obtain

pT∇2f(x)p = lim
t→0

2

t2
(
f(x+ tp)− f(x)− t∇f(x)T p

)︸ ︷︷ ︸
≥0, because of (3.1).

≥ 0.

Conversely, to prove (3.1) ⇐ (3.4) we use the Taylor rest term formula with some θ ∈ [0, 1].

f(y) = f(x) +∇f(x)T (y − x) +
1

2
t2(y − x)T∇2f(x+ θ(y − x))(y − x)︸ ︷︷ ︸

≥0, due to (3.4).

.

Example 3.1 (Exponential Function): The function f(x) = exp(x) is convex because f ′′(x) =
f(x) ≥ 0 ∀x ∈ R.

Example 3.2 (Quadratic Function): The function f(x) = cTx+ 1
2x

TBx is convex if and only if
B<0, because ∀x ∈ Rn : ∇2f(x) = B.

Example 3.3 (The function): f(x, t) = xT x
t is convex on Ω = Rn × (0,∞) because its Hessian

∇2f(x, t) =

[
2
t In − 2

t2
x

− 2
t2
xT 2

t3
xTx

]
is positive definite. To see this, multiply it from left and right with v = (zT , s)T ∈ Rn+1 which
yields vT∇2f(x, t)v = 2

t3
‖tz − sx‖22 ≥ 0 if t > 0.

Definition 3.3 (Concave Function)
A function f : Ω→ R is called “concave” if −f is convex.

Definition 3.4 (Convex Maximization Problem)
A maximization problem

max
x∈Rn

f(x) s.t. x ∈ Ω

is called a “convex maximization problem” if Ω is convex and f concave. It is obviously equivalent
to the convex minimization problem

min
x∈Rn

−f(x) s.t. x ∈ Ω



CHAPTER 3. CONVEX OPTIMIZATION 23

3.2 Which Sets are Convex, and which Operations Preserve Con-
vexity?

Theorem 3.3 (Convexity of Sublevel Sets): The sublevel set {x ∈ Ω|f(x) ≤ c} of a convex
function f : Ω→ R with respect to any constant c ∈ R is convex.

y

x

y = c

Figure 3.2: Convexity of sublevel sets

Proof. If f(x) ≤ c and f(y) ≤ c then for any t ∈ [0, 1] it holds also

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y) ≤ (1− t)c+ tc = c.

Several operations on convex sets preserve their convexity:

1. The intersection of finitely or infinitely many convex sets is convex.

2. Affine image: if Ω is convex, then for A ∈ Rm×n, b ∈ Rm also the set AΩ+b = {y ∈ Rm|∃x ∈
Ω : y = Ax+ b} is convex.

3. Affine pre-image: if Ω is convex, then for A ∈ Rn×m, b ∈ Rn also the set {z ∈ Rm|Az+b ∈ Ω}
is convex.

3.3 Examples for Convex Sets

Example 3.4 (A Convex Feasible Set): If fi : Rn → R, i = 1, . . .m are convex functions, then
the set Ω = {x ∈ Rn|∀i : fi(x) ≤ 0} is a convex set, because it is the intersection of sublevel sets

Ω = {x | fi(x) ≤ 0} of convex functions fi ⇒ Ω1, ... ,Ωm convex ⇒
m⋂
i=1

Ωi = Ω convex.



CHAPTER 3. CONVEX OPTIMIZATION 24

Figure 3.3: The intersection of finitely or infinitely many convex sets is convex

Example 3.5 (Linear Matrix Inequalities (LMI)): We define the vector space of symmetric
matrices in Rn×n as Sn = {X ∈ Rn×n|X = XT } and the subset of positive semi-definite matrices
as Sn+ = {X ∈ Sn|X<0}. This set is convex, as can easily be checked. Let us now regard an affine
map G : Rm → Sn, x 7→ G(x) := A0 +

∑m
i=1Aixi., with symmetric matrices A0, . . . , Am ∈ Sn.

The expression
G(x)<0

is called a “linear matrix inequality (LMI)”. It defines a convex set {x ∈ Rm|G(x)<0}, as the
pre-image of Sn+ under the affine map G(x).

3.4 Which Operations Preserve Convexity of Functions?

1. Affine input transformations: If f : Ω → R is convex, then also f̃(x) = f(Ax + b) (with
A ∈ Rn×m) is convex on the domain Ω̃ = {x ∈ Rm|Ax+ b ∈ Ω}.

2. Concatenation with a monotone convex function: If f : Ω → R is convex and g : R → R is
convex and monotonely increasing, then the function g ◦ f : Ω → R, x 7→ g(f(x)) is also
convex.

Proof. ∇2(g ◦ f)(x) = g′′(f(x))︸ ︷︷ ︸
≥0

∇f(x)∇f(x)T︸ ︷︷ ︸
<0

+ g′(f(x))︸ ︷︷ ︸
≥0

∇2f(x)︸ ︷︷ ︸
<0

<0.

3. The supremum over a set of convex functions fi(x), i ∈ I is convex: f(x) = supi∈I fi(x).
This can be proven by noting that the epigraph of f is the intersection of the epigraphs of
fi.

3.5 Standard Form of a Convex Optimization Problem

In order to yield a convex feasible set Ω, the equality constraints of a convex optimization problem
should only have linear equality constraints in order to define an affine set. Moreover, we know
that a sufficient condition for a set to be convex is that it is the intersection of sublevel sets



CHAPTER 3. CONVEX OPTIMIZATION 25

of convex functions. This set remains convex when intersected with the affine set due to linear
equality constraints. Thus, the following holds.

Theorem 3.4 (Sufficient Condition for Convex NLP): If in the NLP formulation (2.1) the ob-
jective f is convex, the equalities g are affine, and the inequalities hi are concave functions, then
the NLP is a convex optimization problem.

In convex optimization texts, often a different notation for a general convex optimization problem
is chosen, where the equalities are directly replaced by an affine function and the inequalities are
chosen to be ≤ in order to be able to say that the defining functions are “convex”, not “concave”,
just for convenience. The convex optimization problem standard form could therefore look as
follows:

minimize
x ∈ Rn

f0(x) (3.5a)

subject to Ax = b, (3.5b)

fi(x) ≤ 0, i = 1, . . . ,m. (3.5c)

Here, the the above theorem can shortly be summarized as “Problem (3.5) is convex if f0, . . . , fm
are convex.”.

Example 3.6 (Quadratically Constrained Quadratic Program (QCQP)): A convex optimization
problem of the form (3.5) with fi(x) = di + cTi x+ 1

2x
TBix with Bi<0 for i = 0, 1, . . . ,m is called

a “Quadratically Constrained Quadratic Program (QCQP)”.

minimize
x ∈ Rn

cT0 x+
1

2
xTB0x (3.6a)

subject to Ax = b, (3.6b)

di + cTi x+
1

2
xTBix ≤ 0, i = 1, . . . ,m. (3.6c)

By choosing B1 = . . . = Bm = 0 we would obtain a usual QP, and by also setting B0 = 0 we
would obtain an LP. Therefore, the class of QCQPs contains both LPs and QPs as subclasses.

3.6 Semidefinite Programming (SDP)

An interesting class of convex optimization problems makes use of linear matrix inequalities (LMI)
in order to describe the feasible set. As defined before, an LMI is a generalized form of inequality
of the form

B0 +

n∑
i=1

Bixi<0,



CHAPTER 3. CONVEX OPTIMIZATION 26

where the matrices B0, . . . , Bm are all in the vector space Sk of symmetric matrices of a given
dimension Rk×k.

As it involves the constraint that some matrices should remain positive semidefinite, this problem
class is called “Semidefinite Programming (SDP)”. A general SDP can be formulated as

min
x∈Rn

cTx (3.7a)

subject to Ax− b = 0, (3.7b)

B0 +
n∑
i=1

Bixi<0. (3.7c)

It turns out that all LPs, QPs, and QCQPs can also be formulated as SDPs, besides several other
convex problems. Semidefinite Programming is a very powerful tool in convex optimization.

Example 3.7 (Minimizing Largest Eigenvalue): We regard a symmetric matrix G(x) that affinely
depends on some design variables x ∈ Rn, i.e. G(x) = B0 +

∑n
i=1Bixi with Bi ∈ Sk for i =

1, . . . , n. If we want to minimize the largest eigenvalue of G(x), i.e. to solve

min
x
λmax (G(x))

we can formulate this problem as an SDP by adding a slack variable s ∈ R, as follows:

min
s∈R,x∈Rn

s (3.8a)

subject to Iks−
n∑
i=1

Bixi −B0<0. (3.8b)

Software: An excellent tool to formulate and solve convex optimization problems in a MATLAB
environment is CVX, which is available as open-source code and easy to install.

3.7 An Optimality Condition for Convex Problems

Theorem 3.5 (First Order Optimality Condition for Convex Problems): Regard the convex
optimization problem

min
x∈Rn

f(x) s.t. x ∈ Ω

with continuously differentiable objective function f . A point x∗ ∈ Ω is a global optimizer if and
only if

∀y ∈ Ω : ∇f(x∗)T (y − x∗) ≥ 0. (3.9)



CHAPTER 3. CONVEX OPTIMIZATION 27

Proof. If the condition holds, then due to the C1 characterization of convexity of f in Eq. (3.1)
we have for any feasible y ∈ Ω

f(y) ≥ f(x∗) +∇f(x∗)T (y − x∗)︸ ︷︷ ︸
≥0

≥ f(x∗).

Conversely, if we assume for contradiction that we have a y ∈ Ω with ∇f(x∗)T (y − x∗) < 0 then
we could regard a Taylor expansion

f(x∗ + t(y − x∗)) = f(x∗) + t∇f(x∗)T (y − x∗)︸ ︷︷ ︸
<0

+ o(t)︸︷︷︸
→0

yielding f(x∗ + t(y − x∗)) < f(x∗) for t > 0 small enough to let the last term be dominated by
the second last one. Thus, x∗ would not be a global minimizer.

Corollary (Unconstrained Convex Problems): Regard the unconstrained problem

min
x∈Rn

f(x)

with f(x) convex. Then a necessary and sufficient condition for x∗ to be a global optimizer is

∇f(x∗) = 0. (3.10)

Example 3.8 (Unconstrained Quadratic): Regard the unconstrained problem

min
x∈Rn

cTx+
1

2
xTBx (3.11)

with B�0. Due to the condition 0 = ∇f(x∗) = c + Bx, its unique optimizer is x∗ = −B−1c.
The optimal value of (3.11) is given by the following basic relation, that we will often use in the
following chapters. (

min
x∈Rn

cTx+
1

2
xTBx

)
= −1

2
cTB−1c. (3.12)



Chapter 4

The Lagrangian Function and Duality

Let us in this section regard a (not-necessarily convex) NLP in standard form (2.1) with functions
f : Rn → R, g : Rn → Rp, and h : Rn → Rq.

Definition 4.1 (Primal Optimization Problem)
We will denote the globally optimal value of the objective function subject to the constraints as
the “primal optimal value” p∗, i.e.,

p∗ =

(
min
x∈Rn

f(x) s.t. g(x) = 0, h(x) ≥ 0

)
, (4.1)

and we will denote this optimization problem as the “primal optimization problem”.

Definition 4.2 (Lagrangian Function and Lagrange Multipliers)
We define the so called “Lagrangian function” to be

L(x, λ, µ) = f(x)− λT g(x)− µTh(x). (4.2)

Here, we have introduced the so called “Lagrange multipliers” or “dual variables” λ ∈ Rp and
µ ∈ Rq. The Lagrangian function plays a crucial role in both convex and general nonlinear
optimization. We typically require the inequality multipliers µ to be positive, µ ≥ 0, while the
sign of the equality multipliers λ is arbitrary. This is motivated by the following basic lemma.

Lemma 4.1 (Lower Bound Property of Lagrangian): If x̃ is a feasible point of (4.1) and µ ≥ 0,
then

L(x̃, λ, µ) ≤ f(x̃). (4.3)

Proof. L(x̃, λ, µ) = f(x̃)− λT g(x̃)︸︷︷︸
=0

− µT︸︷︷︸
≥0

h(x̃)︸︷︷︸
≥0

≤ f(x̃).

28



CHAPTER 4. THE LAGRANGIAN FUNCTION AND DUALITY 29

4.1 Lagrange Dual Function and Weak Duality

Definition 4.3 (Lagrange Dual Function)
We define the so called “Lagrange dual function” as the unconstrained infimum of the Lagrangian
over x, for fixed multipliers λ, µ.

q(λ, µ) = inf
x∈Rn

L(x, λ, µ). (4.4)

This function will often take the value −∞, in which case we will say that the pair (λ, µ) is “dual
infeasible” for reasons that we motivate in the last example of this subsection.

Lemma 4.2 (Lower Bound Property of Lagrange Dual): If µ ≥ 0, then

q(λ, µ) ≤ p∗ (4.5)

Proof. The lemma is an immediate consequence of Eq. (4.3) which implies that for any feasible x̃
holds q(λ, µ) ≤ f(x̃). This inequality holds in particular for the global minimizer x∗ (which must
be feasible), yielding q(λ, µ) ≤ f(x∗) = p∗.

Theorem 4.3 (Concavity of Lagrange Dual): The function q : Rp × Rq → R is concave, even if
the original NLP was not convex.

Proof. We will show that −q is convex. The Lagrangian L is an affine function in the multipliers
λ and µ, which in particular implies that −L is convex in (λ, µ). Thus, the function −q(λ, µ) =
supx−L(x, λ, µ) is the supremum of convex functions in (λ, µ) that are indexed by x, and therefore
convex.

A natural question to ask is what is the best lower bound that we can get from the Lagrange
dual function. We obtain it by maximizing the Lagrange dual over all possible multiplier values,
yielding the so called “dual problem”.



CHAPTER 4. THE LAGRANGIAN FUNCTION AND DUALITY 30

λ, µ

−q

−L(x1, λ, µ)

−L(x2, λ, µ)

Figure 4.1: The negative dual function -q is supremum of linear functions in λ and µ hence convex.

Definition 4.4 (Dual Problem)
The “dual problem” with “dual optimal value” d∗ is defined as the convex maximization problem

d∗ =

(
max

λ∈Rp,µ∈Rq
q(λ, µ) s.t. µ ≥ 0

)
(4.6)

It is interesting to note that the dual problem is always convex, even if the so called “primal
problem” is not. As an immediate consequence of the last lemma, we obtain a very fundamental
result that is called “weak duality”.

Theorem 4.4 (Weak Duality):
d∗ ≤ p∗ (4.7)

This theorem holds for any arbitrary optimization problem, but does only unfold its full strength
in convex optimization, where very often holds a strong version of duality. We will just cite the
important result here, without proof.

4.2 Strong Duality for Convex Problems

Theorem 4.5 (Strong Duality): If the primal optimization problem (4.1) is convex and the so
called “Slater condition” holds, then primal and dual objective are equal to each other,

d∗ = p∗. (4.8)

For completeness, we briefly state the technical condition used in the above theorem, which is
satisfied for most convex optimization problems of interest. The proof of the theorem can for



CHAPTER 4. THE LAGRANGIAN FUNCTION AND DUALITY 31

example be found in [2].

Definition 4.5 (Slater’s Constraint Qualification)
The Slater condition is satisfied for a convex optimization problem (4.1) if there exists at least
one feasible point x̄ ∈ Ω such that all nonlinear inequalities are strictly satisfied. More explicitly,
for a convex problem we must have affine equality constraints, g(x) = Ax+ b, and the inequality
constraint functions hi(x), i = 1, . . . , q, can be either affine or concave functions, thus we can
without loss of generality assume that the first q1 ≤ q inequalities are affine and the remaining
ones concave. Then the Slater condition holds if and only if there exists an x̄ such that

Ax̄+ b = 0, (4.9a)

hi(x̄) ≥ 0, for i = 1, . . . , q1, (4.9b)

hi(x̄) > 0, for i = q1 + 1, . . . , q. (4.9c)

Note that the Slater condition is satisfied for all feasible LP and QP problems.

Strong duality allows us to reformulate a convex optimization problem into its dual, which looks
very differently, but gives the same solution. We will look at this at hand of two examples.

Example 4.1 (Dual of a strictly convex QP): We regard the following strictly convex QP (i.e.,
with B�0)

p∗ = min
x∈Rn

cTx+
1

2
xTBx (4.10a)

subject to Ax− b = 0, (4.10b)

Cx− d ≥ 0. (4.10c)

Ω

x∗

x1

x2

Figure 4.2: Illustration of a QP in two variables with one equality and one inequality constraint



CHAPTER 4. THE LAGRANGIAN FUNCTION AND DUALITY 32

Its Lagrangian function is given by

L(x, λ, µ) = cTx+
1

2
xTBx− λT (Ax− b)− µT (Cx− d)

= λT b+ µTd+
1

2
xTBx+

(
c−ATλ− CTµ

)T
x.

The Lagrange dual function is the infimum value of the Lagrangian with respect to x, which only
enters the last two terms in the above expression. We obtain

q(λ, µ) = λT b+ µTd+ inf
x∈Rn

(
1

2
xTBx+

(
c−ATλ− CTµ

)T
x

)
= λT b+ µTd− 1

2

(
c−ATλ− CTµ

)T
B−1

(
c−ATλ− CTµ

)
where we have made use of the basic result (3.12) in the last row.

Therefore, the dual optimization problem of the QP (4.10) is given by

d∗ = max
λ∈Rp,µ∈Rq

−1

2
cTB−1c +

[
b+AB−1c
d+ CB−1c

]T [
λ
µ

]
− 1

2

[
λ
µ

]T [
A
C

]
B−1

[
A
C

]T [
λ
µ

]
(4.11a)

subject to µ ≥ 0. (4.11b)

Due to the fact that the objective is concave, this problem is again a convex QP, but not a strictly
convex one. Note that the first term is a constant, but that we have to keep it in order to make
sure that d∗ = p∗, i.e. strong duality, holds.

Example 4.2 (Dual of an LP): Let us now regard the following LP

p∗ = min
x∈Rn

cTx (4.12a)

subject to Ax− b = 0, (4.12b)

Cx− d ≥ 0. (4.12c)

Its Lagrangian function is given by

L(x, λ, µ) = cTx− λT (Ax− b)− µT (Cx− d)

= λT b+ µTd+
(
c−ATλ− CTµ

)T
x.

Here, the Lagrange dual is

q(λ, µ) = λT b+ µTd+ inf
x∈Rn

(
c−ATλ− CTµ

)T
x

= λT b+ µTd+

{
0 if c−ATλ− CTµ = 0
−∞ else.



CHAPTER 4. THE LAGRANGIAN FUNCTION AND DUALITY 33

Thus, the objective function q(λ, µ) of the dual optimization problem is −∞ at all points that
do not satisfy the linear equality c−ATλ−CTµ = 0. As we want to maximize, these points can
be regarded as infeasible points of the dual problem (that is why we call them “dual infeasible”),
and we can explicitly write the dual of the above LP (4.12) as

d∗ = max
λ∈Rp,µ∈Rq

[
b
d

]T [
λ
µ

]
(4.13a)

subject to c−ATλ− CTµ = 0, (4.13b)

µ ≥ 0. (4.13c)

This is again an LP and it can be proven that strong duality holds for all LPs for which at least
one feasible point exists, i.e. we have d∗ = p∗, even though the two problems look quite different.

Example 4.3 (Dual Decomposition): Let us regard N people that share one common resource,
such as water, air, oil or electricity. The total amount of this resource is limited by M and the
demand that each person requests is given by xi ∈ R for i = 1, . . . , N . The cost benefit that
each person has from using the resource is given by the cost function fi(xi, yi), where yi ∈ Rni
are other decision variables that each person has. Let us now assume that the resource has no
fixed price and instead shall be distributed in order to minimize the sum of the individual cost
functions, i.e. the distributor shall solve the following optimization problem.

minimize
x,y

N∑
i=1

fi(xi, yi)

subject to M −
N∑
i=1

xi ≥ 0

(4.14)

It is clear that depending on the size of N and the complexity of the individual cost functions
fi this can be a difficult problem to solve. Moreover, it is difficult for a central distributor to
know the individual cost functions. It turns out that duality theory delivers us an elegant way
to facilitate a decentralized solution to the optimization problem that is very widely used in real
life. Let us introduce a Lagrange multiplier µ ∈ R for the constraint, and form the Lagrangian
function

L(x, y, µ) = −Mµ+
N∑
i=1

fi(xi, yi) + µxi.

The Lagrange dual function q : R→ R is now given by

q(µ) = inf
x,y
L(x, y, µ) = −Mµ+

N∑
i=1

inf
xi,yi

fi(xi, yi) + µxi.

It is a remarkable fact that the minimization of the global Lagrangian can be decomposed into N
individual local optimizations. If in addition the functions fi are convex, we know that maximizing
the dual function is equivalent to the original problem. We only need to find the right multiplier
µ∗ by solving the dual problem

max
µ∈R

q(µ) subject to µ ≥ 0.



CHAPTER 4. THE LAGRANGIAN FUNCTION AND DUALITY 34

The fact that q can be evaluated by N parallel minimizations can be beneficial for distribution of
the computational load. This overall method to solve a large scale optimization problem is also
known as dual decomposition. The local optimization problems are solved by so called local agents,
while the Lagrange multiplier µ is determined by the so called central agent. It is instructive to see
what is the local optimization problem that each local agent has to solve at the optimal multiplier
µ∗ (let us assume the minimum is attained so that we can replace the infimum by the minimum):

min
xi,yi

fi(xi, yi) + µ∗xi

Here, the original cost function fi is augmented by the amount of resource, xi, multiplied with
a non-negative factor µ∗. The more of the resource the actor consumes, the more its local cost
function is penalized by µ∗xi. This is exactly what would happen if each actor would have to pay
a price µ∗ for each unit of resource. We see that the role of Lagrange multipliers and of prices is
very similar. For this reason, the multipliers are sometimes also called shadow prices, and dual
decomposition is sometimes called price decomposition. One way of making sure that the global
optimization problem is solved is to find out what is the right price and then ask each actor to pay
for using the resource. Finding the right price is a difficult problem, of course, and not solving
it exactly, or the slow convergence of µ towards µ∗ or its possible oscillations during this process
are one of the prime reasons for macroeconomic difficulties.

To see that setting the right price µ∗ really solves the problem of sharing the resource in an
optimal way, let us in addition assume that the local cost functions fi are strictly convex. This
implies that q is differentiable. As it is concave as well, −q is convex, and we can apply the
optimality condition of convex problems from the last chapter: at the maximum µ∗ must hold

−∇µq(µ∗)T (µ− µ∗) ≥ 0 ∀µ ≥ 0. (4.15)

If we assume that the optimal price µ∗ is nonzero, this implies that ∇q(µ∗) = 0, or differently
written, ∂q

∂µ(µ∗) = 0. Let us compute the derivative of q w.r.t. µ explicitly. First, also assume that
fi are differentiable, and that the optimal local solutions x∗i (µ) and y∗i (µ) depend differentiably
on µ. We then have that q is given by

q(µ) = −Mµ+
N∑
i=1

fi(x
∗
i (µ), y∗i (µ)) + µx∗i (µ).

Its derivative can be computed easily by using the following observation that follows from opti-
mality of x∗i (µ) and y∗i (µ):

d

dµ
fi(x

∗
i (µ), y∗i (µ)) =

∂fi
∂xi

(x∗i (µ), y∗i (µ))︸ ︷︷ ︸
=0

∂

∂µ
x∗i (µ) +

∂fi
∂yi

(x∗i (µ), y∗i (µ))︸ ︷︷ ︸
=0

∂

∂µ
y∗i (µ) = 0.

Thus, the derivative of q is simply given by

∂q

∂µ
(µ) = −M +

N∑
i=1

x∗i (µ).

Dual optimality in the considered case of a positive price µ∗ > 0 is thus equivalent to

N∑
i=1

x∗i (µ
∗) = M.



CHAPTER 4. THE LAGRANGIAN FUNCTION AND DUALITY 35

We see that, if the positive price µ∗ is set in the optimal way, the resource is exactly used up to
its limit M . On the other hand, if the optimal solution would for some strange reason be given by
µ∗ = 0, the optimality condition in Equation (4.15) would imply that ∂q

∂µ(0) ≤ 0, or equivalently,

N∑
i=1

x∗i (0) ≤M.

For an optimal allocation, only resources that are not used up to their limits should have a zero
price. Conversely, if the local optimizations with zero price yield a total consumption larger than
the limit M , this is a clear indication that the resource should have a positive price instead.

An algorithm that can be interpreted as a variant of the gradient algorithm in the next chapter
is the following: when the gradient ∂q

∂µ(µ) = −M +
∑N

i=1 x
∗
i (µ) is positive, i.e. when the resource

is used more than M , we increase the price µ, and when the gradient is negative, i.e. not the full
capacity M of the resource is used, we decrease the price.



Part II

Unconstrained Optimization and
Newton-Type Algorithms

36



Chapter 5

Optimality Conditions

In this part of the course we regard unconstrained optimization problems of the form

min
x∈D

f(x), (5.1)

where we regard objective functions f : D → R that are defined on some open domain D ⊂ Rn.
We are only interested in minimizers that lie inside of D. We might have D = Rn, but often this
is not the case, e.g. as in the following example:

min
x∈(0,∞)

1

x
+ x. (5.2)

5.1 Necessary Optimality Conditions

Theorem 5.1 (First Order Necessary Conditions (FONC)): If x∗ ∈ D is local minimizer of
f : D → R and f ∈ C1 then

∇f(x∗) = 0. (5.3)

Proof. Let us assume for contradiction that ∇f(x∗) 6= 0. Then p = −∇f(x∗) would be a descent
direction in which the objective could be improved, as follows: As D is open and f ∈ C1, we could
find a t > 0 that is small enough so that for all τ ∈ [0, t] holds x∗+τp ∈ D and ∇f(x∗+τp)T p < 0.
By Taylor’s Theorem, we would have for some θ ∈ (0, t) that

f(x∗ + tp) = f(x∗) + t∇f(x∗ + θp)T p︸ ︷︷ ︸
<0

< f(x∗).

Definition 5.1 (Stationary Point)
A point x̄ with ∇f(x̄) = 0 is called a stationary point of f .

37



CHAPTER 5. OPTIMALITY CONDITIONS 38

Definition 5.2 (Descent Direction)
A vector p ∈ Rn with ∇f(x)T p < 0 is called a descent direction at x.

y

x

x = 1

y = x2

p = −∇f(x∗) = −2

Figure 5.1: An illustration of a descent direction for f(x) = x2

Theorem 5.2 (Second Order Necessary Conditions (SONC)): If x∗ ∈ D is local minimizer of
f : D → R and f ∈ C2 then

∇2f(x∗)<0. (5.4)

Proof. If (5.4) would not hold there would be a p ∈ Rn so that pT∇2f(x∗)p < 0. Then the
objective could be improved in direction p, by choosing again a sufficiently small t > 0 so that for
all τ ∈ [0, t] holds pT∇2f(x∗ + τp)p < 0. By Taylor’s Theorem, we would have for some θ ∈ (0, t)
that

f(x∗ + tp) = f(x∗) + t∇f(x∗)T p︸ ︷︷ ︸
=0

+
1

2
t2 pT∇2f(x∗ + θp)p︸ ︷︷ ︸

<0

< f(x∗).

Note that the second order necessary condition (5.4) is not sufficient for a stationary point x∗ to
be a minimizer. This is illustrated by the function f(x) = x3 or f(x) = −x4 which are saddle
points and maximizers respectively, both fulfilling SONC.

5.2 Sufficient Optimality Conditions

For convex functions, we have already proven the following result.

Theorem 5.3 (Convex First Order Sufficient Conditions (cFOSC)): Assume that f : D → R is
C1 and convex. If x∗ ∈ D is a stationary point of f , then x∗ is a global minimizer of f .



CHAPTER 5. OPTIMALITY CONDITIONS 39

x

y

Figure 5.2: Stationary points are not always optimal

How can we obtain a sufficient optimality condition for general nonlinear, but smooth functions
f?

Theorem 5.4 (Second Order Sufficient Conditions (SOSC)): Assume that f : D → R is C2. If
x∗ ∈ D is a stationary point and

∇2f(x∗)�0. (5.5)

then x∗ is a strict local minimizer of f .

Proof. We can choose a sufficiently small closed ball B around x∗ so that for all x ∈ B holds
∇2f(x)�0. Restricted to this ball, we have a convex problem, so that the previous Theorem 5.3
together with stationarity of x∗ yields that x∗ is a minimizer within this ball, i.e. a local minimizer.
To prove that it is strict, we look for any x ∈ B\x∗ at the Taylor expansion, which yields with
some θ ∈ (0, 1)

f(x) = f(x∗) +∇f(x∗)T (x− x∗)︸ ︷︷ ︸
=0

+
1

2
(x− x∗)T∇2f(x∗ + θ(x− x∗))(x− x∗)︸ ︷︷ ︸

>0

> f(x∗).

Note that the second order sufficient condition (5.5) is not necessary for a stationary point x∗ to
be a strict local minimizer. This is illustrated by the function f(x) = x4 for which x∗ = 0 is a
strict local minimizer with ∇2f(x∗) = 0.

5.3 Perturbation Analysis

In numerical mathematics, we can never evaluate functions at precisions higher than machine
precision. Thus, we usually compute only solutions to slightly perturbed problems, and are most



CHAPTER 5. OPTIMALITY CONDITIONS 40

interested in minimizers that are stable against small perturbations. This is the case for strict
local minimizers that satisfy the second order sufficient condition (5.5).

For this aim we regard functions f(x, a) that depend not only on x ∈ Rn but also on some “distur-
bance parameter” a ∈ Rm. We are interested in the parametric family of problems minx f(x, a)
yielding minimizers x∗(a) depending on a.

Definition 5.3 (Solution map)
For a parametric optimization problem

min
x∈D

f(x, a) (5.6)

the dependency of x∗ on a in the neighborhood of a fixed value ā, x∗(a) is called the solution
map.

Theorem 5.5 (Stability of Parametric Solutions): Assume that f : D × Rm → R is C2, and
regard the minimization of f(·, ā) for a given fixed value of ā ∈ Rm. If x̄ ∈ D satisfies the SOSC
condition, i.e. ∇xf(x̄, ā) = 0 and ∇2

xf(x̄, ā)�0, then there is a neighborhood N ⊂ Rm around ā
so that the parametric minimizer function x∗(a) is well defined for all a ∈ N , is differentiable in
N , and x∗(ā) = x̄. Its derivative at ā is given by

∂(x∗(ā))

∂a
= −

(
∇2
xf(x̄, ā)

)−1∂(∇xf(x̄, ā))

∂a
. (5.7)

Moreover, each such x∗(a) with a ∈ N satisfies again the SOSC conditions and is thus a strict
local minimizer.

Proof. The existence of the differentiable map x∗ : N → D follows from the implicit function
theorem applied to the stationarity condition ∇xf(x∗(a), a) = 0. We recall the derivation of
Eq. (5.7) via

0 =
d(∇xf(x∗(a), a))

da
=
∂(∇xf(x∗(a), a))

∂x︸ ︷︷ ︸
=∇2

xf

·∂x
∗(a)

∂a
+
∂(∇xf(x∗(a), a))

∂a

The fact that all points x∗(a) satisfy the SOSC conditions follows from continuity of the second
derivative.



Chapter 6

Estimation and Fitting Problems

Estimation and fitting problems are optimization problems with a special objective, namely a
“least squares objective”1,

min
x∈Rn

1

2
‖η −M(x)‖22. (6.1)

Here, η ∈ Rm are the m “measurements” and M : Rn → Rm is a “model”, and x ∈ Rn are called
“model parameters”. If the true value for x would be known, we could evaluate the model M(x)
to obtain model predictions for the measurements. The computation of M(x), which might be a
very complex function and for example involve the solution of a differential equation, is sometimes
called the “forward problem”: for given model inputs, we determine the model outputs.

In estimation and fitting problems, as (6.1), the situation is inversed: we want to find those model
parameters x that yield a prediction M(x) that is as close as possible to the actual measurements
η. This problem is often called an “inverse problem”: for given model outputs η, we want to find
the corresponding model inputs x.

This type of optimization problem arises in applications like:

• function approximation

• online estimation for process control

• weather forecast (weather data reconciliation)

• parameter estimation

1Definition [Euclidean norm]: For a vector x ∈ Rn, we define the norm as ‖x‖2 =
(∑n

i=1 x
2
i

)1/2
= (xTx)1/2.

41



CHAPTER 6. ESTIMATION AND FITTING PROBLEMS 42

6.1 Linear Least Squares

Many models in estimation and fitting problems are linear functions of x. If M is linear, M(x) =
Jx, then f(x) = 1

2 ‖ η − Jx ‖22 which is a convex function, as ∇2f(x) = JTJ<0. Therefore local
minimizers are found by

∇f(x∗) = 0 ⇔ JTJx∗ − JT η = 0 (6.2)

⇔ x∗ = (JTJ)−1JT︸ ︷︷ ︸
=J+

η

Definition 6.1 (Pseudo-inverse)
J+ is called the pseudo-inverse and is a generalization of the inverse matrix. If JTJ � 0, J+ is
given by

J+ = (JTJ)−1JT (6.3)

So far, (JTJ)−1 is only defined when JTJ � 0. This holds if and only if rank(J) = n, i.e., if the
columns of J are linearly independent.

Example 6.1 (Average linear least squares): Let us regard the simple optimization problem:

min
x∈R

1

2

m∑
i=1

(ηi − x)2.

This is a linear least squares problem, where the vector η and the matrix J ∈ Rm×1 are given by

η =


η1

η2
...
ηm

 , J =


1
1
...
1

 . (6.4)

Because JTJ = m, it can be easily seen that

J+ = (JTJ)−1JT =
1

m

[
1 1 · · · 1

]
(6.5)

so we conclude that the local minimizer equals the average η̂ of the given points ηi:

x∗ = J+η =
1

m

m∑
i=1

ηi = η̂. (6.6)

Example 6.2 (Linear Regression): Given data points {ti}i=mi=1 with corresponding values {ηi}i=mi=1 ,
find the 2-dimensional parameter vector x = (x1, x2), so that the polynomial of degree one



CHAPTER 6. ESTIMATION AND FITTING PROBLEMS 43

ti

ηi

Figure 6.1: Linear regression for a set of data points (ti, ηi)

p(t;x) = x1 + x2t provides a prediction of η at time t. The corresponding optimization prob-
lem looks like:

min
x∈R2

1

2

m∑
i=1

(ηi − p(ti;x))2 = min
x∈R2

1

2

∥∥∥∥η − J [x1

x2

]∥∥∥∥2

2

(6.7)

where η is the same vector as in (6.4) and J is given by

J =


1 t1
1 t2
...

...
1 tm

 . (6.8)

The local minimizer is found by equation (6.3), whereas the calculation of (JTJ) is straightforward:

JTJ =

[
m

∑
ti∑

ti
∑
t2i

]
= m

[
1 t̂

t̂ t̂2

]
(6.9)

In order to obtain x∗, first (JTJ)−1 is calculated2:

(JTJ)−1 =
1

det(JTJ)
adj(JTJ) =

1

m(t̂2 − (t̂)2)

[
t̂2 −t̂
−t̂ 1

]
. (6.10)

Second, we compute JT η as follows:

JT η =

[
1 · · · 1
t1 · · · tm

] η1
...
ηm

 =

[ ∑
ηi∑
ηiti

]
= m

[
η̂

η̂t

]
. (6.11)

Hence, the local minimizer is found by combining the expressions (6.10) and (6.11). Note that

t̂2 − (t̂)2 =
1

m

∑
(ti − t̂)2 = σ2

t . (6.12)

2Recall that the adjugate of a matrix A ∈ Rnxn is given by taking the transpose of the cofactor matrix,
adj(A) = CT where Cij = (−1)i+jMij with Mij the (i, j) minor of A.



CHAPTER 6. ESTIMATION AND FITTING PROBLEMS 44

where we used in the last transformation a standard definition of the variance σt. The correlation
coefficient ρ is similarly defined by

ρ =

∑
(ηi − η̂)(ti − t̂)
mσtση

=
t̂η − η̂t̂
σtση

. (6.13)

The two-dimensional parameter vector x = (x1, x2) is found:

x∗ =
1

σ2
t

[
t̂2η̂ − t̂η̂t
−t̂η̂ + η̂t

]
=

[
η̂ − t̂σησt ρση

σt
ρ

]
. (6.14)

Finally, this can be written as a polynomial of first degree:

p(t;x∗) = η̂ + (t− t̂)ση
σt
ρ. (6.15)

6.2 Ill Posed Linear Least Squares

Definition (6.3) of the pseudo-inverse holds only when JTJ is invertible, which implies that the
set of optimal solutions S∗ has only one optimal point x∗, given by equation (6.3): S∗ = {x∗} =
(JTJ)−1Jη. If JTJ is not invertible, the set of solutions S∗ is given by

S∗ = {x | ∇f(x) = 0} = {x|JTJx− JT η = 0} (6.16)

In order to pick a unique point out of this set, we might choose to search for the “minimum norm
solution”, i.e. the vector x∗ with minimum norm satisfying x∗ ∈ S∗.

min
x∈Rn

1

2
‖x‖22 subject to x ∈ S∗ (6.17)

We will show below that this minimal norm solution is given by the so called “Moore Penrose
Pseudo Inverse”.

x1

x2

Figure 6.2: JTJ is invertible, resulting in a unique minimum.



CHAPTER 6. ESTIMATION AND FITTING PROBLEMS 45

x1

x2

S∗

f(x)

Figure 6.3: An example of an ill-posed problem, JTJ is not invertible

Definition 6.2 (Moore Penrose Pseudo Inverse)
Assume J ∈ Rm×n and that the singular value decomposition (SVD) of J is given by J = USV T .
Then, the Moore Penrose pseudo inverse J+ is given by:

J+ = V S+UT , (6.18)

where for

S =



σ1

σ2

. . .

σr
0

. . .

0

0 . . . 0 . . . 0


holds S+ =



σ−1
1 0

σ−1
2

. . .
...

σ−1
r 0

0
...

. . .

0 0


(6.19)

If JTJ is invertible, then J+ = (JTJ)−1JT what easily can be shown:

(JTJ)−1JT = (V STUTUSV T )−1V STUT

= V (STS)−1V TV STUT

= V (STS)−1STUT

= V


σ2

1

σ2
2

. . .

σ2
r


−1 

σ1

σ2 0
. . .

σr

UT
= V S+UT



CHAPTER 6. ESTIMATION AND FITTING PROBLEMS 46

6.3 Regularization for Least Squares

The minimum norm solution can be approximated by a “regularized problem”

min
x

1

2
‖η − Jx‖22 +

ε

2
‖x‖22, (6.20)

with small ε > 0, to get a unique solution

∇f(x) = JTJx− JT η + εx (6.21)

= (JTJ + εI)x− JT η (6.22)

x∗ = (JTJ + εI)−1JT η (6.23)

(6.24)

Lemma 6.1: for ε→ 0, (JTJ + εI)−1JT → J+, with J+ the Moore Penrose inverse.

Proof. Taking the SVD of J = USV T , (JTJ + εI)−1JT can be written in the form:

(JTJ + εI)−1JT = (V STUTUSV T + ε I︸︷︷︸
V V T

)−1 JT︸︷︷︸
USTV T

= V (STS + εI)−1V TV STUT

= V (STS + εI)−1STUT

Rewriting the right hand side of the equation explicitly:

= V



σ2
1 + ε

. . .

σ2
r + ε

ε
. . .

ε



−1


σ1 0
. . .

σr
...

0
. . .

0 0


UT

Calculating the matrix product simplifies the equation:

= V



σ1
σ2
1+ε

0

. . .

σr
σ2
r+ε

...
0
ε

. . .
0
ε 0


UT

It can be easily seen that for ε→ 0 each diagonal element has the solution:

lim
ε→0

σi
σ2
i + ε

=

{ 1
σi

if σi 6= 0

0 if σi = 0
(6.25)



CHAPTER 6. ESTIMATION AND FITTING PROBLEMS 47

We have shown that the Moore Penrose inverse J+ solves the problem (6.20) for infinitely small
ε > 0. Thus it selects x∗ ∈ S∗ with minimal norm.

6.4 Statistical Derivation of Least Squares

A least squares problem (6.1) can be interpreted as finding the x that “explains” the noisy
measurements η “best”.

Definition 6.3 (Maximum-Likelihood Estimate)
A maximum-likelihood estimate of the unknown parameter x maximizes the probability P (η|x)
of obtaining the (given) measurements η if the parameter would have the value x.

Assume ηi = Mi(x) + εi with x the “true” parameter, and εi Gaussian noise with expectation
value E(εi) = 0, E(εi εi) = σ2

i and εi, εj independent. Then holds

P (η|x) =
m∏
i=1

P (ηi | x) (6.26)

= C
m∏
i=1

exp

(−(ηi −Mi(x))2

2σ2
i

)
(6.27)

with C =
∏m
i=1

1√
2πσ2

i

. Taking the logarithm of both sides gives

logP (η|x) = log(C) +
m∑
i=1

−(ηi −Mi(x))2

2σ2
i

(6.28)

with a constant C. Due to monotonicity of the logarithm holds that the argument maximizing
P (η|x) is given by

arg max
x∈Rn

P (η|x) = arg min
x∈Rn

− log(P (η|x)) (6.29)

= arg min
x∈Rn

m∑
i=1

(ηi −Mi(x))2

2σ2
i

(6.30)

= arg min
x∈Rn

1

2
‖S−1(η −M(x))‖22 (6.31)

Thus, the least squares problem has a statistical interpretation. Note that due to the fact that we
might have different standard deviations σi for different measurements ηi we need to scale both
measurements and model functions in order to obtain an objective in the usual least squares form



CHAPTER 6. ESTIMATION AND FITTING PROBLEMS 48

‖η̂ − M̂(x)‖22, as

min
x

1

2

n∑
i=1

(
ηi −Mi(x)

σi

)2

= min
x

1

2
‖S−1(η −M(x))‖22 (6.32)

= min
x

1

2
‖S−1η − S−1M(x)‖22 (6.33)

with S =

σ1

. . .

σm

 .

Statistical Interpretation of Regularization terms: Note that a regularization term like
α‖x− x̄‖22 that is added to the objective can be interpreted as a “pseudo measurement” x̄ of the
parameter value x, which includes a statistical assumption: the smaller α, the larger we implicitly
assume the standard deviation of this pseudo-measurement. As the data of a regularization term
are usually given before the actual measurements, regularization is also often interpreted as “a
priori knowledge”. Note that not only the Euclidean norm with one scalar weighting α can be
chosen, but many other forms of regularization are possible, e.g. terms of the form ‖A(x − x̄)‖22
with some matrix A.

6.5 L1-Estimation

Instead of using ‖.‖22, i.e. the L2-norm in equation (6.1), we might alternatively use ‖.‖1, i.e., the
L1-norm. This gives rise to the so called L1-estimation problem:

min
x
‖η −M(x)‖1 = min

x

m∑
i=1

|ηi −Mi(x)| (6.34)

Like the L2-estimation problem, also the L1-estimation problem can be interpreted statistically
as a maximum-likelihood estimate. However, in the L1-case, the measurement errors are assumed
to follow a Laplace distribution instead of a Gaussian.

An interesting observation is that the optimal L1-fit of a constant x to a sample of different scalar
values η1, . . . , ηm just gives the median of this sample, i.e.

arg min
x∈R

m∑
i=1

|ηi − x| = median of {η1, . . . , ηm}. (6.35)

Remember that the same problem with the L2-norm gave the average of ηi. Generally speaking,
the median is less sensitive to outliers than the average, and a detailed analysis shows that the
solution to general L1-estimation problems is also less sensitive to a few outliers. Therefore,
L1-estimation is sometimes also called “robust” parameter estimation.



CHAPTER 6. ESTIMATION AND FITTING PROBLEMS 49

6.6 Gauss-Newton (GN) Method

Linear least squares problems can be solved easily. Solving non-linear least squares problems
globally is in general difficult, but in order to find a local minimum we can iteratively solve it,
and in each iteration approximate the problem by its linearization at the current guess. This way
we obtain a better guess for the next iterate, etc., just as in Newton’s method for root finding
problems.

For non-linear least squares problems of the form

min
x

1

2
‖η −M(x)‖22︸ ︷︷ ︸

=f(x)

(6.36)

the so called “Gauss-Newton (GN) method” is used. To describe this method, let us first for
notational convenience introduce the shorthand F (x) = η −M(x) and redefine the objective to

f(x) =
1

2
‖F (x)‖22 (6.37)

where F (x) is a nonlinear function F : Rn → Rm with m > n (more measurements than param-
eters). At a given point xk (iterate k), F (x) is linearized, and the next iterate xk+1 obtained by
solving a linear least squares problem. We expand

F (x) u F (xk) + J(xk)(x− xk) (6.38)

where J(x) is the Jacobian of F (x) which is defined as

J(x) =
∂F (x)

∂x
. (6.39)

Then, xk+1 can be found as solution of the following linear least squares problem:

xk+1 = arg min
x

1

2
‖F (xk) + J(xk)(x− xk)‖22 (6.40)

For simplicity, we write J(xk) as J and F (xk) as F :

xk+1 = arg min
x

1

2
‖F + J(x− xk)‖22 (6.41)

= xk + arg min
p

1

2
‖F + Jp‖22 (6.42)

= xk − (JTJ)−1JTF (6.43)

= xk + pGN
k (6.44)

In the next chapter the convergence theory of this method is treated, i.e., the question if the
method converges, and to which point. The Gauss-Newton method is only applicable to least-
squares problems, because the method linearizes the non-linear function inside the L2-norm. Note
that in equation (6.43) JTJ might not always be invertible.



CHAPTER 6. ESTIMATION AND FITTING PROBLEMS 50

6.7 Levenberg-Marquardt (LM) Method

This method is a generalization of the Gauss-Newton method that is in particular applicable if
JTJ is not invertible, and can lead to more robust convergence far from a solution. The Levenberg-
Marquardt (LM) method makes the step pk smaller by penalizing the norm of the step. It defines
the step as:

pLM
k = arg min

p

1

2
‖F (xk) + J(xk)p‖22 +

αk
2
‖p‖22 (6.45)

= −(JTJ + αkI)−1JTF (6.46)

with some αk > 0. Using this step, it iterates as usual

xk+1 = xk + pLM
k . (6.47)

If we would make αk very big, we would not correct the point, but we would stay where we are:

for αk → ∞ we get pLM
k → 0. More precisely, pLM

k = 1
αk
JTF + O

(
1
α2
k

)
. On the other hand, for

small αk, i.e. for αk → 0 we get pLM
k → −J+F .

It is interesting to note that the gradient of the least squares objective function f(x) = 1
2‖F (x)‖22

equals

∇f(x) = J(x)TF (x), (6.48)

which is the rightmost term in the step of both the Gauss-Newton and the Levenberg-Marquardt
method. Thus, if the gradient equals zero, then also pGN

k = pLM
k = 0. This is a necessary

condition for convergence to stationary points: the GN and LM method both stay at a point xk
with ∇f(xk) = 0. In the following chapter the convergence properties of these two methods will
be analysed in much more detail. In fact, these two methods are part of a larger family, namely
the “Newton type optimization methods”.



Chapter 7

Newton Type Optimization

In this chapter we will treat how to solve a general unconstrained nonlinear optimization problem:

min
x∈Rn

f(x) (7.1)

with f ∈ C2

Definition 7.1 (Iterative Algorithm)
An “iterative algorithm” generates a sequence x0, x1, x2, ... of so called “iterates” with xk → x∗

7.1 Exact Newton’s Method

In numerical analysis, Newton’s method (or the Newton-Raphson method) is a method for finding
roots of equations in one or more dimensions. Regard the equation:

∇f(x∗) = 0 (7.2)

with ∇f : Rn → Rn, which has as many components as variables.

The Newton idea consists of linearizing the non-linear equations at xk to find xk+1 = xk + pk

∇f(xk) +
∂

∂x
(∇f(xk))︸ ︷︷ ︸
∇2f(xk)

pk = 0 (7.3)

m
−∇2f(xk)

−1∇f(xk) = pk (7.4)

pk is called the “Newton-step”, ∇2f(xk) is the Hessian.

51



CHAPTER 7. NEWTON TYPE OPTIMIZATION 52

∇f

xkxk+1 x∗ xk+2

Figure 7.1: Visualization of the exact Newton’s method.

A second interpretation of Newton’s method for optimization can be obtained by a quadratic
objective function, i.e. a second order Taylor approximation (a quadratic model can easily solved).
The quadratic model mk of objective f

mk(xk + p) = f(xk) +∇f(xk)
T p+

1

2
pT∇2f(xk)p (7.5)

u f(xk + p) (7.6)

There we would obtain step pk by minimizing mk(xk + p):

pk = arg min
p
mk(xk + p) (7.7)

This is translated to the following equation that the optimal p must satisfy:

∇m(xk + p) = ∇f(xk) +∇2f(xk)p = 0 (7.8)

Written explicitly for pk

pk = −(∇2f(xk))
−1∇f(xk) (7.9)

which is the same formula, but with a different interpretation.

7.2 Local Convergence Rates

We will in a later section prove within a more general theorem that Newton’s method converges
quadratically if it is started close to a solution. For completeness, let’s formulate this result
already in this section, and define rigorously what “quadratic convergence” means.

Theorem 7.1 (Quadratic convergence of Newton’s method): Suppose f ∈ C2 and moreover,



CHAPTER 7. NEWTON TYPE OPTIMIZATION 53

f(x)

mk(x)

xk

Figure 7.2: The second interpretation of Newton’s method.

∇2f(x) is a Lipschitz function1 in a neighborhood of x∗. x∗ is a local minimum satisfying SOSC
(∇f(x∗) = 0 and ∇2f(x∗) � 0). If x0 is sufficiently close to x∗, then the Newton iteration
x0, x1, x2, ...

* converges to x∗,

* converges with q-quadratic rate, and

* the sequence of ‖∇f(xk)‖ converges to zero quadratically.

Proof. We refer to Theorem 3.5 from [4] and to our more general result in a later section of this
chapter.

Definition 7.2 (Different types of convergence rates)
Assume xk ∈ Rn, xk → x. Then the sequence xk is said to converge:

i. Q-linearly ⇔
‖xk+1 − x‖ 6 C‖xk − x‖ with C < 1 (7.10)

holds for all k > k0. The “Q” in Q-linearly means the “Q” of “quotient”. Another equivalent
definition is:

lim supk→∞
‖xk+1 − x‖
‖xk − x‖

< 1 (7.11)

ii. Q-superlinearly ⇔
‖xk+1 − x‖ 6 Ck‖xk − x‖ with Ck → 0 (7.12)

This is equivalent to:

lim supk→∞
‖xk+1 − x‖
‖xk − x‖

= 0 (7.13)

1A function f is a Lipschitz function if ‖f(x)−f(y)‖ 6 L‖x−y‖ for all x and y, where L is a constant independent
of x and y.



CHAPTER 7. NEWTON TYPE OPTIMIZATION 54

iii. Q-quadratically ⇔
‖xk+1 − x‖ 6 C‖xk − x‖2 with C <∞ (7.14)

which is equivalent to:

lim supk→∞
‖xk+1 − x‖
‖xk − x‖2

<∞ (7.15)

Example 7.1 (Convergence rates): Consider examples with xk ∈ R, xk → 0 and x = 0.

a) xk = 1
2k

converges q-linearly:
xk+1

xk
= 1

2 .

b) xk = 0.99k also converges q-linearly:
xk+1

xk
= 0.99. This example converges very slowly to x.

In practice we desire C in equation (7.10) be smaller than, say, 1
2 .

c) xk = 1
k! converges Q-superlinearly, as

xk+1

xk
= 1

k+1

d) xk = 1

22k
converges Q-quadratically, because

xk+1

(xk)2
= (22

k
)2

22k+1 = 1 <∞. For k = 6, xk = 1
264
≈ 0,

so in practice convergence up to machine precision is reached after roughly 6 iterations.

Definition 7.3 (R-convergence)
If the norm sequence ‖xk−x‖ is upper bounded by some sequence yk → 0, yk ∈ R i.e. ‖xk−x‖ ≤ yk
and if yk is converging with a given Q-rate, i.e. Q-linearly, Q-superlinearly or Q-quadratically,
then xk is said to converge “R-linearly, R-superlinearly, or R-quadratically” to x̄. Here, R in-
dicates “root”, because, e.g., R-linear convergence can also be defined via the root criterion
limk→∞ k

√
‖xk − x‖ < 1.

Example 7.2 (R-convergence):

xk =

{
1
2k

if k even

0 else
(7.16)

This is a fast R-linear convergence, but it is not monotonically decreasing like Q-linear conver-
gence.

Summary The three different Q-convergence and three different R-convergence rates have the
following relations with each other. Here, X ⇒ Y should be read as “If a sequence converges with
rate X this implies that the sequence also converges with rate Y ”.

Q− quadratically ⇒ Q− superlinearly ⇒ Q− linearly
⇓ ⇓ ⇓

R− quadratically ⇒ R− superlinearly ⇒ R− linearly



CHAPTER 7. NEWTON TYPE OPTIMIZATION 55

7.3 Newton Type Methods

Any iteration of the form

xk+1 = xk −B−1
k ∇f(xk) (7.17)

with Bk invertible is called a “Newton type iteration for optimization”. For Bk = ∇2f(xk) we
recover Newton’s method, usually we try Bk ≈ ∇2f(xk). In each iteration, a quadratic model is
minimized to obtain the next step, pk:

pk = arg min
p
mk(xk + p) (7.18)

The corresponding model is written in the form

mk(xk + p) = f(xk) +∇f(xk)
T p+

1

2
pTBkp (7.19)

This model leads to the step of Newton type iteration:

0 = ∇mk(xk + pk) = Bkpk +∇f (7.20)

⇔ pk = −B−1
k ∇f (7.21)

Note that pk is a minimizer of mk(xk + p) only if Bk � 0. For exact Newton, this might not be
the case for xk far from the solution x∗.

Lemma 7.2 (Descent direction): If Bk � 0 then pk = −B−1
k ∇f(xk) is a descent direction.

Proof.

∇f(xk)
T pk = −∇f(xk)

T B−1
k︸︷︷︸
�0

∇f(xk)

︸ ︷︷ ︸
>0

< 0 (7.22)

In the next part of this section, we consider two questions:

1. Can we guarantee convergence for any initial guess x0? The answer can be found in the
chapter on “global convergence”.

2. How fast is the “local convergence” rate? We will first approach this question by a few
examples.

Definition 7.4 (Newton type variants)
This section discusses some Newton type variants, frequently used:



CHAPTER 7. NEWTON TYPE OPTIMIZATION 56

a) Exact Newton’s Method: use Bk := ∇2f(xk).

b) Gauss-Newton and Levenberg-Marquardt: for f(x) = 1
2‖F (x)‖22 take

mk(xk + p) =
1

2
‖F (xk) + J(xk)p‖22 +

αk
2
‖p‖22 (7.23)

=
1

2
‖F (xk)‖22 + pTJ(xk)

TF (xk) +
1

2
pT (J(xk)

TJ(xk) + αkI)p

where J(xk)
TF (xk) equals the gradient, ∇f(xk) of f . In the Gauss-Newton and Levenberg-

Marquardt method, we have

Bk = J(xk)
TJ(xk) + αkI (7.24)

and step pk = −B−1
k ∇f(xk). When is Bk close to ∇2f(xk)? Note that

F (x) =


F1(x)
F2(x)

...
Fm(x)

 (7.25)

The Hessian ∇2f(xk) is then computed as:

∇2f(x) =
∂

∂x
(∇f(x)) =

∂

∂x
(J(x)TF (x)) (7.26)

=
∂

∂x
(

m∑
i=1

∇Fi(x)Fi(x)) (7.27)

= J(x)TJ(x) +

m∑
i=1

∇2Fi(x)Fi(x) (7.28)

In Gauss-Newton, we have ∇2f(x)−Bk =
∑m

i=1∇2Fi(x)Fi(x). This “error matrix” gets small
if

* ∇2Fi(x) are small ( F nearly linear)

* Fi(x) are small ⇔ “good fit” or “small residuals”

Gauss Newton works well for small residual problems. If you have a solution with perfect fit,
a locally quadratic convergence rate is reached at the end of the iterates.

c) Steepest descent method or gradient method: Take Bk = αkI and

pk = −B−1
k ∇f(xk) = −∇f(xk)

αk
(7.29)

This is the negative gradient, the direction of steepest descent. But how to choose αk, or
equivalently, how long to take steps? “Line search” as explained later, will be one answer to
this.



CHAPTER 7. NEWTON TYPE OPTIMIZATION 57

d) Quasi-Newton methods: Approximate Hessian Bk+1 from knowledge of Bk and ∇f(xk) and
∇f(xk+1). We get the following important equation:

Bk+1(xk+1 − xk) = ∇f(xk+1)−∇f(xk), (7.30)

the so called “secant condition”.
As an example, consider the BFGS-formula:

Bk+1 = Bk −
Bkss

TBk
sTBks

+
yyT

sT y
(7.31)

with s and y defined as:

s = xk+1 − xk, (7.32)

y = ∇f(xk+1)−∇f(xk). (7.33)

We easily check that Bk+1s = y. The BFGS method is a very successful method, and it can
be shown that Bk → ∇2f(x∗).

e) Inexact Newton: Solve the linear system

∇2f(xk)p = −∇f(xk) (7.34)

inexactly, e.g. by iterative linear algebra. This approach is good for large scale problems.



Chapter 8

Local Convergence of General
Newton Type Iterations

Let us leave the field of optimization for a moment, and just regard a nonlinear root finding
problem. For this, we consider a continuously differentiable function F : Rn → Rn, w 7→ F (w),
where aim is to solve the nonlinear equation system

F (w) = 0.

Newton’s idea was to start with an initial guess w0, and recursively generate a sequence of iterates
{wk}∞k=0 by linearizing the nonlinear equation at the current iterate:

F (wk) +
∂F

∂w
(wk)(w − wk) = 0.

We can explicitly compute the next iterate by solving the linear system:

wk+1 = wk −
(
∂F

∂w
(wk)

)−1

F (wk)

Note that we have to assume that the Jacobian ∂F
∂w (w) is invertible.

More general, we can use an approximation Mk of the Jacobian J(wk) := ∂F
∂w (wk). The general

Newton type iteration is
wk+1 = wk −M−1

k F (wk)

Depending on how closely Mk approximates J(wk), the local convergence can be fast or slow, or
the sequence may even not converge.

Example 8.1: Regard F (w) = w16 − 2, where ∂F
∂w (w) = 16w15. The Newton method iterates:

wk+1 = wk − (16w15)−1(w16 − 2)

58



CHAPTER 8. LOCAL CONVERGENCE OF GENERAL NEWTON TYPE ITERATIONS 59

The iterates quickly converge to solution w∗ with F (w∗) = 0. In fact, the convergence rate of
Newton’s method is q-quadratic. Alternatively, we could use a Jacobian approximation, e.g. the
constant value Mk = 16 corresponding to the true Jacobian at w = 1. The resulting iteration
would be

wk+1 = wk − (16)−1(w16 − 2)

This approximate method might or might not converge. This might or might not depend on the
initial value w0. If the method converges, what will be its convergence rate? We investigate the
conditions on F (w), w0 and Mk that we need to ensure local convergence in the following section.

8.1 A Local Contraction Theorem for Newton Type Iterations

Theorem 8.1 (Local Contraction): Regard a nonlinear differentiable function F : Rn → Rn and
a solution point w∗ ∈ Rn with F (w∗) = 0, and the Newton type iteration wk+1 = wk−M−1

k F (wk)
that is started at the initial value w0. The sequence wk converges to w∗ with contraction rate

‖wk+1−w∗‖ ≤
(
κk+

ω

2
‖wk−w∗‖

)
‖wk−w∗‖

if there exist ω <∞ and κ < 1 such that for all wk and w holds

‖M−1
k (J(wk)− J(w))‖ ≤ ω‖wk − w‖ (Lipschitz, or ”omega”, condition)

‖M−1
k (J(wk)−Mk)‖ ≤ κk ≤ κ (compatibility, or ”kappa”, condition)

and if ‖w0 − w∗‖ is sufficiently small, namely ‖w0 − w∗‖ < 2(1−κ)
ω .

Note: κ = 0 for exact Newton.

Proof.

wk+1 − w∗ = wk − w∗ −M−1
k F (wk)

= wk − w∗ −M−1
k (F (wk)− F (w∗))

= M−1
k (Mk(wk − w∗))

−M−1
k

∫ 1

0
J(w∗ + t(wk − w∗))(wk − w∗)dt

= M−1
k (Mk − J(wk))(wk − w∗)

−M−1
k

∫ 1

0

[
J(w∗+t(wk−w∗))−J(wk)

]
(wk−w∗)dt



CHAPTER 8. LOCAL CONVERGENCE OF GENERAL NEWTON TYPE ITERATIONS 60

Taking the norm of both sides:

‖wk+1 − w∗‖ ≤ κk‖wk − w∗‖

+

∫ 1

0
ω‖w∗ + t(wk − w∗)− wk‖dt ‖wk − w∗‖

=
(
κk + ω

∫ 1

0
(1− t)dt︸ ︷︷ ︸

= 1
2

‖wk − w∗‖
)
‖wk − w∗‖

=
(
κk +

ω

2
‖wk − w∗‖

)
‖wk − w∗‖

Convergence follows from the fact that the first contraction factor,
(
κ0 + ω

2 ‖wk −w∗‖
)

is smaller

than δ :=
(
κ + ω

2 ‖wk − w∗‖
)

, and that δ < 1 due to the assumption ‖w0 − w∗‖ < 2(1−κ)
ω . This

implies that ‖w1 − w∗‖ ≤ δ‖w0 − w∗‖, and recursively that all following contraction factors will
be bounded by δ, such that we have the upper bound ‖wk−w∗‖ ≤ δk‖w0−w∗‖. This means that
we have at least linear convergence with contraction rate δ. Of course, the local contraction rate
will typically be faster than this, depending on the values of κk.

Remark: The above contraction theorem could work with slightly weaker assumptions. First, we
could restrict the validity of the ”omega and kappa conditions” to a norm ball around the solution
w∗, namely to the set {w | ‖w − w∗‖ < 2(1−κ)

ω . Second, in the omega and kappa conditions, we
could have used slightly weaker conditions, as follows:

‖M−1
k (J(wk)− J(wk + t(w∗ − wk)))(w∗ − wk)‖ ≤ ωt‖wk − w∗‖2 (weaker omega condition)

‖M−1
k (J(wk)−Mk)(wk − w∗)‖ ≤ κk‖wk − w∗‖ (weaker kappa condition)

The above weaker conditions turn out to be invariant under affine transformations of the variables
w as well as under linear transformations of the root finding residual function function F (w). For
this reason, they are in general preferable over the assumptions which we used the above theorem,
which are only invariant under linear transformations of F (w), but simpler to write down and to
remember. Let us discuss the concept of affine invariance in the following section.

8.2 Affine Invariance

An iterative method to solve a root finding problem F (w) = 0 is called ”affine invariant” if affine
basis transformations of the equations or of the variables will not change the resulting iterations.
This is an important property in practice. Regard, for example, the case where we would like to
generate a method for finding an equilibrium temperature in a chemical reaction system. You can
formulate your equations measuring the temperature in Kelvin, in Celsius or in Fahrenheit, which
each will give different numerical values denoting the same physical temperature. Fortunately,
the three values can be obtained by affine transformations from each other. For example, to get



CHAPTER 8. LOCAL CONVERGENCE OF GENERAL NEWTON TYPE ITERATIONS 61

the value in Kelvin from the value in Celsius you just have to add the number 273.15, and for
the transition from Celsius to Fahrenheit you have to multiply the Celsius value with 1.8 and
add 32 to it. Also, you might think of examples where you indicate distances using kilometers
or nanometers, respectively, resulting in very different numerical values that are obtained by a
multiplication or division by the factor 1012, but have the same physical meaning. The fact that
the choice of units or coordinate system will result just in a affine transformation, applies to many
other root finding problems in science and engineering. It is not unreasonable to ask that a good
numerical method should behave the same if it is applied to problems formulated in different units
or coordinate systems. This property we call ”affine invariance”.

More mathematically, given two invertible matrices A,B ∈ Rn×n and a vector b ∈ Rn, we regard
the following root finding problem

F̃ (y) := AF (b+By) = 0

Clearly, if we have a solution w∗ with F (w∗) = 0, then we can easily construct from it a y∗ such
that F̃ (y∗) = 0, by inverting the relation w∗ = b + By∗, i.e. y∗ = B−1(w∗ − b). Let us now
regard an iterative method that, starting from an initial guess w0, generates iterates w0, w1, . . .
towards the solution of F (w) = 0. The method is called ”affine invariant” if, when it is applied
to the problem F̃ (y) = 0 and started with the initial guess y0 = B−1(w0 − b) (i.e. the same
point in the new coordinate system), it results in iterates y0, y1, . . . that all satisfy the relation
yk = B−1(wk − b) for k = 0, 1, . . ..

It turns out that the exact Newton method is affine invariant, and many other Newton type
optimization methods like the Gauss-Newton method share this property, but not all. Practically
speaking, to come back to the conversion from Celsius to Fahrenheit, Newton’s method would
perform exactly as well in America as in Europe. In contrast to this, some other methods, like
for example the gradient method, would depend on the chosen units and thus perform different
iterates in America than in Europe. More severely, a method that is not affine invariant usually
needs very careful scaling of the model equations and decision variables in order to work well,
while an affine invariant method works (usually) well, independent of the chosen scaling.

8.3 Local Convergence for Newton Type Optimization Methods

Let us now specialize the general contraction results to the case of Newton type optimization
methods.

Theorem 8.2 (Local Contraction for Newton Type Optimization Methods): Assume x∗ satisfies
SOSC for f ∈ C2. We regard Newton type iteration xk+1 = xk + pk, where pk is given by

pk = −B−1
k ∇f(xk) (8.1)

with Bk invertible ∀k ∈ N.
We assume a Lipschitz condition on the Hessian ∇2f :

‖B−1
k (∇2f(xk)−∇2f(y))‖ ≤ ω‖xk − y‖ (8.2)



CHAPTER 8. LOCAL CONVERGENCE OF GENERAL NEWTON TYPE ITERATIONS 62

that holds for ∀k ∈ N, y ∈ Rn, with ω <∞ a Lipschitz constant. We also assume a compatibility
condition

‖B−1
k (∇2f(xk)−Bk)‖ ≤ κk ∀k ∈ N (8.3)

with κk ≤ κ and κ < 1. We also assume that

‖x0 − x∗‖ <
2(1− κ)

ω
(8.4)

Then xk → x∗ and

i) If κ = 0 (Exact Newton) then the rate is Q-quadratic

ii) If κk → 0 (Quasi Newton method) then the rate is Q-superlinear

iii) If κk > ρ > 0 (Gauss-Newton, Levenberg-Marquardt, steepest descent) then the rate is
Q-linear.

Proof. The theorem is an immediate consequence of Theorem 8.1 on the contraction rate of
general Newton type iterations, applied to the root finding problem F (w) = 0 with w ≡ x and
F (w) ≡ ∇f(x). We can then distinguish three different convergence rates depending on the value
of κ respectively κk, as follows:

i) ‖xk+1 − x∗‖ ≤ ω
2 ‖xk − x∗‖2, Q-quadratic

ii) ‖xk+1 − x∗‖ ≤ (κk +
ω

2
‖xk − x∗‖)︸ ︷︷ ︸
→0

‖xk − x∗‖, Q-superlinear

iii) ‖xk+1 − x∗‖ ≤ ( κk︸︷︷︸
≤κ<1

+
ω

2
‖xk − x∗‖︸ ︷︷ ︸
→0

)‖xk − x∗‖, Q-linear

8.4 Necessary and Sufficient Conditions for Local Convergence

The local contraction theorem of this chapter gives sufficient conditions for local convergence.
Here, the omega condition is not restrictive, because ω can be arbitrarily large, and is satisfied on
any compact set if the function F is twice continuously differentiable (ω is given by the maximum
of the norm of the second derivative tensor, a continuous function, on the compact set). Also, we
could start the iterations arbitrarily close to the solution, so the condition κ + ω

2 ‖w0 − w∗‖ < 1
can always be met as long as κ < 1. Thus, the only really restrictive condition is the condition



CHAPTER 8. LOCAL CONVERGENCE OF GENERAL NEWTON TYPE ITERATIONS 63

that the iteration matrices Mk should be similar enough to the true Jacobians J(wk), so that a
κ < 1 exists. Unfortunately, the similarity measure of the kappa-condition might not be tight, so
if we cannot find such a κ, it is not clear if the iterations converge or not.

In this section we want to formulate a sufficient condition for local convergence that is tight,
and even find a necessary condition for local convergence of Newton-type methods. For this
aim, we only have to make one assumption, namely that the iteration matrices Mk are given
by a continuously differentiable matrix valued function M : Rn → Rn×n, i.e. that we have
Mk = M(wk). This is for example the case for an exact Newton method, as well as for any
method with fixed iteration matrix M (the function is just constant in this case). It is also the
case for the Gauss-Newton method for nonlinear least squares optimization. We need to use a
classical result from nonlinear systems theory, which we will not prove here.

Lemma 8.3 (Linear Stability Analysis): Regard an iteration of the form wk+1 = G(wk) with
G a continuously differentiable function in a neighborhood of a fixed point G(w∗) = w∗. If all
Eigenvalues of the Jacobian ∂G

∂w (w∗) have a modulus smaller than one, i.e. if the spectral radius

ρ
(
∂G
∂w (w∗)

)
is smaller than one, then the fixed point is asymptotically stable and the iterates

converge to w∗ with a Q-linear convergence rate with asymptotic contraction factor ρ
(
∂G
∂w (w∗)

)
.

On the other hand, if one of the Eigenvalues has a modulus larger than one, i.e. if ρ
(
∂G
∂w (w∗)

)
> 1,

then the fixed point is unstable and the iterations can move away from w∗ even if we have an
initial guess w0 that is arbitrarily close to w∗.

Here, we use the definition of the spectral radius ρ(A) of a square matrix A, as follows:

ρ(A) := max{|λ| | λ is Eigenvalue of A}.
We will not prove the lemma here, but only give some intuition. For this aim regard the Taylor
series of G at the fixed point w∗, which yields

wk+1 − w∗ = G(wk)− w∗

= G(w∗) +
∂G

∂w
(w∗)(wk − w∗) +O(‖wk − w∗‖2)− w∗

=
∂G

∂w
(w∗)(wk − w∗) +O(‖wk − w∗‖2)

Thus, up to first order, the nonlinear system dynamics of wk+1 = G(wk) are determined by the
Jacobian A := ∂G

∂w (w∗). A recursive application of the relation (wk+1−w∗) ≈ A · (wk −w∗) yields
(wk − w∗) = Ak · (w0 − w∗) + O(‖w0 − w∗‖2). Now, the matrix product Ak shrinks to zero with
increasing k if ρ(A) < 1, and it grows to infinity if ρ(A) > 1.

When we apply the lemma to the continously differentiable map G(w) := w−M(w)−1F (w), then
we can establish the following theorem, which is the main result of this section.

Theorem 8.4 (Sufficient and Necessary Conditions for Local Newton Type Convergence): Re-
gard a Newton type iteration of the form wk+1 = wk − M(wk)

−1F (wk), where F (w) is twice



CHAPTER 8. LOCAL CONVERGENCE OF GENERAL NEWTON TYPE ITERATIONS 64

continuously differentiable with Jacobian J(w) and M(w) once continuously differentiable and
invertible in a neighborhood of a solution w∗ with F (w∗) = 0. If all Eigenvalues of the matrix
I −M(w∗)−1J(w∗) have a modulus smaller than one, i.e. if the spectral radius

κexact := ρ
(
I −M(w∗)−1J(w∗)

)
is smaller than one, then this fixed point is asymptotically stable and the iterates converge to w∗

with a Q-linear convergence rate with asymptotic contraction factor κexact. On the other hand,
if κexact > 1, then the fixed point w∗ is unstable.

Proof. We prove the theorem based on the lemma, applied to the map G(w) := w−M(w)−1F (w).
We first check that indeed w∗ = G(w∗), due to the fact that F (w∗) = 0. Second, we need to
compute the Jacobian of G at w∗:

∂G

∂w
(w∗) = I − ∂(M−1)

∂w
(w∗)F (w∗)︸ ︷︷ ︸

=0

−M(w∗)−1∂F

∂w
(w∗)

= I −M(w∗)−1J(w∗).

In summary, the spectral radius of the matrix I −M(w∗)−1J(w∗) is a tight criterion for local
convergence. If it is larger than one, the Newton type method diverges, if it is smaller than one,
the method converges.



Chapter 9

Globalization Strategies

A Newton-type method only converges locally if

κ+
ω

2
‖x0 − x∗‖ < 1 (9.1)

m (9.2)

‖x0 − x∗‖ <
2(1− κ)

ω
(9.3)

Recall that ω is a Lipschitz constant of the Hessian that is bounding the non-linearity of the
problem, and κ is a measure of the approximation error of the Hessian. But what if ‖x0 − x∗‖ is
too big to make Newton’s method converge locally?

The general idea is to make the steps in the iterations shorter and to ensure descent: f(xk+1) <
f(xk). This shall result in ∇f(xk)→ 0. While doing this, we should not take too small steps and
get stuck. In this chapter two methods will be described to solve this problem: Line-search and
Trust-region.

9.1 Line-Search based on Armijo Condition with Backtracking

Each iteration of a line search method computes first a search direction pk. The idea is to require
pk to be a descent direction1. The iteration is then given by

xk+1 = xk + tkpk (9.4)

with tk ∈ (0, 1] a scalar called the step length (tk = 1 in case of a full step Newton type method).

Computing the step length tk requires a tradeoff between a substantial reduction of f and the
computing speed of this minimization problem. Regard the ideal line search minimization:

min
t
f(xk + tpk) subject to t ∈ (0, 1] (9.5)

1pk is a descent direction iff ∇f(xk)T pk < 0

65



CHAPTER 9. GLOBALIZATION STRATEGIES 66

t

γ
f (xk + tpk)

f (xk)

Figure 9.1: A visualization of the Armijo sufficient decrease condition.

Exact line search is not necessary, instead we ensure that (a) the steps are short enough to get
sufficient decrease (descending must be relevant) and (b) long enough to not get stuck.

a)“Armijo’s” sufficient decrease condition stipulates that tk should give sufficient decrease
in f :

f(xk + tkpk) ≤ f(xk) + γtk∇f(xk)
T pk (9.6)

with γ ∈ (0, 1
2) the relaxation of the gradient. In practice γ is chosen quite small, say γ = 0.1 or

even smaller. Note that with γ = 1, the right hand side of equation (9.6) would be a first order
Taylor expansion.

This condition alone, however, only ensures that the steps are not too long, and it is not sufficient
to ensure that the algorithm makes fast enough progress. Many ways exist to make sure that the
steps do not get too short either, and we will just learn one of them.

b) Backtracking chooses the step length by starting with t = tmax (usually, we set tmax = 1
corresponding to the full Newton type step) and checking it against Armijo’s condition. If the
Armijo condition is not satisfied, t will be reduced by a factor β ∈ (0, 1). In practice β is chosen
to be not too small, e.g. β = 0.8.

A basic implementation of a) and b) can be found in Algorithm 1.

Algorithm 1 Backtracking with Armijo Condition

Inputs: xk, pk, f(xk), ∇f(xk)
T pk, γ, β, tmax

Output: step length tk

t← tmax

while f(xk + tpk) ≥ f(xk) + γt∇f(xk)
T pk do

t← βt
end while
tk ← t

Example 9.1: (Armijo: not sufficient decrease) An example where no convergence is reached is



CHAPTER 9. GLOBALIZATION STRATEGIES 67

x1

x2

Figure 9.2: Visualization of example 9.1, illustrating that even if f(xk+1) < f(xk) in each iteration,
because of insufficient decrease, x∗ = 0 is not reached. This behaviour would be excluded by the
Armijo condition.

shown in Figure 9.2. In this example we consider the function

f(x) = x2 (9.7)

with x0 = −1, pk = (−1)k and tk defined as

tk =

(
2−

(
1

4

)k+1
)
|xk| (9.8)

Remark that f(xk+1) = f(xk + tkpk) < f(xk) but no convergence to x∗ = 0 is reached!

9.2 Alternative: Line Search based on the Wolfe Conditions

The Armijo condition together with the backtracking algorithm is easy to implement, and it
allows us to prove global convergence. For this reason in the script and the exercise we focus
on it and we will prove global convergence only for Armijo backtracking in the following section.
But for completeness, we want to mention here that many other popular line search strategies
exist. These nearly always contain the Armijo condition as the first condition, but add a second
condition that the step length tk should satisfy in order to ensure that the steps cannot become too
small. Popular conditions are the Wolfe conditions, which we present in this section, but also the
so called Goldstein conditions, which we do not treat here. Then, the chosen set of conditions can
be combined with any method to find a step length that satisfies the two conditions, and if both
are satisfied in each step, global convergence can be ensured. Thus, the step length determination
method is arbitrary, but should of course ensure that a point satisfying the conditions is found.
These methods will not be treated here. In order to give an idea, we mention that they are similar,
but not identical to backtracking, and typically work with shrinking intervals that are guaranteed
to contain points that satisfy the two conditions, until such a point is found. They sometimes
use quadratic or even cubic interpolation based on the previous trial points, or they use so called
golden-section or Fibonacci search.



CHAPTER 9. GLOBALIZATION STRATEGIES 68

Wolfe Conditions: Here, we only want to state the so called Wolfe conditions, because they are
often used and are necessary for some methods to work properly, in particular for BFGS updates.
The first Wolfe condition is nothing else than the Armijo, or ”sufficient decrease” condition, but
we call the constant γ now γ1. We will need a second constant γ2 in the second Wolfe condition,
which is a condition on the gradient. The two ”Wolfe-conditions” are the following.

f(xk + tkpk) ≤ f(xk) + γ1tk∇f(xk)
T pk (9.9)

∇f(xk + tkpk)
T pk ≥ γ2∇f(xk)

T pk (9.10)

with γ1 ∈ (0, 1
2) and γ1 < γ2 < 1. Here, the second Wolfe condition ensures that the derivative

of the function φ(t) := f(xk + tkpk)
T pk is larger at tk than at t = 0, i.e. that we have a

positive curvature. For this reason the second Wolfe condition is sometimes called the ”curvature
condition”. Note that φ′(t) = ∇f(xk + tpk)

T pk and in particular, φ′(0) = ∇f(xk)
T pk.

In order to see that there are always points which can satisfy the two Wolfe conditions, we need
only to assume that the function φ(t) is defined for all nonzero t and bounded below. Because
the first order Taylor series of φ(t) at t = 0 is strictly below the ”Armijo line”, φ(0) + γ1tφ

′(0),
the first condition will hold for sufficiently small t. Also, because the Armijo line is unbounded
below for t→∞, there will be one unique smallest point t∗ > 0 at which the Armijo condition is
satisfied with equality, i.e. we have f(xk + t∗pk) = f(xk) + γ1t

∗∇f(xk)
T pk and for all t ∈ (0, t∗)

the Armijo condition will be satisfied. Now, by the mean value theorem, there must exist one
point t′ in the interval (0, t∗) at which the derivative φ′(t′) = ∇f(xk + t′pk)T pk is equal to
φ(t∗)−φ(0)

t∗ = γ1∇f(xk)
T pk. Because γ2 > γ1 and because the directional derivatives are negative,

this point satisfies φ′(t′) = γ1∇f(xk)
T pk ≥ γ2∇f(xk)

T pk, i.e. the second Wolfe condition. Thus,
we have proven that a point satisfying the Wolfe conditions always exists.

Note that backtracking would not be the right algorithm to find a Wolfe point. Instead, one could
use a line search algorithm based on shrinking intervals, which first finds a point t2 > 0 that
does not satisfy the Armijo condition and uses it as the upper boundary and t1 = 0 as the lower
boundary of an interval [t1, t2] that is guaranteed to contain a Wolfe point. Then, one new point
in the interval is evaluated, e.g. the midpoint, and depending on its satisfaction of the first or
second Wolfe condition, this point is either chosen as the solution, or as the left or the right point
of a smaller interval that is still guaranteed to contain a Wolfe point. The intervals shrink until
a solution is found.

Strong Wolfe Conditions: Sometimes, a stronger version of the Wolfe conditions is used,
which excludes step lengths t with too positive derivatives φ′(t) , by imposing a stronger version
of the second Wolfe condition, namely the following:

|∇f(xk + tkpk)
T pk| ≤ γ2|∇f(xk)

T pk|. (9.11)

Together with the first Wolfe, or Armijo condition, this constitutes the so called ”strong Wolfe
conditions”. The existence of a point t′ that satisfies the strong Wolfe conditions is still covered
by the above argument. Good and efficient line search algorithms to find (strong) Wolfe points
are difficult to program but are available as open source codes.



CHAPTER 9. GLOBALIZATION STRATEGIES 69

9.3 Global Convergence of Line Search with Armijo Backtracking

We will now state a general algorithm for Newton type line search with Armijo backtracking,
Algorithm 2.

Algorithm 2 Newton type line search

Inputs: x0, TOL > 0, β ∈ (0, 1), γ ∈ (0, 1
2), tmax

Output: x∗

k ← 0
while ‖∇f(xk)‖ > TOL do

obtain Bk � 0
pk ← −B−1

k ∇f(xk)
get tk from the backtracking algorithm
xk+1 ← xk + tkpk
k ← k + 1

end while
x∗ ← xk

Note: For computational efficiency, ∇f(xk) should only be evaluated once in each iteration.

Theorem 9.1 (Global Convergence of Line-Search): Assume f ∈ C1 (once differentiable) with
∇f Lipschitz and c1I � B−1

k � c2I (eigenvalues of B−1
k : c2 ≥ eig(B−1

k ) ≥ c1) with 0 < c1 � c2.
Then either Algorithm 2 stops with success, i.e., ‖∇f(xk)‖ ≤ TOL, or f(xk) → −∞, i.e., the
problem was unbounded below.

Proof by contradiction. Assume that Algorithm 2 does not stop, i.e. ‖∇f(xk)‖ > TOL for all k,
but that f(xk) is bounded below.

Because f(xk+1) ≤ f(xk) we have f(xk)→ f∗ for some f∗ which implies [f(xk)− f(xk+1)]→ 0.

From Armijo (9.2), we have

f(xk)− f(xk+1) ≥ −γtk∇f(xk)
T pk (9.12)

= γtk∇f(xk)
TB−1

k ∇f(xk) (9.13)

≥ γc1tk‖∇f(xk)‖22 (9.14)

So we have already:

γc1tk‖∇f(xk)‖22 → 0 (9.15)

If we can show that tk ≥ tmin > 0, ∀k our contradiction is complete (⇒ ‖∇f(xk)‖22 → 0).



CHAPTER 9. GLOBALIZATION STRATEGIES 70

We show that tk ≥ tmin with tmin = min(tmax,
(1−γ)β
Lc2

) > 0 where L is the Lipschitz constant
for ∇f , i.e., ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

For full steps with tk = tmax, obviously tk ≥ tmin. In the other case, due to backtracking,
we must have for the previous line search step (t = tk

β ) that the Armijo condition is not satisfied,
otherwise we would have accepted it.

f(xk +
tk
β
pk) > f(xk) + γ

tk
β
∇f(xk)

T pk (9.16)

⇔ f(xk +
tk
β
pk)− f(xk)︸ ︷︷ ︸

=∇f(xk+τpk)T pk
tk
β
, for some τ∈(0,

tk
β

)

> γ
tk
β
∇f(xk)

T pk (9.17)

⇔ ∇f(xk + τpk)
T pk > γ∇f(xk)

T pk (9.18)

⇔ (∇f(xk + τpk)−∇f(xk))
T︸ ︷︷ ︸

‖·‖≤Lτ‖pk‖

pk > (1− γ) (−∇f(xk)
T pk)︸ ︷︷ ︸

pkTBkpk

(9.19)

⇒ L
tk
β
‖pk‖2 > (1− γ) ‖pkTBkpk‖︸ ︷︷ ︸

≥ 1
c2
‖pk‖22

(9.20)

⇒ tk >
(1− γ)β

c2L
(9.21)

(Recall that 1
c1
≥ eig(Bk) ≥ 1

c2
). We have shown that the step length will not be shorter than

(1−γ)β
c2L

, and will thus never become zero.

9.4 Trust-Region Methods (TR)

“Line-search methods and trust-region methods both generate steps with the help of a quadratic
model of the objective function, but they use this model in different ways. Line search methods
use it to generate a search direction and then focus their efforts on finding a suitable step length
α along this direction. Trust-region methods define a region around the current iterate within
they trust the model to be an adequate representation of the objective function and then choose
the step to be the approximate minimizer of the model in this region. In effect, they choose the
direction and length of the step simultaneously. If a step is not acceptable, they reduce the size
of the region and find a new minimzer. In general, the direction of the step changes whenever
the size of the trust-region is altered. The size of the trust-region is critical to the effectiviness of
each step.” (cited from [4]).

The idea is to iterate xk+1 = xk + pk with

pk = arg min
p∈Rn

mk(xk + p) s.t. ‖p‖ ≤ ∆k (9.22)

Equation (9.22) is called the TR-Subproblem, and ∆k > 0 is called the TR-Radius.



CHAPTER 9. GLOBALIZATION STRATEGIES 71

One particular advantage of this new type of subproblem is that we even can use indefinite
Hessians without problems. Remember that – for an indefinite Hessian – the unconstrained
quadratic model is not bounded below. A trust-region constraint will always ensure that the
feasible set of the subproblem is bounded so that it always has a well-defined minimizer.

Before defining the “trustworthiness” of a model, recall that:

mk(xk + p) = f(xk) +∇f(xk)
T p+

1

2
pTBkp (9.23)

Definition 9.1 (Trustworthiness)
A measure for the trustworthiness of a model is the ratio of actual and predicted reduction.

ρk =
f(xk)− f(xk + pk)

mk(xk)−mk(xk + pk)︸ ︷︷ ︸
>0 if ‖∇f(xk)‖6=0

=
Ared

Pred
(9.24)

We have f(xk + pk) < f(xk) only if ρk > 0. ρk ≈ 1 means a very trustworthy model. The
trust-region algorithm is described in Algorithm 3.

A general convergence proof of the TR algorithm can be found in Theorem 4.5 in [4].

9.5 The Cauchy Point and How to Compute the TR Step

In order to guarantee that a trust region method converges globally, one needs either an exact
solution of the TR subproblem (9.22), or an approximate solution that is sufficiently good. In
order to define this ”sufficiently good”, one often introduces a point in the TR which is easy to
compute and would already give sufficient decrease, that is called the ”Cauchy point”. It is the
point that minimizes the TR-model along the steepest descent direction. In order to define this
point exactly, we first define the ”Cauchy direction” as the minimizer of

Definition 9.2 (Cauchy Direction dC
k )

dC
k := arg min

p
∇f(xk)

T p s.t. ‖p‖ ≤ ∆k (9.25)

If the used norm is the Euclidean norm, then the Cauchy direction is just the negative gradient
dC
k = −∇f(xk) · (∆k/‖∇f(xk)‖). Now we are able to define the Cauchy point itself.

Definition 9.3 (Cauchy Point)
The Cauchy point is the point that minimizes the model on the line xk + tdC

k inside the trust



CHAPTER 9. GLOBALIZATION STRATEGIES 72

Algorithm 3 Trust-Region

Inputs: ∆max, η ∈ [0, 1
4 ] (when do we accept a step), ∆0, x0, TOL > 0

Output: x∗

k = 0
while ‖∇f(xk)‖ > TOL do

Solve the TR-subproblem (9.22) (approximately) to get pk
Compute ρk
Adapt ∆k+1:
if ρk <

1
4 then

∆k+1 ← ∆k · 1
4 (bad model: reduce radius)

else if ρk >
3
4 and ‖pk‖ = ∆k then

∆k+1 ← min(2 ·∆k,∆max) (good model: increase radius, but not too much)
else

∆k+1 ← ∆k

end if
Decide on acceptance of step
if ρk > η then
xk+1 ← xk + pk (we trust the model)

else
xk+1 ← xk ”null” step

end if
k ← k + 1

end while
x∗ ← xk



CHAPTER 9. GLOBALIZATION STRATEGIES 73

region. It is given by xk + pC
k with pC

k = tCk d
C
k and

tCk := arg min
t>0
∇mk(xk + tdC

k ) s.t. ‖tdC
k ‖ ≤ ∆k (9.26)

Note that we can restrict the search to the interval t ∈ [0, 1], because then the TR constraint
is automatically satisfied. The Cauchy point is very easy to compute for quadratic models: the
minimizer tCk is equal to tCk = −∇f(xk)

TdC
k /(d

C
k )TBkd

C
k if (dC

k )TBkd
C
k > −∇f(xk)

TdC
k and tCk = 1

otherwise (then the unconstrained minimum is outside [0, 1], or the quadratic model model has
negative curvature in direction dC

k .

One way to ensure global convergence for TR methods is to choose a fixed constant γ ∈ (0, 1] and
then to require for the approximate solution pk of each TR subproblem that ”sufficient model
decrease” is achieved compared to the Cauchy point, in the following sense:

mk(xk)−mk(xk + pk) ≥ γ
(
mk(xk)−mk(xk + pC

k )
)
. (9.27)

Often, one chooses γ = 1 and starts an iterative procedure to improve the Cauchy point inside the
TR region, for example a conjugate gradient method that is stopped when it reaches the boundary
of the trust region (the so called Steihaug method, which is widely used in practice, but is not
covered in this course). Note that in one extremely simple - in fact, too simple - TR method
one could just always take the Cauchy point as approximate solution of the TR subproblem.
This algorithm would have a global convergence guarantee, but it would just be a variant of the
steepest descent method and suffer from slow linear convergence. One desirable feature in all
globalised Newton type methods is that the full Newton type step should be taken at the end
of the sequence, when the iterates are close to the solution and the area of local convergence is
entered. One such method is the dogleg method described below, which, unfortunately, is only
applicable for positive definite Hessian matrices Bk.

The Dogleg Method: One simple way to generate an approximate solution of the TR sub-
problem in the case Bk � 0 is to first compute the full Newton type step pNT

k = −B−1
k ∇f(xk) and

then to find the best point inside the trust region that is on the line segment xk+(1− t)pC
k + tpNT

k

with t ∈ [0, 1]. Note that t = 0 would give the Cauchy point itself, which is inside the trust region,
and t = 1 would give the full Newton type step, which is surely better than the Cauchy point in
terms of model decrease. If the full Newton type step is inside the trust region, one would accept
it, if it is outside the trust region, one would choose the largest possible t′ ∈ [0, 1] that still leads
to a point inside the trust region, i.e. which satisfies ‖(1 − t′)pC

k + t′pNT
k ‖ = ∆k. The method

is called ”dogleg” because it finds the best point on a line consisting of two segments. This line
starts from the midpoint of the TR, then goes straight to the Cauchy point, and there it bends
and goes straight to the Newton point. Because of the sharp bend in the middle, it is shaped a
bit like the leg of a dog.



Chapter 10

Calculating Derivatives

In the previous chapters we saw that we regulary need to calculate ∇f and ∇2f . There are several
methods for calculating these derivatives:

1. By hand

Expensive and error prone.

2. Symbolic differentiation

Using Mathematica or Maple. The disadvantage is that the result is often a very long code
and expensive to evaluate.

3. Finite differences

”Easy and fast, but innacurate”

This method can always be applied, even if the function to be differentiated is only avail-
able as black-box code. To approximate the derivative, we use the fact that for any twice
differentiable function

f(x+ tp)− f(x)

t
= ∇f(x)T p+O(t). (10.1)

Thus, we can take the left hand side as an approximation of the directional derivative
∇f(x)T p. But how should we choose t? If we take t too small, the approximation will
suffer from numerical cancellation errors. On the other hand, if we take t too large, the
linearization errors will be dominant. A good rule of thumb is to use t =

√
εmach, with εmach

the machine precision (or the precision of f , if it is lower than the machine precision).

The accuracy of this method is
√
εmach, which means in practice that we loose half the valid

digits compared to the function evaluation. Second order derivates are even more difficult
to accurately calculate.

4. Algorithmic Differentiation (AD)

This is the main topic of this chapter.

74



CHAPTER 10. CALCULATING DERIVATIVES 75

10.1 Algorithmic Differentiation (AD)

Algorithmic differentiation uses the fact that each differentiable function F : Rn → RnF is com-
posed of several elementary operations, like multiplication, division, addition, subtraction, sine-
functions, exp-functions, etc. If the function is written in a programming language like e.g. C,
C++ or FORTRAN, special AD-tools can have access to all these elementary operations. They
can process the code in order to generate new code that does not only deliver the function value,
but also desired derivative information. Algorithmic differentiation was traditionally called auto-
matic differentiation, but as this might lead to confusion with symbolic differentiation, most AD
people now prefer the term algorithmic differentiation, which fortunately has the same abbrevia-
tion. An authoritative textbook on AD is [3].

In order to see how AD works, let us regard a function F : Rn → RnF that is composed of a
sequence of m elementary operations. While the inputs x1, . . . , xn are given before, each ele-
mentary operation φi, i = 0, . . . ,m − 1 generates another intermediate variable, xn+i+1. Some
of these intermediate variables are used as output of the code, which we might call y1, . . . , ynF
here. The vector y ∈ RnF can be obtained from the vector of all previous variables x ∈ Rn+m

by the expression y = Cx with a selection matrix C ∈ RnF×(n+m) that consists only of zeros and
ones and has only one one in each row. This way to regard a function evaluation is stated in
Algorithm 4 and illustrated in Example 10.1 below.

Algorithm 4 User Function Evaluation via Elementary Operations

Input: x1, . . . , xn
Output: y1, . . . , ynF

for i = 0 to m− 1 do
xn+i+1 ← φi(x1, . . . , xn+i)

end for

for j = 0 to nF do
yj =

∑n+m
i=1 Cjixi

end for
Remark 1: each φi depends on only one or two out of {x1, . . . , xn+i}.
Remark 2: the selection of yj from xi creates no computational costs.

Example 10.1 (Function Evaluation via Elementary Operations): Let us regard the simple scalar
function

f(x1, x2, x3) = sin(x1x2) + exp(x1x2x3)



CHAPTER 10. CALCULATING DERIVATIVES 76

with n = 3. We can decompose this function into m = 5 elementary operations, namely

x4 = x1x2

x5 = sin(x4)

x6 = x4x3

x7 = exp(x6)

x8 = x5 + x7

y1 = x8

Thus, if the n = 3 inputs x1, x2, x3 are given, the m = 5 elementary operations φ0, . . . , φ4 compute
the m = 5 intermediate quantities, x4, . . . , x8. The last row defines that our desired output is x8,
i.e. the selection matrix C is in this example given by

C =
[
0 0 0 0 0 0 0 1

]
.

The idea of AD is to use the chain rule and differentiate each of the elementary operations φi
separately. There are two modes of AD, on the one hand the “forward” mode of AD, and on the
other hand the “backward”, “reverse”, or “adjoint” mode of AD. In order to present both of them
in a consistent form, we first introduce an alternative formulation of the original user function,
that uses augmented elementary functions, as follows1: we introduce new augmented states

x̃0 = x =

x1
...
xn

 , x̃1 =

 x1
...

xn+1

 , . . . , x̃m =

 x1
...

xn+m

 (10.2)

as well as new augmented elementary functions φ̃i : Rn+i → Rn+i+1, x̃i 7→ x̃i+1 = φ̃i(x̃i) with

φ̃i(x̃i) =


x1
...

xn+i

φi(x1, . . . , xn+i)

 , i = 0, . . . ,m− 1. (10.3)

Thus, the whole evaluation tree of the function can be summarized as a concatenation of these
augmented functions followed by a multiplication with the selection matrix C that selects from
x̃m the final outputs of the computer code.

F (x) = C · φ̃m−1(φ̃m−2(· · · φ̃1(φ̃0(x)))).

The full Jacobian of F , that we denote by JF = ∂F
∂x , is given by the chain rule as the product of

the Jacobians of the augmented elementary functionsJ̃i = ∂φ̃i
∂x̃i

, as follows:

JF = C · J̃m−1 · J̃m−2 · · · J̃1 · J̃0. (10.4)

1MD thanks Carlo Savorgnan for having outlined to him this way of presenting forward and backward AD



CHAPTER 10. CALCULATING DERIVATIVES 77

Note that each elementary Jacobian is given as a unit matrix plus one extra row. Also note that
the extra row that is here marked with stars ∗ has at maximum two non-zero entries.

J̃i =


1

1
. . .

1
∗ ∗ ∗ ∗

 .

For the generation of first order derivatives, algorithmic differentiation uses two alternative ways
to evaluate the product of these Jacobians, the forward and the backward mode as described in
the next sections.

10.2 The Forward Mode of AD

In forward AD we first define a seed vector p ∈ Rn and then evaluate the directional derivative
JF p in the following way:

JF p = C · (J̃m−1 · (J̃m−2 · · · (J̃1 · (J̃0p)))). (10.5)

In order to write down this long matrix product as an efficient algorithm where the multiplications
of all the ones and zeros do not cause computational costs, it is customary in the field of AD to
use a notation that uses “dot quantities” ẋi that we might think of as the velocity with which
a certain variable changes, given that the input x changes with speed ẋ = p. We can interpret
them as

ẋi ≡
dxi
dx

p.

In the augmented formulation, we can introduce dot quantities ˙̃xi for the augmented vectors x̃i,
for i = 0, . . . ,m − 1, and the recursion of these dot quantities is just given by the initialization
with the seed vector, ˙̃x0 = p, and then the recursion

˙̃xi+1 = J̃i(x̃i) ˙̃xi, i = 0, 1, . . . ,m− 1.

Given the special structure of the Jacobian matrices, most elements of ˙̃xi are only multiplied by
one and nothing needs to be done, apart from the computation of the last component of the new
vector ˙̃xi+1. This last component is ẋn+i+1 Thus, in an efficient implementation, the forward AD
algorithm works as the algorithm below. It first sets the seed ẋ = p and then proceeds as follows.

In forward AD, the function evaluation and the derivative evaluation can be performed in parallel,
which eliminates the need to store any internal information. This is best illustrated using an
example.



CHAPTER 10. CALCULATING DERIVATIVES 78

Algorithm 5 Forward Automatic Differentiation

Input: ẋ1, . . . , ẋn and all partial derivatives ∂φi
∂xj

Output: ẋ1, . . . , ẋn+m

for i = 0 to m− 1 do
ẋn+i+1 ←

∑n+i
j=1

∂φi
∂xj

ẋj
end for

Note: each sum consist of only one or two non-zero entries.

Example 10.2 (Forward Automatic Differentiation): We regard the same example as above,
f(x1, x2, x3) = sin(x1x2) + exp(x1x2x3). First, each intermediate variable has to be computed,
and then each line can be differentiated. For given x1, x2, x3 and ẋ1, ẋ2, ẋ3, the algorithm proceeds
as follows:

x4 = x1x2 ẋ4 = ẋ1x2 + x1ẋ2

x5 = sin(x4) ẋ5 = cos(x4)ẋ4

x6 = x4x3 ẋ6 = ẋ4x3 + x4ẋ3

x7 = exp(x6) ẋ7 = exp(x6)ẋ6

x8 = x5 + x7 ẋ8 = ẋ5 + ẋ7

The result is ẋ8 = (ẋ1, ẋ2, ẋ3)∇f(x1, x2, x3).

It can be proven that the computational cost of Algorithm 5 is smaller than two times the cost
of Algorithm 4, or short

cost(JF p) ≤ 2 cost(F ).

If we want to obtain the full Jacobian of F , we need to call Algorithm 5 several times, each time
with the seed vector corresponding to one of the n unit vectors in Rn, i.e.,

ẋ =


1
0
0
...
0

 ,


0
1
0
...
0

 , . . . ,


0
0
0
...
1

 . (10.6)

Thus, we have for the computation of the full jacobian

cost(JF ) ≤ 2n cost(F ).

AD in forward mode is slightly more expensive than numerical finite differences, but it is exact
up to machine precision.



CHAPTER 10. CALCULATING DERIVATIVES 79

The “Imaginary trick” in MATLAB

An easy way to obtain high precision derivatives in MATLAB is closely related to AD in forward
mode. It is based on the following observation: if F : Rn → RnF is analytic and can be extended
to complex numbers as inputs and outputs, then for any t > 0 holds

JF (x)p =
imag(F (x+ itp))

t
+O(t2). (10.7)

Proof. We define a function g in a complex scalar variable z ∈ C as g(z) = F (x + zp) and then
look at its Taylor expansion:

g(z) = g(0) + g′(0)z +
1

2
g′′(0)z2 +O(z3)

g(it) = g(0) + g′(0)it+
1

2
g′′(0)i2t2 +O(t3)

= g(0)− 1

2
g′′(0)t2 + g′(0)it+O(t3)

imag(g(it)) = g′(0)t+O(t3)

In contrast to finite differences, there is no subtraction in the numerator, so there is no danger of
numerical cancellation errors, and t can be chosen extremely small, e.g. t = 10−100, which means
that we can compute the derivative up to machine precision. This “imaginary trick” can most
easily be used in a programming language like MATLAB that does not declare the type of variables
beforehand, so that real-valued variables can automatically be overloaded with complex-valued
variables. This allows us to obtain high-precision derivatives of a given black-box MATLAB code.
We only need to be sure that the code is analytic (which most codes are) and that matrix or
vector transposes are not expressed by a prime ’ (which conjugates a complex number), but by
transp().

10.3 The Backward Mode of AD

In backward AD we evaluate the product in Eq. (10.4) in the reverse order compared with forward
AD. Backward AD does not evaluate forward directional derivatives. Instead, it evaluates adjoint
directional derivatives: when we define a seed vector λ ∈ RnF then backward AD is able to
evaluate the product λTJF . It does so in the following way:

λTJF = ((((λTC) · J̃m−1) · J̃m−2) · · · J̃1) · J̃0. (10.8)

When writing this matrix product as an algorithm, we use “bar quantities” instead of the “dot
quantities” that we used in the forward mode. These quantities can be interpreted as derivatives
of the final output with respect to the respective intermediate quantity. We can interpret

x̄i ≡ λT
dF

dxi
.



CHAPTER 10. CALCULATING DERIVATIVES 80

Each intermediate variable has a bar variable and at the start, we initialize all bar variables with
the value that we obtain from CTλ. Note that most of these seeds will usually be zero, depending
on the output selection matrix C. Then, the backward AD algorithm modifies all bar variables.
Backward AD gets most transparent in the augmented formulation, where we have bar quantities
¯̃xi for the augmented states x̃i. We can transpose the above Equation (10.8) in order to obtain

JTF λ = J̃T0 · (J̃T1 · · · J̃Tm−1 (CTλ)︸ ︷︷ ︸
=¯̃xm︸ ︷︷ ︸

=¯̃xm−1

).

In this formulation, the initialization of the backward seed is nothing else than setting ¯̃xm = CTλ
and then going in reverse order through the recursion

¯̃xi = J̃i(x̃i)
T ¯̃xi+1, i = m− 1,m− 2, . . . , 0.

Again, the multiplication with ones does not cause any computational cost, but an interesting
feature of the reverse mode is that some of the bar quantities can get several times modified in
very different stages of the algorithm. Note that the multiplication J̃Ti

¯̃xi+1 with the transposed
Jacobian

J̃Ti =


1 ∗

1 ∗
. . . ∗

1 ∗

 .
modifies at maximum two elements of the vector ¯̃xi+1 by adding to them the partial derivative of
the elementary operation multiplied with x̄n+i+1. In an efficient implementation, the backward
AD algorithm looks as follows.

Algorithm 6 Reverse Automatic Differentiation

Input: seed vector x̄1, . . . , x̄n+m and all partial derivatives ∂φi
∂xj

Output: x̄1, x̄2, . . . , x̄n

for i = m− 1 down to 0 do
for all j = 1, . . . , n+ i do
x̄j ← x̄j + x̄n+i+1

∂φi
∂xj

end for
end for

Note: each inner loop will only update one or two bar quantities.

Example 10.3 (Reverse Automatic Differentiation): We regard the same example as before, and
want to compute the gradient ∇f(x) = (x̄1, x̄2, x̄3)T given (x1, x2, x3). We set λ = 1. Because the
selection matrix C selects only the last intermediate variable as output, i.e. C = (0, · · · 0, 1), we
initialize the seed vector with zeros apart from the last component, which is one. In the reverse
mode, the algorithm first has to evaluate the function with all intermediate quantities, and only



CHAPTER 10. CALCULATING DERIVATIVES 81

then it can compute the bar quantities, which it does in reverse order. At the end it obtains,
among other, the desired quantitities (x̄1, x̄2, x̄3). The full algorithm is the following.

// *** forward evaluation of the function ***

x4 = x1x2

x5 = sin(x4)

x6 = x4x3

x7 = exp(x6)

x8 = x5 + x7

// *** initialization of the seed vector ***

x̄i = 0, i = 1, . . . , 7

x̄8 = 1

// *** backwards sweep ***

// * differentiation of x8 = x5 + x7

x̄5 = x̄5 + 1 x̄8

x̄7 = x̄7 + 1 x̄8

// * differentiation of x7 = exp(x6)

x̄6 = x̄6 + exp(x6)x̄7

// * differentiation of x6 = x4x3

x̄4 = x̄4 + x3x̄6

x̄3 = x̄3 + x4x̄6

// * differentiation of x5 = sin(x4)

x̄4 = x̄4 + cos(x4)x̄5

// differentiation of x4 = x1x2

x̄1 = x̄1 + x2x̄4

x̄2 = x̄2 + x1x̄4

The desired output of the algorithm is (x̄1, x̄2, x̄3), equal to the three components of the gradient
∇f(x). Note that all three are returned in only one reverse sweep.

It can be shown that the cost of Algorithm 6 is less than 3 times the cost of Algorithm 4, i.e.,

cost(λTJF ) ≤ 3 cost(F ).

If we want to obtain the full Jacobian of F , we need to call Algorithm 6 several times with the
nF seed vectors corresponding to the unit vectors in RnF , i.e. we have

cost(JF ) ≤ 3nF cost(F ).

This is a remarkable fact: it means that the backward mode of AD can compute the full Jacobian
at a cost that is independent of the state dimension n. This is particularly advantageous if nF � n,



CHAPTER 10. CALCULATING DERIVATIVES 82

e.g. if we compute the gradient of a scalar function like the objective or the Lagrangian. The
reverse mode can be much faster than what we can obtain by finite differences, where we always
need (n + 1) function evaluations. To give an example, if we want to compute the gradient of a
scalar function f : Rn → R with n =1 000 000 and each call of the function needs one second of
CPU time, then the finite difference approximation of the gradient would take 1 000 001 seconds,
while the computation of the same quantity with the backward mode of AD needs only 4 seconds
(1 call of the function plus one backward sweep). Thus, besides being more accurate, backward
AD can also be much faster than finite differences.

The only disadvantage of the backward mode of AD is that we have to store all intermediate
variables and partial derivatives, in contrast to finite differences or forward AD. A partial remedy
to this problem exists in form of checkpointing that trades-off computational speed and memory
requirements. Instead of all intermediate variables, it only stores some “checkpoints” during
the forward evaluation. During the backward sweep, starting at these checkpoints, it re-evaluates
parts of the function to obtain those intermediate variables that have not been stored. The optimal
number and location of checkpoints is a science of itself. Generally speaking, checkpointing reduces
the memory requirements, but comes at the expense of runtime.

From a user perspective, the details of implementation are not too relevant, but it is most impor-
tant to just know that the reverse mode of AD exists and that it allows in many cases a much
more efficient derivative generation than any other technique.

Efficient Computation of the Hessian

A particularly important quantity in Newton-type optimization methods is the Hessian of the
Lagrangian. It is the second derivative of the scalar function L(x, λ, µ) with respect to x. As the
multipliers are fixed for the purpose of differentiation, we can for notational simplicity just regard
a function f : Rn → R of which we want to compute the Hessian ∇2f(x). With finite differences
we would at least need n(n + 1)/2 function evaluations in order to compute the Hessian, and
due to round-off and truncation errors, the accuracy of a finite difference Hessian would be much
lower than the accuracy of the function f .

In contrast to this, algorithmic differentiation can without problems be applied recursively, yield-
ing a code that computes the Hessian matrix at the same precision as the function f itself, i.e.
typically at machine precision. Moreover, if we use the reverse mode of AD at least once, e.g. by
first generating an efficient code for ∇f(x) (using backward AD) and then using forward AD to
obtain the Jacobian of it, we can reduce the CPU time considerably compared to finite differences.
Using the above procedure, we would obtain the Hessian ∇2f at a cost of 2n times the cost of a
gradient ∇f , which is about four times the cost of evaluating f alone. This means that we have
the following runtime bound:

cost(∇2f) ≤ 8n cost(f).

A compromise between accuracy and ease of implementation that is equally fast in terms of CPU
time is to use backward AD only for computing the first order derivative ∇f(x), and then to use
finite differences for the differentiation of ∇f(x).



CHAPTER 10. CALCULATING DERIVATIVES 83

10.4 Algorithmic Differentiation Software

Most algorithmic differentiation tools implement both forward and backward AD, and most are
specific to one particular programming language. They come in two different variants: either they
use operator overloading or source-code transformation.

The first class does not modify the code but changes the type of the variables and overloads
the involved elementary operations. For the forward mode, each variable just gets an additional
dot-quantity, i.e. the new variables are the pairs (xi, ẋi), and elementary operations just operate
on these pairs, like e.g.

(x, ẋ) · (y, ẏ) = (xy, xẏ + yẋ).

An interesting remark is that operator overloading is also at the basis of the imaginary trick in
MATLAB were we use the overloading of real numbers by complex numbers and used the small
imaginary part as dot quantity and exploited the fact that the extremely small higher order terms
disappear by numerical cancellation.

A prominent and widely used AD tool for generic user supplied C++ code that uses operator
overloading is ADOL-C. Though it is not the most efficient AD tool in terms of CPU time it is
well documented and stable. Another popular tool in this class is CppAD.

The other class of AD tools is based on source-code transformation. They work like a text-
processing tool that gets as input the user supplied source code and produces as output a new
and very differently looking source code that implements the derivative generation. Often, these
codes can be made extremely fast. Tools that implement source code transformations are ADIC
for ANSI C, and ADIFOR and TAPENADE for FORTRAN codes.

In the context of simulation of ordinary differential equations (ODE), there exist good numerical
integrators with forward and backward differentiation capabilities that are more efficient and
reliable than a naive procedure that would consist of taking an integrator and processing it with
an AD tool. Examples for integrators that use the principle of forward and backward AD are the
code DAESOL-II or the open-source codes from the ACADO Integrators Collection or from the
SUNDIALS Suite. Another interesting AD tool, CasADi, is an optimization modelling language
that implements all variants of AD and provides several interfaces to ODE solvers with forward
and derivative computations, as well as to optimization codes. It can conveniently be used from
a Python front end.



Part III

Equality Constrained Optimization

84



Chapter 11

Optimality Conditions for Equality
Constrained Problems

In this part, we regard an equality constrained minimization problem of the form

minimize
x ∈ Rn

f(x) (11.1a)

subject to g(x) = 0. (11.1b)

in which f : Rn → R and g : Rn → Rm are smooth. The feasible set for this problem is
Ω = {x ∈ Rn|g(x) = 0} and can be considered as a differentiable manifold. Differentiable
manifolds can be complicated objects that are treated in much more detail than here in courses
on differential geometry, but we give a few relevant concepts from this field in order to formulate
the optimality conditions for constrained optimization.

Definition 11.1 (Tangent Vector)
p ∈ Rn is called a ”tangent vector” to Ω at x∗ ∈ Ω if there exists a smooth curve x̄(t) : [0, ε)→ Rn
with x̄(0) = x∗, x̄(t) ∈ Ω ∀t ∈ [0, ε) and dx̄

dt (0) = p.

Definition 11.2 (Tangent Cone)
The ”tangent cone” TΩ(x∗) of Ω at x∗ is the set of all tangent vectors at x∗.

When we have only equality constraints and they are ”well behaved” (as we define below), then
the set of all tangent vectors at a point x∗ ∈ Ω forms a vector space, so the name ”tangent space”
would be appropriate. On the other hand, every space is also a cone, and when the equality
constraints are not well behaved or we have inequality constraints, then the set of all tangent
vectors forms only a cone, thus, the name ”tangent cone” is the appropriate name in the field of
optimization.

85



CHAPTER 11. OPTIMALITY CONDITIONS FOR EQUALITY CONSTRAINED PROBLEMS 86

Example 11.1 (Tangent Cone): Regard Ω =
{
x ∈ R2|x2

1 + x2
2 − 1 = 0

}
. In this example, we can

generate the tangent cone by hand, making a sketch. Or we can use the fact that any feasible
point x∗ can be represented as x∗ = [cos(α∗), sin(α∗)]T . Then, feasible curves emanating from
x∗ have the form x̄(t) = [cos(α∗ + ωt), sin(α∗ + ωt)]T , and their tangent vectors p are given by
p = ω[− sin(α∗), cos(α∗)]T . By choosing ω ∈ R, one can generate any vector in a one dimensional
vector space spanned by [− sin(α∗), cos(α∗)]T , and we have TΩ(x∗) = {ω[− sin(α∗), cos(α∗)]T | ω ∈
R}. Note that for this example, the tangent vectors are orthogonal to the gradient of the constraint
function g(x) = x2

1 + x2
2 − 1 at x∗, because ∇g(x∗) = 2[cos(α∗), sin(α∗)]T .

We will see that the tangent cone can often directly be obtained by a linearization of the nonlinear
inequalities. This is however, only possible under some condition, which we will call “constraint
qualification”. Before we define it in more detail, let us see for what aim serves the tangent cone.

Theorem 11.1 (First Order Necessary Conditions, Variant 1): If x∗ is a local minimum of the
NLP (11.1) then

1. x∗ ∈ Ω

2. for all tangents p ∈ TΩ(x∗) holds: ∇f(x∗)T p ≥ 0

Proof by contradiction. If ∃p ∈ TΩ(x∗) with ∇f(x∗)T p < 0 there would exist a feasible curve x̄(t)

with df(x̄(t))
dt

∣∣
t=0

= ∇f(x∗)T p < 0.

11.1 Constraint Qualification and Linearized Feasible Cone

How can we characterize TΩ(x∗)?

Definition 11.3 (LICQ)
The ”linear independence constraint qualification” (LICQ) holds at x∗ ∈ Ω iff the vectors ∇gi(x∗)
for i ∈ {1, . . . ,m} are linearly independent.

Because the constraint Jacobian ∇g(x∗)T collects all the above single gradients in its rows, LICQ
is equivalent to stating that rank(∇g(x∗)) = m.

Definition 11.4 (Linearized Feasible Cone for Equality Constraints)
F(x∗) = {p|∇gi(x∗)T p = 0, i = 1, . . . ,m} is called the ”linearized feasible cone” at x∗ ∈ Ω.



CHAPTER 11. OPTIMALITY CONDITIONS FOR EQUALITY CONSTRAINED PROBLEMS 87

Example 11.2 (Linearized feasible cone for Example 11.1):

g(x) =
[
x2

1 + x2
2 − 1

]
(11.2)

x∗ =

[
0
1

]
, (11.3)

∇g(x∗) =

[
2x∗1
2x∗2

]
(11.4)

=

[
0
2

]
(11.5)

F(x∗) =

{
p ∈ R2

∣∣∣ [0
2

]T
p = 0

}
(11.6)

It can be verified that the linearized feasible cone and the tangent cone coincide for this example.

Example 11.3 (Linearized feasible cone can be larger than tangent cone):

g(x) =

[
x3

1 − x2

|x1|3 − x2

]
(11.7)

x∗ =

[
0
0

]
, (11.8)

∇g(x∗) =

[
3(x∗1)2 3(x∗1)2sign(x∗2)
−1 −1

]
(11.9)

=

[
0 0
−1 −1

]
(11.10)

F(x∗) =

{
p ∈ R2

∣∣∣ [ 0 0
−1 −1

]T
p = 0

}
(11.11)

=

{[
p1

0

] ∣∣∣p1 ∈ R
}
, but (11.12)

TΩ(x∗) =

{[
p1

0

] ∣∣∣p1 ≥ 0

}
. (11.13)

The feasible curves emanating from x∗ for this example are given by x̄(t) = [t3, t]T or time-scaled
versions of it, but are only feasible for positive t. Note that LICQ does not hold for this example.

Theorem 11.2: At any x∗ ∈ Ω holds

1. TΩ(x∗) ⊂ F(x∗)

2. If LICQ holds at x∗ then TΩ(x∗) = F(x∗).

We prove the two parts of the theorem one after the other.



CHAPTER 11. OPTIMALITY CONDITIONS FOR EQUALITY CONSTRAINED PROBLEMS 88

Proof of 1. We have to show that a vector p in the tangent cone is also in the linearized feasible
cone.

p ∈ TΩ ⇒ ∃x̄(t) with p =
dx̄

dt

∣∣∣
t=0

& x̄(0) = x∗ & x̄(t) ∈ Ω (11.14)

⇒ g(x̄(t)) = 0 ∀t ∈ [0, ε) (11.15)

⇒ dgi(x̄(t))

dt

∣∣∣
t=0

= ∇gi(x∗)T p = 0, i = 1, . . . ,m, (11.16)

⇒ p ∈ F(x∗) (11.17)

Proof of 2. In order to show equality if LICQ holds, we have to show that every vector p in
the linearized feasible cone is also a tangent vector. The idea is to use construct a curve x̄(t)
which has the given vector p ∈ F(x∗) as tangent by using the implicit function theorem. Let
us first introduce a shorthand for the Jacobian J := ∇g(x∗)T , and regard the singular value
decomposition of it.

∇g(x∗)T = J = USV T = U [S+ | 0 ]

[
Y T

ZT

]
= US+Y

T

Here, V = [Y | Z] is an orthonormal matrix and the left block S+ of S = [S+ | 0 ] is diagonal
with strictly positive elements on its diagonal, due to the LICQ assumption. Now, Z is an
orthonormal basis of the nullspace of J which is equal to the linearized feasible cone, thus we have
F(x∗) = {Zv | v ∈ R(n−m)}. We will soon need a little lemma that is easy to prove:

Lemma 11.3: p ∈ F(x∗)⇒ p = ZZT p.

Let us now construct a feasible curve x̄(t) with dx̄
dt (0) = p by using an implicit function represen-

tation F (x̄(t), t) = 0. For this aim let us define the following function

F (x, t) =

[
g(x)

ZT (x− (x∗ + tp))

]
and check that it satisfies the necessary properties to apply the implicit function theorem. First,
it is easy to check that F (x∗, 0) = 0. Second, the Jacobian is given by

∂F

∂x
(x∗, 0) =

[
J
ZT

]
=

[
US+Y

T

ZT

]
=

[
US+ 0

0 I

] [
Y T

ZT

]
.

This matrix is invertible, as the product of two invertible matrices. Thus, we can apply the
implicit function theorem. To compute the derivative at t = 0, we use

dx̄

dt
(0) = −∂F

∂x
(x∗, 0)−1∂F

∂t
(x∗, 0) = −

[
Y Z

] [S−1
+ UT 0

0 I

] [
0

−ZT p

]
= ZZT p = p



CHAPTER 11. OPTIMALITY CONDITIONS FOR EQUALITY CONSTRAINED PROBLEMS 89

Based on the fact that LICQ implies equality of the linearized feasible cone and the tangent cone,
we can state a second variant of the theorem. It uses F(x∗) and due to the fact that it is a linear
space that admits both p and −p as elements, the gradient must be equal to zero on the nullspace
of the constraint Jacobian:

Theorem 11.4 (FONC, Variant 2): If LICQ holds at x∗ and x∗ is a local minimizer for the NLP
(11.1) then

1. x∗ ∈ Ω

2. ∀p ∈ F(x∗) : ∇f(x∗)T p = 0.

We can make the statements a bit more explicit by using the fact that each p ∈ F(x∗) can be
written as p = Zv with some v ∈ R(n−m), rephrasing the theorem as follows.

Theorem 11.5 (FONC, Variant 3): If LICQ holds at x∗ and x∗ is a local minimizer for the NLP
(11.1) then

1. g(x∗) = 0

2. ZT∇f(x∗) = 0.

How can we further simplify the second condition? Here helps a decomposition of the gradient
∇f(x∗) into its components in the orthogonal subspaces spanned by Y and Z, as follows:

∇f(x∗) = Y Y T∇f(x∗) + ZZT∇f(x∗)

Now, ZT∇f(x∗) is equivalent to saying that there exists some u (namely u = Y T∇f(x∗)) such that
∇f(x∗) = Y u, or, equivalently, using the fact that ∇g(x∗) = Y S+U

T spans the same subspace
as Y , that there exists some λ∗ (namely λ∗ = US−1

+ Y T∇f(x∗) = ∇g(x∗)+∇f(x∗)) such that
∇f(x∗) = ∇g(x∗)λ∗.

Theorem 11.6 (FONC, Variant 4): If LICQ holds at x∗ and x∗ is a local minimizer for the NLP
(11.1) then

1. g(x∗) = 0

2. there exists λ∗ ∈ Rm such that ∇f(x∗) = ∇g(x∗)λ∗

This is a remarkable formulation, because it allows us to search for a pair of x∗ and λ∗ together,
e.g. via a Newton type root finding method.



CHAPTER 11. OPTIMALITY CONDITIONS FOR EQUALITY CONSTRAINED PROBLEMS 90

11.2 Second Order Conditions

Theorem 11.7 (Second Order Necessary Conditions, SONC): Regard x∗ with LICQ. If x∗ is a
local minimizer of the NLP, then:

i) ∃λ∗ so that the FONC hold;

ii) ∀p ∈ F(x∗) it holds that pT∇2
xL(x∗, λ∗)p ≥ 0

Theorem 11.8 (Second Order Sufficient Conditions, SOSC): If x∗ satisfies LICQ and

i) ∃λ∗ so that the FONC hold;

ii) ∀p ∈ F(x∗), p 6= 0, it holds that pT∇2
xL(x∗, λ∗)p > 0

then x∗ is a strict local minimizer.

Sketch of proof of both theorems
Let us regard points in the feasible set Ω. For fixed λ∗ we have for all x ∈ Ω:

L(x, λ∗) = f(x)−
∑

λ∗i gi(x)︸ ︷︷ ︸
=0

= f(x) (11.18)

Also: ∇xL(x∗, λ∗) = 0. So for all x ∈ Ω we have:

f(x) = L(x, λ∗)

= L(x∗, λ∗)︸ ︷︷ ︸
=f(x∗)

+∇xL(x∗, λ∗)T︸ ︷︷ ︸
=0

(x− x∗) +
1

2
(x− x∗)T∇2

xL(x∗, λ∗)(x− x∗) + o(‖x− x∗‖2)

= f(x∗) +
1

2
(x− x∗)T∇2

xL(x∗, λ∗)(x− x∗) + o(‖x− x∗‖2) (11.19)

11.3 Perturbation Analysis

Does the solution also exist for perturbed problem data? How does the minimum point x∗ and
how does the optimal value depend on perturbation parameters? For this aim we regard the
solution x∗(p) of the following parametric optimization problem.

NLP(p) :
min
x

f(x, p)

s.t. g(x, p) = 0
(11.20)



CHAPTER 11. OPTIMALITY CONDITIONS FOR EQUALITY CONSTRAINED PROBLEMS 91

Theorem 11.9 (Stability under Perturbations): Regard a solution x̄ of NLP(p̄) that satisfies
(LICQ) and (SOSC), i.e. there exist multipliers λ̄ such that the gradient of the Lagrangian is zero
(FONC) and the Hessian is positive definite on the null space of the constraint Jacobian. Then
the solution maps x∗(p) and λ∗(p) exist for all p in a neighborhood of p̄.

Proof. Regard the joint variable vector w = (xT , λT )T and the function

F (w, p) :=

[
∇xL(x, λ, p)
g(x, p)

]
First, F (w̄, p̄) = 0 due to (FONC), and second,

∂F

∂w
(w̄, p̄) =

[
∇2
xL(x̄, λ̄, p̄) −∇xg(x̄, p̄)
∇xg(x̄, p̄)T 0

]
is invertible due to the following lemma.

Lemma 11.10 (KKT-Matrix-Lemma): Regard a matrix, which we call the ”KKT-matrix”,[
B AT

A 0

]
(11.21)

with some given B ∈ Rn×n, B = BT , A ∈ Rm×n with m ≤ n. If rank(A) = m (A is of full
rank, i.e. LICQ holds) and for all p 6= 0 in the nullspace of A holds pTBp > 0 (SOSC), then the
KKT-matrix is invertible.

We leave the proof of the lemma as an exercise (alternatively, we refer to [4], Section 16.1). Using
the lemma with B = ∇2

xL(x̄, λ̄, p̄) and A = ∇xg(x̄, p̄)T , and noting that the minus sign in the
upper right block can be removed by a sign change of the corresponding unknown, we have indeed
shown invertibility of ∂F

∂w (w̄, p̄), such that the implicit function theorem can be applied and the
theorem is proven. We remark that the derivative of w∗(p) can also be computed using the inverse
of the KKT matrix, by dw∗

dp (p) = −∂F
∂w (w, p)−1 ∂F

∂p (w, p).

Theorem 11.11 (Sensitivity of Optimal Value): Regard a solution x̄ of NLP(p̄) that satisfies
(LICQ) and (SOSC). Then the optimal value f(x∗(p), p) will be differentiable in a neighborhood
of p̄ and its derivative is given by the partial derivative of the Lagrangian w.r.t. p:

df(x∗(p), p)
dp

=
∂L
∂p

(x∗(p), λ∗(p), p). (11.22)

Proof. Existence of the solution maps x∗(p) and λ∗(p) follows from Theorem 11.9. To obtain the
derivative, we note that for all feasible points x∗(p), the values of f and of L coincide, i.e. we
have f(x∗(p), p) = Lp(x∗(p), λ∗(p), p). For the derivative we obtain



CHAPTER 11. OPTIMALITY CONDITIONS FOR EQUALITY CONSTRAINED PROBLEMS 92

df(x∗(p), p)
dp

=
dL(x∗(p), λ∗(p), p)

dp

=
∂L
∂x︸︷︷︸
=0

dx∗

dp
+
∂L
∂λ︸︷︷︸
=0

dλ∗

dp
+
∂L
∂p

=
∂L
∂p

(x∗(p), λ∗(p), p).

Corollary 11.12 (Multipliers as Shadow Prices): Regard the following optimization problem
with perturbed equality constraints

min
x

f(x)

s.t. g(x)− p = 0
(11.23)

and a solution x̄ with multipliers λ̄ that satisfies (LICQ) and (SOSC) for p = p̄ . Then the optimal
value f(x∗(p)) will be differentiable in a neighborhood of p̄ and its derivative is given by λ∗(p)

df(x∗(p))
dp

= λ∗(p)T . (11.24)

Proof. We apply Theorem 11.11, but the Lagrangian is now given by L(x, λ) = f(x)−λT g(x)+λT p
such that its partial derivative w.r.t p is given by ∂L

∂p = λT .



Chapter 12

Equality Constrained Optimization
Algorithms

THIS CHAPTER IS NOT COMPLETE YET

In this chapter the problem to

minimize
x ∈ Rn

f(x) (12.1a)

subject to g(x) = 0 (12.1b)

with f : Rn → R, g : Rn → Rm, where f and g are both smooth functions, will be further treated
in detail.

12.1 Optimality Conditions

KKT Conditions

The necessary KKT optimality condition for

L(x, λ) = f(x)− λT g(x) (12.2)

leads to the expression

∇L(x∗, λ∗) = 0 (12.3)

g(x∗) = 0 (12.4)

93



CHAPTER 12. EQUALITY CONSTRAINED OPTIMIZATION ALGORITHMS 94

Keep in mind that this expression is only valid if we have LICQ, or equivalently stated, if the
vectors ∇gi(x∗) are lineary independent. Recall the definition of the gradient

∇g(x) = (∇g1(x),∇g2(x), . . . ,∇gm(x)) (12.5)

=

(
∂g

∂x
(x)

)T
. (12.6)

The rank of the matrix ∇g(x∗) must be m to obtain LICQ. The tangent space is defined as

TΩ(x∗) =
{
p|∇g(x∗)T p = 0

}
(12.7)

= kernel(∇g(x∗)T ) (12.8)

An explicit form of kernel
(
∇g(x)T

)
can be obtained by a basis for this space Z ∈ Rn×(n−m)

such that the kernel
(
∇g(x)T

)
= image(Z), i.e. ∇g(x)TZ = 0 and rank(Z) = n −m. This basis

(Z1Z2 . . . Zn−m) can be obtained by using a QR-factorization of the matrix ∇g(x).

x∗

TΩ(x
∗) = C(x∗, µ) = image(Z)

Figure 12.1: The critical cone equals the tangent cone when there are no inequality constraints.

SONC and SOSC

For equality constrained problems, SONC looks like

ZT∇2
xL(x∗, λ∗)Z < 0 (12.9)

The SOSC points out that if

ZT∇2
xL(x∗, λ∗)Z � 0 (12.10)

and the LICQ and KKT conditions are satisfied, then x∗ is a minimizer. The crucial role is played
by the “reduced Hessian” ZT∇2

xLZ.

12.2 Equality Constrained QP

Regard the optimization problem

minimize
x

1

2
xTBx+ gTx (12.11a)

subject to b+Ax = 0 (12.11b)



CHAPTER 12. EQUALITY CONSTRAINED OPTIMIZATION ALGORITHMS 95

with B ∈ Rn×n, A ∈ Rm×n, B = BT . The KKT condition leads to the equation

Bx+ g −ATλ = 0 (12.12a)

b+Ax = 0. (12.12b)

In matrix notation [
B −AT
A 0

] [
x
λ

]
= −

[
g
b

]
(12.13)

The left hand side matrix is nearly symmetric. With a few reformulations a symmetric matrix is
obtained [

B AT

A 0

] [
x
−λ

]
= −

[
g
b

]
(12.14)

Lemma 12.1 (KKT-Matrix-Lemma): Define the matrix[
B AT

A 0

]
(12.15)

as the KKT matrix. Regard some matrix B ∈ Rn×n, B = BT , A ∈ Rm×n with m ≤ n. If the
rank(A) = m (A is of full rank, i.e. the LICQ holds) and for all p ∈ kernel(A), p 6= 0 holds
pTBp > 0 (SOSC). Then the KKT-matrix is invertible. (for the proof, we refer to [4] section 16.1)

Remark that for a QP

B = ∇2
xL(x∗, λ∗) (12.16)

A = ∇g(x)T (12.17)

so that the above invertibility condition is equivalent to SOSC. Note also that the QP is convex
under these conditions.

12.2.1 Solving the KKT System

Solving KKT systems is an important research topic, there exist many ways to solve the system
(12.12). Some methods are:

(i) Brute Force: obtain a dense LU -factorization of KKT-matrix

(ii) As the KKT-matrix is not definite, a standard Cholesky decomposition does not work. Use
an indefinite Cholesky decomposition.



CHAPTER 12. EQUALITY CONSTRAINED OPTIMIZATION ALGORITHMS 96

(iii) Schur complement method or so called “Range Space method”: first eliminate x, by equation

x = B−1(ATλ− g) (12.18)

and plug it in to the second equation (12.12b). Get λ from

b+A(B−1(ATλ− g)) = 0. (12.19)

This method requires that B is invertible, which is not always true.

(iv) Null Space Method: First find basis Z ∈ Rn×(n−m) of kernel(A), set x = Zv + y with
b+ Ay = 0 (a special solution) every x = Zv + y satisfies b+ Ax = 0, so we have to regard
only (12.12a). This is an unconstrained problem

minimize
v ∈ Rn−m

gT (Zv + y) +
1

2
(Zv + y)TB(Zv + y) (12.20a)

⇔ ZTBZv + ZT g + ZTBy = 0 (12.20b)

⇔ v = −(ZTBZ)−1(ZT g + ZTBy). (12.20c)

The matrix ZTBZ is called “Reduced Hessian”. This method is always possible if SOSC
holds.

(v) Sparse direct methods like sparse LU decomposition.

(vi) Iterative methods of linear algebra.

12.3 Newton Lagrange Method

Regard again the optimization problem (12.1) as stated at the beginning of the chapter. The idea
now is to apply Newton’s method to solve the nonlinear KKT conditions

∇xL(x, λ) = 0 (12.21a)

g(x) = 0 (12.21b)

Define [
x
λ

]
= w and F (w) =

[
∇xL(x, λ)
g(x)

]
(12.22)

with w ∈ Rn+m, F : Rn+m → Rn+m, so that the optimization is just a nonlinear root finding
problem

F (w) = 0, (12.23)

which we solve again by Newton’s method.

F (ωk) +
∂F

∂wk
(wk)(w − wk) = 0 (12.24)



CHAPTER 12. EQUALITY CONSTRAINED OPTIMIZATION ALGORITHMS 97

Written in terms of gradients

∇xL(xk, λk) +∇2
xL(x, λ)(x− xk)−∇g(xk)(λ− λk) = 0 (12.25)

∇2
xL(x, λ)(x − xk) is the linearisation with respect to x, ∇g(xk)(λ − λk) the linearisation with

respect to λ. Recall that ∇L = ∇f −∇gλ.

g(xk) +∇g(xk)
T (x− xk) = 0 (12.26)

Written in matrix form an interesting result is obtained[
∇xL
g

]
+

[
∇2
xL ∇g
∇gT 0

]
︸ ︷︷ ︸
KKT-matrix

[
x− xk
−(λ− λk)

]
= 0 (12.27)

The KKT-matrix is invertible if the KKT-matrix lemma holds. From this point it is clear that at
a given solution (x∗, λ∗) with LICQ and SOSC, the KKT-matrix would be invertible. This also
holds in the neighborhood of (x∗, λ∗). Thus, if (x∗, λ∗) satisfies LICQ and SOSC then the Newton
method is well defined for all (x0, λ0) in neighborhood of (x∗, λ∗) and converges Q-quadratically.

The method is stated as an algorithm in Algorithm 7.

Algorithm 7 Equality constrained Newton Lagrange method

Choose: x0, λ0, ε
Set: k = 0

while norm

[
∇L(xk, λk)
g(x∗)

]
≥ ε do

get ∆xk and ∆λk from (12.30)
xk+1 = xk + ∆xk
λk+1 = λk + ∆λk
k = k + 1

end while

Using the definition

λk+1 = λk + ∆λk (12.28)

∇L(xk, λk) = ∇f(xk)−∇g(xk)λk (12.29)

the system (12.27) needed for calculating ∆λk and ∆xk is equivalent to[
∇f(xk)
g(xk)

]
+

[
∇2L ∇g
∇gT 0

] [
∆xk
−λk+1

]
= 0. (12.30)

This formulation shows that the new iterate does not depend strongly on the old multiplier guess,
only via the Hessian matrix. We will later see that we can approximate the Hessian with different
methods.



CHAPTER 12. EQUALITY CONSTRAINED OPTIMIZATION ALGORITHMS 98

12.4 Quadratic Model Interpretation

Theorem 12.2: xk+1 and λk+1 are obtained from the solution of a QP:

minimize
x ∈ Rn

∇f(xk)
T (x− xk) +

1

2
(x− xk)T∇2L(xk, λk)(x− xk) (12.31a)

subject to g(xk) +∇g(xk)
T (x− xk) = 0 (12.31b)

So we can get a QP solution xQP and λQP and take it as next NLP solution guess xk+1 and λk+1.

Proof. KKT of QP

∇f(xk) +∇2L(xk, λk)(x
QP − xk)−∇g(xk)λ

QP = 0 (12.32)

g +∇gT (xQP − xk) = 0 (12.33)

More generally, one can replace ∇2
xL(xk, λk) by some approximation Bk, (Bk = BT

k often Bk < 0)
by Quasi-Newton updates or other.

12.5 Constrained Gauss-Newton

Regard:

minimize
x ∈ Rn

1

2
‖F (x)‖22 (12.34a)

subject to g(x) = 0 (12.34b)

As in the unconstrained case, linearize both F and g. Get approximation by

minimize
x ∈ Rn

1

2
‖F (xk) + J(xk)(x− xk)‖22 (12.35a)

subject to g(xk) +∇g(xk)
T (x− xk) = 0 (12.35b)

This is a LS-QP which is convex. We call this the constrained Gauss-Newton method, this
approach gets new iterate xk+1 by solution of (12.35a)–(12.35b) in each iteration. Note that no
multipliers λk+1 are needed. The KKT conditions of LS-QP

∇x
1

2
‖F + J(x− xk)‖22 = JTJ(x− xk) + JTF (12.36)



CHAPTER 12. EQUALITY CONSTRAINED OPTIMIZATION ALGORITHMS 99

equals

JTJ(x− xk) + JTF −∇gλ = 0 (12.37)

g +∇gT (x− xk) = 0 (12.38)

Recall that JTJ the same is as by Newton iteration, but we replace the Hessian. The constrained
Gauss-Newton gives a Newton type iteration with Bk = JTJ . For LS,

∇2
xL(x, λ) = J(x)TJ(x) +

∑
Fi(x)∇2Fi(x)−

∑
λi∇2gi(x) (12.39)

One can show that ‖λ‖ gets small if ‖F‖ is small. As in the unconstrained case, CGN converges
well if ‖F‖ ≈ 0.

12.6 An Equality Constrained BFGS Method

Regard the equality constrained BFGS method, as stated in algorithm 8.

12.7 Local Convergence

Theorem 12.3 (Newton type convergence): Regard the root finding problem

F (x) = 0, F : Rn → Rn (12.40)

with x∗ satisfying F (x∗) = 0 a local solution, J(x) = ∂F
∂x (x), and iteration xk+1 = xk−M−1

k F (xk)
with ∀k : Mk ∈ Rn×m invertible, and a Lipschitz condition

‖M−1
k (J(xk)− J(x∗))‖ ≤ ω‖xk − x∗‖ (12.41)

and a compatibility condition with κ < 1:

‖M−1
k (J(xk)−Mk)‖ ≤ κk < κ and ‖x0 − x∗‖ ≤

2

ω
(1− κ) (12.42)

then xk → x∗ with linear rate or even quadratic rate if κ = 0 or superlinear rate if κk → 0 (proof
as before).

Corollary: Newton-type constrained optimization converges

• quadratically if Bk = ∇2L(xk, λk),

• superlinearly if Bk → ∇2L(xk, λk) (BFGS),



CHAPTER 12. EQUALITY CONSTRAINED OPTIMIZATION ALGORITHMS 100

Algorithm 8 Equality constrained BFGS method

Choose x0, B0, tolerance
k = 0
Evaluate ∇f(x0), g(x0), ∂g

∂x(x0)

while ‖g(xk)‖ > tolerance or ‖∇L(xk, λ̃k)‖ > tolerance do
Solve KKT-system:[
∇f
g

]
+

[
Bk

∂g
∂x

T

∂g
∂x 0

] [
pk
−λ̃k

]
= 0

Set ∆λk = λ̃k − λk

Choose step length tk ∈ (0, 1] (details 11.7)

xk+1 = xk + tkpk

λk+1 = λk + tk∆λk

Compute old Lagrange gradient:
∇xL(xk, λk+1) = ∇f(xk)− ∂g

∂x(xk)
Tλk+1

Evaluate ∇f(xk+1), g(xk+1), ∂g
∂x(xk+1)

Compute new Lagrange gradient ∇xL(xk+1, λk+1)

Set sk = xk+1 − xk

Set yk = ∇xL(xk+1, λk+1)−∇xL(xk, λk+1)

Calculate Bk+1 (e.g. with a BFGS update) using sk and yk.

k = k + 1
end while

Remark: Bk+1 can alternatively be obtained by either calculating the exact Hessian
∇2L(xk+1, λk+1) or by calculating the Gauss-Newton Hessian (J(xk+1)TJ(xk+1) for a LS ob-
jective function).



CHAPTER 12. EQUALITY CONSTRAINED OPTIMIZATION ALGORITHMS 101

• linearly if ‖Bk −∇2L(xk, λk)‖ is not too big (Gauss-Newton).

Proof.

Jk =

[
∇2L(xk, λk) − ∂g

∂x(xk)
T

∂g
∂x(xk) 0

]
(12.43)

Mk =

[
Bk − ∂g

∂x(xk)
T

∂g
∂x(xk) 0

]
(12.44)

Jk −Mk =

[
∇2L(xk, λk)−Bk 0

0 0

]
(12.45)

Note that we could still ensure convergence even if the Jacobians ∂g
∂x were approximated. This

could lead to potentially cheaper iterations as building and factoring the KKT matrix is the main
cost per iteration. As in all Newton-type methods, we only need to ensure that the residual F (x)
is exactly evaluated. The Lagrange gradient can be obtained by reverse automatic differentiation
without ever evaluating ∂g

∂x .

12.8 Globalization by Line Search

Idea: use ”merit function” to measure progress in both objective and constraints.

Definition 12.1 (L1-merit function)
the ”L1-merit function” is defined to be T1(x) = f(x) + σ‖g(x)‖1 with σ > 0.

Definition 12.2 (directional derivative)

the ”directional derivative of F at x in direction p” is DF (x)[p] = lim
t→0,t>0

F (x+tp)−F (x)
t .

Example 12.1 (directional derivative):

F (x) = |x− 1| (12.46)

DF (1)[2] = lim
t→0,t>0

|1 + t · 2− 1| − |1− 1|
t

= 2 (12.47)

DF (1)[−3] = lim
t→0,t>0

|1 + t · (−3)− 1| − |1− 1|
t

= 3 (12.48)

(12.49)



CHAPTER 12. EQUALITY CONSTRAINED OPTIMIZATION ALGORITHMS 102

f (x)

‖g(x)‖

T1(x)

0 1

Figure 12.2: An example of a L1 merit function with f(x) = x2, g(x) = x− 1 and σ = 10.

Lemma 12.4: If p & λ̃ solve

[
∇f
g

]
+

[
B ∂g

∂x

T

∂g
∂x 0

] [
p

−λ̃

]
= 0 then

DT1(x)[p] = ∇f(x)T p− σ‖g(x)‖1 (12.50)

DT1(x)[p] ≤ −pTBp− (σ − ‖λ̃‖∞)‖g(x)‖1 (12.51)

(12.52)

Corollary: If B � 0 & σ ≥ ‖λ̃‖∞ then p is a descent direction of T1.

Proof of the lemma.

T1(x+ tp) = f(x+ tp) + σ‖g(x+ tp)‖1 (12.53)

= f(x) + t∇f(x)T p+ σ‖g(x) +
∂g

∂x
(x)pt‖1 +O(t2) (12.54)

= f(x) + t∇f(x)T p+ σ‖g(x)(1− t)‖1 +O(t2) (12.55)

= f(x) + t∇f(x)T p+ σ(1− t)‖g(x)‖1 +O(t2) (12.56)

= T1(x) + t(∇f(x)T p− σ‖g(x)‖1) +O(t2) (12.57)

⇒ (12.50) (12.58)

∇f(x) +Bp− ∂g

∂x
(x)T λ̃ = 0 (12.59)

∇f(x)T p = λ̃T
∂g

∂x
(x)p− pTBp (12.60)

= −λ̃T g(x)− pTBp (12.61)

|∇f(x)T p| ≤ ‖λ̃‖∞‖g(x)‖1 − pTBp (12.62)

⇒ (12.50)⇒ (12.51) (12.63)



CHAPTER 12. EQUALITY CONSTRAINED OPTIMIZATION ALGORITHMS 103

In Algorithm 8 use Armijo backtracking with L1-merit function, ensure σ ≥ ‖λ̃‖∞ (if not, increase
σ).

12.9 Careful BFGS Updating

How can we make sure that Bk remains positive definite?

Lemma 12.5: If Bk � 0 and yTk sk > 0 then Bk+1 from BFGS update is positive definite.

Proof. [4] page 137-138.

This is as good as we can desire because:

Lemma 12.6: If yTk sk < 0 & Bk+1sk = yk then Bk+1 is not positive semidefinite.

Proof. sTkBk+1sk = sTk yk < 0 i.e. sk is a direction of negative curvature of Bk+1.

∇L(xk+1, λk+1)

xk xk+1

∇L(xk, λk+1)

Figure 12.3: Visualization of Lemma 12.6. Remark that yk = ∇L(xk+1, λk+1) − ∇L(xk, λk+1)
and sk = xk+1 − xk.

Powell’s trick: If yTk sk < 0.2sTkBsk then do update with a ỹk instead of yk with ỹk = yk +
θ(Bksk − yk) so that ỹk

T sk = 0.2sTkBksk > 0.

The explicit formula for θ is easily seen to be

θ =

{
0.2sTkBksk−sTk yk
sTkBksk−sTk yk

if yTk sk < 0.2sTkBksk

0 else



CHAPTER 12. EQUALITY CONSTRAINED OPTIMIZATION ALGORITHMS 104

Remark (1). If θ = 1 then ỹk = Bksk and Bk+1 = Bk. Thus, the choice of θ between 0 and 1
damps the BFGS update.

Remark (2). Note that the new Hessian Bk+1 will satisfy the modified secant condition Bk+1sk =
ỹk, so we will have sTkBk+1sk = sTk ỹk > 0.2sTkBksk. The damping thus ensures that the positive
curvature of the Hessian in direction sk, which is expressed in the term sTkBksk, will never decrease
by more than a factor 5.



Part IV

Inequality Constrained Optimization

105



Chapter 13

Optimality Conditions for
Constrained Optimization

From now on, we regard the general equality and inequality constrained minimization problem in
standard form

minimize
x ∈ Rn

f(x) (13.1a)

subject to g(x) = 0, (13.1b)

h(x) ≥ 0. (13.1c)

in which f : Rn → R, g : Rn → Rm and h : Rn → Rq are smooth. Recall that the feasible set for
this problem is given by Ω = {x ∈ Rn|g(x) = 0, h(x) ≥ 0}.

The definition of tangent vector and tangent cone are still valid from before, as in Defs. 11.1
and 11.2. The only difference is that the feasible set is now also

Definition 13.1 (Tangent)
p ∈ Rn is called a ”tangent” to Ω at x∗ ∈ Ω if there exists a smooth curve x̄(t) : [0, ε)→ Rn with
x̄(0) = x∗, x̄(t) ∈ Ω ∀t ∈ [0, ε) and dx̄

dt (0) = p.

Definition 13.2 (Tangent Cone)
the ”tangent cone” TΩ(x∗) of Ω at x∗ is the set of all tangent vectors at x∗.

Example 13.1 (Tangent Cone): Regard Ω =
{
x ∈ R2|h(x) ≥ 0

}
with

106



CHAPTER 13. OPTIMALITY CONDITIONS FOR CONSTRAINED OPTIMIZATION 107

h(x) =

[
(x1 − 1)2 + x2

2 − 1
−(x2 − 2)2 − x2

1 + 4

]
(13.2)

x∗ =

[
0
4

]
: TΩ(x∗) =

{
p|pT

[
0
−1

]
≥ 0

}
= R× R−− (13.3)

x∗ =

[
0
0

]
: TΩ(x∗) =

{
p|pT

[
−1
0

]
≥ 0 & pT

[
0
1

]
≥ 0

}
= R−− × R++ (13.4)

Ω

x1

x2

Figure 13.1: Visualization of Example 13.1.

In this example, we can generate the tangent cone by hand, making a sketch and afterwards
defining the sets accordingly using suitable inequalities. But we will soon see a much more
powerful way to generate the tangent cone directly by a linearization of the nonlinear inequalities.
This is however, only possible under some condition, which we will call “constraint qualification”.
Before, let us see for what aim serves the tangent cone.

13.1 Karush-Kuhn-Tucker (KKT) Necessary Optimality Condi-
tions

Theorem 13.1 (First Order Necessary Conditions, Variant 0): If x∗ is a local minimum of the
NLP (13.1) then

1. x∗ ∈ Ω

2. for all tangents p ∈ TΩ(x∗) holds: ∇f(x∗)T p ≥ 0

Proof by contradiction. If ∃p ∈ TΩ(x∗) with ∇f(x∗)T p < 0 there would exist a feasible curve x̄(t)

with df(x̄(t))
dt

∣∣
t=0

= ∇f(x∗)T p < 0.



CHAPTER 13. OPTIMALITY CONDITIONS FOR CONSTRAINED OPTIMIZATION 108

13.2 Active Constraints and Constraint Qualification

How can we characterize TΩ(x∗)?

Definition 13.3 (Active/Inactive Constraint)
An inequality constraint hi(x) ≥ 0 is called ”active” at x∗ ∈ Ω iff hi(x

∗) = 0 and otherwise
”inactive”.

Definition 13.4 (Active Set)
The index set A(x∗) ⊂ {1, . . . , q} of active constraints is called the ”active set”.

Remark. Inactive constraints do not influence TΩ(x∗).

Definition 13.5 (LICQ)
The ”linear independence constraint qualification” (LICQ) holds at x∗ ∈ Ω iff all vectors ∇gi(x∗)
for i ∈ {1, . . . ,m} & ∇hi(x∗) for i ∈ A(x∗) are linearly independent.

Remark. this is a technical condition, and is usually satisfied.

Definition 13.6 (Linearized Feasible Cone)
F(x∗) = {p|∇gi(x∗)T p = 0, i = 1, . . . ,m & ∇hi(x∗)T p ≥ 0, i ∈ A(x∗)} is called the ”linearized
feasible cone” at x∗ ∈ Ω.

Example 13.2 (Linearized Feasible Cone):

h(x) =

[
(x1 − 1)2 + x2

2 − 1
−(x2 − 2)2 − x2

1 + 4

]
(13.5)

x∗ =

[
0
4

]
, A(x∗) = {2} (13.6)

∇h2(x) =

[
−2x1

−2(x2 − 2)

]
(13.7)

=

[
0
−4

]
(13.8)

F(x∗) =

{
p|
[

0
−4

]T
p ≥ 0

}
(13.9)

Theorem 13.2: At any x∗ ∈ Ω it holds



CHAPTER 13. OPTIMALITY CONDITIONS FOR CONSTRAINED OPTIMIZATION 109

1. TΩ(x∗) ⊂ F(x∗)

2. If LICQ holds at x∗ then TΩ(x∗) = F(x∗).

Sketch of proof:

1. Sketch:

p ∈ TΩ ⇒ ∃x̄(t) with p =
dx̄

dt

∣∣∣
t=0

& x̄(0) = x∗ & x̄(t) ∈ Ω (13.10)

⇒ g(x̄(t)) = 0 and (13.11)

h(x̄(t)) ≥ 0 ∀t ∈ [0, ε) (13.12)

⇒ dgi(x̄(t))

dt

∣∣∣
t=0

= ∇gi(x∗)T p = 0, i = 1, . . . ,m, and (13.13)

dhi(x̄(t))

dt

∣∣∣
t=0

= lim
t→0+

hi(x̄(t))− hi(x∗)
t

≥ 0 for i ∈ A(x∗) (13.14)

⇔ dhi(x̄(t))

dt

∣∣∣
t=0

= ∇hi(x∗)T p ≥ 0 (13.15)

⇒ p ∈ F(x∗) (13.16)

2. For the full proof see [Noc2006]. The idea is to use the implicit function theorem to construct
a curve x̄(t) which has a given vector p ∈ F(x∗) as tangent.

Theorem 13.3 (FONC, Variant 1): If LICQ holds at x∗ and x∗ is a local minimizer for the NLP
(13.1) then

1. x∗ ∈ Ω

2. ∀p ∈ F(x∗) : ∇f(x∗)T p ≥ 0.

How can we simplify the second condition? Here helps the following lemma. To interpret it,

remember that F(x∗) = {p|Gp = 0, Hp ≥ 0} with G = dg
dx(x∗), H =

[
∇hi(x∗)T

...

]
for i ∈ A(x∗).

Lemma 13.4 (Farkas’ Lemma): For any matrices G ∈ Rm×n, H ∈ Rq×n and vector c ∈ Rn holds

either ∃λ ∈ Rm, µ ∈ Rq with µ ≥ 0 & c = GTλ+HTµ (13.17)

or ∃p ∈ Rn with Gp = 0 & Hp ≥ 0 & cT p < 0 (13.18)

but never both (”theorem of alternatives”).



CHAPTER 13. OPTIMALITY CONDITIONS FOR CONSTRAINED OPTIMIZATION 110

convex

S

c

(a) convex

non convex

S

c

(b) non convex

Figure 13.2: Visualization of the separating hyperplane Theorem, used in the proof of Lemma
13.4. For the non convex case, no hyperplane can be found.

Proof. In the proof we use the ”separating hyperplane theorem” with respect to the point c ∈ Rn
and the set S = {GTλ + HTµ|λ ∈ Rm, µ ∈ Rq, µ ≥ 0}. S is a convex cone. The separating
hyperplane theorem states that two convex sets – in our case the set S and the point c – can
always be separated by a hyperplane. In our case, the hyperplane touches the set S at the origin,
and is described by a normal vector p. Separation of S and c means that for all y ∈ S holds that
yT p ≥ 0 and on the other hand, cT p < 0.

Either c ∈ S ⇔ (13.17) (13.19)

or c /∈ S (13.20)

⇔ ∃p ∈ Rn : ∀y ∈ S : pT y ≥ 0 & pT c < 0 (13.21)

⇔ ∃p ∈ Rn : ∀λ, µ with µ ≥ 0 : pT (GTλ+HTµ) ≥ 0 & pT c < 0 (13.22)

⇔ ∃p ∈ Rn : Gp = 0 & Hp ≥ 0 & pT c < 0⇔ (13.18) (13.23)

The last line follows because

∀λ, µ with µ ≥ 0 : pT (GTλ+HTµ) ≥ 0 (13.24)

⇔ ∀λ : λTGp ≥ 0 and ∀µ ≥ 0 : µTHp ≥ 0 (13.25)

⇔ Gp = 0 & Hp ≥ 0. (13.26)

From Farkas’ lemma follows the desired simplification of the previous theorem:

Theorem 13.5 (FONC, Variant 2: KKT Conditions): If x∗ is a local minimizer of the NLP
(13.1) and LICQ holds at x∗ then there exists a λ∗ ∈ Rm and µ∗ ∈ Rq with

∇f(x∗)−∇g(x∗)λ∗ −∇h(x∗)µ∗ = 0 (13.27a)

g(x∗) = 0 (13.27b)

h(x∗) ≥ 0 (13.27c)

µ∗ ≥ 0 (13.27d)

µ∗ihi(x
∗) = 0, i = 1, . . . , q. (13.27e)



CHAPTER 13. OPTIMALITY CONDITIONS FOR CONSTRAINED OPTIMIZATION 111

Note: The KKT conditions are the First order necessary conditions for optimality (FONC) for
constrained optimization, and are thus the equivalent to ∇f(x∗) = 0 in unconstrained optimiza-
tion.

Proof. We know already that (13.27b), (13.27c) ⇔ x∗ ∈ Ω. We have to show that (13.27a),
(13.27d), (13.27e) ⇔ ∀p ∈ F(x∗) : pT∇f(x∗) ≥ 0. Using Farkas’ lemma we have

∀p ∈ F(x∗) : pT∇f(x∗) ≥ 0 ⇔ It is not true that ∃p ∈ F(x∗) : pT∇f(x∗) < 0

⇔ ∃λ∗, µ∗i ≥ 0 : ∇f(x∗) =
∑
∇gi(x∗)λ∗i +

∑
i∈A(x∗)

∇hi(x∗)µ∗i

Now we set all components of µ that are not element of A(x∗) to zero, i.e. µi = 0 if hi(x
∗) > 0, and

conditions (13.27d) and (13.27e) are trivially satisfied, as well as (13.27a) due to
∑

i∈A(x∗)∇hi(x∗)µ∗i =∑
i={1,...,q}∇hi(x∗)µi if µ∗i = 0 for i /∈ A(x∗).

Though it is not necessary for the proof of the necessity of the optimality conditions of the above
theorem (variant 2), we point out that the theorem is 100 % equivalent to variant 1, but has the
computational advantage that its conditions can be checked easily: if someone gives you a triple
(x∗, λ∗, µ∗) you can check if it is a KKT point or not.

Note: Using the definition of the Lagrangian, we have (13.27a)⇔ ∇xL(x∗, λ∗, µ∗) = 0. In absence
of inequalities, the KKT conditions simplify to ∇xL(x, λ) = 0, g(x) = 0, a formulation that is
due to Lagrange and was much earlier known than the KKT conditions.

Example 13.3 (KKT Condition):

minimize
x ∈ R2

[
0
−1

]T
x (13.28)

subject to

[
x2

1 + x2
2 − 1

−(x2 − 2)2 − x2
1 + 4

]
≥ 0 (13.29)

Does the local minimizer x∗ =

[
0
4

]
satisfy the KKT conditions?

First:

A(x∗) = {2} (13.30)

∇f(x∗) =

[
0
−1

]
(13.31)

∇h2(x∗) =

[
0
−4

]
(13.32)



CHAPTER 13. OPTIMALITY CONDITIONS FOR CONSTRAINED OPTIMIZATION 112

Then we write down the KKT conditions, which are for the specific dimensions of this example
equivalent to the right hand side terms:

(13.27a) ⇔ ∇f(x∗)−∇h1(x∗)µ∗1 −∇h2(x∗)µ∗2 = 0 (13.33)

(13.27b) − (13.34)

(13.27c) ⇔ h1(x∗) ≥ 0 & h2(x∗) ≥ 0 (13.35)

(13.27d) ⇔ µ1 ≥ 0 & µ2 ≥ 0 (13.36)

(13.27e) ⇔ µ1h1(x∗) = 0 & µ2h2(x∗) = 0 (13.37)

Finally we check that indeed, all five conditions are satisfied, if we choose µ∗1 and µ∗2 suitably

(13.27a) ⇐
[

0
−1

]
−
[
∗
∗

]
µ1 −

[
0
−4

]
µ2 = 0 (µ1 is inactive, use µ∗1 = 0, µ∗2 = 1

4) (13.38)

(13.27b) − (13.39)

(13.27c) ⇐ h1(x∗) > 0 & h2(x∗) = 0 (13.40)

(13.27d) ⇐ µ1 = 0 & µ2 =
1

4
≥ 0 (13.41)

(13.27e) ⇐ µ1h1(x∗) = 0h1(x∗) = 0 & µ2h2(x∗) = µ20 = 0 (13.42)

Ω

x1

x2

x∗

px̄(t)

Figure 13.3: Visualization of Example 13.3.

13.3 Convex Problems

Theorem 13.6: Regard a convex NLP and a point x∗ at which LICQ holds. Then:

x∗ is global minimizer ⇐⇒ ∃λ, µ so that KKT condition hold.



CHAPTER 13. OPTIMALITY CONDITIONS FOR CONSTRAINED OPTIMIZATION 113

Recall that the NLP

minimize
x ∈ Rn

f(x) (13.43)

subject to g(x) = 0, (13.44)

−h(x) ≤ 0. (13.45)

is convex if f and all −hi are convex and g is affine, i.e., g(x) = Gx+ a.

Sketch of proof: We only need the ”⇐”-direction.

• Assume (x∗, λ∗, µ∗) satisfies the KKT conditions

• L(x, λ, µ) = f(x)−∑ gi(x)λi −
∑
hi(x)µi

• L is a convex function of x, and for fixed µ∗, λ∗ its gradient is zero, ∇L(x∗, λ∗, µ∗) = 0.
Therefore, x∗ is a global minimizer of the unconstrained minimization problem minx L(x, λ∗, µ∗) =
d∗

• We know that
d∗ ≤ p∗ = min f(x) st g(x) = 0, h(x) ≥ 0.

d∗ = L(x∗, λ∗, µ∗) = f(x∗)−
∑

gi(x
∗)λ∗i︸ ︷︷ ︸

=0

−
∑

hi(x
∗)µ∗i︸ ︷︷ ︸

=0

= f(x∗) and

x∗ is feasible: i.e. p∗ = d∗ and x∗ is global minimizer.

13.4 Complementarity

The last KKT condition (13.27e) is called the complementarity condition. The situation for hi(x)
and µi that satisfy the three conditions hi ≥ 0, µi ≥ 0 and hiµi = 0 is visualized in Figure 13.4.

Definition 13.7
Regard a KKT point (x∗, λ, µ). For i ∈ A(x∗) we say hi is weakly active if µi = 0, otherwise,
if µi > 0, we call it strictly active. We say that strict complementarity holds at this KKT
point iff all active constraints are strictly active. We define the set of weakly active constraints
to be A0(x∗, µ) and the set of strictly active constraints A+(x∗, µ). The sets are disjoint and
A(x∗) = A0(x∗, µ) ∪ A+(x∗, µ).



CHAPTER 13. OPTIMALITY CONDITIONS FOR CONSTRAINED OPTIMIZATION 114

µi ≥ 0, hi ≥ 0

µi ≥ 0, hi ≤ 0µi ≤ 0, hi ≤ 0

µi ≤ 0, hi ≥ 0

µi

hi(x)

Figure 13.4: The complementarity condition. The origin, hi = 0 and µi = 0 makes the comple-
mentarity condition non-smooth. Note that strict complementarity makes many theorems easier
because it avoids the origin.

13.5 Second Order Conditions

Definition 13.8
Regard the KKT point (x∗, λ, µ). The critical cone C(x∗, µ) is the following set:

C(x∗, µ) = { p|∇gi(x∗)T p = 0, ∇hi(x∗)T p = 0 if i ∈ A+(x∗, µ), ∇hi(x∗)T p ≥ 0 if i ∈ A0(x∗, µ)}
(13.46)

Note C(x∗, µ) ⊂ F(x∗). In case that LICQ holds, even C(x∗, µ) ⊂ TΩ(x∗). Thus, the critical
cone is a subset of all feasible directions. In fact: it contains all feasible directions which are from
first order information neither uphill or downhill directions, as the following theorem shows.

Theorem 13.7 (Criticality of Critical Cone): Regard the KKT point (x∗, λ, µ) with LICQ, then
∀p ∈ TΩ(x∗) holds

p ∈ C(x∗, µ) ⇔ ∇f(x∗)T p = 0. (13.47)

Proof. Use ∇xL(x∗, λ, µ) = 0 to get for any p ∈ C(x∗, µ):

∇f(x∗)T p = λT ∇gT p︸ ︷︷ ︸
=0

+
∑
i, µi>0

µi∇hi(x∗)T p︸ ︷︷ ︸
=0

+
∑
i, µi=0

µi∇hi(x∗)T p = 0 (13.48)

Conversely, if p ∈ TΩ(x∗) then all terms on the right hand side must be non-negative, so that
∇f(x∗)T p = 0 implies in particular

∑
i, µi>0 µi∇hi(x∗)T p = 0 which implies ∇hi(x∗)T p = 0 for

all i ∈ A+(x∗, µ), i.e. p ∈ C(x∗, µ).



CHAPTER 13. OPTIMALITY CONDITIONS FOR CONSTRAINED OPTIMIZATION 115

Example 13.4:

minx2 s.t. 1− x2
1 − x2

2 ≥ 0 (13.49)

x∗ =

(
0
−1

)
(13.50)

∇h(x) =

(
−2x1

−2x2

)
(13.51)

∇f(x) =

(
0
1

)
(13.52)

µ =?

∇f(x∗)−∇h(x∗)µ = 0 (13.53)(
0
1

)
−
(

0
2

)
µ = 0⇔ µ =

1

2
(13.54)

x∗ =

(
0
−1

)
, µ = 1

2 is a KKT point.

TΩ(x∗) = F(x∗) = {p | ∇hT p ≥ 0} = {p |
(

0
2

)T
p ≥ 0} (13.55)

C(x∗,∇) = {p | ∇hT p = 0 if µ > 0} (13.56)

= {p |
(

0
2

)T
p = 0} (13.57)

C(x∗, µ)
critical cone

level lines objective

feasible cone

F(x)

Figure 13.5: Conceptual visualization of Example 13.4.

Theorem 13.8 (SONC): Regard x∗ with LICQ. If x∗ is a local minimizer of the NLP, then:



CHAPTER 13. OPTIMALITY CONDITIONS FOR CONSTRAINED OPTIMIZATION 116

i) ∃λ∗, µ∗ so that KKT conditions hold;

ii) ∀p ∈ C(x∗, µ∗) holds that pT∇2
xL(x∗, λ∗, µ∗)p ≥ 0

Theorem 13.9 (SOSC): If x∗ satisfies LICQ and

i) ∃λ∗, µ∗ so that KKT conditions hold;

ii) ∀p ∈ C(x∗, µ∗), p 6= 0, holds that pT∇2
xL(x∗, λ∗, µ∗)p > 0

then x∗ is a strict local minimizer.

∇xL = 0

constraint

level lines

x̃

Figure 13.6: Motivation for Theorem 13.9: the point x̃ is not a local minimum.

Note ∇2
xL(x∗, λ∗, µ∗) = ∇2f(x∗)−∑λi∇2gi(x

∗)−∑µi∇2hi(x
∗), i.e. ∇2

xL contains curvature
of constraints.

Sketch of proof of both theorems
Regard the following restriction of the feasible set (Ω̄ ⊂ Ω):

Ω̄ = {x | g(x) = 0, hi(x) = 0 if i ∈ A+(x∗, µ), hi(x) ≥ 0 if i ∈ A0(x∗, µ)} (13.58)

The critical cone is the tangent cone of this set Ω̄. First, for any feasible direction p ∈ TΩ(x∗) \
C(x∗, µ) we have ∇f(x∗)T p > 0. Thus, the difficult directions are those in the critical cone only.
So let us regard points in the set Ω̄. For fixed λ, µ we have for all x ∈ Ω̄:

L(x, λ, µ) = f(x)−
∑

λi gi(x)︸ ︷︷ ︸
=0

−
∑
i, µi>0

µi hi(x)︸ ︷︷ ︸
=0

−
∑
i, µi=0

µihi(x)︸ ︷︷ ︸
=0

(13.59)

= f(x) (13.60)



CHAPTER 13. OPTIMALITY CONDITIONS FOR CONSTRAINED OPTIMIZATION 117

Also: ∇xL(x∗, λ∗, µ∗) = 0. So for all x ∈ Ω̄ we have:

f(x) = L(x, λ, µ)

= L(x∗, λ∗, µ∗)︸ ︷︷ ︸
=f(x∗)

+∇xL(x∗, λ∗, µ∗)T︸ ︷︷ ︸
=0

(x− x∗) +
1

2
(x− x∗)T∇2

xL(x∗, λ∗, µ∗)(x− x∗) + o(‖x− x∗‖2)

= f(x∗) +
1

2
(x− x∗)T∇2

xL(x∗, λ∗, µ∗)(x− x∗) + o(‖x− x∗‖2) (13.61)

Example 13.5: Regard the example from before:

L(x, µ) = x2 − µ(1− x2
1 − x2

2) (13.62)

∇xL =

(
0
1

)
+ µ

(
2x1

2x2

)
(13.63)

∇2
xL = 0 + µ

(
2 0
0 2

)
(13.64)

For µ = 1
2 and x∗ =

(
0
−1

)
we have:

C(x∗, µ) = {p | ∇hT p = 0} = {p |
(

0
2

)T
p = 0} = {

(
p1

0

)
} (13.65)

p ∈ C ⇒ p =

(
p1

0

)
(13.66)

∇2
xL(x∗, λ, µ) =

1

2

(
2 0
0 2

)
=

(
1 0
0 1

)
(13.67)

SONC: (
p1

0

)T (
1 0
0 1

)(
p1

0

)
︸ ︷︷ ︸

=p21

≥ 0 (13.68)

SOSC:

if p 6= 0, p ∈ C : pT∇2
xLp > 0 (13.69)

if p1 6= 0 : p2
1 > 0 (13.70)

Example 13.6:

minx2 s.t. 2x2 ≥ x2
1 − 1− (x2 + 1)2 (13.71)



CHAPTER 13. OPTIMALITY CONDITIONS FOR CONSTRAINED OPTIMIZATION 118

Here x∗ =

(
0
−1

)
, µ = 1

2 is still a KKT point.

∇xL(x∗, µ) = 0 (13.72)

∇2
xL(x∗, µ) = µ

(
2 0
0 −2

)
(13.73)



Chapter 14

Inequality Constrained Optimization
Algorithms

For simplicity, drop equalities and regard:

minimize
x ∈ Rn

f(x) (14.1)

subject to h(x) ≥ 0 (14.2)

In the KKT conditions we had (for i = 1, . . . , q):

1. ∇f(x)−∑q
i=1∇hi(x)µi = 0

2. hi(x) ≥ 0

3. µi ≥ 0

4. µihi(x) = 0

Conditions 2, 3 and 4 are non-smooth, which implies that Newton’s method will not work here.

14.1 Quadratic Programming via Active Set Method

Regard the QP problem to be solved:

minimize
x ∈ Rn

gTx+
1

2
xTBx (14.3)

subject to Ax+ b ≥ 0 (14.4)

119



CHAPTER 14. INEQUALITY CONSTRAINED OPTIMIZATION ALGORITHMS 120

Assume a convex QP (B � 0). The KKT conditions are necessary and sufficient for global
optimality (this is the basis for the algorithm):

Bx∗ + g −ATµ∗ = 0 (14.5)

Ax∗ + b ≥ 0 (14.6)

µ∗ ≥ 0 (14.7)

µ∗i (Ax
∗ + b)i = 0 (14.8)

for i = 1, . . . , q. How do we find x∗, µ∗ and the corresponding active set A(x∗) ⊂ {1, . . . , q} so
that KKT holds?

Definition 14.1 (Index Set)

A ⊂ {1, . . . , q} “Active” (14.9)

I = {1, . . . , q}\A “Inactive” (14.10)

Vector division

b =

(
bA
bI

)
b ∈ Rq (14.11)

Matrix division

A =

(
AA
AI

)
(14.12)

ie

Ax+ b ≥ 0⇐⇒ AAx+ bA ≥ 0 AND AIx+ bI ≥ 0 (14.13)

(14.14)

Lemma 14.1: x∗ is a global minimizer of the QP iff there exist an index set A and I and a vector
µ∗A so that:

Bx∗ + g −ATAµ∗A = 0 (14.15)

AAx
∗ + bA = 0 (14.16)

AIx
∗ + bI ≥ 0 (14.17)

µ∗A ≥ 0 (14.18)

and

µ∗ =

(
µ∗A
µ∗I

)
with µ∗I = 0 (14.19)



CHAPTER 14. INEQUALITY CONSTRAINED OPTIMIZATION ALGORITHMS 121

The active set method idea and the primal active set method idea are shown in algorithm 9 and
10.

Algorithm 9 Active set method idea

Choose a set A
Solve (14.15) and (14.16) to get x∗ and µ∗

if (14.17) and (14.18) are satisfied then
Solution found

else
Change set A by adding or removing constraint indices

end if

For the last step many variants exists: primal, dual, primal-dual, online... E.g., QPSOL,
quadprog (Matlab) and qpOASES.

Algorithm 10 Primal active set method in detail

Choose a feasible starting point x0 with corresponding active set A0

k ← 0

while no solution found do
Solve Bx̃k + g −ATAk µ̃k = 0 and AAk x̃k + bAk = 0
Go on a line from xk to x̃k: xk+1 = xk + tk(x̃k − xk) with some tk ∈ [0, 1] so that xk+1 is
feasible

if tk < 1 then

Ak+1 ← Ak ∪ {i∗} (Add a blocking constraint i∗ to A)
k ← k + 1

else if tk = 1 then
(x̃k is feasible)

if µ̃k ≥ 0 then
Solution found

else
Drop index i∗∗ in Ak with µ̃k,i∗∗ < 0 and Ak+1 = Ak\{i∗∗}
k ← k + 1

end if

end if
end while

Remark: we can prove that f(xk+1) ≤ f(xk) (with f the quadratic performance index).



CHAPTER 14. INEQUALITY CONSTRAINED OPTIMIZATION ALGORITHMS 122

Example 14.1 (Active set method): Consider the problem

min ‖x‖22 (14.20)

subject to x1 ≥ 1 (14.21)

x2 + 1 ≥ 0 (14.22)

1− x2 ≥ 0 (14.23)

We choose x0 as a feasible starting point with corresponding active set A0 = {3}. At the first iter-
ation, the infeasible point x̃0 is obtained by solving the two equations. This point will be avoided
by adding second constraint (1 on Figure 14.1) as a blocking constraint because t0 < 1. The new
iterate is x1 with active set A1 = {1, 3}. For the second iteration, by solving the equations we
get x̃1 = x1 and tk = 1. Regarding the negative multiplier µ̃k,3 we drop index 3 in A1 and get
A2 = {1}. The next iteration has as conclusion x̃2 = x∗ and is the last iteration.

It can be proven that f(xk+1) < f(xk) in each iteration.

3

2
1

x̃0

x∗

x0x̃1 = x1

x̃2 = x∗

Figure 14.1: Visualization of Example 14.1.

14.2 Sequential Quadratic Programming (SQP)

Regard the NLP:

minimize
x ∈ Rn

f(x) (14.24)

subject to h(x) ≥ 0 (14.25)

The SQP idea is to solve in each iteration the QP:

minimize
p

∇f(xk)
T p+

1

2
pTBp (14.26)

subject to h(xk) +
∂h

∂x
(xk)p ≥ 0 (14.27)

Local convergence would follow from equality constrained optimization if the active set of the QP
is the same as the active set of the NLP, at least in the last iterations.



CHAPTER 14. INEQUALITY CONSTRAINED OPTIMIZATION ALGORITHMS 123

Theorem 14.2 (Robinson): If x∗ is a local minimizer of the NLP with LICQ and strict comple-
mentarity and if xk is close enough to x∗ and B � 0 and B is positive definite on the nullspace of
the linearization of the active constraints, then the solution of the QP has the same active set as
the NLP.

Proof. Define A = A(x∗) and regard:

∇f(x) +Bp− ∂hA
∂x

(x)TµQP
A = 0 (14.28)

hA(x) +
∂hA
∂x

(x)p = 0 (14.29)

this defines an implicit function (
p(x,B)

µQP
A (x,B)

)
(14.30)

with

p(x∗, B) = 0 and µQP
A (x∗, B) = µ∗A) (14.31)

This follows from

∇f(x∗) +Bp− ∂hA
∂x

(x∗)Tµ∗A = 0⇐⇒ ∇xL(x∗, µ∗) = 0 (14.32)

hA(x∗) +
∂hA
∂x

(x∗)0 = 0 (14.33)

which hold because of

hA(x∗) = 0 (14.34)

hI(x
∗) > 0 (14.35)

µ∗I = 0 (14.36)

Note that µ∗A > 0 because of strict complementarity.

For x close to x∗, due to continuity of p(x,B) and µQP
A (x,B) we still have hI(x) > 0 and

µQP
A (x,B) > 0 (14.37)

and even more:

hI(x) +
∂hI
∂x

(x)p(x,B) > 0 (14.38)

Therefore a solution of the QP has the same same active set as the NLP and also satisfies strict
complementarity.

Remark. We can generalise his Theorem to the case where the jacobian ∂h
∂x(xh) is only approxi-

mated.



CHAPTER 14. INEQUALITY CONSTRAINED OPTIMIZATION ALGORITHMS 124

14.3 Powell’s Classical SQP Algorithm

For an equality and inequality constrained NLP, we can use the BFGS algorithm as before but:

1. We solve an inequality constrained QP instead of a linear system

2. We use T1(x) = f(x) + σ‖g(x)‖1 + σ
∑q

i=1 |min(0, hi(x))|

3. Use full Lagrange gradient ∇xL(x, λ, µ) in the BFGS formula

(eg “fmincon” in Matlab).

14.4 Interior Point Methods

The IP method is an alternative for the active set method for QPs or LPs or for the SQP method.
The previous methods had problems with the non-smoothness in the KTT-conditions (2), (3) and
(4) (for i = 1, . . . , q):

1. ∇f(x)−∑q
i=1∇hi(x)µi = 0

2. hi(x) ≥ 0

3. µi ≥ 0

4. µihi(x) = 0 .

The IP-idea is to replace 2,3 and 4 by a smooth condition (which is an approximation): hi(x)µi = τ
with τ > 0 small. The KKT-conditions now become a smooth root finding problem:

∇f(x)−
q∑
i=1

∇hi(x)µi = 0 (14.39)

hi(x)µi − τ = 0 i = 1, . . . , q (14.40)

These conditions are called the IP-KKT conditions and can be solved by Newtons method and
yield solutions x̄(τ) and µ̄(τ).

We can show that for τ → 0

x̄(τ) → x∗ (14.41)

µ̄(τ) → µ∗ (14.42)



CHAPTER 14. INEQUALITY CONSTRAINED OPTIMIZATION ALGORITHMS 125

µi

hiµi = τ

τ
(a)

µi

hi

τ

(b)

Figure 14.2: The interior point method idea: make the KKT-conditions a smooth root finding
problem.

The IP algorithm:

1. Start with a big τ � 0, choose β ∈ (0, 1)

2. Solve IP-KKT to get x̄(τ) and µ̄(τ)

3. Replace τ ← βτ and go to 2.
(initialize Newton iteration with old solution).

Remark (1). The set of solutions

(
x̄(τ)
µ̄(τ)

)
for τ ∈ (0,∞) is called the central path.

Remark (2). In fact, the IP-KKT is equivalent to FONC of the Barrier Problem (BP):

min
x
f(x)− τ

q∑
i=1

log hi(x) (14.43)

FONC of BP⇐⇒ ∇f(x)− τ
q∑
i=1

1

hi(x)
∇hi(x) = 0 (14.44)

with µi = τ
hi(x) this is equivalent to IP-KKT.

Example 14.2: (Barrier Problem) The problem

minimise x (14.45)

subject to x ≥ 0 (14.46)

could be translated into a Barrier problem:

minimise x− τ log(x) (14.47)

with visualization given in Figure 14.3.



CHAPTER 14. INEQUALITY CONSTRAINED OPTIMIZATION ALGORITHMS 126

f (x)

x

x0

x1

Figure 14.3: Visualization of Example 14.2.

Optimization software based on interior point methods: For convex problems, IP meth-
ods are well understood with strong complexity results. For LPs and QPs and other convex
problems, the IP method is successfully implemented e.g. in OOQP, CPLEX, SeDuMi, SDPT3,
CVX, or CVXGEN. But IP methods also exist for general nonlinear programs where they still
work very reliable. A very powerful and widely used IP method for sparse NLP is the open-source
code IPOPT.



Chapter 15

Optimal Control Problems

We regard a dynamical system with dynamics

xk+1 = f(xk, uk) (15.1)

with uk the “controls” or “inputs” and xk the “states”. Let xk ∈ Rnx and let uk ∈ Rnu with
k = 0, . . . , N − 1.

If we know the initial state x0 and the controls u0, . . . , uN−1 we could simulate the system to
obtain all other states. In optimization, we might have different requirements than just a fixed
initial state. We might, for example, have both a fixed initial state and a fixed terminal state that
we want to reach. Or we might just look for periodic sequences with x0 = xN . All these desires
on the initial and the terminal state can be expressed by a boundary constraint function

r(x0, xN ) = 0. (15.2)

For the case of fixed initial value, this function would just be

r(x0, xN ) = x0 − x̄0 (15.3)

where x̄0 is the fixed initial value and not an optimization variable. Another example would be
to have both ends fixed, resulting in a function r of double the state dimension, namely:

r(x0, xN ) =

[
x0 − x̄0

xN − x̄N

]
. (15.4)

Finally, periodic boundary conditions can be imposed by setting

r(x0, xN ) = (x0 − xN ). (15.5)

An illustration of inputs and states is given in Figure 15.1.

127



CHAPTER 15. OPTIMAL CONTROL PROBLEMS 128

k

x

0 1 2 3 N...

xN

x0

(a)

k0 1 2 3 N...

u

u0

uN−1

(b)

Figure 15.1: A conceptual example of an optimal control problem with states (a) and controls
(b).

15.1 Optimal Control Problem (OCP) Formulation

The simplified optimal control problem in discrete time that we regard in this chapter is the
following equality constrained NLP.

minimize
x0, u0, x1, . . . , uN−1, xN

N−1∑
k=0

L(xk, uk) + E(xN ) (15.6a)

subject to xk+1 − f(xk, uk) = 0 for k = 0, . . . , N − 1 (15.6b)

r(x0, xN ) = 0 (15.6c)

Note that (15.6b) contains many constraints. Other constraints that we just omit for notational
simplicity could be inequalities of the form

h(xk, uk) ≥ 0, k = 0, . . . , N − 1 (15.7)

We also remark that any free parameter p could be added to the optimisation formulation above,
e.g. the constant size of a vessel in a chemical reactor. For this we could define an extra dummy
state for k = 0, . . . , N − 1

pk+1 = pk. (15.8)

15.2 KKT Conditions of Optimal Control Problems

First summarize the variables w = {x0, u0, x1, u1, . . . , uN−1, xN} and summarize the multipliers
λ = {λ1, . . . , λN , λr}. The optimal control problem has the form

minimize
w

F (w) (15.9a)

subject to G(w) = 0 (15.9b)



CHAPTER 15. OPTIMAL CONTROL PROBLEMS 129

Where

G(w) =


x1 − f(x0, u0)
x2 − f(x1, u1)

...
xN − f(xN−1, uN−1)

r(x0, xN )

 (15.9c)

The Lagrangian function has the form

L(w, λ) = F (w)− λTG(w)

=
N−1∑
k=0

L(xk, uk) + E(xN )−
N−1∑
k=0

λTk+1(xk+1 − f(xk, uk))

−λTr r(x0, xN ) (15.10)

The KKT-conditions of the problem are

∇wL(w, λ) = 0 (15.11a)

G(w) = 0 (15.11b)

In more detail, the derivative of L with respect to xk, where k = 0 and k = N are considered as
special cases. First k = 0 is treated

∇x0L(w, λ) = ∇x0L(x0, u0) +
∂f

∂x0
(x0, u0)Tλ1 −

∂r

∂x0
(x0, xN )Tλr = 0. (15.12a)

Then the case for k = 1, . . . , N − 1 is treated

∇xkL(w, λ) = ∇xkL(xk, uk)− λk +
∂f

∂xk
(xk, uk)

Tλk+1 = 0. (15.12b)

Now the special case k = N

∇xNL(w, λ) = ∇xNE(xN )− λN −
∂r

∂xN
(x0, xN )Tλr = 0. (15.12c)

The Lagrangian with respect to u is calculated, for k = 0, . . . , N − 1

∇ukL(w, λ) = ∇ukL(xk, uk) +
∂f

∂uk
(xk, uk)

Tλk+1 = 0. (15.12d)

The last two conditions are

xk+1 − f(xk, uk) = 0 k = 0, . . . , N − 1 (15.12e)

r(x0, xN ) = 0 (15.12f)

The equations (15.12a) till (15.12f) are the KKT-system of the OCP. There exist different ap-
proaches to solve this system. One method is to solve equations (15.12a) to (15.12f) directly, this
is called the simultaneous approach. The other approach is to calculate all the states in (15.12e)
by forward elemination. This is called the sequential approach and treated first.



CHAPTER 15. OPTIMAL CONTROL PROBLEMS 130

15.3 Sequential Approach to Optimal Control

This method is also called “single shooting” or “reduced approach”. The idea is to keep only x0

and U = [uT0 , . . . , u
T
N−1]T as variables. The states x1, . . . , xN are eleminated recursively by

x̄0(x0, U) = x0 (15.13)

x̄k+1(x0, U) = f(x̄k(x0, U), uk) (15.14)

Then the optimal control problem is equivalent to a problem with less variables

minimize
x0, U

N−1∑
k=0

L(x̄k(x0, U), uk) + E(x̄N (x0, U)) (15.15a)

subject to r(x0, x̄N (x0, U)) = 0 (15.15b)

Note that equation (15.12e) is implicitly satisfied. This is called the reduced optimal control
problem. It can be solved by e.g. Newton type method (SQP if inequalities are present). If
r(x0, xN ) = x0 − x̄0 one can also eliminate x0 ≡ x̄0. The optimality conditions for this problem
are found in the next subsection.

15.4 Backward Differentiation of Sequential Lagrangian

The Lagrangian function is given by

L̄(x0, U, λr) =
N−1∑
k=0

L(x̄k(x0, U), uk) + E(x̄k(x0, U))− λTr r(x0, x̄N (x0, U)) (15.16)

so the KKT conditions for the reduced optimal control problem are

∇x0L̄(x0, U, λr) = 0 (15.17a)

∇ukL̄(x0, U, λr) = 0 k = 0, . . . , N − 1 (15.17b)

r(x0, x̄N (x0, U)) = 0 (15.17c)

Usually derivatives are computed by finite differences, the I-Trick or forward automatic differen-
tion (AD). But here, backward automatic differentiation (AD) is more efficient. The result for
backward AD to the equations (15.17a) to (15.17c) to get ∇x0L̄ and ∇ukL̄ is stated in Algorithm
11. Compare this algorithm with equations (15.12a) to (15.12d) where λ̄k ≡ λk.

We get a second interpretation to the sequential approach with backward AD: when solving
(15.12a) to (15.12f) we eliminate all equations that can be eliminated by (15.12e), (15.12c) and
(15.12b). Only the equations (15.12f), (15.12a) and (15.12d) remain. Backward automatic differ-
entiation (AD) gives the gradient at a cost scaling linearly with N and forward differences with
respect to u0, . . . , uN−1, would grow with N2.

The sequential approach and backward automatic differentiation (AD) leads to a small dense
(Jacobians are dense matrices) nonlinear system in variables (x0, u0, . . . , uN−1, λr). The next
section tries to avoid the dense Jacobians.



CHAPTER 15. OPTIMAL CONTROL PROBLEMS 131

Algorithm 11 Result of backward AD to KKT-ROCP

Inputs
x0, u0,. . .,uN−1, λr

Outputs
r, ∇u0L, . . . ,∇uN−1L and ∇x0L

Set k = 0, execute forward sweep:
repeat
xk+1 = f(xk, uk)
k = k + 1

until k = N − 1
Get r(x0, xN )

Set λN = ∇E(xN )− ∂r
∂xN

(x0, xN )Tλr
Set k = N − 1, execute backward sweep:
repeat
λk = ∇xkL(xk, uk) + ∂f

∂xk
(xk, uk)

Tλk+1

∇ukL = ∇ukL(xk, uk) + ∂f
∂uk

(xk, uk)
Tλk+1

k = k − 1
until k = 0

Compute ∇x0L = λ0 − ∂r
∂x0

(x0, xN )Tλr



CHAPTER 15. OPTIMAL CONTROL PROBLEMS 132

15.5 Simultaneous Optimal Control

This method is also called “multiple shooting” or “one shot optimization”. The idea is to
solve (15.12a) to (15.12f) directly by a sparsity exploiting Newton-type method. If we regard
the original OCP, it is an NLP in variables w = (x0, u0, x1, u1, . . . , uN−1, xN ) with multipliers
(λ1, . . . , λN , λr) = λ. In the SQP method we get

wk+1 = wk + ∆wk (15.18)

λk+1 = λQPk (15.19)

by solving

minimize
∆w

∇wF (wk)
T∆w +

1

2
∆wTBk∆w (15.20a)

subject to G(w) +
∂G

∂w
(w)∆w = 0 (15.20b)

If we use

Bk = ∇2
wL(wk, λk) (15.21)

this QP is very structured and equivalent to

minimize
∆x0,∆u0, . . . ,∆xN

1

2

N−1∑
k=0

[
∆xk
∆uk

]T
Qk

[
∆xk
∆uk

]
+

1

2
∆xTNQN∆xN +

N∑
k=0

[
∆xN
∆uN

]T
gk + ∆xTNgN

subject to r(x0, xN ) +
∂r(x0, xN )

∂x0
∆x0 +

∂r(x0, xN )

∂xN
∆xN = 0

xk+1 − f(xk, uk) + ∆xk+1 −Ak∆xk −Bk∆uk = 0 for k = 0, . . . , N − 1,

with

Qk = ∇2
(xk,uk)L, (15.22)

QN = ∇2
xN
L, (15.23)

gk = ∇(xk,uk)L(xk, uk), (15.24)

gN = ∇xE(xN ), (15.25)

Ak =
∂f

∂xk
(xk, uk), k = 0, . . . , N − 1, (15.26)

Bk =
∂f

∂uk
(xk, uk), k = 0, . . . , N − 1. (15.27)

Note that for k 6= m

∂

∂xk

∂

∂xm
L = 0 (15.28a)

∂

∂xk

∂

∂um
L = 0 (15.28b)

∂2

∂uk∂um
L = 0 (15.28c)



CHAPTER 15. OPTIMAL CONTROL PROBLEMS 133

This QP leads to a very sparse linear system and can be solved at a cost linear with N . Simul-
taneous approaches can deal better with unstable systems xk+1 = f(xk, uk).



Appendix A

Example Report on Student
Optimization Projects

In this section a project report written by students of a previous year at the end of the exercise
sessions is presented. It comes in the original form without corrections (which would still be
applicable), but might serve as an example of how such a report might look like.

A.1 Optimal Trajectory Design for a Servo Pneumatic Traction
System

by Thijs Dewilde and Dries Van Overbeke

A.1.1 Introduction

Servo Pneumatic Positioning The system consists of an electromechanical actuator, the
valve, and a pneumatic actuator or cylinder. (Figure A.1)

An electrically controlled valve with 5 ports and 3 switch positions drives a double-acting pneu-
matic cylinder. A linear unit is formed by combining the cylinder, piston and slider. The presented
valve blocks the mass flows in its center switch position. Also, the valve is proportional which
means it can switch continuously between positions. For a desired direction of movement, the
piston is preset by controlling the valve accordingly. The valve is able to regulate the air mass
flow rate and thus controls the movement of the piston.

Model Equations and States We assume the mass flows ṁ are proportional to the valve
control input u: ṁ1 ∼ u and ṁ2 ∼ u. The time-dependant (t) model states are the cylinder
chamber pressures P1 and P2, the velocity v and the position s. We define the model state vector

134



APPENDIX A. EXAMPLE REPORT ON STUDENT OPTIMIZATION PROJECTS 135

Figure A.1: Servo Pneumatic Traction System

x:
x = [P1(t), P2(t), v(t), s(t)]T .

The volumes of the chambers can be computed by the following equations:

V1 = Vt +Ac · (sref + s),
V2 = Vt +Ac · (L− (sref + s)),

with sref : Reference position,
s : Relative position of the piston,
L : Cilinder stroke,
Dc : Cilinder diameter,
Ac : Cilinder chamber area,
Lt : Tube length,
Dt : Tube diameter,
Vt : Tube volume.

Now consider an isothermic filling and venting process and differentiate the ideal gas law

pi · Vi = mi ·R · Ti,

with Pi : absolute pressure in chamber i,
Vi : volume of chamber i, see equations (A.1),
mi : mass of air in chamber i,

R : specific gas constant for air (287 J
kg·K ),

Ti : absolute temperature of the air in chamber i.



APPENDIX A. EXAMPLE REPORT ON STUDENT OPTIMIZATION PROJECTS 136

The following expressions for the pressure in the two chambers of the cylinder can be found:

ṗ1 =
R · T · ṁ1 −Ac · p1 · v

V1
,

ṗ2 =
R · T · ṁ2 +Ac · p2 · v

V2
,

with ṁ1 : mass flow of air to chamber 1,
ṁ2 : mass flow of air to chamber 2,
v : velocity of the piston.

After evaluating the differential pressure p = p1 − p2, the traction force on the piston can be
calculated p · Ac. Newton’s second law of motion F = m · a and considering a viscous friction
force b · v, yields:

a =
p ·Ac− b · v

m
,

with m : mass of the piston and slider,
b : viscous friction coefficient.

Hereby the motion of the slider is entirely modelled, the velocity and position can be derivated
by kinematics laws. So we have a dynamic system of the form:

ẋ = f(x, u, τ).

A.1.2 Optimization Problem

Optimal Trajectory The optimal trajectory in this case is the fastest way to reach a position
setpoint or in other words the appropriate control input for the proportional valve.

Parameters The control input signal is divided into m intervals, with m ∈ N. The optimization
parameters are the length of a control time interval τ and valve control value for each interval
u(m).

Formulation The total elapsed time for reaching a position setpoint or time horizon is min-
imized, The time horizon T can be regarded as a parameter in the differential equation by a
time-transformation T = m · τ , so the objective function looks as follows:

J(T ).



APPENDIX A. EXAMPLE REPORT ON STUDENT OPTIMIZATION PROJECTS 137

The equality constraint function ensures we hold a fixed position setpoint send at the end, by
requiring vend = 0ms and aend = 0m

s2
. We summarize these equality constraints in a function g:

R3 ×Rm → R2:
g(x(T )) = 0.

Finally, the inequality constraint function limits the control value −5 ≤ u ≤ 5 and guarantees a
positive time interval T ≥ 0:

h(u(m), T ) ≤ 0.

We can formulate the problem in standard form:

minimize J(T )
x ∈ R4, u ∈ Rm, T

subject to ẋ = f(x, u(m), τ)
sstart = 0
vstart = 0
p1,start = 0
p2,start = 0
g(x(T )) = 0
h(u(m), T ) ≤ 0

The model states are updated by a discrete function: ẋ = f(x(k), u(m), τ), To achieve better
state updates the time interval is divided into a number h−1 of discretization steps.

f(x(k), u(m), τ) =



p1,k+1 = p1,k + h · τ · R·T ·ṁ1−Ac·p1,k·v
V1

p2,k+1 = p2,k + h · τ · R·T ·ṁ2+Ac·p2,k·v
V2

vk+1 = vk + h · τ · a

sk+1 = sk + h · τ · v

for k ∈ {1, . . . , n}. The following initial states are chosen:

p1,start = atmosphere pressure (101325Pa),
p2,start = atmosphere pressure,
vstart = 0ms ,
sstart = 0m.

Numerical Solution We present a solution obtained by a sequential quadratic programming
method (Figure A.2). The relative position setpoint is 200mm and we take 10 degrees of freedom
(m) for the controls values, so the time horizon T is 10 · τ .



APPENDIX A. EXAMPLE REPORT ON STUDENT OPTIMIZATION PROJECTS 138

Figure A.2: Numerical Solution

In the plots we can see that the end condition constraints are satisfied and the presented control
input is a “bang-bang” solution, with 2 degrees of freedom, namely the control value in between
the limits and the control value for the last time interval. We can explain the first degree of
freedom for reaching the setpoint position and the last control value to decrease the velocity and
acceleration.



Appendix B

Exam Preparation

B.1 Study Guide

Important Chapters and Sections from the Book of Nocedal and Wright

Most, but not all, of the topics of the course are covered in the book by Nocedal and Wright.
Particularly useful chapters and sections that are good reading to course participants are

• Appendix A.1 and A.2: all

• Chapter 1: all

• Chapter 2: all

• Chapter 3: Section 3.1, Algorithm 3.1, Section 3.3, Theorem 3.5

• Chapter 4: Algorithm 4.1

• Chapter 6: Formula (6.19)

• Chapter 8: all

• Chapter 10: Sections 10.1, 10.2, 10.3

• Chapter 12: all

• Chapter 16: Sections 16.1, 10.2

• Chapter 18: all

• Chapter 19: Section 19.1, 19.2

Important topics from the course that are not covered well in the book are the Constrained
Gauss-Newton method and convex optimization.

139



APPENDIX B. EXAM PREPARATION 140

Important Chapters and Sections from the Book of Boyd and Vandenberghe

Regarding convex optimization, all topics of the course are covered in the book by Boyd and Van-
denberghe. Particularly useful chapters and sections that are good reading to course participants
are

• Chapter 1: all

• Chapter 2: Sections 2.1, 2.2, 2.3

• Chapter 3: Sections 3.1, 3.2

• Chapter 4: Sections 4.1, 4.2, 4.3, 4.4, 4.6

• Chapter 5: Sections 5.1, 5.2

B.2 Rehearsal Questions

The following questions might help in rehearsing the contents of the course:

1. What is an optimization problem? Objective, degrees of freedom, constraints. Feasible set?
Standard form of NLP.

2. Definition of global and local minimum.

3. Types of optimization problems: Linear / Quadratic programming (LP/QP), convex, smooth,
integer, optimal control...

4. When is a function convex? Definition. If it is twice differentiable?

5. When is a set convex? Definition.

6. What is a “stationary” point?

7. How are gradient and Hessian of a scalar function f defined?

8. What are the first order necessary conditions for optimality (FONC) (unconstrained)?

9. What are the second order necessary conditions for optimality (SONC) (unconstrained)?

10. What are the second order sufficient conditions for optimality (SOSC) (unconstrained)?

11. Basic idea of iterative descent methods?

12. Definition of local convergence rates: q/r-linear, superlinear, quadratic?

13. What is a locally convergent, what a globally convergent algorithm? What does the term
“globalization” usually mean for optimizers ?



APPENDIX B. EXAM PREPARATION 141

14. What is the Armijo condition? What is the reason that it is usually required in line search
algorithms?

15. Why is satisfaction of Armijo condition alone not sufficient to guarantee convergence towards
stationary points? Give a simple counterexample.

16. What is backtracking?

17. What is the local convergence rate of the steepest descent method?

18. What is Newton’s method for solution of nonlinear equations F (x) = 0? How does it iterate,
what is the motivation for it. How does it converge locally?

19. How works Newton’s method for unconstrained optimization?

20. What are approximate Newton, or Newton type methods?

21. What is the idea behind Quasi-Newton methods?

22. What is the secant condition? How is it motivated?

23. What is the BFGS formula? Let sk be the last step vector and yk the (Lagrange-) gradient
difference. Under which condition does it preserve positive definiteness?

24. Can any update formula satisfying the secant condition yield a positive definite Hessian if
yTk sk < 0?

25. What is a linear what a nonlinear least squares problem (unconstrained)?

26. How does the Gauss-Newton method iterate? When is it applicable?

27. When does the Gauss-Newton method perform well? What local convergence rate does it
have?

28. Statistical motivation of least squares terms in estimation problems?

29. Difference between line search and trust region methods? Describe the basic idea of the
trust region method for unconstrained optimization.

30. List three ways to compute derivatives with help of computers.

31. What errors occur when computing derivatives with finite differences? Do you know a rule
of thumb of how large to choose the perturbation?

32. If a scalar function f can be evaluated up to accuracy TOL= 10−6, how accurate can you
compute its Hessian by twice applying finite forward differences?

33. What is the idea behind Automatic Differentiation (AD)? What is its main advantage?

34. Can AD be applied recursively in order to obtain higher order derivatives?

35. There are two ways of AD. Describe briefly. What are the advantages / disadvantages of
the two, w.r.t. computation time, storage requirements?



APPENDIX B. EXAM PREPARATION 142

36. Assume you have a simulation routine with n = 106 inputs and a scalar output that you want
to minimize. If one simulation run takes one second, how long would it take to compute the
gradient by finite differences (forward and central), how long by automatic differentiation
(forward and backward mode)?

37. What is the standard form of a nonlinear program (NLP)? How is the lagrangian function
defined? What is it useful for?

38. What is the constraint qualification (CQ), what is the linear indepencence constraint qual-
ification (LICQ) at a point x?

39. What are the Karush-Kuhn-Tucker (KKT) conditions for optimality? What do they guar-
antee in terms of feasible descent directions of first order?

40. What are the first order necessary conditions for optimality (FONC) (constrained)?

41. What are the second order necessary conditions for optimality (SONC) (constrained)?

42. What are the second order sufficient conditions for optimality (SOSC) (constrained)?

43. What is the “active set”?

44. Give a standardform of a QP.

45. When is a QP convex?

46. What is the main idea of an active set strategy?

47. What is the main idea behind an SQP method (for inequality constrained problems)?

48. What is the L1-penalty function? Under which condition is it “exact”, i.e. has the same
local minima as the original NLP?

49. Under which condition does an SQP search direction deliver a descent direction for the
L1-penalty function?

50. How works Newton’s method for equality constrained optimization?

51. What convergence rate does an SQP method with Hessian updates (like BFGS) usually
have?

52. What is a linear what a nonlinear least squares problem (constrained)?

53. What is the constrained Gauss-Newton method (CGN)? What convergence rate does it
have, when does it converge well?

54. (Give an interpretation of the Lagrange multipliers as “shadow prices”. How does this help
in the optimizing practice?)

55. What is the basic idea of interior point methods? Compare them with active set methods.
What are the advantages of each?

56. (What input format does a QP Solver like quadprog expect? Are you able to set up a simple
QP and solve it using quadprog?)



APPENDIX B. EXAM PREPARATION 143

57. (What input format does an NLP Solver like fmincon expect? Are you able to set up a
simple NLP and solve it using fmincon?)

58. What input format does the general convex solver cvx expect? Are you able to set up a
simple convex problem and solve it using cvx?

59. How is the Lagrangian function of a general NLP defined ?

60. How is the Lagrangian dual function of a general NLP defined ?

61. How is the Lagrangian dual problem of a general NLP defined ?

62. What is weak duality? To which problems does it apply?

63. What is strong duality? Under which sufficient conditions does it apply?

64. What is a semidefinite program (SDP)? Give a standardform.

65. How would you reformulate and solve the following eigenvalue optimization problem for a
symmetric matrix?

min
x∈Rn

λmax

(
A0 +

n∑
i=1

Aixi

)
with A0, A1, . . . , An ∈ Rm×m being symmetric matrices.

66. Are you able to set up a simple SDP and solve it using cvx?

B.3 Answers to Rehearsal Questions by Xu Gang

These answers to the rehearsal questions are made by Ph.D. student Xu Gang.

1. What is an optimization problem? Objective,degrees of freedom,constraints,feasible set?
Standard form of NLP.

An optimization problem consists of the following three ingredients.

• An objective function,f(x), that shall be maximized or minimized

• decision variables,x,that can be chosen,and

• constraint that shall be respected,e.g. of the form g(x) = 0 (equality constraints) or
h(x) ≥ 0 (inequality constraints)

min
x∈Rn

f(x) subject to

{
g(x) = 0
h(x) ≥ 0

here f : Rn → R, g : Rn → Rp, h : Rn → Rq

x is the vector of variables,also called unknown parameters;
f is the objective function,a function of x that we want to minimize or maximize;



APPENDIX B. EXAM PREPARATION 144

g, h is the vector of constraints that the unknowns must satisfy.This is a vector function
of the variables x

feasible set is Ω := {x ∈ Rn |g(x) = 0, h(x) ≥ 0}.

2. Definition of global and local minimum.

The point x ∈ Rn is a global minimizer: if and only if x∗ ∈ Ω and ∀x ∈ Ω : f(x) ≥ f(x∗)

The point x ∈ Rn is a strict global minimizer: if and only if x∗ ∈ Ω and ∀x ∈ Ω\ {x∗} :
f(x) > f(x∗)

The point x ∈ Rn is a local minimizer: if and only if x∗ ∈ Ω and there exists a neighbor-
hood N of x∗ (e.g. an open ball around x∗) so that ∀x ∈ Ω ∩N : f(x) ≥ f(x∗)

The point x ∈ Rn is a strict local minimizer: if and only if x∗ ∈ Ω and there exists a
neighborhood N of x∗ so that ∀x ∈ Ω ∩N\ {x∗} : f(x) > f(x∗)

3. When do minimizers exist?

Theorem(weierstrass): If Ω ⊂ Rn is compact(i.e.,bounded and closed) and f : Ω → R
is continuous then there exists a global minimizer of the optimization problem

min
x∈Rn

f(x) subject to x ∈ Ω

4. Types of optimization problems:Linear/Quadratic programming(LP/QP),
convex,smooth,integer,optimal control. . .

LP:

min
x∈Rn

cTx subject to

{
Ax− b = 0
Cx− d ≥ 0

c ∈ Rn, A ∈ Rp×n, b ∈ Rp, C ∈ Rq×n, d ∈ Rq

QP:

min
x∈Rn

cTx+
1

2
xTBx subject to

{
Ax− b = 0
Cx− d ≥ 0

c ∈ Rn, A ∈ Rp×n, b ∈ Rp, C ∈ Rq×n, d ∈ Rq, and Hessian B ∈ Rn×n

Convex QP: when Hessian matrix B is positive semi-definite(i.e., if ∀z ∈ Rn : zTBz ≥
0)

Strictly Convex QP: when Hessian matrix B is positive definite(i.e., if ∀z ∈ Rn\ {0} :
zTBz > 0)

Convex optimization problem: feasible set Ω is convex and objective function f : Ω→ R
is convex.

Theorem: for a convex problem,every local minimum is also a global one.

Convex maximization problem: A maximization problem max
x∈Rn

f(x) s.t. x ∈ Ω is

called a “convex maximization problem”if Ω is convex and f concave. It is equivalent to



APPENDIX B. EXAM PREPARATION 145

convex minimization problem min
x∈Rn

−f(x) s.t. x ∈ Ω

Practically convex NLP: If in the NLP formulation the objective function f is convex,the
equalities g are affine,and the inequalities hi are concave functions,then the NLP is a
convex optimization problem.

min
x∈Rn

f0(x) subject to

{
Ax = b
fi(x) ≤ 0, i = 1, . . . ,m

f0, . . . fm are convex.

Quadratically constrained quadratic program(QCQP): with fi(x) = di + cTi x +
1
2x

TBix with Bi ≥ 0 for i = 0, 1 . . .m

min
x∈Rn

cT0 x+
1

2
xTB0x subject to

{
Ax = b
di + cTi x+ 1

2x
TBix ≤ 0, i = 1, . . . ,m

By choosing B1 = · · · = Bm = 0 we would obtain a usual QP, and by also setting B0 = 0
we would obtain an LP.

Semidefinite programming(SDP):

min
x∈Rn

cTx subject to

 Ax− b = 0

B0 +
n∑
i=1

Bixi ≥ 0

All LPs,QPs,QCQPs can also be formulated as SDPs,besides several other convex problems.
Semidefinite programming is avery powerfual tool in convex optimization.

Non-smooth(non-differentiable) optimization problem: If one or more of the prob-
lem functions f, g, h are not differentiable.

Mixed-integer programming(MIP):

min
x∈Rn
z∈Zm

f(x, z) subject to
g(x, z) = 0
h(x, z) ≥ 0

5. When is a function convex?definition. If it is twice differentiable?

Convex function: A function f : Ω → R is convex,if Ω is convex and if ∀x, y ∈ Ω, t ∈
[0, 1] : f(x+ t(y − x)) ≤ f(x) + t(f(y)− f(x))(all secants are above graph).

f(x) = |x| is convex but does not have a derivative at point 0.(no need twice differentiable)

Theorem(convexity for C2 functions): Assume that f : Ω→ R is twice continuously
differentiable and Ω convex.Then holds that f is convex if and only if for all x ∈ Ω the
Hessian is positive semi-definite,i.e.,

∀x ∈ Ω : ∇2f(x) ≥ 0

The following operations preserve convexity of functions:



APPENDIX B. EXAM PREPARATION 146

(a) Affine input transformation: If f : Ω → R is convex,then also f̃(x) = f(Ax + b)
(withA ∈ Rn×m) is convex on the domain Ω̃ = {x ∈ Rm|Ax+ b ∈ Ω}.

(b) Concatenation with a monotone convex function: If f : Ω→ R is convex and g : R→ R
is convex and monotonely increasing,then the function g ◦ f : Ω → R, x 7→ g(f(x)) is
also convex.

(c) The supremum over a set of convex functions fi(x), i ∈ I is convex:f(x) = sup
i∈I

fi(x).this

can be proven by noting that the epigraph of f is the intersection of the epigraphs of
fi.

6. When is a set convex? Definition

Convex set: A set Ω ⊂ Rn is convex,if ∀x, y ∈ Ω, t ∈ [0, 1] : x+ t(y−x) ∈ Ω(all connecting
lines lie inside set).

Theorem(convexity of sublevel sets): The sublevel set {x ∈ Ω|f(x) ≤ c} of a convex
function f : Ω→ R with respect to any constant c ∈ R is convex.

The following operations preserve convexity of sets:

(a) The intersection of finitely or infinitely many convex sets is convex

(b) Affine image: if Ω is convex, then for A ∈ Rm×n, b ∈ Rm also the set AΩ + b =
{y ∈ Rm|∃x ∈ Ω : y = Ax+ b} is convex

(c) Affine pre-image: if Ω is convex, then forA ∈ Rn×m, b ∈ Rn also the set {z ∈ Rm|Az + b ∈ Ω}
is convex.

7. What is a “stationary” point?

stationary point is an input to a function where the derivative is zero (equivalently, the
gradient is zero): where the function ”stops” increasing or decreasing (hence the name).

Critical point is more general: a critical point is either a stationary point or a point where
the derivative is not defined.

Descent direction: A vector p ∈ Rn with ∇f(x)T p < 0 is called a descent direction at x.

8. how are gradient and Hessian of scalar function f defined?

The Gradient of f is defined to be the vector field whose components are the partial
derivatives of f .

∇f =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
which points in the direction of the greatest rate of increase of the scalar field, and whose
magnitude is the greatest rate of change.

A generalization of the gradient for functions on a Euclidean space which have values in
another Euclidean space is the Jacobian. A further generalization for a function from one
Banach space to another is the Frchet derivative.

Jacobian: Suppose F : Rn → Rm is a function from Euclidean n-space to Euclidean



APPENDIX B. EXAM PREPARATION 147

m-space.the Jacobian Matrix J ,as follows,

J =


∂y1
∂x1

· · · ∂y1
∂xn

...
. . .

...
∂ym
∂x1

· · · ∂ym
∂xn


Hessian matrix is the square matrix of second-order partial derivatives of a function;
that is, it describes the local curvature of a function of many variables. Given the real-
valued(scalar) function f(x1, x2, . . . , xn).The Hessian matrix as follows,

H =


∂2f
∂x21

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x22

· · · ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2n


If f is instead vector-valued, i.e f = (f1, f2, . . . , fn),then the array of second partial
derivatives is not a two-dimensional matrix, but rather a tensor of rank 3.

9. Theorem(First-order optimality condition for convex problems): regard the convex
optimization problem

min
x∈Rn

f(x) s.t. x ∈ Ω

with continuously differentiable objective function f . A point x∗ ∈ Ω is a global optimizer
if and only if

∀y ∈ Ω : ∇f(x∗)T (y − x∗) ≥ 0

Corollary(unconstrained convex problems): regard the unconstrained problem

min
x∈Rn

f(x)

with f(x) convex.Then a necessary and sufficient condition for x∗ to be a global opti-
mizer is

∇f(x∗) = 0

10. What are the first order necessary conditions for optimality(FONC)(unconstrained)?

If x∗ is a local minimizer and f is continuously differentiable in an open neighborhood of
x∗, then

∇f(x∗) = 0

11. What are the second order necessary conditions for optimality (SONC) (unconstrained)?

If x∗ is a local minimizer of f and ∇2f is continuous in an open neighborhood of x∗ then

∇f(x∗) = 0 and ∇2f(x∗) ≥ 0



APPENDIX B. EXAM PREPARATION 148

12. What are the second order sufficient conditions for optimality (SOSC) (unconstrained)?

suppose that ∇2f is continuous in an open neighborhood of x∗ and that ∇f(x∗) = 0 and
∇2f(x∗) is positive definite.Then x∗ is a strict local minimizer of f .

this is not necessary for a stationary point x∗ to be a strict local minimizer.
(e.g.,f(x) = x4,for which x∗ = 0 is a strict local minimizer with ∇2f(x∗) = 0).

13. Basic idea of iterative descent methods?

An iterative algorithm generates a sequence
{
x0, x1, x2, . . .

}
of so called “iterates” with

xk → 0.

14. Definition of local convergence rates:Q/R-linear,superlinear,quadratic?

let {xk} be a sequence in Rn that converges to x∗.
Q-linear: if there is a constant r ∈ (0, 1) such that

lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

≤ r

(e.g., xk = 1
2k

and xk = 0.99k)
Q-superlinear:

lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0

(e.g.,xk = 1
k!)

Q-quadratic:

lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

≤M

where M is a positive constant,not necessarily less than 1.
(e.g.,xk = 1

22k
)

R-convergence: If norm sequence ‖xk − x̄‖ is upper bounded by source sequence,yk →
0, yk ∈ R i.e.,‖xk − x̄‖ < yk and if yk is converging

• Q-linearly then xk is R-linearly

• Q-superlinearly then xk is R-superlinearly

• Q-quadratically then xk is R-quadratically

Q=Quotient R=Root

15. What is locally convergent,what a globally convergent algorithm? what does the term
“globalization” usually mean for optimizers?

an iterative method is called locally convergent if the successive approximations produced
by the method are guaranteed to converge to a solution when the initial approximation is
already close enough to the solution. Iterative methods for nonlinear equations
and their systems, such as Newton’s method are usually only locally convergent.

An iterative method that converges for an arbitrary initial approximation is called
globally convergent. Iterative methods for systems of linear equations are usually
globally convergent.



APPENDIX B. EXAM PREPARATION 149

16. What is the Armijo condition? What is the reason that it is usually required in line search
algorithms?

Armijo stipulates that tk should give sufficient decrease in f :

f(xk + tkpk) ≤ f(xk) + γtk∇f(xk)
T pk

with γ ∈ (0, 1
2) the relaxation of the gradient. In practice γ is chosen quite small,say γ = 0.1

or even smaller.
This condition however is not sufficient to ensure that the algorithm makes fast enough
progress.

17. Why is satisfaction of Armijo condition alone not sufficient to guarantee convergence towards
sationary points?give a simple counterexample.

It is satisfied for all sufficiently small values of tk, so Armijo condition is not enough by
itself to ensure that the algorithm makes reasonable progress.

18. What is Backtracking?

Backtraking chooses the step length by starting with t = 1 and checking it against Armijo’s
condition.If Armijo is not satisfied, t will be reduced by a factor β ∈ (0, 1). In practice β is
chosen to be not too small to derivate not too much,e.g.,β = 0.8

19. What is the local convergence rate of the steepest descent method?

Take Bk = αkI and pk = −B−1
k ∇f(xk) = −∇f(xk)

αk
This is the negative gradient with

convergence rate Q-linear

20. What is Newton’s method for solution of nonlinear equations F (x) = 0? How does it iter-
ate,what is the motivation for it.How does it converge locally?

∇f(xk) =
∆y

∆x
=
f(xk)− 0

xk − xk+1
⇒ xk+1 = xk −

f(xk)

∇f(xk)

It converges locally Q-quadratically. Theorem(convergence of Newton’s method):
suppose f ∈ C and moreover,∇2f(x) is a Lipschitz function in a neighborhood of x∗. x∗ is
a local minimum satisfying SOSC(∇f(x∗) = 0 and ∇2f(x∗) > 0. If x0 is sufficiently close
to x∗,then Newton iterates x0, x1, . . .

• converges to x∗

• converges with quadratic rate

• sequence of ‖∇f(xk)‖ converges to zero quadratically

21. How works Newton’s method for unconstrained optimization?

• work with line-search (line search Newton methods)

• work with trust-region(trust-region Newton methods)

• the above two can work with Conjugate Gradient methods



APPENDIX B. EXAM PREPARATION 150

22. what are approximation Newton or Newton type methods?

Any iteration of form xk+1 = xk −B−1
k ∇f(xk) with Bk invertible is called “Newton type

iteration for optimization”

• Bk = ∇2f(xk)—Newton’s method

• Bk ≈ ∇2f(xk)—approximate Newton

23. What is the idea behind Quasi-Newton methods?

(a) Approximate Hessian Bk+1 from knowledge of Bk and ∇f(xk) and ∇f(xk+1),we get the
following secant condition

Bk+1(xk+1 − xk) = ∇f(xk−1)−∇f(xk)

(b) change previous estimate Bk only slightly,require simultaneously Bk+1 ≈ Bk and the
secant condition.

24. What is the secant condition?How is it motivated?

First-order Taylor:∇f(xk+1) ≈ ∇f(xk) +∇2f(xk)(xk+1 − xk)

25. What is BFGS formula?Let sk be the last step vector and yk the (Lagrange-) gradient
difference. Under which condition does it preserve position definiteness?

BFGS:

Bk+1 = Bk −
BkSS

TBk
STBkS

+
Y Y T

STY

with S = xk+1 − xk and Y = ∇f(xk+1)−∇f(xk)

easily check:

• Bk+1 is symmetric

• Bk+1Sk = Yk

• Bk+1 −Bk has Rank-2

If Bk is positive definite and Y T
k Sk > 0 Then is Bk+1 well defined and positive definite.

26. Can any update formula satisfying the secant condition yield a positive definite Hessian if
Y T
k Sk < 0?

Lemma: If Y T
k Sk ≤ 0 and Bk+1 satisfies secant condition,Then Bk+1 cannot be positive

definite.

27. What is linear what a nonlinear least-squares problem(unconstrained)?

In least-square problems,the objective function f has the following special form:

f(x) =
1

2

m∑
j=1

r2
j (x) =

1

2
‖η −M(x)‖22



APPENDIX B. EXAM PREPARATION 151

where each rj is a smooth function from Rn to R(mostly m >> n),we refer to each rj as a
residual.

linear least-squares problems

In a special case in which each function ri is linear,the Jacobian J is constant,and we can
write

f(x) =
1

2
‖Jx+ r‖22 or =

1

2
‖η − Jx‖22

where r = r(0),we also have

∇f(x) = JT (Jx+ r), ∇2f(x) = JTJ

(note that the second term in ∇2f(x) in disappears,because ∇2ri = 0 for all i)

nonlinear least-square problem

min
x
f(x) with f(x) =

1

2
‖η −M(x)‖22

28. How does the Gauss-Newton method iterate? When is it applicable?

xk+1 = xk + pGNk with JTk Jkp
GN
k = −JTk rk

pGNk = −(JTJ)−1JTF = −J+F

with ∇2f = JTJ, ∇f = JTF and J+ = (JTJ)−1JT the pseudo-inverse(numerically
more stable to comput J+ directly,e.g.,QR-factorization).

It is only applicable to estimation problems because the methods linearizes nonlinear func-
tion inside L2-norm in fitting problems.
(remark: JTJ is not always invertible.

29. When does the Gauss-Newton method perform well?What local convergence rate does it
have?

It converges Q-linear to x∗.

30. Statistical motivation of least squares terms in estimation problems?

A least squares problem can be interpreted as finding x that “explains” noisy measurements
“best”.

Definition: A maximum-likelyhood estimate maximize the probability P (n|x) of obtaining
the (given) measurements if the parameter has value x.

assume ηi = Mi(x̄)+εi with x̄ the “true” parameter,and εi Gaussian noise(with expectation
value E(εi) = 0, E(εi, εi) = σ2 and εi, εj independent).

P (η|x) =

m∏
i=1

P (ηi|x) =

m∏
i=1

C exp

(−(ηi −Mi(x))2

2σ2

)

logP (η|x) = C +

m∑
i=1

−−(ηi −Mi(x))2

2σ2



APPENDIX B. EXAM PREPARATION 152

The argument maximizing:

arg max
x∈Rn

P (η|x) = arg min
x∈Rn

1

2
‖η −M(x)‖22

31. Difference between line search and trust region methods? Describe the basic idea of the
trust region method for unconstrained problem.

They both generate steps with the help of quadratic model of the objective function,but they
use this model in different ways,line search methods use it to generate a search direction,and
then focus their efforts on finding a suitable step length α along this direction. Trust-region
methods define a region around the current iterate with in which they trust the model to be
an adequate representation of the objective,and then choose the step to be the approximate
minimizer for the model in this trust region.

Trust-region method:

Iterate: xk+1 = xk + pk where pk solves

min
p
Mk(p) subject to ‖p‖2 ≤ ∆k

can be used in the case of indefinite Hessian.

32. List three ways to compute derivatives with help of computers.

• Symbolic differentiation

• “imaginary trick” in matlab
If f : Rn → R is analytic,then for t = 10−100 we have

∇f(x)T p =
Im(f(x+ itp))

t

can be calculated up to machine precision.

• numerical differentiation(finite difference)

easy and fast but inaccurate. f(x+tp)−f(x)
t ≈ ∇f(x)T p

• Automatic differentiation(forward and reverse)

33. What errors occur when computing derivatives with finite differences? Do you know a rule
of thumb of how large to choose the perturbation?

If we take t too small the derivative will suffer from numerical noise(round-off error).
On the other hand,if we took t too large the linearization error will be dominant.
A good rule of thumb is to use t =

√
εmach, with εmach the machine precision(or the precision

of f , if it is lower than the machine precision)
The accuracy of this method is

√
εmach,which means in practice only half the digits are

useful.Second order derivatives are therefore more difficult to accurately calculate.

34. If a scalar function f can be evaluated up to accuracy TOL = 10−6,how accurate can you
compute its Hessian by twice applying finite forward differences?

choose εmach = TOL = 10−6, so
∇f can achieve accuracy with 10−3, so Hessian only with 0.1.



APPENDIX B. EXAM PREPARATION 153

35. What is the idea behind Automatic Differentiation(AD)?What is its main advantage?

Use chain rule and differentiate each φi separately.
it can achieve accuracy up to machine precision.

36. Can AD be applied recursively in order to obtain higher order derivatives?

AD can be generalized, in the natural way, to second order and higher derivatives. However,
the arithmetic rules quickly grow very complicated, complexity will be quadratic in the
highest derivative degree. Instead, truncated Taylor series arithmetic is used. This is
possible because the Taylor summands in a Taylor series of a function are products of
known coefficients and derivatives of the function. Computations of Hessians using AD has
proven useful in some optimization contexts.

37. There are two ways of AD,Describe briefly.What are the advantages/disadvantages of the
two,w.r.t. computation time,storage requirements?

pre-AD algorithm:

Input: x1, x2, · · · , xn
Output: xn+m

for i = n+ 1 to n+m do
xi ← φi(x1, · · · , xi−1)

end for

Forward AD algorithm:

Input: ẋ1, ẋ2, · · · , ẋn
Output: ẋn+m

for i = n+ 1 to n+m do
ẋi ←

∑
j<n+i

∂φn+i
∂xj

ẋj

end for

cost(∇f)≤ 2n cost(f)
AD forward is slightly more expensive than FD,but is exact up to machine precision

Reverse AD algorithm:

Input: all partial derivatives ∂φi
∂xi

Output: x̄1, · · · , x̄n
x̄1, x̄2, · · · , x̄n+m−1 ← 0
x̄n+m

for i = n+m down to n+ 1 do
for all i < j do
x̄i ← x̄i + x̄j

∂φj
∂xi

end for
end for

cost(∇f)≤ 5 cost(f),regardless of the dimension n!



APPENDIX B. EXAM PREPARATION 154

The only disadvantage is that,you have to store all intermediate variables. may cause
memory problem.

FD & Imaginary trick: cost(∇f)= n+ 1 cost(f)

38. assume you have a simulation routine with n = 106 inputs and a scalar output that you
want to minimize. If one simulation run takes one second,how long would it take to compute
the gradient by finite differences(forward and central),how long by automatic differentia-
tion(forward and backward mode)

forward FD: 106 + 1
central FD: 2 ∗ 106 + 1
forward AD: 2 ∗ 106

backward AD: 5

39. What is the standard form of NLP? how is the Lagrangian function defined? What is it
useful for?

standard form of NLP:

min
x∈Rn

f(x) subject to

{
g(x) = 0
h(x) ≥ 0

here f : Rn → R, g : Rn → Rp, h : Rn → Rq

Lagrangian function:

L(x, λ, µ) = f(x)− λT g(x)− µTh(x)

λ ∈ Rp and µ ∈ Rq are “Lagrange multiplier” or “dual variables” we typically require
the inequality multiplier µ ≥ 0,while the sign of the equality multiplier λ is arbitrary.

To formulate Lagrangian Dual problem.

40. What is the constraint qualification(CQ),what is the linear independence constraint quali-
fication(LICQ) at a point x?

In order for a minimum point x∗ be KKT, it should satisfy some regularity condition, the
most used ones are listed below:
LICQ ⇒ MFCQ ⇒ CPLD ⇒ QNCQ, LICQ ⇒ CRCQ ⇒ CPLD ⇒ QNCQ(and
the converse are not true),although MFCQ is not equivalent to CRCQ. In practice weaker
constraint qualifications are preferred since they provide stronger optimality conditions.

LICQ:LICQ holds at x∗ ∈ Ω if and only if all vector ∇gi(x∗) for i ∈ {1, 2 · · · ,m} and
∇hi(x∗) for i ∈ A(x∗) are linearly independent.

41. What are the KKT conditions for optimality? what do they guarantee in terms of feasible
descent direction of first order?

Theorem(Fist-order necessary condition[KKT]): suppose that x∗ is a local solution
of NLP and that the LICQ holds at x∗.Then there is a Lagrange multiplier vector λ∗ ∈



APPENDIX B. EXAM PREPARATION 155

Rm and µ ∈ Rq,such that the following condition are satisfied at (x∗, λ∗):

∇xL(x∗, λ∗) = ∇f(x∗)−∇g(x∗)λ−∇h(x∗)µ = 0
g(x∗) = 0
h(x∗) ≥ 0

µ ≥ 0
µihi(x

∗) = 0 i = 1, 2 · · · , q

42. What are the first order necessary conditions for optimality(FONC)(constrained)?

KKT condition and variants:

• If x∗ is a local minimum of the NLP then:

(a) x∗ ∈ Ω

(b) for all tangents p ∈ TΩ(x∗) holds:∇f(x∗)T p ≥ 0

• If LICQ holds at x∗ and x∗ is a local minimizer of the NLP then:

(a) x∗ ∈ Ω

(b) ∀p ∈ F (x∗)T p ≥ 0

• KKT condition

Definition(tangent): p ∈ Rn is called a “tangent”to Ω at x∗ ∈ Ω if there exists a smooth
curve x̄(t) : [0, ε)→ Rn with x̄(0) = x∗, x̄(t) ∈ Ω, ∀ t ∈ [0, ε) and dx̄

dt (0) = p.

Definition(tangent cone): the “tangent cone” TΩ(x∗) of Ω at x∗ is the set of all tangent
vectors at x∗.

Definition(linearized feasible cone):
F (x∗) =

{
g|∇gi(x∗)T p = 0, i = 1, 2, · · · ,m & ∇hi(x∗)T p ≥ 0, i ∈ A(x∗)

}
is called the

“linearized feasible cone ”at x∗ ∈ Ω.

Definition(critical cone): Regard the KKT point (x∗, λ, µ).The critical cone C(x∗, µ) is
the following set:
C(x∗, µ) =

{
p|∇g(x∗)T p = 0, ∇hi(x∗)T p = 0 if i ∈ A+(x∗, µ), ∇hi(x∗)T p ≥ 0 if i ∈ A0(x∗, µ)

}
43. What are the second order necessary conditions for optimality(SONC)(constrained)?

Regard x∗ with LICQ. If x∗ is local minimizer of the NLP,then:

(a) ∃λ, µ so that KKT condition hold;

(b) ∀p ∈ C(x∗, µ) holds that pT∇2
xL(x∗, λ, µ)p ≥ 0

44. What are the second order sufficient conditions for optimality(SOSC)(constrained)?

If x∗ satisfies LICQ and

(a) ∃λ, µ so that KKT condition hold;

(b) ∀p ∈ C(x∗, µ), p 6= 0 holds that pT∇2
xL(x∗, λ, µ)p > 0

then x∗ is a local minimizer.



APPENDIX B. EXAM PREPARATION 156

45. what is the “active set”?
A(x) = ε ∪ {i ∈ I |ci(x) = 0}

Definition(active constraint): an inequality constraint hi(x) ≥ 0 is called “active” at
x∗ ∈ Ω if and only if hi(x

∗) = 0 and otherwise “inactive”.

Definition(active set): The index set A(x∗) ⊂ {1, 2, · · · , q} of active constraints is
called the “active set”.

46. Give a standard form of a QP.

QP:

min
x∈Rn

cTx+
1

2
xTBx subject to

{
Ax− b = 0
Cx− d ≥ 0

c ∈ Rn, A ∈ Rp×n, b ∈ Rp, C ∈ Rq×n, d ∈ Rq, and Hessian B ∈ Rn×n

Convex QP: when Hessian matrix B is positive semi-definite(i.e., if ∀z ∈ Rn : zTBz ≥
0)

Strictly Convex QP: when Hessian matrix B is positive definite(i.e., if ∀z ∈ Rn\ {0} :
zTBz > 0)

47. what is a QP convex?

when B ≥ 0

48. What is the main idea of an active set strategy?(for QP?)

49. What is the main idea behind an SQP method(for inequality constrained problems)?

Regard the NLP
min
x
f(x) s.t. h(x) ≥ 0

SQP solve it in each iteration the QP

min
p
∇f(x)T p+

1

2
pTBkp s.t. h(xk) +

∂h

∂x
(xk)p ≥ 0

50. What is the L1-penalty function?under which condition is it “exact”,e.e,has the same local
minima as the original NLP?

A popular nonsmooth penalty function for the general nonlinear programming problem NLP
is the l1 penalty function:

φ1(x;µ) = f(x) + µ
∑
i∈ε
|ci(x)|+ µ

∑
i∈I

[ci(x)]−

where [y]− = max {0,−y}.Its name derives from the fact that the penalty term is µ times
the l1 norm of the constraint violation. Note that φ1(x;µ) is not differentiable at some
x,because of the presence of the absolute value and [.]− functions.



APPENDIX B. EXAM PREPARATION 157

Theorem(exactness of l1 penalty function): Suppose that x∗ is a strict local solution of
the NLP at which the first-order necessary conditions are satisfied ,with Lagrange multipliers
λ∗i , i ∈ ε ∪ I.Then x∗ is a local minimizer of φ1(x;µ) for all µ > µ∗ where µ∗ = ‖λ∗‖∞ =
max
i∈ε∪I

|λ∗i |. If,in addition,the second-order sufficient condition hold and µ > µ∗,then x∗ is a

strict local minimizer of φ1(x;µ).

Idea: use “merit function” to measure progree is both objective and constraints.

Definition(L1 −merit function): is defined to be T1(x) = f(x) + σ‖g(x)‖1 with σ > 0.

51. Under which condition does an SQP search direction deliver a descent direction for the
l1-penalty function?

If B > 0 and σ ≥ ‖λ̃‖∞ then p is a descent direction of T1.

Definition(directional derivative): the “directional derivative of F at x in direction p”

is DF (x)[p] = lim
t→0,t>0

F (x+tp)−F (x)
r .

Lemma: If p &λ̃ solve

[
∇f
g

]
+

[
B ∂g

∂x

T

∂g
∂x 0

] [
p

−λ̃

]
= 0 then

DT1(x)[p] = ∇f(x)T p− σ‖g(x)‖1
DT1(x)[p] ≤ −pTBp− (σ − ‖λ̃‖∞)‖g(x)‖1

52. How works Newton’s method for equality constrained optimization?

The idea is to apply Newton’s method to solve the nonlinear KKT conditions

∇L(x, λ) = 0
g(x) = 0

define [
x
λ

]
= w and F (w) =

[
∇L(x, λ)
g(x)

]
so that the optimization is just a nonlinear root finding problem F (w) = 0,which can be
solve by Newton’s method.

F (wk) +
∂F

∂wk
(w − wk) = 0

writeen in terms of gradients:[
∇xL
g

]
+

[
∇2
xL ∇g
∇gT 0

] [
x− xk
−(λ− λk)

]
= 0

53. What convergence rate does an SQP method with Hessian updates(like BFGS) usually have?

Newton-type constrained optimization converges

• quadratically if Bk = ∇2L(xk, λk)

• superlinearly if Bk → ∇2L(xk, λk)(BFGS)



APPENDIX B. EXAM PREPARATION 158

• linearly if ‖Bk −∇2L(xk, λk)‖ is not too big (Gauss-newton)

54. What is a linear what a nonlinear least squares problem(constrained)

min
x
f(x) subject to

{
Ax− b = 0
Ax− b ≥ 0

with

f(x) =
1

2
‖η − Jx‖22

min
x
f(x) subject to

{
g(x) = 0
h(x) ≥ 0

with

f(x) =
1

2

m∑
j=1

r2
j (x) =

1

2
‖η −M(x)‖22

55. What is the constrained Gauss-Newton method(CGN)? What convergence rate does it
have,when does it converge well?

Regard:

min
x

1

2
‖F (x)‖22 subject to g(x) = 0

Linearize both F and g get approximation by:

min
x

1

2
‖F (xk) + J(xk)(x− xk)‖22 subject to g(xk) +∇g(xk)

T (x− xk) = 0

This is a LS-QP which is convex.note that no multipliers λk+1areneeded
KKT

JTJ(x− xk) + JTF −∇gλ(x− xk) = 0
g +∇gT = 0

The constrained Gauss-Newton gives a Newton type iteration with Bk = JTJ , for LS

∇2
xL(x, λ) = J(x)TJ(x) +

∑
Fi(x)∇2Fi(x)−

∑
λi∇2gi(x)

One can show that ‖λ‖ gets small if ‖F‖ is small. As in unconstrained case, CGN converges
well if ‖F‖ = 0 (Q-linear).

56. Give an interpretation of the Lagrange multipliers as “shadow prices”,How does this help
in the optimizing practice?

Loosely, the shadow price is the change in the objective value of the optimal solution of
an optimization problem obtained by relaxing the constraint by one unit.

More formally, the shadow price is the value of the Lagrange multiplier at the optimal
solution, which means that it is the infinitesimal change in the objective function arising from
an infinitesimal change in the constraint. This follows from the fact that at the optimal
solution the gradient of the objective function is a linear combination of the constraint
function gradients with the weights equal to the Lagrange multipliers. Each constraint in
an optimization problem has a shadow price or dual variable.



APPENDIX B. EXAM PREPARATION 159

57. What is the basic idea of interior point methods?compare them with active set meth-
ods.What are the advantage of each?

The Interior point method is an alternative for the active set method for QPs or LPs
and for SQP method.The previous methods have broblems with the non-smoothness in
the KKT-condition(b,c,d)[for i = 1, 2, . . . , q:

(a) ∇f(x)−
q∑
i=1
∇hi(x)µi = 0

(b) hi(x) ≥ 0

(c) µi ≥ 0

(d) µihi(x) = 0

The Interior point method’s idea is to replace b,c and d by a smooth condition(which is
an approximation):hi(x)µi = τ with τ > 0 but small. The KKT-conditions now become a
smooth root finding problem:

∇f(x)−
q∑
i=1
∇hi(x)µi = 0

hi(x)µi − τ = 0 i = 1, 2, . . . , q

These conditions are called the IP-KKT conditions and can be solved by Newtons methods
and yields solutions x̄(τ) and µ̄(τ).
we can show that for τ → 0

x̄(τ)→ x∗

µ̄(τ)→ µ∗

58. What input format does a QP solver like quadprog expect?

59. What input format does an NLP solver like fmincon expect?

60. How is the Lagrangian function of a general NLP defined?

L(x, λ, µ) = f(x)− λT g(x)− µTh(x)

λ ∈ Rp and µ ∈ Rq are “Lagrange multiplier” or “dual variables” we typically require
the inequality multiplier µ ≥ 0,while the sign of the equality multiplier λ is arbitrary.

Primal optimization problem: we denote the globally optimal value of the objective
function subject to the constraints as “primal optimal value” p∗,i.e.,

p∗ =

(
min
x∈Rn

f(x) s.t. g(x) = 0, h(x) ≥ 0

)
and we will denote this optimization problem as the “primal optimization problem”.

Lemma(lower bound property of Lagrangian): If x̃ is a feasible point and µ ≥ 0,then

L(x̃, λ, µ) ≤ f(x̃)



APPENDIX B. EXAM PREPARATION 160

61. How is the Lagrangian dual function of a general NLP defined?

We define the so called “Lagrange dual function” as the unconstrained infimum of the
Lagrangian over x, for fixed multipliers λ, µ.

q(λ, µ) = inf
x∈Rn

L(x, λ, µ)

This function will often take the value −∞, in which case we will say that the pair (λ, µ) is
“dual infeasible” .

Lemma(lower bound property of Lagrange dual): If µ ≥ 0 then

q(λ, µ) ≤ p∗

Theorem(concavity of Lagrange dual): The function q : Rq × Rq → R is concave,even
if the original NLP was not convex.

62. How is the Lagrangian dual problem of a general NLP defined?

the “dual problem” with “dual optimal value” d∗ is defined as the convex maximiza-
tion problem

d∗ =

(
max

λ∈Rp,µ∈Rq
q(λ, µ) s.t. µ ≥ 0

)
the dual problem is always convex,even if the so called “primal problem” is not.

dual of an LP:

p∗ = min
x∈Rn

cTx subject to
Ax− b = 0
Cx− d ≥ 0

d∗ = max
λ∈Rp,µ∈Rq

[
b
d

] [
λ
µ

]
subject to

c−ATλ− CTµ = 0
µ ≥ 0

dual of a strictly convex QP(B > 0)

p∗ = min
x∈Rn

cTx+
1

2
xTBx subject to

Ax− b = 0
Cx− d ≥ 0

d∗ = max
λ∈Rp,µ∈Rq

−1

2
cTB−1c+

[
b+AB−1c
d+ CB−1c

]T [
λ
µ

]
− 1

2

[
λ
µ

]T [
A
C

]
B−1

[
A
C

]T [
λ
µ

]
subject to µ ≥ 0

63. What is weak duality? To which problems does it apply?

d∗ ≤ q∗

This holds for any arbitrary optimization problem,but does only unhold its full strength in
convex optimization,where very often holds a strong version of duality.



APPENDIX B. EXAM PREPARATION 161

64. What is strong duality?Under which sufficient conditions does it apply?

Strong duality: If the primal optimization problem is convex and a technical constraint
qualification(e.g, Slater’s condition) holds,then primal and dual objective are equal to each
other

d∗ = q∗

Strong duality allows us to reformulate a convex optimization problem into its dual.

65. What is a semidefinite programin (SDP)?give a standardform.

make use of linear matrix inequalities(LMI) in order to describe the feasible set(B0 +
n∑
i=1

Bixi ≥ 0) where the matrices B0, . . . , Bm are all in the vector space sk of symmetric

matrices of a given dimension Rk×k.

min
x∈Rn

cTx subject to

 Ax− b = 0

B0 +
n∑
i=1

Bixi ≥ 0

All LPs,QPs,QCQPs can also be formulated as SDPs,besides several other convex problems.
Semidefinite programming is avery powerfual tool in convex optimization.

66. How would you reformulate and solve the following eigenvalue optimization problem for a
symmetric matrix?

min
x∈Rn

λmax

(
A0 +

n∑
i=1

Aixi

)
with A0, A1, . . . , An ∈ Rm×m being symmetric matrices.

reformulated as SDP by adding a slack variable s ∈ R,

min
s∈R,x∈Rn

s subject to Iks−
n∑
i=1

Aixi −A0 ≥ 0

67. Are you able to set up a simple SDP and solve it using CVX?



Bibliography

[1] Amir Beck. Introduction to Nonlinear Optimization: Theory, Algorithms and Applications
with MATLAB. MOS-SIAM, 2014.

[2] S. Boyd and L. Vandenberghe. Convex Optimization. University Press, Cambridge, 2004.

[3] A. Griewank and A. Walther. Evaluating Derivatives. SIAM, 2 edition, 2008.

[4] J. Nocedal and S.J. Wright. Numerical Optimization. Springer Series in Operations Research
and Financial Engineering. Springer, 2 edition, 2006.

162


