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Motivation

Goal:

I Implement an efficient solver for PDE constrained optimal control problems (OCP) with
boundary controls.

⇒ Combine the MG method with the INIS method → INIS-MG Algorithm.

Why PDE constrained OCPs:
I Relevant in the context of industrial and

medical applications
I optimal cooling of steel profiles
I optimal local heating of tumor tissue

Why use the combination of INIS and MG:

I Boundary Controls

I PDE constraints
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Problem Formulation

min
z∈Rnz , w∈Rnw

f(z, w),

subject to g(z, w) = 0.

I g : Rnz × Rnw → Rng ,

I nz = ng,

I Jacobian gz(·) invertible.

I y = [z>, w>]>
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Forward Problem

g(z, w) = 0

Assumptions:

I nz = ng,

I Jacobian gz(·) is invertible.

⇒ The variables z are implicitly defined as function of w.
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Forward Problem

For a given w∗ solve
g(z, w∗) = 0

with Newton’s method:

I Current iterate zk,

I ∆zk = −gz(zk, w∗)−1g(zk, w∗),

I zk+1 = zk + ∆zk.
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Forward Problem

Use full-rank approximation
M ≈ gz

for an inexact Newton method:

I Current iterate zk,

I ∆zk = −M−1g(zk, w∗),

I zk+1 = zk + ∆zk.
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Forward Problem
SQP method

In order to solve the whole NLP we can apply a SQP method:

I Current iterate (yk, λk)

I Solve following QP:

min
∆y∈Rny

1

2
∆y>H̃∆y +∇yL(yk, λk)∆y

subject to gz(y
k)∆z + gw(yk)∆w + g(yk) = 0.

I yk+1 = yk + ∆y and λk+1 = λk + ∆λk.
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Forward Problem
Local Contraction

Question: Is there a connection between the contraction of inexact Newton method applied to
the forward problem and the contraction of the inexact method of the NLP?

Answer: No, there are examples, where the inexact Newton method of the forward problem
converges, but the inexact method applied to the whole NLP with the same approximation M
diverges.
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Inexact Newton with Iterated Sensitivities
Sensitivity Matrix

Introduce sensitivity matrix D ∈ Rnz×nw which is implicitly defined by the equation

gz(y)D − gw(y) = 0.

Applying Newton’s method yields:

I Current iterate Dk,

I ∆Dk = −M−1(gz(y
k)Dk − gw(yk)),

I Dk+1 = Dk + ∆Dk.

INIS for Optimization of PDE Justin Pearse-Danker 9



Inexact Newton with Iterated Sensitivities
Sensitivity Matrix

Introduce sensitivity matrix D ∈ Rnz×nw which is implicitly defined by the equation

gz(y)D − gw(y) = 0.

Applying Newton’s method yields:

I Current iterate Dk,

I ∆Dk = −M−1(gz(y
k)Dk − gw(yk)),

I Dk+1 = Dk + ∆Dk.

INIS for Optimization of PDE Justin Pearse-Danker 9



Inexact Newton with Iterated Sensitivities
SQP Method

With the approximation
MDk ≈ gw(yk),

the SQP method solves the QP:

min
∆y∈Rny

1

2
∆y>H̃∆y +∇yL(yk, λk)∆y

subject to M∆z +MDk∆w + g(yk) = 0.
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Inexact Newton with Iterated Sensitivities
Local Contraction

Contraction rate of INIS method:

κ∗INIS = max
(
κ∗F , ρ

(
H̃−1
Z HZ − 1nw

))

I Local contraction of the forward problem is a necessary condition for local contraction of
the INIS algorithm.

I Sufficient Condition, if the Hessian approximation is good enough.
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Multi-Grid for Simulation of Partial Differential Equations

Poisson equation:
−∆z = f t ∈ Ω = (0, 1)2,

z = 0 t ∈ ∂Ω.

with f : Ω→ R.
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Multi-Grid for Simulation of Partial Differential Equations
Discretization

Finite differences discretization of the Laplacian:

−∂+
t1∂
−
t1zi,j − ∂

+
t2∂
−
t2zi,j = −h−2(zi,j−1 + zi−1,j − 4zi,j + zi+1,j + zi,j+1)

Lexicographic enumeration of interior points:

(i, j) ≡ i+ (j − 1)(J − 1) = m

z1

z2

z3

z4

z5

z6

z7

z8

z9

.
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Multi-Grid for Simulation of Partial Differential Equations
Discretization

Reduced linear system:

h−2


X −1

−1
. . .

. . .
. . .

. . . −1
−1 X


︸ ︷︷ ︸

=:A


z1

z2

...
zN


︸ ︷︷ ︸

=:Z

=


f1

f2

...
fN


︸ ︷︷ ︸

=:F

,

with

X =


4 −1

−1
. . .

. . .
. . .

. . . −1
−1 4


.
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Multi-Grid for Simulation of Partial Differential Equations
Grid Hierachy

Sequence of grid sizes

h0 > h1 > . . . > hl > . . . > hL with hl = 2−l−1

for a given L > 0.

Corresponding interior grid:

Ωl = {(ihl, jhl) : 1 ≤ i, j ≤ Jl},

with Jl = h−1
l − 1.
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Multi-Grid for Simulation of Partial Differential Equations
Smoother

Goal: Reduce high frequent part of the error el = Zl − Z∗l

Richardson iteration:
Zkl = Zk−1

l − ω(AlZ
k−1
l − Fl),

with ω ∈ (0, 2/ξmax).
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Multi-Grid for Simulation of Partial Differential Equations
Smoother

Figure: Error eνl = |Zνl − Z∗
l | after ν = 20

Richardson iterations.
Figure: Error eνl = |Zνl − Z∗

l | after ν = 200
Richardson iterations.
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Multi-Grid for Simulation of Partial Differential Equations
Defect Problem

With the residuum rl = AlZ
ν
l − Fl we can formulate the defect problem

Aldl = rl,

with its ”smooth” solution d∗l = Zνl − Z∗l .

⇒ d∗l can be approximated on a coarse grid better than Z∗l .
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Multi-Grid for Simulation of Partial Differential Equations
Restriction and Prolongation

Restriction operator:

Rl : RJ
2
l → RJ

2
l−1

rl 7→ Rl rl.

Prolongation operator:

Pl : RJ
2
l−1 → RJ

2
l

dl−1 7→ Pl dl−1 = R>l dl−1.

Figure: Restriction and prolongation for gridlevel l = 3
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Multi-Grid for Simulation of Partial Differential Equations
Two-Grid Method

Coarse grid correction:
Zνl 7→ Zνl − PlA−1

l−1Rl(AlZ
ν
l − Fl),

Algorithm 1: two grid(Al, Fl, Z
0
l , ω, ν)

1 Zνl = richardson(Al, Fl, Z
0
l , ω, ν) // smoothing inital guess

2 rl = AlZ
ν
l − Fl // calculation of the residuum

3 rl−1 = Rlrl // restriction of the residuum

4 dl−1 = A−1
l−1rl−1 // exact solution of the coarse-grid equation

5 Zl = Zνl −R>l dl−1 // correction step

6 return Zl
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Multi-Grid for Simulation of Partial Differential Equations
Multi-Grid Method

l = 0

l = 1

l = 2

l = 3

l = 4 pre-smoothing

post-smoothing

exact solution

restriction

prolongation

Figure: Graphical illustration of the recursive MG strategy.
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Multi-Grid for Simulation of Partial Differential Equations
Linearity

Lemma (Linearity of the V-cycle)

The mapping ϕl is linear in Zl and Fl, i.e. for l ≥ 0 there exist matrices SMG
l , TMG

l ∈ RJ2
l ×J

2
l

such that
ϕl(Zl, Fl) = SMG

l Zl + TMG
l Fl

for all Zl, Fl ∈ RJ2
l . For l = 0 these matrices are

SMG
l = 0,

TMG
l = A−1

l

and for l > 0 they are recursively defined as

SMG
l = S

νpost

l (S
νpre

l +RTl T
MG
l−1 RlAlS

νpre
l ),

TMG
l = S

νpost

l (T
νpre

l +RTl (TMG
l−1 RlAlT

νpre
l − TMG

l−1 Rl)) + T
νpost

l .
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INIS-Multi-Grid (INIS-MG) for Optimization PDE
PDE Constrained Optimal Control Test Problem

minimize
z(·), u(·)

1− α
2

∫
Ω

‖z − fγref‖
2

dt+
α

2

∫
∂Ω

‖u‖2 ds,

subject to −∆z = βz3 t ∈ Ω = (0, 1)2,

u ∈ C(∂Ω),

u|∂Ωi = ui i = 1, . . . , 4 ,

ui ∈P5(∂Ωi) i = 1, . . . , 4 ,

z|∂Ωi = ui i = 1, . . . , 4 ,

with β ∈ R and α ∈ [0, 1].
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INIS-Multi-Grid (INIS-MG) for Optimization PDE
PDE Constrained Optimal Control Test Problem

fγref(t) =

{
γ for t ∈ [0.2, 0.3]2,
0 otherwise,

with γ ∈ R.

Figure: Reference function fγref(·) with γ = 4.
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INIS-Multi-Grid (INIS-MG) for Optimization PDE
Boundary Controls

ui(t) =

5∑
j=0

wji t
j for i = 1, 2

ui(t) =

5∑
j=0

wji (1− t)
j for i = 3, 4

with t ∈ [0, 1]

∂Ω1

(0, 0)

∂Ω2

∂Ω3

(1, 1)

∂Ω4

u2

u4

u1

u3

Figure: Discretization of Ω with uniform grid and
boundary polynomials ui for i = 1, . . . , 4.
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INIS-Multi-Grid (INIS-MG) for Optimization PDE
Boundary Controls

Eliminating boundary states:

zi,0 := u1(ih) zi,J := u3(ih)

zJ,j := u2(jh) z0,j := u4(jh)

for i, j = 0, . . . , J .
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INIS-Multi-Grid (INIS-MG) for Optimization PDE
Equality Constraints


X1
L,β [ZL] −1

−1
. . .

. . .
. . .

. . . 1
−1 XI

L,β [ZL]


︸ ︷︷ ︸

=:AL,β [ZL]


z1

z2

...
zN−1

zN


︸ ︷︷ ︸

=:ZL

=


d1[w]
d2[w]

...
dI−1[w]
dI [w]


︸ ︷︷ ︸

bL[w]

with

Xi
L,β [ZL] =


4− h2βz2

(i−1)I+1 −1

−1
. . .

. . .
. . .

. . . −1
−1 4− h2βz2

iI


for i = 1, . . . , I.
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INIS-Multi-Grid (INIS-MG) for Optimization PDE
Reduced NLP

minimize
ZL∈RN , w∈Rnw

1− α
2

h2
N∑
i=1

(ZiL − f
γ
ref(ti))

2 +
α

2
h

4∑
i=1

J∑
j=0

ui(jh)2

subject to AL,β [ZL]ZL = bL[w]
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INIS-Multi-Grid (INIS-MG) for Optimization PDE
Jacobian Approximation

Constraint Jacobian:

gZL(ZL, w) =


X̃1
L,β [ZL] −1

−1
. . .

. . .
. . .

. . . −1
−1 X̃I

L,β [ZL]


with

X̃i
L,β [ZL] =


4− 3h2βz2

i(I)+1 −1

−1
. . .

. . .
. . .

. . . −1
−1 4− 3h2βz2

iI+I


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INIS-Multi-Grid (INIS-MG) for Optimization PDE
Jacobian Approximation

Jacobian Approximation:
M := gZL(0, w) ≈ gZL(ZL, w).
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INIS-Multi-Grid (INIS-MG) for Optimization PDE
Algorithm

Algorithm 3: INIS MG(M,D, ykL,∆z
0,∆λ0,∆D0, L)

1 ∆z̄ = −multi grid(M, g(ykL),∆z0, L)

2 b = Z>∇yL(ykL, λ
k
L)− Z>H̃

[
∆z̄
0

]
3 ∆w = −(Z>H̃Z)−1b

4 ∆z = ∆z̄ −Dk∆w

5 b = [1N 0]
(
∇yL(ykL, λ

k
L) + H̃∆y

)
6 ∆λ = −multi grid(M>, b,∆λ0, L)

7 yk+1
L = ykL + (∆z>,∆w>)>

8 λk+1 = λk + ∆λ

9 B = gz(y
k
L)Dk − gw(ykL)

10 ∆D = −multi grid(M,B,∆D0, L)

11 Dk+1 = Dk + ∆D
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INIS-Multi-Grid (INIS-MG) for Optimization PDE
Algorithm

Algorithm 4: INIS MG(M,D, ykL,∆z
0,∆λ0,∆D0, L)

1 ∆z̄ = −multi grid(M, g(ykL),∆z0, L)

2 b = Z>∇yL(ykL, λ
k
L)− Z>H̃

[
∆z̄
0

]
3 ∆w = −(Z>H̃Z)−1b

4 ∆z = ∆z̄ −Dk∆w

5 b = [1N 0]
(
∇yL(ykL, λ

k
L) + H̃∆y

)
6 ∆λ = −multi grid(M>, b,∆λ0, L)

7 yk+1
L = ykL + (∆z>,∆w>)>

8 λk+1 = λk + ∆λ

9 B = gz(y
k
L)Dk − gw(ykL)

10 ∆D = −multi grid(M,B,∆D0, L)

11 Dk+1 = Dk + ∆D
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Numerical Experiments
Implementation

I Laptop running Windows 10 equipped with an Intel i7.8565U and 16GB of RAM.

I MATLAB

I CasADi
I Computation of Jacobians and Hessians.

I ipopt
I State of the art large-scale NLP solver.
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Numerical Experiments
Test Problem

minimize
ZL∈RN , w∈Rnw

1− α
2

h2
N∑
i=1

(ZiL − f
γ
ref(ti))

2 +
α

2
h

4∑
i=1

J∑
j=0

ui(jh)2

subject to AL,β [ZL]ZL − bL[w] = 0

NLP parameters:

α = 0.5, β = 80, γ = 4.

MG parameters:
νpre = 2, νpost = 2, lmin = 0
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Numerical Experiments
Controls

Figure: Polynomials u1(·), . . . , u4(·) with coefficients w∗
ipopt.
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Numerical Experiments
Controls

Figure: Plot of the expanded coefficients w∗
ipopt.

Figure: Relative error erel(w∗
ipopt, w

∗
INIS) of

expanded coefficients w∗
INIS.
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Numerical Experiments
States

Figure: Plot of the expanded solution Z∗
ipopt for gridlevel L = 5 and the relative error erel(Z∗

ipopt, Z
∗
INIS).
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Numerical Experiments
CPU time

Figure: CPU time to compute NLP solution with INIS-MG and ipopt on different gridlevels.
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Numerical Experiments
Number of Iterations

Figure: Number of iterations needed for convergence of the algorithm ipopt and INIS-MG solving
the test problem on gridlevels L = 1, . . . , 11.
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Numerical Experiments
Factor

Figure: Factor δL = tipoptL /tINIS-MG
L on gridlevels L = 4, . . . , 8
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Numerical Experiments
Local Contraction of Forward Problem and INIS-MG

Figure: Plot of the error |yk − y∗| for the iterates of the INIS-MG method and the forward problem
performed on gridlevel L = 7.
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Numerical Experiments
Local Contraction of Forward Problem and INIS-MG

Contraction rate via slope:

κ∗INIS-MG ≈ exp(−1.4446) = 0.2358

κ∗F ≈ exp(−1.4019) = 0.2461

Contraction rate via definition:

κ∗F = ρ(AL,β [0]−1gz − 1nz
) = 0.28232
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Conclusion

I The INIS-MG method preserves the local contraction properties of the INIS method.

I INIS-MG method outperformed ipopt by a factor up to 200.
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Outlook

I Extend the presented INIS-MG method with respect to
I more general PDEs
I inequality constraints
I 3-dimensional problems

I Investigate different versions, such as a version with an inexact hessian.

I Combine the MG method with the IN method.
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