Prof. Dr. Moritz Diehl, Nick Harder and Rachel Leuthold

SOLUTION Exercise Sheet 1

Power Harvesting Factor

Consider a symmetrical, three-bladed (B = 3) wind turbine with rotor radius R. Assume a constant angular velocity Ω of the rotor and a uniform wind field with velocity u_{∞} so that the dominant wind direction \hat{i} is along the turbine axis of rotation. We will also use a nondimensional spanwise position $\mu = r/R$ that is 0 at the blade root/rotor hub, and 1 at the blade tips.

1. What is the tip speed ratio λ of the turbine?

The tip speed ratio $\lambda = \frac{\Omega R}{u_{\infty}}$ is the ratio between the blade speed $u_{\rm b}$ at the tip and the freestream wind speed u_{∞} .

(We'll use the abreviation that $v = \|\boldsymbol{v}\|_2$ from here on.)

2. What is the local speed ratio λ_r at some spanwise location μ ?

The local speed ratio is the equivalent concept to the tip speed ratio, but considered at different spanwise positions μ . That is:

$$\lambda_r = \mu \lambda = \mu \frac{\Omega R}{u_\infty}.$$

3. What is the effective wind (also called apparent velocity) \boldsymbol{u}_{a} at the position μ ?

The apparent wind u_a is the difference between the freestream wind velocity u_{∞} and the blade's motion u_b at the station. That is:

$$oldsymbol{u}_{\mathrm{a}} = oldsymbol{u}_{\infty} - oldsymbol{u}_{\mathrm{b}}.$$

The velocity of the blade points in the tangential direction \hat{j} , with magnitude λu_{∞} . That is:

$$\boldsymbol{u}_{\mathrm{b}} = \mu \Omega R \hat{\boldsymbol{j}} = \mu \lambda u_{\infty} \hat{\boldsymbol{j}}.$$

So, the apparent velocity at position μ is:

$$\boldsymbol{u}_{\mathrm{a}} = u_{\infty} \hat{\boldsymbol{i}} - \mu \lambda u_{\infty} \hat{\boldsymbol{j}}$$

- 4. Sketch the velocity triangles for the following positions:
 - (a) $\mu = 0.1$
 - (b) $\mu = 0.9$

Wind Energy Systems Albert-Ludwigs-Universität Freiburg

5. Assume that the blades are uniformly pitched with an angle β , but have a 'perfect' twist distribution $\theta(\mu)$ so that α always takes its design value of 6 degrees if $\beta = 0$. What is $\theta(\mu)$?

The angle of attack is the angle between the chord line and the apparent velocity.

This gives:

$$\alpha = \phi + \theta + \tan^{-1}\left(\frac{1}{\lambda\mu}\right) = \phi + \theta + \cot^{-1}(\lambda\mu).$$

If $\alpha = 6\pi/180$ rad, then:

$$\theta = \frac{1}{30} \left(-30 \cot^{-1}(\lambda \mu) - 30\phi + \pi \right)$$

6. For arbitrary lift c_1 and drag c_d coefficients, what is the aerodynamic force d \mathbf{F}_{aero} for an infinitesimal segment of area dA around a position μ ? Assume that the blades point straight, radially outwards.

We know that the aerodynamic force is the sum of the lift and drag forces

$$\mathrm{d}\boldsymbol{F}_{\mathrm{aero}} = \mathrm{d}\boldsymbol{F}_{\mathrm{L}} + \mathrm{d}\boldsymbol{F}_{\mathrm{D}}.$$

By using the definitions of the coefficients, we can see that:

$$\mathrm{d}\boldsymbol{F}_{\mathrm{L}} = c_{\mathrm{l}} \frac{1}{2} \rho \left\|\boldsymbol{u}_{\mathrm{a}}\right\|_{2}^{2} \mathrm{d}A \hat{\boldsymbol{v}}l, \qquad \mathrm{d}\boldsymbol{F}_{\mathrm{D}} = c_{\mathrm{d}} \frac{1}{2} \rho \left\|\boldsymbol{u}_{\mathrm{a}}\right\|_{2}^{2} \mathrm{d}A \hat{\boldsymbol{v}}d$$

We know the orientations of these forces because the drag force must be along the apparent velocity, and the lift force must be perpedicular to the drag and the span.

$$\hat{\boldsymbol{v}}d = \frac{\boldsymbol{u}_{\mathrm{a}}}{\|\boldsymbol{u}_{\mathrm{a}}\|_{2}} = \frac{u_{\infty}\hat{\boldsymbol{i}} - \mu\lambda u_{\infty}\hat{\boldsymbol{j}}}{\left\|u_{\infty}\hat{\boldsymbol{i}} - \mu\lambda u_{\infty}\hat{\boldsymbol{j}}\right\|_{2}} = \frac{\hat{\boldsymbol{i}} - \mu\lambda\hat{\boldsymbol{j}}}{\sqrt{1 + \mu^{2}\lambda^{2}}}$$

To give a right-handed coordinate system \hat{k} , \hat{j} , \hat{i} in the sketch above: \hat{k} must point down into the page. Then:

$$\hat{\boldsymbol{v}}l = \frac{\boldsymbol{u}_{\mathrm{a}} \times \hat{\boldsymbol{k}}}{\left\|\boldsymbol{u}_{\mathrm{a}} \times \hat{\boldsymbol{k}}\right\|_{2}} = \frac{u_{\infty}\hat{\boldsymbol{j}} + \lambda\mu u_{\infty}\hat{\boldsymbol{i}}}{\left\|\boldsymbol{u}_{\infty}\hat{\boldsymbol{j}} + \lambda\mu u_{\infty}\hat{\boldsymbol{i}}\right\|_{2}} = \frac{\hat{\boldsymbol{j}} + \mu\lambda\hat{\boldsymbol{i}}}{\sqrt{1 + \mu^{2}\lambda^{2}}}$$

Now we can put all of these expressions together:

$$\mathrm{d}\boldsymbol{F}_{\mathrm{aero}} = \frac{1}{2}\rho u_{\infty}^{2} \left(1 + \mu^{2}\lambda^{2}\right)^{\frac{1}{2}} \left(c_{\mathrm{l}}\left(\hat{\boldsymbol{j}} + \mu\lambda\hat{\boldsymbol{i}}\right) + c_{\mathrm{d}}\left(\hat{\boldsymbol{i}} - \mu\lambda\hat{\boldsymbol{j}}\right)\right) \mathrm{d}\boldsymbol{A}$$

7. What is the mechanical power production $dP(\mu)$ of that segment around position μ ?

The power is the force acting parallel to the blade's motion:

$$\mathrm{d}P = \mathrm{d}F_{\mathrm{aero}} \cdot \boldsymbol{u}_{\mathrm{b}}.$$

Since we know that the blade's motion is in the \hat{j} direction, we can use the above force expression:

$$dP = \frac{1}{2}\rho u_{\infty}^{2} \left(1 + \mu^{2}\lambda^{2}\right)^{\frac{1}{2}} dA \left(c_{l} - c_{d}\mu\lambda\right) \left(\lambda\mu u_{\infty}\right) = \frac{1}{2}\rho u_{\infty}^{3}\lambda\mu \left(1 + \mu^{2}\lambda^{2}\right)^{\frac{1}{2}} dA \left(c_{l} - c_{d}\mu\lambda\right).$$

Just for abbreviation, let's define $\xi_n := c_l - c_d \mu \lambda$.

8. If the lift c_1 and drag c_d coefficients can be found with the following relations, what is the power harvested by the blade segment around position μ ?

$$c_{\rm l}(\mu) = 1.2\mu, \qquad \frac{c_{\rm l}}{c_{\rm d}}(\mu) = 100\mu$$

Let's start with the dP expression from above:

$$\mathrm{d}P = \frac{1}{2}\rho u_{\infty}^{3}\lambda\mu\left(1+\mu^{2}\lambda^{2}\right)^{\frac{1}{2}}\mathrm{d}A\left(c_{\mathrm{l}}-c_{\mathrm{d}}\mu\lambda\right).$$

If we plug the above lift and drag $(c_d = c_l/(c_l/c_d))$ expressions into this power statement then, it gives the following:

$$dP = \frac{1}{2}\rho u_{\infty}^{3}\lambda\mu \left(1 + \mu^{2}\lambda^{2}\right)^{\frac{1}{2}} dA \left(1.2\mu - \frac{1.2}{100}\mu\lambda\right).$$

9. What is the relationship between the power harvesting factor ζ and μ ?

The power harvesting factor is the harvested power divided by the power density and the segment area. That is:

$$\zeta = \frac{\mathrm{d}P}{\frac{1}{2}\rho u_{\infty}^{3}\mathrm{d}A} = \lambda \mu \left(1 + \mu^{2}\lambda^{2}\right)^{\frac{1}{2}} \xi_{n}$$

10. How would you go about finding the total power P harvested by the entire turbine? (*Hint: just give the procedure; don't follow it yet.*)

Everything in our problem so far has been symmetrical. That means that the total power must be the sum of all segment powers for all blades:

$$P = B \int_{\mu=0}^{\mu=1} \mathrm{d}P$$

Remember that $dP = dP(d\mu)$. So, we'll have to integrate over μ .

11. How would you go about finding the power coefficient $C_{\rm P}$ of the entire turbine? Use the following definition: $dA = c(\mu)d\mu R$, where $c(\mu)$ is a chord length as a function of μ .

The power coefficient of the entire turbine is the total harvested power divided by the power density (at hub-height, though this is not relevant in a uniform wind field) and the total rotor area πR^2 . That gives:

$$C_{\rm P} = \frac{P}{\frac{1}{2}\rho u_{\infty}^3 \pi R^2} = \frac{B}{\pi R} \int_{\mu=0}^{\mu=1} \lambda \mu \left(1 + \mu^2 \lambda^2\right)^{\frac{1}{2}} \xi_n c(\mu) d\mu$$

12. If we use the above model that we've described to this point, for some given parameter values ($\lambda = 7$, $c_0 = 0.15R$, $c_1 = 0.05R$, $u_{\infty} = 10$ m/s, $\rho = 1.225$ kg/m³, R = 50 m and B = 3), can you find how much power the full turbine will extract?

*here assume that the chord is a linear interpolation between the chord c_1 at the tip and the chord c_0 at the root: $c(\mu) = c_0 + (c_1 - c_0)\mu$, what gives us $dA = (c_0 + (c_1 - c_0)\mu) d\mu R$

(a) plot the power harvesting factor ζ vs. μ

(b) find how much power the full turbine will extract

When we plug in our values into the dP expression, we get the following ugly numeric expression:

$$dP \approx 1.2 \times 10^6 \mu^2 (1.5 - \mu) \sqrt{49\mu^2 + 1}$$

We can integrate this expression numerically between $\mu = 0$ and $\mu = 1$ to get:

$$P = B \int_0^1 \mathrm{d}P \approx 4.5 \cdot 10^6 \mathrm{W} = 4.5 \mathrm{MW}$$