SOLUTION Exercise Sheet 1

Power Harvesting Factor

Consider a symmetrical, three-bladed $(B=3)$ wind turbine with rotor radius R. Assume a constant angular velocity Ω of the rotor and a uniform wind field with velocity \boldsymbol{u}_{∞} so that the dominant wind direction $\hat{\boldsymbol{i}}$ is along the turbine axis of rotation. We will also use a nondimensional spanwise position $\mu=r / R$ that is 0 at the blade root/rotor hub, and 1 at the blade tips.

1. What is the tip speed ratio λ of the turbine?

The tip speed ratio $\lambda=\frac{\Omega R}{u_{\infty}}$ is the ratio between the blade speed u_{b} at the tip and the freestream wind speed u_{∞}.
(We'll use the abreviation that $v=\|\boldsymbol{v}\|_{2}$ from here on.)
2. What is the local speed ratio λ_{r} at some spanwise location μ ?

The local speed ratio is the equivalent concept to the tip speed ratio, but considered at different spanwise positions μ. That is:

$$
\lambda_{r}=\mu \lambda=\mu \frac{\Omega R}{u_{\infty}} .
$$

3. What is the effective wind (also called apparent velocity) $\boldsymbol{u}_{\mathrm{a}}$ at the position μ ?

The apparent wind $\boldsymbol{u}_{\mathrm{a}}$ is the difference between the freestream wind velocity \boldsymbol{u}_{∞} and the blade's motion $\boldsymbol{u}_{\mathrm{b}}$ at the station. That is:

$$
\boldsymbol{u}_{\mathrm{a}}=\boldsymbol{u}_{\infty}-\boldsymbol{u}_{\mathrm{b}} .
$$

The velocity of the blade points in the tangential direction $\hat{\boldsymbol{j}}$, with magnitude λu_{∞}. That is:

$$
\boldsymbol{u}_{\mathrm{b}}=\mu \Omega R \hat{\boldsymbol{j}}=\mu \lambda u_{\infty} \hat{\boldsymbol{j}} .
$$

So, the apparent velocity at position μ is:

$$
\boldsymbol{u}_{\mathrm{a}}=u_{\infty} \hat{\boldsymbol{i}}-\mu \lambda u_{\infty} \hat{\boldsymbol{j}}
$$

4. Sketch the velocity triangles for the following positions:
(a) $\mu=0.1$
(b) $\mu=0.9$

5. Assume that the blades are uniformly pitched with an angle β, but have a 'perfect' twist distribution $\theta(\mu)$ so that α always takes its design value of 6 degrees if $\beta=0$. What is $\theta(\mu)$?

The angle of attack is the angle between the chord line and the apparent velocity.

This gives:

$$
\alpha=\phi+\theta+\tan ^{-1}\left(\frac{1}{\lambda \mu}\right)=\phi+\theta+\cot ^{-1}(\lambda \mu) .
$$

If $\alpha=6 \pi / 180 \mathrm{rad}$, then:

$$
\theta=\frac{1}{30}\left(-30 \cot ^{-1}(\lambda \mu)-30 \phi+\pi\right)
$$

6. For arbitrary lift c_{1} and drag c_{d} coefficients, what is the aerodynamic force $\mathrm{d} \boldsymbol{F}_{\text {aero }}$ for an infinitesimal segment of area $\mathrm{d} A$ around a position μ ? Assume that the blades point straight, radially outwards.

We know that the aerodynamic force is the sum of the lift and drag forces

$$
\mathrm{d} \boldsymbol{F}_{\text {aero }}=\mathrm{d} \boldsymbol{F}_{\mathrm{L}}+\mathrm{d} \boldsymbol{F}_{\mathrm{D}} .
$$

By using the definitions of the coefficients, we can see that:

$$
\mathrm{d} \boldsymbol{F}_{\mathrm{L}}=c_{\mathrm{l}} \frac{1}{2} \rho\left\|\boldsymbol{u}_{\mathrm{a}}\right\|_{2}^{2} \mathrm{~d} A \hat{\boldsymbol{v}} l, \quad \mathrm{~d} \boldsymbol{F}_{\mathrm{D}}=c_{\mathrm{d}} \frac{1}{2} \rho\left\|\boldsymbol{u}_{\mathrm{a}}\right\|_{2}^{2} \mathrm{~d} A \hat{\boldsymbol{v}} d
$$

We know the orientations of these forces because the drag force must be along the apparent velocity, and the lift force must be perpedicular to the drag and the span.

$$
\hat{\boldsymbol{v}} d=\frac{\boldsymbol{u}_{\mathrm{a}}}{\left\|\boldsymbol{u}_{\mathrm{a}}\right\|_{2}}=\frac{u_{\infty} \hat{\boldsymbol{i}}-\mu \lambda u_{\infty} \hat{\boldsymbol{j}}}{\left\|u_{\infty} \hat{\boldsymbol{i}}-\mu \lambda u_{\infty} \hat{\boldsymbol{j}}\right\|_{2}}=\frac{\hat{\boldsymbol{i}}-\mu \lambda \hat{\boldsymbol{j}}}{\sqrt{1+\mu^{2} \lambda^{2}}}
$$

To give a right-handed coordinate system $\hat{\boldsymbol{k}}, \hat{\boldsymbol{j}}, \hat{\boldsymbol{i}}$ in the sketch above: $\hat{\boldsymbol{k}}$ must point down into the page. Then:

$$
\hat{\boldsymbol{v}} l=\frac{\boldsymbol{u}_{\mathrm{a}} \times \hat{\boldsymbol{k}}}{\left\|\boldsymbol{u}_{\mathrm{a}} \times \hat{\boldsymbol{k}}\right\|_{2}}=\frac{u_{\infty} \hat{\boldsymbol{j}}+\lambda \mu u_{\infty} \hat{\boldsymbol{i}}}{\left\|u_{\infty} \hat{\boldsymbol{j}}+\lambda \mu u_{\infty} \hat{\boldsymbol{i}}\right\|_{2}}=\frac{\hat{\boldsymbol{j}}+\mu \lambda \hat{\boldsymbol{i}}}{\sqrt{1+\mu^{2} \lambda^{2}}}
$$

Now we can put all of these expressions together:

$$
\mathrm{d} \boldsymbol{F}_{\text {aero }}=\frac{1}{2} \rho u_{\infty}^{2}\left(1+\mu^{2} \lambda^{2}\right)^{\frac{1}{2}}\left(c_{1}(\hat{\boldsymbol{j}}+\mu \lambda \hat{\boldsymbol{i}})+c_{\mathrm{d}}(\hat{\boldsymbol{i}}-\mu \lambda \hat{\boldsymbol{j}})\right) \mathrm{d} A
$$

7. What is the mechanical power production $\mathrm{d} P(\mu)$ of that segment around position μ ?

The power is the force acting parallel to the blade's motion:

$$
\mathrm{d} P=\mathrm{d} \boldsymbol{F}_{\text {aero }} \cdot \boldsymbol{u}_{\mathrm{b}} .
$$

Since we know that the blade's motion is in the $\hat{\boldsymbol{j}}$ direction, we can use the above force expression:

$$
\mathrm{d} P=\frac{1}{2} \rho u_{\infty}^{2}\left(1+\mu^{2} \lambda^{2}\right)^{\frac{1}{2}} \mathrm{~d} A\left(c_{1}-c_{\mathrm{d}} \mu \lambda\right)\left(\lambda \mu u_{\infty}\right)=\frac{1}{2} \rho u_{\infty}^{3} \lambda \mu\left(1+\mu^{2} \lambda^{2}\right)^{\frac{1}{2}} \mathrm{~d} A\left(c_{1}-c_{\mathrm{d}} \mu \lambda\right) .
$$

Just for abbreviation, let's define $\xi_{n}:=c_{1}-c_{\mathrm{d}} \mu \lambda$.
8. If the lift c_{1} and drag c_{d} coefficients can be found with the following relations, what is the power harvested by the blade segment around position μ ?

$$
c_{1}(\mu)=1.2 \mu, \quad \frac{c_{1}}{c_{\mathrm{d}}}(\mu)=100 \mu
$$

Wind Energy Systems
Albert-Ludwigs-Universität Freiburg
Prof. Dr. Moritz Diehl, Nick Harder and Rachel Leuthold

Let's start with the $\mathrm{d} P$ expression from above:

$$
\mathrm{d} P=\frac{1}{2} \rho u_{\infty}^{3} \lambda \mu\left(1+\mu^{2} \lambda^{2}\right)^{\frac{1}{2}} \mathrm{~d} A\left(c_{1}-c_{\mathrm{d}} \mu \lambda\right) .
$$

If we plug the above lift and drag $\left(c_{\mathrm{d}}=c_{\mathrm{l}} /\left(c_{1} / c_{\mathrm{d}}\right)\right)$ expressions into this power statement then, it gives the following:

$$
\mathrm{d} P=\frac{1}{2} \rho u_{\infty}^{3} \lambda \mu\left(1+\mu^{2} \lambda^{2}\right)^{\frac{1}{2}} \mathrm{~d} A\left(1.2 \mu-\frac{1.2}{100} \mu \lambda\right) .
$$

9. What is the relationship between the power harvesting factor ζ and μ ?

The power harvesting factor is the harvested power divided by the power density and the segment area. That is:

$$
\zeta=\frac{\mathrm{d} P}{\frac{1}{2} \rho u_{\infty}^{3} \mathrm{~d} A}=\lambda \mu\left(1+\mu^{2} \lambda^{2}\right)^{\frac{1}{2}} \xi_{n}
$$

10. How would you go about finding the total power P harvested by the entire turbine? (Hint: just give the procedure; don't follow it yet.)

Everything in our problem so far has been symmetrical. That means that the total power must be the sum of all segment powers for all blades:

$$
P=B \int_{\mu=0}^{\mu=1} \mathrm{~d} P
$$

Remember that $\mathrm{d} P=\mathrm{d} P(\mathrm{~d} \mu)$. So, we'll have to integrate over μ.
11. How would you go about finding the power coefficient C_{P} of the entire turbine? Use the following definition: $\mathrm{d} A=c(\mu) \mathrm{d} \mu R$, where $c(\mu)$ is a chord length as a function of μ.

The power coefficient of the entire turbine is the total harvested power divided by the power density (at hub-height, though this is not relevant in a uniform wind field) and the total rotor area πR^{2}. That gives:

$$
C_{\mathrm{P}}=\frac{P}{\frac{1}{2} \rho u_{\infty}^{3} \pi R^{2}}=\frac{B}{\pi R} \int_{\mu=0}^{\mu=1} \lambda \mu\left(1+\mu^{2} \lambda^{2}\right)^{\frac{1}{2}} \xi_{n} c(\mu) d \mu
$$

12. If we use the above model that we've described to this point, for some given parameter values $(\lambda=7$, $c_{0}=0.15 R, c_{1}=0.05 R, u_{\infty}=10 \mathrm{~m} / \mathrm{s}, \rho=1.225 \mathrm{~kg} / \mathrm{m}^{3}, R=50 \mathrm{~m}$ and $B=3$), can you find how much power the full turbine will extract?
*here assume that the chord is a linear interpolation between the chord c_{1} at the tip and the chord c_{0} at the root: $c(\mu)=c_{0}+\left(c_{1}-c_{0}\right) \mu$, what gives us $\mathrm{d} A=\left(c_{0}+\left(c_{1}-c_{0}\right) \mu\right) \mathrm{d} \mu R$
(a) plot the power harvesting factor ζ vs. μ

Wind Energy Systems
Albert-Ludwigs-Universität Freiburg
Prof. Dr. Moritz Diehl, Nick Harder and Rachel Leuthold

(b) find how much power the full turbine will extract

When we plug in our values into the $\mathrm{d} P$ expression, we get the following ugly numeric expression:

$$
\mathrm{d} P \approx 1.2 \times 10^{6} \mu^{2}(1.5-\mu) \sqrt{49 \mu^{2}+1}
$$

We can integrate this expression numerically between $\mu=0$ and $\mu=1$ to get:

$$
P=B \int_{0}^{1} \mathrm{~d} P \approx 4.5 \cdot 10^{6} \mathrm{~W}=4.5 \mathrm{MW}
$$

