Prof. Dr. Moritz Diehl, Nick Harder and Rachel Leuthold

Exercise Sheet 1

Power Harvesting Factor

Consider a symmetrical, three-bladed (B = 3) wind turbine with rotor radius R. Assume a constant angular velocity Ω of the rotor and a uniform wind field with velocity u_{∞} so that the dominant wind direction \hat{x} is along the turbine axis of rotation. We will also use a nondimensional spanwise position $\mu = r/R$ that is 0 at the blade root/rotor hub, and 1 at the blade tips.

- 1. What is the tip speed ratio λ of the turbine?
- 2. What is the local speed ratio λ_r at some spanwise location μ ?
- 3. What is the effective wind (also called apparent velocity) $u_{\rm a}$ at the position μ ?
- 4. Sketch the velocity triangles for the following positions:
 - (a) $\mu = 0.1$
 - (b) $\mu = 0.9$
- 5. You've heard that the lift c_1 and drag c_d coefficients are related to the angle of attack α . Assume that the blades are uniformly pitched with an angle ϕ , but have a 'perfect' twist distribution $\theta(\mu)$ so that α always takes its design value of 6 degrees if $\phi = 0$. What is $\theta(\mu)$?
- 6. For arbitrary lift c_1 and drag c_d coefficients, what is the aerodynamic force $d\mathbf{F}_{aero}$ for an infinitesimal segment of area dA around a position μ ? Assume that the blades point straight, radially outwards.
- 7. What is the mechanical power production $dP(\mu)$ of that segment around position μ ?
- 8. If the lift c_1 and drag c_d coefficients can be found with the following relations, what is the power harvested by the blade segment around position μ ?

$$c_{\rm l}(\mu) = 1.2\mu, \qquad \frac{c_{\rm l}}{c_{\rm d}}(\mu) = 100\mu$$

- 9. What is the relationship between the power harvesting factor ζ and μ ?
- 10. How would you go about finding the total power P harvested by the entire turbine? (*Hint: just give the procedure; don't follow it yet.*)
- 11. How would you go about finding the power coefficient $C_{\rm P}$ of the entire turbine? Use the following definition: $dA = c(\mu)d\mu R$, where $c(\mu)$ is a chord length as a function of μ .
- 12. If we use the above model that we've described to this point, for some given parameter values ($\lambda = 7$, $c_0 = 0.15R$, $c_1 = 0.05R$, $u_{\infty} = 10$ m/s, $\rho = 1.225$ kg/m³, R = 50 m and B = 3), can you find how much power the full turbine will extract?

*here assume that the chord is a linear interpolation between the chord c_1 at the tip and the chord c_0 at the root: $c(\mu) = c_0 + (c_1 - c_0)\mu$, what gives us $dA = (c_0 + (c_1 - c_0)\mu) d\mu R$

- (a) plot the power harvesting factor ζ vs. μ
- (b) find how much power the full turbine will extract