Exercise Sheet 1

Power Harvesting Factor

Consider a symmetrical, three-bladed $(B=3)$ wind turbine with rotor radius R. Assume a constant angular velocity Ω of the rotor and a uniform wind field with velocity \boldsymbol{u}_{∞} so that the dominant wind direction $\hat{\boldsymbol{x}}$ is along the turbine axis of rotation. We will also use a nondimensional spanwise position $\mu=r / R$ that is 0 at the blade root/rotor hub, and 1 at the blade tips.

1. What is the tip speed ratio λ of the turbine?
2. What is the local speed ratio λ_{r} at some spanwise location μ ?
3. What is the effective wind (also called apparent velocity) $\boldsymbol{u}_{\mathrm{a}}$ at the position μ ?
4. Sketch the velocity triangles for the following positions:
(a) $\mu=0.1$
(b) $\mu=0.9$
5. You've heard that the lift c_{1} and drag c_{d} coefficients are related to the angle of attack α. Assume that the blades are uniformly pitched with an angle ϕ, but have a 'perfect' twist distribution $\theta(\mu)$ so that α always takes its design value of 6 degrees if $\phi=0$. What is $\theta(\mu)$?
6. For arbitrary lift c_{1} and drag c_{d} coefficients, what is the aerodynamic force $\mathrm{d} \boldsymbol{F}_{\text {aero }}$ for an infinitesimal segment of area $\mathrm{d} A$ around a position μ ? Assume that the blades point straight, radially outwards.
7. What is the mechanical power production $\mathrm{d} P(\mu)$ of that segment around position μ ?
8. If the lift c_{1} and drag c_{d} coefficients can be found with the following relations, what is the power harvested by the blade segment around position μ ?

$$
c_{\mathrm{l}}(\mu)=1.2 \mu, \quad \frac{c_{1}}{c_{\mathrm{d}}}(\mu)=100 \mu
$$

9. What is the relationship between the power harvesting factor ζ and μ ?
10. How would you go about finding the total power P harvested by the entire turbine? (Hint: just give the procedure; don't follow it yet.)
11. How would you go about finding the power coefficient C_{P} of the entire turbine? Use the following definition: $\mathrm{d} A=c(\mu) \mathrm{d} \mu R$, where $c(\mu)$ is a chord length as a function of μ.
12. If we use the above model that we've described to this point, for some given parameter values $(\lambda=7$, $c_{0}=0.15 R, c_{1}=0.05 R, u_{\infty}=10 \mathrm{~m} / \mathrm{s}, \rho=1.225 \mathrm{~kg} / \mathrm{m}^{3}, R=50 \mathrm{~m}$ and $B=3$), can you find how much power the full turbine will extract?
*here assume that the chord is a linear interpolation between the chord c_{1} at the tip and the chord c_{0} at the root: $c(\mu)=c_{0}+\left(c_{1}-c_{0}\right) \mu$, what gives us $\mathrm{d} A=\left(c_{0}+\left(c_{1}-c_{0}\right) \mu\right) \mathrm{d} \mu R$
(a) plot the power harvesting factor ζ vs. μ
(b) find how much power the full turbine will extract
