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Systems and Control II (SC2)
Albert-Ludwigs-Universität Freiburg – Wintersemester 2015/2016

Exercises 14: Course revision and exam preparation
(Thursday 11.02.2016 at 15:00 in Room SR 00 014)

Dr. Jörg Fischer, Prof. Dr. Moritz Diehl and Jochem De Schutter

1. Consider a process plant that is described by the nominal transfer function

Ĝ(s) =
(3− s)

(s+ 1)(s+ 5)
.

with a multiplicative model uncertainty that has as an upper bound

∆̄M(s) = 0.1 · s+ 1
s

100 + 1
.

We want to design a robust and stable discrete-time controllerKz(z) with internal model control (IMC). The goal is to achieve the
maximal possible bandwidth for the closed-loop system, while still guaranteeing robust stability. The controller design is done in
the continuous-time domain. Afterwards the controller is digitized.

(a) Is the nominal plant model Ĝ(s) minimum-phase?

(b) Determine the ideal IMC-controller K∗IMC(s) that minimizes the integral square error (ISE) for step reference inputs. Fac-
torize Ĝ(s) if necessary.

(c) We now add a filter Vf(s) = 1
(Ts+1)n in order to make the controller KIMC(s) proper. Choose a filter of the lowest possible

order to achieve this. Determine a lower limit for the filter time constant T , by taking into consideration the condition for
robust stability.
Hint: Draw the Bode-diagram of the robustness limit, computed with the upper bound of the multiplicative uncertainty
∆̄M(s).

(d) Determine the transfer function of the overall controller K(s).

(e) Determine the discrete equivalentKz(z) of the overall controllerK(s) designed above. Use the zero-pole matching method.
Use the sampling period Tp = 25ms

2. Consider a process plant described by the transfer function

G(s) =
e−Tds

(5s+ 1)(2s+ 1)
.

Design a Smith Predictor that realizes a feedback loop with a settling time Ts ≤ Td + 3 sec, and with an overshoot Mp ≤ 10%.
The dead time Td = 42 sec.

(a) Design a lead compensator KR(s) = kD
TDs+1
T ′
Ds+1 for the rational part GR(s) of the process plant, using the root locus method.

i. What are the desired pole locations of the closed-loop system poles?
ii. Determine the lead zero 1

TD
in order to cancel the slowest process pole.

iii. Determine the lead pole 1
T ′
D

in order to fix the real part of the closed-loop poles.

iv. Determine the gain kD in order to place the closed-loop poles in their desired locations.

(b) Compute the resulting closed-loop transfer function Gr(s). Assume that the model of the plant is perfect.

(c) What is the steady state error of the closed-loop system for a step input? And for a ramp input?

(d) Design a prefilter feedforward controller Kff,p(s) for a servo application, that minimizes the ISE for step reference inputs.
The prefilter should reduce the steady state error for a ramp input to ess ≤ 0.1. Check if the dynamic requirements are still
met.

3. A process plant G(s) can be divided into two partial processes G1(s) and G2(s) in series. The transfer functions of these partial
processes are given by

G1(s) =
3

(2s+ 1)(4s+ 1)
and G2(s) =

4

15s+ 1
.

Design a cascaded controller that realizes a closed-loop system with a bandwidth ωBW,cl ≈ 0.04 rad
s .

(a) Design a causal controller K1(s) with internal model control (IMC) for the inner loop process G1(s). Minimize the Integral
Square Error (ISE). Make sure that the inner loop bandwidth is approximately ωBW,1 ≈ 0.25 rad

s .
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(b) Approximate the obtained inner closed-loop system by a first order system Ga(s) = ka
Tas+1 .

(c) Design a realizable controllerK2(s) with internal model control (and with minimal ISE) for the overall processGa(s)G2(s).
Make sure that the bandwidth requirement is met.

(d) Evaluate the validity of the approximation of the inner closed-loop system, computed in 3b.

4. Consider the following system, of which the state space model is decomposed into Kalman form:

ẋ(t) =

 2 −3 0
0 −1 0

2.8 0 −2

x(t) +

√2
0
−2

u(t)

y(t) =
[

1√
2

1√
2

0
]
x(t) .

(a) Evaluate the controllability and observability of the different states.

(b) Is the system controllable? If not, is it stabilizable? Is the system observable? (If not, is it detectable?)

(c) Compute the transfer function of this system. Also, determine that state space model that is a minimal realization of this
transfer function.

(d) Given the state space model obtained in 4c, determine the desired pole locations λcl,i, so that the closed-loop system has a
settling time Ts ≤ 0.3 sec.

(e) If the system is at least stabilizable and detectable, determine by ‘comparison of coefficients’ the feedback controller matrix
K that places the closed-loop poles at the desired locations λcl,i.

Peak time Tm
π

ω0

√
1−ζ2

Rise time Tr
1.8
ω0

Settling time T5%
3
ζω0

Settling time T2%
4.5
ζω0

φζ ζ ∆h

66◦ 0.4 25%

54◦ 0.58 10%

45◦ 0.7 5%

37◦ 0.8 2%

Table 1: Dynamic behaviour heuristics of a second order system with complex conjugate poles ζω0 ± jω0

√
1− ζ2.

Rise time Tr
2.2
|s1|

Settling time T5%
3
|s1|

Table 2: Dynamic behaviour heuristics of a first order system.

Rise time Tr
3.36
|s1/2|

Settling time T5%
4.8
|s1/2|

Table 3: Dynamic behaviour heuristics of a second order system with a double negative real pole.
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