Model Predictive Control and Reinforcement Learning

— Introduction to Deep Learning —

Joschka Boedecker and Moritz Diehl

University Freiburg

October 5, 2023

universitatfreiburg

Lecture Overview

Multilayer Peceptrons

J. Boedecker and M. Diehl, University Freiburg 1

Acknowledgement

Slides contain contents from a lecture designed together with our colleagues Frank Hutter and
Abhinav Valada. Some contents are from the Stanford course CS231n Convolutional Neural

Networks for Visual Recognition and from the Deep Learning book by lan Goodfellow, Yoshua
Bengio, and Aaron Courville.

J. Boedecker and M. Diehl, University Freiburg 2

http://cs231n.stanford.edu
http://cs231n.stanford.edu
https://www.deeplearningbook.org
https://www.deeplearningbook.org

Motivation: Representation Learning

Output
(object identity)

3rd hidden layer
(object parts)

-y

2nd hidden layer
(corners and
contours)

1st hidden layer
(edges)

Visible layer
(input pixels)

J. Boedecker and M. Diehl, University Freiburg

Multilayer Perceptrons (MLPs):

Fully-Connected Feedforward Neural Networks

=l

Classification
Neural Network

'
A4
'
&

o
<]
£
3
Q
4
o
<
3
=1

4
w
r 4
w

@
-1
@
X
-4

3
o
]
]
3
]
@
]

2+

Q
8
°
=

N

Regression

J. Boedecker and M. Diehl, University Freiburg 4

Types of Layers in an MLP

=l

Classification
Neural Network

'
A4
'
&

o
<]
£
3
Q
4
o
<
3
=1

4
w
r 4
w

@

-1
@
X
-4

3
o
]
]
3
]
@
]

2+

Q
8
°
=

N

Regression

J. Boedecker and M. Diehl, University Freiburg 5

Computation is Performed Layer-by-Layer

J. Boedecker and M. Diehl, University Freiburg 6

Computations in a Single Neuron

» Each connection between two neurons has a weight, w

» A single neuron performs two simple steps of computation:

k

1. Compute a weighted sum of the inputs: z = z1w; + Tows + T3ws

2. Perform a nonlinear transformation: a = h(z).

J. Boedecker and M. Diehl, University Freiburg 7

Computation in the First Hidden Layer

» For input vector x, compute pre-activations z(!) in layer 1 as

20— W 5 4 p®

» Pre-activations are transformed through a differentiable, nonlinear activation function
g (.), resulting in activation vector h(*) of the first hidden layer:

h — g(l)(z(l))

» The units in this layer implement the adaptable basis functions.

J. Boedecker and M. Diehl, University Freiburg 8

Computation in the Second Hidden Layer etc.

» Outputs h") from layer 1 are combined linearly in the next layer 2:

2 — W@ 0 | p®
> Preactivations z(?) are again transformed through a nonlinear activation function ¢ to

compute the activations h(®:
h® = o) (5®)

» This repeats from each layer k to k + 1, all the way to output layer K
The network then outputs the output layer's activations: § := h/9).

J. Boedecker and M. Diehl, University Freiburg 9

Summary of Layer-by-layer Computations

» Layer 1 pre-activations:
2D — WDy + b

» Layer 1 activations:
hD = g(l)(z(l))

» Layer i pre-activations:
2z = WO [L p@)

» Layer i activations:
h® — g(i)(z(i))

» Overall network output as one big nested function (network with one hidden layer):

5 = gD (W g0 WO x 4 M) 4 b))

J. Boedecker and M. Diehl, University Freiburg 10

One Neuron, One Input Vector

‘xl N Z=wiX; + WwoXy + Wiy + b
x2—> I=W'X+b
5 m-mmgm
axt
h=g@)

E] = g@)

J. Boedecker and M. Diehl, University Freiburg 11

Two Neurons, One Input Vector

b 3 = WIX +b, Put together into one:
! hy = g(z) == z=W'x+b
—wix+bh - h=g(2
x _, = W,X + 0y
! hy = 8(z5)
xz N Visual illustration:

v/ () g e
h = (@) o=@

2x1

J. Boedecker and M. Diehl, University Freiburg 12

Two Neurons, Batch of Two Input Vectors

b Z, = WIX + bl Put together into one:
: h; = g(z) = Z=WX+b
— h=gZ
xl . z,=w,X+b, &2
! h, =¢(z)
1
xz Visual illustration:

X, Z|h Z=W'X+b F EEE ﬂ+ﬂ
H=gZ) = el)

J. Boedecker and M. Diehl, University Freiburg

Two Neurons, Batch of Two Input Vectors

vewxr G-I I
2x2 2x3 2x1
3x2
- m B
2x2 2x1
interpreted as w + E
2x2 2x1—> 2x2
- M
2x2 2x2

J. Boedecker and M. Diehl, University Freiburg

Warning: Different Common Notations in Math and in Code

» Python frameworks for Deep Learning (like PyTorch) use a different notation

Here, we follow the (standard) notation of x being a column vector
In PyTorch, data points x are row vectors

» Summary of PyTorch notation
The inputs X € RVXP have N datapoints in the rows and D features in the columns

A single linear layer has weight W € RP*M and bias b € RM
The bias is expanded to B € RN*M by repeating it for each datapoint.
The formula for output Z € RY*M s then:

Z=XW+B

J. Boedecker and M. Diehl, University Freiburg 15

Activation Functions - Examples

Logistic sigmoid activation function: samoi o
(=) .
T) Y E
Glogistic I eXp(—Z) , f
Logistic hyperbolic tangent activation function:)

exp(z) + exp(—z)

gtanh(z) = tanh(z) I
_ exp(z) — exp(—=2)

J. Boedecker and M. Diehl, University Freiburg

Activation Functions - Examples (cont.)

Linear activation function:

Glinear (Z) =z

Rectified Linear (ReLU) activation function:

Jreiu(z) = max(0, z)

Rectified Linear Unit

of = Rely

J. Boedecker and M. Diehl, University Freiburg

Output unit activation functions

Depending on the task, typically:
» for regression: output neurons with linear activation
» for binary classification: output neurons with logistic/tanh activation
» for multiclass classification with K classes: use K output neurons and softmax activation

(y(X,W))k = p(ylc = 1) = gsoftmaw(<z)/€) = ZGJXSX(I()?()ZL)

— so for the complete output layer:

5
2 = 1|x
seew) = | S ——0

Zj:l exp((z);)

plyx = 11x)

J. Boedecker and M. Diehl, University Freiburg 18

Typical error functions

» For binary classification, cross-entropy error:
1N
L(W) = _N Z{yn IOggn + (1 - yn) log(l - gn)}
» For linear outputs, mean squared error function:

L(w) = 5 Z{y (Xn, W) — Y}

» For multiclass classification, generalization of cross-entropy error:

1 N
= NZ yanOgyk<me)

J. Boedecker and M. Diehl, University Freiburg 19

Lecture Overview

Recap: Chain Rule of Calculus

J. Boedecker and M. Diehl, University Freiburg

Chain rule

The chain rule computes derivatives for compositions of functions by using their individual
derivatives and the product of their functions as below.

For two functions g(x) and [(y) = /(g(x)), the chain rule states:
(fog)(z)=(f(9(2))) = f'(9(z)) - ¢'(x)

Fory=g(z) and z = f(g(x)) = [(y):
0z _9z0y 0f(g(x)) dg(x)

dr dydxr dg(z) Oz

Let z = f(a) =1In(a) and y = g(x) = sin(z). Then:

0z _ Olu(sin(z)) Osin(z) |
dr OJsin(x) or sin(x)

- cos(x)

J. Boedecker and M. Diehl, University Freiburg 21

Chain rule

As a generalization of the scalar case, consider x € R™, y €¢ R"?, g : R™ - R", f: R" —» R. If
y =g(x) and z = f(y), then

0z 0z 0y;
6[171‘ n zj: (9yj 8xi

J. Boedecker and M. Diehl, University Freiburg 22

Lecture Overview

Calculating Gradients with Backpropagation

J. Boedecker and M. Diehl, University Freiburg 23

Backpropagation: Information Flow Illustration

AN
L

Classification True Label

J. Boedecker and M. Diehl, University Freiburg

Calculating partial derivatives (cont.)

» We will look at how to derive the gradients in the context of a simple example network:

W, w
p— ho ——{ 21 | § L(9)

o0 o

1 1

> We would like to know how the change in any of the weights and biases influences the
loss, so we calculate and for all weights and biases in the network.

J. Boedecker and M. Diehl, University Freiburg 25

Calculating partial derivatives (cont.)

wo wq N
N NS
1 1

w V4 w

#1 = Wihy + b, oL oL 95 oL oL 0m
ho = go(z0) 92 05021 b1~ 0z 00y
20 = woZ + b oL oL 0z 0L 0L 0z
dho ~ 92 Ohy dwy Dz Dy

oL o oL 8h0 oL o oL 820

9z Ohg Oz by Dz Dby

J. Boedecker and M. Diehl, University Freiburg

Calculating partial derivatives (cont.)

Derivative of the activation function w.r.t its activation 2% = 1’(z) depends on which

activation we use:
» linear activation: h(z) =z = h/(z) =1
> logistic sigmoid activation: h(z) = 1/(1 +exp(—=z)) = h'(z) = h(2)(1 — h(z))
» hyperbolic tangent sigmoid activation: h(z) = tanh(z) — h/(z) = 1 — h(z)?
» RelU activation: h/(2) =0if 2 <0, W'(2)=1if2>0
h(z)z{Z if20>0_>h,() 1 ifzg>0

0 ifz <0 "o ifz<o0

J. Boedecker and M. Diehl, University Freiburg 27

Reconsider 2-layer MLP as an example

wo w1 A
x b qp L(9)
o oY
1

1

For each pattern x,, in training set, perform forward pass:
» hidden layer:
zo = zwo + bo
ho = go(Zo) = ReLU(Zo)
» output layer:
z1 = howi + b1
§=g1(z1) ==
» gy being a RelLU, and g; being a linear activation function
> Consider squared error loss: L = 2(§ — y)?

J. Boedecker and M. Diehl, University Freiburg 28

Reconsider 2-layer example (cont.)

Forward pass: Backward pass:
1 oL
L = Z(§—)2 o — 5 —
50—y 25 9—y

R oL OL 89 N N

9 =gi(z1) =z 9o 00 0m = -y gi(z1) ={-y-1
oL OL 0z oL

= wih b - == = p

= wiho + b1 8w1 621 8w1 821 0
oL 0L 9z 0L 1
by 9z 061 I
oL OL 0z oL
—_ = — = —w
dho 921 Oho 921 !

ho = go(zo) _)1 ifz>0 oL _ 0L bho 5);{‘0 if 20 >0

0 if Z0 S 0 f)zo 8h0 820 0 if 20 S 0

oL JL 0zg oL
_ = — = —x
8w0 (")Z(] 8w0 f’)Z[)
oL oL O OL

z0 = wox + bo 5 = (720 = (-1
Bbo ()Z(] 8[)0 (,)Z(]

J. Boedecker and M. Diehl, University Freiburg 29

Generic MLP learning algorithm using Backpropagation

» generic MLP learning algorithm:

1: choose an initial weight vector w

2: intialize minimization approach

3: while error did not converge do

4 for all (x,y) € D do

5: apply x to network and calculate the network output (forward pass)
6

7

8

calculate 611’0" and BL" for all weights and biases (backward pass)
end for
calculate total gradlents and aL for all weights and biases, summing over all
training patterns
9: perform one update step of the minimization approach

10: end while

» learning by epoch: all training patterns are considered for one update step of function
minimization

J. Boedecker and M. Diehl, University Freiburg 30

Lecture Overview

Basics of Gradient Descent Optimization

J. Boedecker and M. Diehl, University Freiburg 31

The Goal of Our Optimization Problem

» We're interested in problems of the form
minimize f(Z),
xT

where Z is a vector of suitable size.

» A global minimum Z* is a point such that:

f(@) < f(@)

for all Z.

» A local minimum Z7 is a point such that
there exists r > 0 with

(@) < f(@)

for all points with || — ZT|| < r

Global Local x
Minima

J. Boedecker and M. Diehl, University Freiburg 32

Gradient-based Optimization: Need For Iterative Solvers

» Analytical way to find a minimum:
For a local minimum ZT, the gradient of f becomes zero:

of
sz-

(#T) =0 foralli
Hence, calculating all partial derivatives and looking for zeros is a good idea

» But: for neural networks, we can't write down a solution for the minimization problem in
closed form

even though % = 0 holds at (local) solution points
i . -
need to resort to iterative methods

J. Boedecker and M. Diehl, University Freiburg 33

Gradient Descent: Intuition for the Update Equation

» Numerical way to find a minimum,
searching:
assume we start at point .

Which is the best direction to search for a
point & with f(&) < f(Z) ?

Which is the best stepwidth?
» general principle:

0
xé(—xi—a—f

3:1:,-

a > 0 is called learning rate

Y

slope is large, large step!

J. Boedecker and M. Diehl, University Freiburg

Gradient Descent: The Full Algorithm

> Gradient descent approach:
Require: mathematical function f, learning rate a > 0
Ensure: returned vector is close to a local minimum of f
1: choose an initial point ¥
2: while ||V f(Z)]| not close to 0 do
3: T+ & —aVf(@)
4: end while
5: return ¥

> Note: Vf := [%,... DI] for K dimensions

’8w}(

J. Boedecker and M. Diehl, University Freiburg 35

Lecture Overview

Convolutional Neural Networks

J. Boedecker and M. Diehl, University Freiburg 36

MLPs vs ConvNets

XX
RO
A
;.;.

output layer

b
Al
.§

input layer

hidden layer 1 hidden layer 2

Figure: Multilayer Perceptron

— depth
55566 height

+ ~ Q000N ~ 7
OOOOOK idth

Figure: Convolutional Neural Network

[figure credit: Stanford CS231n]

J. Boedecker and M. Diehl, University Freiburg

MLPs vs ConvNets

) wo
== _____.g
32 axon from a neuron b
WoZo
‘-\
——— cell body .
—=0D000P r(gos)
L— ZW:LZ.L +b
7 output axon
activation
function
32
3 . . .
Figure: Computations of the neurons in the conv
Figure: Example input volume and first conv layer layer are unchanged

[figure credit: Stanford CS231n]

J. Boedecker and M. Diehl, University Freiburg 38

Convolutions illustrated (cont.)

32x32x3 image

5x5x3 filter w
2

™~ 1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

wiz+b

=\

N

|

[slide credit: Stanford CS231n]

J. Boedecker and M. Diehl, University Freiburg 39

Regularization through weight sharing

Example: 200x200 image
» Fully-connected: 400,000 hidden units = 160 * 10° parameters
» Locally-connected: 400,000 hidden units with 10x10 fields= 40 x 10° parameters

[figure credit: Y. LeCun and M.A. Ranzato]

J. Boedecker and M. Diehl, University Freiburg 40

Lecture Overview

I@ Recurrent Neural Networks

J. Boedecker and M. Diehl, University Freiburg 41

Feedforward vs Recurrent Neural Networks

O O
ol >0 0% o
N O yd ~ / %O
A ~ 7 O =
o O O 0: O oS0
N e NN 5
o) O 9> = =

[figure credit: H. Jaeger]

J. Boedecker and M. Diehl, University Freiburg

Unfolding the Computational Graph of an RNN

I’ - \\ ’/ \\

\ / \ /
— f / P
f Unfold

R — f(h(tfl)ym(t);g)
= f(f(R"72,2071;0),2(; 6)

J. Boedecker and M. Diehl, University Freiburg 43

Sequence to sequence mapping - one to many

one to many

‘construction worker in orange
safety vest is working on road

=
“man in black shirt is playing
guitar.

“two young girls are playing with
lego toy."

“black and white dog jumps over *young girlin pink shirtis
bar’ swinging on swing”

"girl in pink dress is jumping in

[credit: A. Karpathy, F. Li, " Deep Visual-Semantic Alignments for

Generating Image Descriptions”]

J. Boedecker and M. Diehl, University Freib

44

Sequence to sequence mapping - many to one

many to one

e.g. Sentiment Classification

T Review (X) Rating (Y)
"This movie is fantastic! | really like it because it is so good!" i"(
—> —>|
"Not to my taste, will skip and watch another movie" **‘A’
T T T "This movie really sucks! Can | get my money back please?" *{\77&*

J. Boedecker and M. Diehl, University Freiburg 45

Sequence to sequence mapping - many to many

many to many

e.g. Video frame classification

[credit: YouTube-8M]

J. Boedecker and M. Diehl, University Freiburg

Sequence to sequence mapping - many to many (cont'd)

e.g. Machine Translation

many to many Economic growth has slowed down in recent years

nen TN

Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt .
years

D_,D_,D_,D_,D Economic growth has slowed down in recent
|
]
\ / |

D D D |
La croissance économique s' est ralentie ces derniéres années .

[credit: nvidia]

J. Boedecker and M. Diehl, University Freiburg

	Multilayer Peceptrons
	Recap: Chain Rule of Calculus
	Calculating Gradients with Backpropagation
	Basics of Gradient Descent Optimization
	Convolutional Neural Networks
	Recurrent Neural Networks

