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Lecture Overview

Multilayer Peceptrons
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Motivation: Representation Learning
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Multilayer Perceptrons (MLPs):

Fully-Connected Feedforward Neural Networks

=l

Classification
Neural Network

'
A4
'
&

o
<]
£
3
Q
4
o
<
3
=1

4
w
r 4
w

@
-1
@
X
-4

3
o
]
]
3
]
@
]

2+

Q
8
°
=

N

Regression

J. Boedecker and M. Diehl, University Freiburg 4



Types of Layers in an MLP
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Computation is Performed Layer-by-Layer
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Computations in a Single Neuron

» Each connection between two neurons has a weight, w

» A single neuron performs two simple steps of computation:

k

1. Compute a weighted sum of the inputs: z = z1w; + Tows + T3ws

2. Perform a nonlinear transformation: a = h(z).
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Computation in the First Hidden Layer

» For input vector x, compute pre-activations z(!) in layer 1 as

20— W 5 4 p®

» Pre-activations are transformed through a differentiable, nonlinear activation function
g (.), resulting in activation vector h(*) of the first hidden layer:

h — g(l)(z(l))

» The units in this layer implement the adaptable basis functions.
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Computation in the Second Hidden Layer etc.

» Outputs h") from layer 1 are combined linearly in the next layer 2:

2 — W@ 0 | p®
> Preactivations z(?) are again transformed through a nonlinear activation function ¢ to

compute the activations h(®:
h® = o) (5®)

» This repeats from each layer k to k + 1, all the way to output layer K
The network then outputs the output layer's activations: § := h/9).
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Summary of Layer-by-layer Computations

» Layer 1 pre-activations:
2D — WDy + b

» Layer 1 activations:
hD = g(l)(z(l))

» Layer i pre-activations:
2z = WO [ L p@)

» Layer i activations:
h® — g(i)(z(i))

» Overall network output as one big nested function (network with one hidden layer):

5 = gD (W g0 WO x 4 M) 4 b))
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One Neuron, One Input Vector

‘xl N Z=wiX; + WwoXy + Wiy + b
x2—> I=W'X+b
5 m-mmgm
axt
h=g@)

E] = g@)

J. Boedecker and M. Diehl, University Freiburg 11



Two Neurons, One Input Vector

b 3 = WIX +b, Put together into one:
! hy = g(z) == z=W'x+b
—wix+bh - h=g(2
x _, = W,X + 0y
! hy = 8(z5)
xz N Visual illustration:

v/ () g e
h = (@) o=@
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Two Neurons, Batch of Two Input Vectors

b Z, = WIX + bl Put together into one:
: h; = g(z) = Z=WX+b
— h=gZ
xl . z,=w,X+b, &2
! h, =¢(z)
1
xz Visual illustration:

X, Z|h Z=W'X+b F EEE ﬂ+ﬂ
H=gZ) = el )
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Two Neurons, Batch of Two Input Vectors
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Warning: Different Common Notations in Math and in Code

» Python frameworks for Deep Learning (like PyTorch) use a different notation

Here, we follow the (standard) notation of x being a column vector
In PyTorch, data points x are row vectors

» Summary of PyTorch notation
The inputs X € RVXP have N datapoints in the rows and D features in the columns

A single linear layer has weight W € RP*M and bias b € RM
The bias is expanded to B € RN*M by repeating it for each datapoint.
The formula for output Z € RY*M s then:

Z=XW+B
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Activation Functions - Examples

Logistic sigmoid activation function: samoi o
(=) .
T ) Y E
Glogistic I eXp(—Z) , f
Logistic hyperbolic tangent activation function: )

exp(z) + exp(—z)

gtanh(z) = tanh(z) I
_ exp(z) — exp(—=2)
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Activation Functions - Examples (cont.)

Linear activation function:

Glinear (Z) =z

Rectified Linear (ReLU) activation function:

Jreiu(z) = max(0, z)

Rectified Linear Unit

of = Rely
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Output unit activation functions

Depending on the task, typically:
» for regression: output neurons with linear activation
» for binary classification: output neurons with logistic/tanh activation
» for multiclass classification with K classes: use K output neurons and softmax activation

(y(X,W))k = p(ylc = 1) = gsoftmaw(<z)/€) = ZGJXSX(I()?()ZL)

— so for the complete output layer:

5
2 = 1|x
seew) = | S ——0

Zj:l exp((z);)

plyx = 11x)

J. Boedecker and M. Diehl, University Freiburg 18



Typical error functions

» For binary classification, cross-entropy error:
1N
L(W) = _N Z{yn IOggn + (1 - yn) log(l - gn)}
» For linear outputs, mean squared error function:

L(w) = 5 Z{y (Xn, W) — Y}

» For multiclass classification, generalization of cross-entropy error:

1 N
= NZ yanOgyk<me)
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Lecture Overview

Recap: Chain Rule of Calculus
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Chain rule

The chain rule computes derivatives for compositions of functions by using their individual
derivatives and the product of their functions as below.

For two functions g(x) and [(y) = /(g(x)), the chain rule states:
(fog)(z)=(f(9(2))) = f'(9(z)) - ¢'(x)

Fory=g(z) and z = f(g(x)) = [(y):
0z _9z0y 0f(g(x)) dg(x)

dr  dydxr  dg(z) Oz

Let z = f(a) =1In(a) and y = g(x) = sin(z). Then:

0z _ Olu(sin(z)) Osin(z) |
dr  OJsin(x) or  sin(x)

- cos(x)
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Chain rule

As a generalization of the scalar case, consider x € R™, y €¢ R"?, g : R™ - R", f: R" —» R. If
y =g(x) and z = f(y), then

0z 0z 0y;
6[171‘ n zj: (9yj 8xi
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Lecture Overview

Calculating Gradients with Backpropagation
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Backpropagation: Information Flow Illustration
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Calculating partial derivatives (cont.)

» We will look at how to derive the gradients in the context of a simple example network:

W, w
p— ho ——{ 21 | § L(9)

o0 o

1 1

> We would like to know how the change in any of the weights and biases influences the
loss, so we calculate and for all weights and biases in the network.
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Calculating partial derivatives (cont.)

wo wq N
N NS
1 1

w V4 w

#1 = Wihy + b, oL oL 95 oL oL 0m
ho = go(z0) 92 05021 b1~ 0z 00y
20 = woZ + b oL oL 0z 0L 0L 0z
dho ~ 92 Ohy dwy Dz Dy

oL o oL 8h0 oL o oL 820

9z Ohg Oz by Dz Dby
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Calculating partial derivatives (cont.)

Derivative of the activation function w.r.t its activation 2% = 1’(z) depends on which

activation we use:
» linear activation: h(z) =z = h/(z) =1
> logistic sigmoid activation: h(z) = 1/(1 +exp(—=z)) = h'(z) = h(2)(1 — h(z))
» hyperbolic tangent sigmoid activation: h(z) = tanh(z) — h/(z) = 1 — h(z)?
» RelU activation: h/(2) =0if 2 <0, W'(2)=1if2>0
h(z)z{Z if20>0_>h,() 1 ifzg>0

0 ifz <0 "o ifz<o0
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Reconsider 2-layer MLP as an example

wo w1 A
x b qp L(9)
o oY
1

1

For each pattern x,, in training set, perform forward pass:
» hidden layer:
zo = zwo + bo
ho = go(Zo) = ReLU(Zo)
» output layer:
z1 = howi + b1
§=g1(z1) ==
» gy being a RelLU, and g; being a linear activation function
> Consider squared error loss: L = 2(§ — y)?
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Reconsider 2-layer example (cont.)

Forward pass: Backward pass:
1 oL
L = Z(§— )2 o — 5 —
50—y 25 9—y

R oL OL 89 N N

9 =gi(z1) =z 9o 00 0m = -y gi(z1) ={-y-1
oL OL 0z oL

= wih b - == = p

= wiho + b1 8w1 621 8w1 821 0
oL 0L 9z 0L 1
by 9z 061 I
oL OL 0z oL
—_ = — = —w
dho 921 Oho 921 !

ho = go(zo) _ )1 ifz>0 oL _ 0L bho 5);{‘0 if 20 >0

0 if Z0 S 0 f)zo 8h0 820 0 if 20 S 0

oL JL 0zg oL
_ = — = —x
8w0 (")Z(] 8w0 f’)Z[)
oL oL O OL

z0 = wox + bo 5 = ( 720 = ( -1
Bbo ()Z(] 8[)0 (,)Z(]
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Generic MLP learning algorithm using Backpropagation

» generic MLP learning algorithm:

1: choose an initial weight vector w

2: intialize minimization approach

3: while error did not converge do

4 for all (x,y) € D do

5: apply x to network and calculate the network output (forward pass)
6

7

8

calculate 611’0" and BL" for all weights and biases (backward pass)
end for
calculate total gradlents and aL for all weights and biases, summing over all
training patterns
9: perform one update step of the minimization approach

10: end while

» learning by epoch: all training patterns are considered for one update step of function
minimization
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Lecture Overview

Basics of Gradient Descent Optimization
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The Goal of Our Optimization Problem

» We're interested in problems of the form
minimize f(Z),
xT

where Z is a vector of suitable size.

» A global minimum Z* is a point such that:

f(@) < f(@)

for all Z.

» A local minimum Z7 is a point such that
there exists r > 0 with

(@) < f(@)

for all points  with || — ZT|| < r

Global Local x
Minima
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Gradient-based Optimization: Need For Iterative Solvers

» Analytical way to find a minimum:
For a local minimum ZT, the gradient of f becomes zero:

of
sz-

(#T) =0 foralli
Hence, calculating all partial derivatives and looking for zeros is a good idea

» But: for neural networks, we can't write down a solution for the minimization problem in
closed form

even though % = 0 holds at (local) solution points
i . -
need to resort to iterative methods
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Gradient Descent: Intuition for the Update Equation

» Numerical way to find a minimum,
searching:
assume we start at point .

Which is the best direction to search for a
point & with f(&) < f(Z) ?

Which is the best stepwidth?
» general principle:

0
xé(—xi—a—f

3:1:,-

a > 0 is called learning rate

Y

slope is large, large step!
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Gradient Descent: The Full Algorithm

> Gradient descent approach:
Require: mathematical function f, learning rate a > 0
Ensure: returned vector is close to a local minimum of f
1: choose an initial point ¥
2: while ||V f(Z)]| not close to 0 do
3: T+ & —aVf(@)
4: end while
5: return ¥

> Note: Vf := [%,... DI ] for K dimensions

’8w}(
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Lecture Overview

Convolutional Neural Networks
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MLPs vs ConvNets
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[figure credit: Stanford CS231n]
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MLPs vs ConvNets

) wo
== _____.g
32 axon from a neuron b
WoZo
‘-\
——— cell body .
—=0D000P r(gos)
L— ZW:LZ.L +b
7 output axon
activation
function
32
3 . . .
Figure: Computations of the neurons in the conv
Figure: Example input volume and first conv layer layer are unchanged

[figure credit: Stanford CS231n]

J. Boedecker and M. Diehl, University Freiburg 38



Convolutions illustrated (cont.)

32x32x3 image

5x5x3 filter w
2

™~ 1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

wiz+b

=\

N

|

[slide credit: Stanford CS231n]
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Regularization through weight sharing

Example: 200x200 image
» Fully-connected: 400,000 hidden units = 160 * 10° parameters
» Locally-connected: 400,000 hidden units with 10x10 fields= 40 x 10° parameters

[figure credit: Y. LeCun and M.A. Ranzato]
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Lecture Overview

I@ Recurrent Neural Networks
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Feedforward vs Recurrent Neural Networks

O O
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[figure credit: H. Jaeger]
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Unfolding the Computational Graph of an RNN

I’ - \\ ’/ \\

\ / \ /
— f / P
f Unfold

R — f(h(tfl)ym(t);g)
= f(f(R"72,2071;0),2(; 6)
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Sequence to sequence mapping - one to many

one to many

‘construction worker in orange
safety vest is working on road

=
“man in black shirt is playing
guitar.

“two young girls are playing with
lego toy."

“black and white dog jumps over *young girlin pink shirtis
bar’ swinging on swing”

"girl in pink dress is jumping in

[credit: A. Karpathy, F. Li, " Deep Visual-Semantic Alignments for

Generating Image Descriptions”]
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Sequence to sequence mapping - many to one

many to one

e.g. Sentiment Classification

T Review (X) Rating (Y)
"This movie is fantastic! | really like it because it is so good!" i"(
—> —>|
"Not to my taste, will skip and watch another movie" **‘A’
T T T "This movie really sucks! Can | get my money back please?" *{\77&*
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Sequence to sequence mapping - many to many

many to many

e.g. Video frame classification

[credit: YouTube-8M]
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Sequence to sequence mapping - many to many (cont'd)

e.g. Machine Translation

many to many Economic growth has slowed down in recent years

nen TN

Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt .
years

D_,D_,D_,D_,D Economic growth has slowed down in recent
|
]
\ / |

D D D |
La croissance économique s' est ralentie ces derniéres années .

[credit: nvidia]
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