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Motivation: Representation Learning
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Multilayer Perceptrons (MLPs):
Fully-Connected Feedforward Neural Networks
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Types of Layers in an MLP
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Computation is Performed Layer-by-Layer
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Computations in a Single Neuron

I Each connection between two neurons has a weight, w

I A single neuron performs two simple steps of computation:

1. Compute a weighted sum of the inputs: z = x1w1 + x2w2 + x3w3

2. Perform a nonlinear transformation: a = h(z).
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Computation in the First Hidden Layer

I For input vector x, compute pre-activations z(1) in layer 1 as

z(1) = W(1)
T

x+ b(1)

I Pre-activations are transformed through a differentiable, nonlinear activation function
g(1)(·), resulting in activation vector h(1) of the first hidden layer:

h(1) = g(1)(z(1))

I The units in this layer implement the adaptable basis functions.
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Computation in the Second Hidden Layer etc.

I Outputs h(1) from layer 1 are combined linearly in the next layer 2:

z(2) = W(2)
T

h(1) + b(2)

I Preactivations z(2) are again transformed through a nonlinear activation function g(2) to
compute the activations h(2):

h(2) = g(2)(z(2))

I This repeats from each layer k to k + 1, all the way to output layer K

- The network then outputs the output layer’s activations: ŷ := h(K).
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Summary of Layer-by-layer Computations

I Layer 1 pre-activations:

z(1) = W(1)T

x+ b(1)

I Layer 1 activations:
h(1) = g(1)(z(1))

I Layer i pre-activations:

z(i) = W(i)T

h(i−1) + b(i)

I Layer i activations:
h(i) = g(i)(z(i))

I Overall network output as one big nested function (network with one hidden layer):

ŷ = g(2)(W(2)T

g(1)(W(1)T

x+ b(1)) + b(2))
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One Neuron, One Input Vector
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Two Neurons, One Input Vector
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Two Neurons, Batch of Two Input Vectors
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Two Neurons, Batch of Two Input Vectors
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Warning: Different Common Notations in Math and in Code

I Python frameworks for Deep Learning (like PyTorch) use a different notation
I Here, we follow the (standard) notation of x being a column vector
I In PyTorch, data points x are row vectors

I Summary of PyTorch notation
I The inputs X ∈ RN×D have N datapoints in the rows and D features in the columns
I A single linear layer has weight W ∈ RD×M and bias b ∈ RM

I The bias is expanded to B ∈ RN×M by repeating it for each datapoint.

I The formula for output Z ∈ RN×M is then:

Z = XW +B
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Activation Functions - Examples

Logistic sigmoid activation function:

glogistic(z) =
1

1 + exp(−z)

Logistic hyperbolic tangent activation function:

gtanh(z) = tanh(z)

=
exp(z)− exp(−z)
exp(z) + exp(−z)
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Activation Functions - Examples (cont.)

Linear activation function:

glinear(z) = z

Rectified Linear (ReLU) activation function:

grelu(z) = max(0, z)
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Output unit activation functions

Depending on the task, typically:

I for regression: output neurons with linear activation

I for binary classification: output neurons with logistic/tanh activation

I for multiclass classification with K classes: use K output neurons and softmax activation

(ŷ(x,w))k = p(yk = 1) = gsoftmax((z)k) =
exp((z)k)∑
j exp((z)j)

→ so for the complete output layer:

ŷ(x,w) =


p(y1 = 1|x)
p(y2 = 1|x)

...
p(yK = 1|x)

 =
1∑K

j=1 exp((z)j)
exp(z)
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Typical error functions

I For binary classification, cross-entropy error:

L(w) = − 1

N

N∑
n=1

{yn log ŷn + (1− yn) log(1− ŷn)}

I For linear outputs, mean squared error function:

L(w) =
1

2N

N∑
n=1

{ŷ(xn,w)− yn}2

I For multiclass classification, generalization of cross-entropy error:

L(w) = − 1

N

N∑
n=1

K∑
k=1

ykn log ŷk(xn,w)
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Chain rule

The chain rule computes derivatives for compositions of functions by using their individual
derivatives and the product of their functions as below.

For two functions g(x) and f(y) = f(g(x)), the chain rule states:

(f ◦ g)′(x) = (f(g(x)))′ = f ′(g(x)) · g′(x)

For y = g(x) and z = f(g(x)) = f(y):

∂z

∂x
=
∂z

∂y

∂y

∂x
=
∂f(g(x))

∂g(x)

∂g(x)

∂x

Let z = f(a) = ln(a) and y = g(x) = sin(x). Then:

∂z

∂x
=
∂ ln(sin(x))

∂ sin(x)

∂ sin(x)

∂x
=

1

sin(x)
· cos(x)

MPC and RL J. Boedecker and M. Diehl, University Freiburg 21



Chain rule

As a generalization of the scalar case, consider x ∈ Rm, y ∈ Rn, g : Rm → Rn, f : Rn → R. If
y = g(x) and z = f(y), then

∂z

∂xi
=

∑
j

∂z

∂yj

∂yj
∂xi
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Backpropagation: Information Flow Illustration
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Calculating partial derivatives (cont.)

I We will look at how to derive the gradients in the context of a simple example network:

x z0 h0 z1 ŷ L(ŷ)

1 1

w0 w1

b 0 b 1

I We would like to know how the change in any of the weights and biases influences the
loss, so we calculate ∂L

∂w and ∂L
∂b for all weights and biases in the network.
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Calculating partial derivatives (cont.)

x z0 h0 z1 ŷ L(ŷ)

1 1

w0 w1

b 0 b 1

ŷ = g1(z1)

z1 = w1h0 + b1

h0 = g0(z0)

z0 = w0x+ b0

∂L

∂ŷ

∂L

∂z1
=
∂L

∂ŷ

∂ŷ

∂z1
∂L

∂h0
=
∂L

∂z1

∂z1
∂h0

∂L

∂z0
=

∂L

∂h0

∂h0
∂z0

∂L

∂w1
=
∂L

∂z1

∂z1
∂w1

∂L

∂b1
=
∂L

∂z1

∂z1
∂b1

∂L

∂w0
=
∂L

∂z0

∂z0
∂w0

∂L

∂b0
=
∂L

∂z0

∂z0
∂b0
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Calculating partial derivatives (cont.)

Derivative of the activation function w.r.t its activation ∂h
∂z = h′(z) depends on which

activation we use:

I linear activation: h(z) = z → h′(z) = 1

I logistic sigmoid activation: h(z) = 1/(1 + exp(−z))→ h′(z) = h(z)(1− h(z))
I hyperbolic tangent sigmoid activation: h(z) = tanh(z)→ h′(z) = 1− h(z)2

I ReLU activation: h′(z) = 0 if z < 0, h′(z) = 1 if z ≥ 0

h(z) =

{
z if z0 > 0

0 if z0 ≤ 0
→ h′(z) =

{
1 if z0 > 0

0 if z0 ≤ 0
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Reconsider 2-layer MLP as an example

x z0 h0 z1 ŷ L(ŷ)

1 1

w0 w1

b 0 b 1

For each pattern xn in training set, perform forward pass:
I hidden layer:

I z0 = xw0 + b0
I h0 = g0(z0) = ReLU(z0)

I output layer:
I z1 = h0w1 + b1
I ŷ = g1(z1) = z1

I g0 being a ReLU, and g1 being a linear activation function

I Consider squared error loss: L = 1
2 (ŷ − y)

2
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Reconsider 2-layer example (cont.)

Forward pass: Backward pass:

L =
1

2
(ŷ − y)2

∂L

∂ŷ
= ŷ − y

ŷ = g1(z1) = z1
∂L

∂z1
=

∂L

∂ŷ

∂ŷ

∂z1
= (ŷ − y) · g′1(z1) = (ŷ − y) · 1

z1 = w1h0 + b1
∂L

∂w1
=

∂L

∂z1

∂z1

∂w1
=

∂L

∂z1
h0

∂L

∂b1
=

∂L

∂z1

∂z1

∂b1
=

∂L

∂z1
· 1

∂L

∂h0
=

∂L

∂z1

∂z1

∂h0
=

∂L

∂z1
w1

h0 = g0(z0) =

{
1 if z0 > 0

0 if z0 ≤ 0

∂L

∂z0
=

∂L

∂h0

∂h0

∂z0
=

{
∂L
∂h0

if z0 > 0

0 if z0 ≤ 0

∂L

∂w0
=

∂L

∂z0

∂z0

∂w0
=

∂L

∂z0
x

z0 = w0x+ b0
∂L

∂b0
=

∂L

∂z0

∂z0

∂b0
=

∂L

∂z0
· 1
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Generic MLP learning algorithm using Backpropagation

I generic MLP learning algorithm:

1: choose an initial weight vector ~w
2: intialize minimization approach
3: while error did not converge do
4: for all (x, y) ∈ D do
5: apply x to network and calculate the network output (forward pass)
6: calculate ∂Ln

∂w and ∂Ln

∂b for all weights and biases (backward pass)
7: end for
8: calculate total gradients ∂L

∂w and ∂L
∂b for all weights and biases, summing over all

training patterns
9: perform one update step of the minimization approach

10: end while

I learning by epoch: all training patterns are considered for one update step of function
minimization
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The Goal of Our Optimization Problem

I We’re interested in problems of the form

minimize
~x

f(~x),

where ~x is a vector of suitable size.

I A global minimum ~x∗ is a point such that:

f(~x∗) ≤ f(~x)
for all ~x.

I A local minimum ~x+ is a point such that
there exists r > 0 with

f(~x+) ≤ f(~x)
for all points ~x with ||~x− ~x+|| < r
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Gradient-based Optimization: Need For Iterative Solvers

I Analytical way to find a minimum:
For a local minimum ~x+, the gradient of f becomes zero:

∂f

∂xi
(~x+) = 0 for all i

Hence, calculating all partial derivatives and looking for zeros is a good idea

I But: for neural networks, we can’t write down a solution for the minimization problem in
closed form

- even though ∂f
∂xi

= 0 holds at (local) solution points
→ need to resort to iterative methods
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Gradient Descent: Intuition for the Update Equation

I Numerical way to find a minimum,
searching:
assume we start at point ~x.

Which is the best direction to search for a
point ~x′ with f(~x′) < f(~x) ?

Which is the best stepwidth?

I general principle:

x′i ← xi − α
∂f

∂xi

α > 0 is called learning rate

slope is large, large step!
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Gradient Descent: The Full Algorithm

I Gradient descent approach:

Require: mathematical function f , learning rate α > 0
Ensure: returned vector is close to a local minimum of f

1: choose an initial point ~x
2: while ||∇f(~x)|| not close to 0 do
3: ~x← ~x− α∇f(~x)
4: end while
5: return ~x

I Note: ∇f := [ ∂f
∂x1

, . . . , ∂f
∂xK

] for K dimensions
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MLPs vs ConvNets

Figure: Multilayer Perceptron Figure: Convolutional Neural Network

[figure credit: Stanford CS231n]
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MLPs vs ConvNets

Figure: Example input volume and first conv layer
Figure: Computations of the neurons in the conv
layer are unchanged

[figure credit: Stanford CS231n]
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Convolutions illustrated (cont.)

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201613

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

[slide credit: Stanford CS231n]
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Regularization through weight sharing

Example: 200x200 image

I Fully-connected: 400, 000 hidden units = 160 ∗ 109 parameters

I Locally-connected: 400, 000 hidden units with 10x10 fields= 40 ∗ 106 parameters

Y LeCun
MA Ranzato

Fully-connected neural net in high dimension

Example: 200x200 image
Fully-connected, 400,000 hidden units = 16 billion parameters

Locally-connected, 400,000 hidden units 10x10 fields = 40 

million params

Local connections capture local dependencies

[figure credit: Y. LeCun and M.A. Ranzato]
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Feedforward vs Recurrent Neural NetworksRecurrent vs Feedforward networks

1. Recurrent neural networks 
 

1.1 First impression 
 
There are two major types of neural networks, feedforward and recurrent. In 
feedforward networks, activation is "piped" through the network from input units to 
output units (from left to right in left drawing in Fig. 1.1):  
 
 
  

...
...

 
 
 
  
 
 
 
 
Figure 1.1: Typical structure of a feedforward network (left) and a recurrent network 
(right). 
 
Short characterization of feedforward networks: 
 

!" typically, activation is fed forward from input to output through "hidden layers" 
("Multi-Layer Perceptrons" MLP), though many other architectures exist 

!" mathematically, they implement static input-output mappings (functions)  
!" basic theoretical result: MLPs can approximate arbitrary (term needs some 

qualification) nonlinear maps with arbitrary precision ("universal approximation 
property") 

!" most popular supervised training algorithm: backpropagation algorithm 
!" huge literature, 95 % of neural network publications concern feedforward nets 

(my estimate)  
!" have proven useful in many practical applications as approximators of 

nonlinear functions and as pattern classificators 
!" are not the topic considered in this tutorial 

 
By contrast, a recurrent neural network (RNN) has (at least one) cyclic path of 
synaptic connections. Basic characteristics:  
 

!" all biological neural networks are recurrent 
!" mathematically, RNNs implement dynamical systems 
!" basic theoretical result: RNNs can approximate arbitrary (term needs some 

qualification) dynamical systems with arbitrary precision ("universal 
approximation property") 

!" several types of training algorithms are known, no clear winner 
!" theoretical and practical difficulties by and large have prevented practical 

applications so far 
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Source:
Jaeger, 2001

[figure credit: H. Jaeger]
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Unfolding the Computational Graph of an RNN

h(t) = f(h(t−1),x(t);θ)

= f(f(h(t−2),x(t−1);θ),x(t);θ)
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Sequence to sequence mapping - one to many

one to many

e.g. Image Caption Generation

[credit: A. Karpathy, F. Li, ”Deep Visual-Semantic Alignments for

Generating Image Descriptions”]
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Sequence to sequence mapping - many to one

many to one

e.g. Sentiment Classification
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Sequence to sequence mapping - many to many

many to many e.g. Video frame classification

[credit: YouTube-8M]
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Sequence to sequence mapping - many to many (cont’d)

many to many

e.g. Machine Translation

[credit: nvidia]
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