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Exercises for Lecture Course on Numerical Optimization (NUMOPT)
Albert-Ludwigs-Universität Freiburg – Winter Term 2019-2020

Exercise 1: General Information, Introduction to CasADi,
Convex Optimization

Prof. Dr. Moritz Diehl, Dimitris Kouzoupis and Florian Messerer

Part I: General Information

This course’s aim is to give an introduction into numerical methods for the solution of optimization pro-
blems in science and engineering. It is intended for students from two faculties, mathematics and physics
on the one hand, and engineering and computer science on the other hand. The focus is on continuous
nonlinear optimization in finite dimensions, covering both convex and nonconvex problems.

Organization of the course

The course during is based on two pillars, lectures and exercises, accompanied by written material for
self-study. As the course is semi-online there will be no lecture held. Instead you can refer to the lectures
recorded during the winter term 2015/16. Nonetheless we will meet every Tuesday, 14:00 to 16:00, in HS
II (02 033), Albertstraße 23b. Usually every second Tuesday is dedicated to Q&A regarding the lecture.
Normally both professor and teaching assistant will attend the Q&A session. Every other Wednesday there
will be exercise sessions with the teaching assistant. There is a detailed calendar on the course homepage.
Course language is English and all communication is made via the course homepage, where you will also
find a link to the lecture recordings:

https://www.syscop.de/teaching/ws2019/numerical-optimization-online

This course gives 6 ECTS. It is possible to do a project to get an additional 3 ECTS, i.e., a total of 9 ECTS
for course+project.

Exercises: The exercises are partially paper based and partially on the computer. Individual laptops
with MATLAB installed are required. Please note that the reserved room is not a computer pool. The
exercises will be distributed beforehand. You can then prepare yourselves for the exercise session, where
you can work on the exercises and get help and feedback from the teaching assistants. We may also discuss
solutions of previous sheets if there is demand. Solutions to the exercise sheets have to be handed in via
e-mail to florian.messerer@imtek.de until the start of the next Q&A session. You will also have to indicate
which of the exercises you successfully finished. We will not examine every solution of every student.
Note however that we will do extensive random probing. Indicating a task as solved when this is not true
will result in 0 points for the whole sheet. Also note the guidelines for handing in which you can find
below. You will need at least 40% of the total points in order to pass.

Final evaluation: For engineering students the final grade of the course (6 ECTS) is based solely on a
final written exam at the end of the semester. Students from the master in mathematics need to pass the
written exam (ungraded) in order take a graded oral exam. The final exam is a closed book exam. Only
pencil, paper, a calculator and four single A4 pages of self-chosen formulas are allowed.

Projects: The optional project (3 ECTS) consists in the formulation and implementation of a self-chosen
optimization problem or numerical solution method, resulting in documented computer code, a project
report, and a public presentation. Project work starts in the last third of the semester. Participants can work
either individually or in groups of two people.
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Guidelines for handing in exercises

For handing in the exercises via e-mail, please adhere to the following guidelines:

• One (!) file which is your main document (preferably pdf). At the top should be your names and an
overview of which tasks you solved. If you have solved a task only partially, you can indicate so.
This is then followed by your solutions to the pen-and-paper exercises, and for computer exercises
the name(s) of the corresponding file(s). Claiming tasks as solved when this is not true will result in
0 points for the whole sheet.

• The main document can be a scan of your handwritten solutions or created with a text editor of your
choice (with proper support for mathematical notation, e.g. Latex, MS Word, Open Office...)

• Hand in all of the relevant code files. It should be possible to run them to see all results. It should not
be necessary to (un)comment lines for proper functioning. If there are several similar, but conflicting
versions (e.g. different constraints), please hand them in as separate files. If you received helper
functions as part of the exercise, please also hand them in. This makes it easier to run your files
since everything is contained in one folder already. Do not copy each other’s code. This will result
in 0 points for the sheet for all participating parties!

Part II: Introduction to CasADi

The aim of this part is to learn how to use MATLAB and how to formulate and solve an optimization
problem using CasADi, namely the minimization of the potential energy of a chain of masses connected
by springs.

Prepare your laptop

1. MATLAB: The exercises of this course are exclusively done in MATLAB. Instructions on how to
get a free student license from the online software shop can be found here:

https://www.rz.uni-freiburg.de/services-en/beschaffung-em/
software-en/matlab-license?set_language=en

If you are unfamiliar with MATLAB, here are some useful tutorials:

• http://www.maths.dundee.ac.uk/ftp/na-reports/MatlabNotes.pdf
• http://www.math.mtu.edu/˜msgocken/intro/intro.html

2. CasADi: For this and future exercises we need to install CasADi. CasADi is an open-source tool for
nonlinear optimization and algorithmic differentiation. Further information can be found at:

https://web.casadi.org

We will use CasADi’s Opti stack because it provides a syntax close to paper notation. For the docu-
mentation see https://web.casadi.org/docs/#document-opti

Note: CasADi is only a symbolic framework. To solve the problems it needs some underlying solvers
installed, such as IPOPT, qpOASES, WORHP, KNITRO, ... (some of which are already included).

To download and install CasADi follow the instructions below:

(a) Download the current version (3.5.0) for MATLAB from https://web.casadi.org/
get/ and unzip.
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(b) Move the folder called ’casadi-windows-matlabR2016a-v3.5.0’ (or similar) to the default MAT-
LAB directory or any directory of your choice.

(c) Start MATLAB and go to the directory that you chose in Step 2.

(d) Add the path of CasADi to the MATLAB path, by typing

>> addpath(’casadi-windows-matlabR2016a-v3.5.0’)

in the command line of MATLAB (adapt the folder name if necessary).

(e) Test CasADi by running

>> import casadi.*
>> x = MX.sym(’x’);
>> disp(jacobian(sin(x),x))

Your output should be cos(x).

(f) To save the path beyond your current session of MATLAB, run

>> savepath

Exercise Tasks

3. A tutorial example: Lets first look at the following unconstrained optimization problem

min
x

x2 − 2x

(a) Derive first the optimal value for x on paper. Then, download the code provided for exercise 1
from the course homepage and run ex1 toy example.m in MATLAB to solve the same
problem with CasADi. Is the result the same?
x∗ = 1 (1 point)

(b) Have a closer look at the template and adapt it to include the inequality constraint x ≥ 1.5.
What is the new result? Is it what you would intuitively expect?
x∗ = 1.5 (1 point)

(c) Now modify the template to solve the two-dimensional problem:

min
x,y

x2 − 2x + y2 + y (1a)

s.t. x ≥ 1.5 (1b)
x + y ≥ 0 (1c)

Which are the optimal values for x and y returned by CasADi?
x = 1.5 y = 1.5 (2 points)
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4. Equilibrium position of a hanging chain: We want to model a chain attached to two supports and
hanging in between. Let us discretize it with N mass points connected by N − 1 springs. Each mass
i has position (yi, zi), i = 1, . . . , N . The equilibrium point of the system minimizes the potential
energy. The potential energy of each spring is:

V i
el =

1

2
D
(
(yi − yi+1)

2 + (zi − zi+1)
2
)
.

The gravitational potential energy of each mass is:

V i
g = mg0 zi.

The total potential energy is thus given by:

Vchain(y, z) =
1

2

N−1∑
i=1

D
(
(yi − yi+1)

2 + (zi − zi+1)
2
)

+ g0

N∑
i=1

mzi,

where y = [y1, · · · , yN ]> and z = [z1, · · · , zN ]>. We are interested in solving the optimization
problem:

minimize
y,z

Vchain(y,z)

subject to (y1, z1) = (−2, 1)

(yN , zN) = (2, 1)

(a) Formulate the problem using N = 40, m = 4/N kg, D = 70
40
N N/m, g0 = 9.81 m/s2 with

the first and last mass point fixed to (−2, 1) and (2, 1), respectively (you can start from the
template code ex1 hanging chain.m). Solve the problem using CasADi with IPOPT as
solver and interpret the results.

(4 points)

(b) Introduce ground constraints: zi ≥ 0.5 and zi − 0.1 yi ≥ 0.5. Solve the resulting Quadratic
Program (QP) and plot the result. Compare the result with the previous one.

(2 points)
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Part III: Convex Optimization

In this part we learn how to recognize convex sets and functions. Moreover we revisit the hanging chain
problem from the previous part adding convex constraints, non-convex constraints and a more realistic
chain model.

Exercise Tasks

5. Convex sets and functions: Determine whether the following sets and functions are convex or not.

(a) A wedge, i.e., a set of the form:

{x ∈ Rn|a>1 x ≤ b1, a
>
2 x ≤ b2} (1 point)

a>i x ≤ bi each defines a halfspace, which is convex. The set is a conjunction of two convex
sets (the halfspaces), therefore convex.
Alternative: show set definition also holds for z = (1− t)x+ ty with x, y elements of the set.

(b) The set of points closer to a given point than a given set:

{x ∈ Rn| ||x− x0||2 ≤ ||x− y||2∀y ∈ S} (1 point)
The set can be equivalently written as the intersection

Ω = ∩y∈S{x ∈ Rn| ||x− x0||2 ≤ ||x− y||2} = ∩y∈SΩy.

Now each Ωy defines a halfspace, which is convex. Then Ω is an intersection of convex sets
and therefore convex itself.
To see each Ωy defines a halfspace:
‖x− x0‖22 ≤ ‖x− y‖22⇔ (x− x0)

>(x− x0) ≤ (x− y)>(x− y)
⇔ x>x− 2x>x0 + x>0 x0 ≤ x>x− 2x>y + y>y

⇔ (y − x0)
>︸ ︷︷ ︸

a>y

x ≤ 1

2

(
‖y‖22 − ‖x0‖22

)
︸ ︷︷ ︸

by

⇔ a>y x ≤ by

(c) The set of points closer to one set than another:

C := {x ∈ Rn| dist(x,S) ≤ dist(x, T )} with dist(x,S) := inf{||x− z||2|z ∈ S} (1 point)
Not convex. Counter example: S = {−1, 1}, T = {0} ⇒ C = {x : x ≤ −1

2
∨ x ≥ 1

2
}

(d) The function f(x1, x2) = 1/(x1x2) on R2
++. (2 points)

Convex if Hessian is positive semidefinite on the domain (R2
++)

∇2f(x1, x2) = 1
x1x2

[
2
x2
1

1
x1x2

1
x1x2

2
x2
2

]
A symmetric matrix A is positive definite iff its leading principal minors are > 0, i.e., the
determinants of all upper-left quadratic submatrices. Check leading principal minors:
det (∇2f (x1, x2)) = 1

x1x2

(
4

x2
1x

2
2
− 1

x2
1x

2
2

)
= 3

x3
1x

3
2
> 0 ∀x1, x2 ∈ R2

++

det
(

1
x1x2

2
x2
1

)
= 2

x3
1x2

> 0 ∀x1, x2 ∈ R2
++

⇒ Hessian is positive definite.
Alternative: show z>∇2f(x1, x2)z ≥ 0 ∀z ∈ R2, or compute eigenvalues.

(e) The function f(x1, x2) = x1/x2 on R2
++. (2 points)

A is positive semidefinite⇔ all its principal minors are ≥ 0.

∇2f(x1, x2) =

[
0 − 1

x2
2

− 1
x2
2

2x1

x3
2

]
det (∇2f) = 0− 1

x4
2
< 0 ∀x2 ∈ R2

++⇒ Hessian is not PSD.
Alternative: show z>∇2fz ≥ 0 ∀z ∈ R2 does not hold, or compute eigenvalues.
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6. Minimum of coercive functions: Prove that the unconstrained optimization problem

min
x∈Rn

f(x)

with f : Rn → R a continuous, coercive function, has a global minimum point.

Hint: Use the Weierstrass Theorem and the following definition.

Definition (Coercive functions). A continuous function f(x) that is defined on Rn is coercive if

lim
‖x‖→∞

f(x) = +∞

or equivalently, if ∀M ∃R : ‖x‖ > R⇒ f(x) > M .

(2 points)

Choose M = f(0). Then from coerciveness we know that ∃r ≥ 0 : ‖x‖ > r ⇒ f(x) > f(0). Now
define set Ω := {x : ‖x‖ ≤ r}, which is compact. Then we know from the Weierstrass Theorem
that ∃x∗ : f(x∗) ≤ f(x) ∀x ∈ Ω, i.e., x∗ is a minimizer of f on Ω.
More specifically also holds f(x∗) ≤ f(0), since 0 ∈ Ω ∀r ≥ 0. We know that f(0) < f(x)∀x :
‖x‖ > r, so also f(x∗) < f(x) ∀x ∈ Rn \ Ω.
Therefore f(x∗) is a global minimum of f on Rn, and x∗ a global minimizer.
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7. Hanging chain, revisited: Recall the hanging chain problem from the previous part.

(a) What would happen if you add instead of the piecewise linear ground constraints, the nonlinear
ground constraints zi ≥ −0.2+0.1y2i to your problem? Do not use MATLAB yet! The resulting
problem is no longer a QP, but do you think the problem is still convex?

(1 point)
The constraint describes a parabola opened in positive z-direction, where all points above the
parabola are part of the set. This is a convex set, therefore the NLP is still convex.
Alternative: bring into standard NLP form h(x) ≥ 0. This is a concave function, therefore the
NLP is still convex (see lecture notes theorem 3.4).

(b) What would happen if you add instead the nonlinear ground constraints zi ≥ −y2i ? Do you
expect this optimization problem to be convex?

(1 point)
The constraint describes a parabola opened in negative z-direction, where all points above the
parabola are part of the set. This is not a convex set, therefore the NLP is not convex.

(c) Check the above results numerically using CasADi and plot the results (both chain and cons-
traints). If any of these two optimization problems is non-convex, does it have multiple local
minima? If yes, can you confirm that numerically by initializing the solver differently? Note
that in CasADi you can provide an initial value x0 for variable x via

opti.set_initial(x,x0)

(1 point)
As demonstrated in code, for the non-convex constraint from (b) different initializations find
different solutions (local optima).

8. Hanging chain, more realistic: So far, our problem formulation uses the assumption that the springs
have a rest length Li = 0 which is not very realistic. A more realistic model includes the rest length
Li in the potential energy of the string in the following way:

di :=
√

(yi − yi+1)2 + (zi − zi+1)2 − Li (2a)

V i
el =

1

2
Dd2i , i = 1, . . . , N − 1. (2b)

where Li = L/(N − 1) and L the length of the chain. Note that setting L = 0 we obtain the same
expression as in Exercise sheet 1. Furthermore, some chain materials (e.g., a string) are characteri-
zed by an asymmetric force. They can exhibit tension but buckle under compression. The potential
energy of each spring is given in that case by:

V i
el =

1

2
D max(0, di)

2. (3)

(a) Using Equation (2b) for the potential energy, is the problem still convex? What about Equati-
on (3)? Assume only constraints on the two ends of the chain.

(1 point)
For easier analysis set zi = zi+1 and ∆y := yi+1 − yi. Consider this one dimensional version

of d2i : d
2
i (∆y) =

(√
∆y2 − L

)2
= (|∆y| − L)2.

Substracting L from the absolute value causes negative parts in the center (for L > 0). When
squared these negative values are responsible for non-convexity. This can be generalized to the
original d2i . Therefore the objective function is a sum of non-convex functions and also not
convex.
The max removes the negative parts of di that caused the nonconvexity. Therefore the problem
with eq. (3) is still convex.
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(b) Use Equation (3) and solve the problem with CasADi and IPOPT. For the chain length take
L = 1 m. Initialize y with y0=linspace(-1,1,N).
Hint: Introduce new optimization variables si to substitute the terms max(0, di) in the objective
and add suitable constraints on the problem. Keep in mind that we are minimizing over the
optimization variables and equalities can often be relaxed to inequalities without changing the
optimal solution.
Introduce slack variables s ∈ RN−1. Instead of V i

el use 1
2
Ds2i in the objective function. Replace

the max with the constraints si ≥ 0 and si ≥ di. At a solution one of these constraints well be
active since the si have to be as small as possible (objective) and are not constrained otherwise.
Therefore at a solution we have si = max(0, di).

min
y, z ∈ RN

s ∈ RN−1

1

2

N−1∑
i=1

Ds2i + g0

N∑
i=1

mzi (4a)

s.t. y1 + 2 = 0, (4b)
z1 − 1 = 0, (4c)
yN − 2 = 0, (4d)
zN − 1 = 0, (4e)

si ≥ 0 i = 1, ..., N−1, (4f)

si −
(√

(yi − yi+1)2 + (zi − zi+1)2 − Li

)
≥ 0 i = 1, ..., N−1 (4g)

(2 points)

(c) Extra: For the NLP from (b): what happens if you don’t initialize any of the variables expli-
citly? Why?
Hint: By default CasADi initializes all variables at 0.

(1 bonus point)
If all yi and zi are initialized at the same value, the di are initialized at

√
0 which is not diffe-

rentiable. CasADi hands a Jacobian with NaNs to IPOPT and IPOPT complains about invalid
number.

This sheet gives in total 25 points and 1 bonus point.
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