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Who are we?

• An international team looking at the future of nonlinear programming

Outline: today we talk about nonlinear programming

1. We present a condensed-space interior-point method (IPM)
that runs smoothly on NVIDIA GPUs using the new solver cuDSS

2. We adapt the method further and mix it with an Augmented Lagrangian
method to solve degenerate problems
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The sad truth...
Nonlinear programming has fallen out of fashion :-(

... but an open-door for new opportunities!
Can we make nonlinear programming great again using modern hardware?

Source: Google NGram, NVIDIA
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Back to the basic: Nonlinear programming
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Nonlinear programming in a nutshell

n variables, m inequality constraints, p equality constraints

Continuous nonlinear problems

min
x∈Rn

f (x) subject to

 g(x) = 0

h(x) ≤ 0

Equality cons.
Objective

Inequality cons.
The functions f , g , h are smooth, possibly nonconvex

• Useful framework to solve practical engineering problems
• Usually, we are interested only at finding a local optimum
• Mature solvers exist since the 2000s (Ipopt, Knitro, LOQO)

J. Nocedal, SJ. Wright. Numerical optimization. 5 of 31
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Nonlinear programming in a nutshell

n variables, m inequality constraints, p equality constraints

Continuous nonlinear problems

min
x∈Rn,s∈Rm

f (x) subject to

 g(x) = 0

h(x) + s = 0 , s ≥ 0

Equality cons.
Objective

Slack
The functions f , g , h are smooth, possibly nonconvex

• Useful framework to solve practical engineering problems
• Usually, we are interested only at finding a local optimum
• Mature solvers exist since the 2000s (Ipopt, Knitro, LOQO)

J. Nocedal, SJ. Wright. Numerical optimization. 5 of 31
.



Interior-point method (IPM)
KKT stationary equations

∇f (x) + ∇g(x)⊤y + ∇h(x)⊤z = 0
z − ν = 0
g(x) = 0
h(x) + s = 0

0 ≤ s ⊥ ν ≥ 0

Complementarity cons

Rewrite the (nonsmooth) KKT system as a smooth nonlinear system

Fµ(x , s; y , z, ν ) :=


∇f (x) + ∇g(x)⊤ y + ∇h(x)⊤ z

z − ν

g(x)
h(x) + s
Sν − µe

 = 0

Homotopy, S = diag(s)

Dual variables

Primal-dual interior-point method
Solve Fµ(x , s; y , z, ν) = 0 using Newton method while driving µ → 0.
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Augmented KKT system

At iteration k,
1. Compute Newton step dk as solution of the linear system

∇Fµ(w k) dk = −Fµ(w k)

2. Update the primal-dual variable w k := (x k , sk , y k , zk , νk) as

w k+1 = w k + αkdk

Figure: ∇Fµ

Augmented KKT system
After (slight) reformulation, the Newton step writes as W 0 ∇g⊤ ∇h⊤

0 Σs 0 I
∇g 0 0 0
∇h I 0 0


dx

ds
dy
dz

 = −

r1
r2
r3
r4


with W = ∇2

xx L(·), Σs = S−1diag(ν)
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Condensed KKT system

Condensed KKT system
The augmented KKT system is equivalent to[

K ∇g⊤

∇g 0

] [
dx
dy

]
= −

[
r1 + (∇h)⊤(Σs r4 + r2)

r3

]
with the condensed matrix K = W + ∇h⊤ Σs ∇h.
We recover (ds , dz) as

ds = −Σ−1
s (r3 + dy ) , dz = Σs (∇h dx − r4) − r2 .

Z Symmetric indefinite
Z Additional fill-in
Z Useful when the number of

inequality constraints m is large
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Challenge: solving the sparse linear system on the GPU

• Ill-conditioning of the KKT system in IPM
(= iterative solvers are often not practical)

• Direct solver requires numerical pivoting for stability
(= difficult to parallelize)

= ×

Figure: LU factorization using a direct solver

Solution: Condensation
Reduce the KKT system to a sparse positive definite matrix

• Sparse Cholesky is stable without numerical pivoting
• Runs in parallel on the GPU (cuDSS)

B. Tasseff, C. Coffrin, A. Wächter, C. Laird. "Exploring benefits of linear solver parallelism on modern nonlinear optimization applications.", 2019 9 of 31
.



HyKKT (aka Golub & Greif method)

Idea: augmented Lagrangian reformulation
For γ > 0, the condensed KKT system is equivalent to[

Kγ ∇g⊤

∇g 0

] [
dx
dy

]
= −

[
w1 + γ∇g⊤w2

w2

]
with Kγ = K + γ∇g⊤∇g

V Suppose LICQ hold and the reduced Hessian is positive definite:
Then for γ large-enough the matrix Kγ is positive definite

V The condensed KKT system reduces to the normal equations:

(∇g) K−1
γ (∇g)⊤dy = w2 − K−1

γ (w1 + γ∇g⊤w2)

V Keep K−1
γ implicit by solving the normal equations iteratively with a

conjugate gradient (CG) algorithm!
V For large γ, CG converges in few iterations

S. Regev et al., "HyKKT: a hybrid direct-iterative method for solving KKT linear systems." Optimization Methods and Software 38, no. 2 (2023) 10 of 31
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Fast evaluation of derivatives with ExaModels.jl

• Large-scale optimization problems almost always have repetitive
patterns

min
x♭≤x≤x♯

∑
l∈[L]

∑
i∈[Il ]

f (l)(x ; p(l)
i ) (SIMD abstraction)

subject to
[
g (m)(x ; qj)

]
j∈[Jm ]

+
∑

n∈[Nm ]

∑
k∈[Kn ]

h(n)(x ; s(n)
k ) = 0, ∀m ∈ [M]

• Repeated patterns are made available by specifying the models as iterable
objects

constraint(c, 3 * x[i+1]ˆ3 + 2 * sin(x[i+2]) for i = 1:N-2)

• For each repeatitive pattern, the derivative evaluation kernel is
constructed & compiled, and executed in parallel over multiple data

S. Shin, F. Pacaud, and M. Anitescu. Accelerating optimal power flow with GPUs: SIMD abstraction of nonlinear programs and condensed-space interior-point methods, arXiv:2307.16830.11 of 31
.



Application: AC-OPF problem
Observations

• Up to 10x speed-up compared to Ipopt

HSL MA27 LiftedKKT+cuDSS HyKKT+cuDSS
Case it init lin total it init lin total it init lin total
13659_pegase 63 0.45 7.21 10.14 75 0.83 1.05 2.96 62 0.84 0.93 2.47
19402_goc 69 0.63 31.71 36.92 73 1.42 2.28 5.38 69 1.44 1.93 4.31
20758_epigrids 51 0.63 14.27 18.21 53 1.34 1.05 3.57 51 1.35 1.55 3.51
78484_epigrids 102 2.57 179.29 207.79 101 5.94 5.62 18.03 104 6.29 9.01 18.90

Table: OPF benchmark, solved by MadNLP with a tolerance tol=1e-6. (A100 GPU)

Figure: Performance profile 12 of 31
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Application: optimal control

Observations
Textbook problem: Optimizing the operation of a distillation column over an
horizon N

Figure: Time per IPM iteration (s), CPU versus GPU. Log-log scale.
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How expensive should be your GPU?
Benchmarking different GPUs

• A100 (80GB) HPC ($10,000)
• A30 (24GB) workstation ($5,000 )
• A1000 (4GB) laptop
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Figure: Time to optimality (in seconds).
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Question
How to obtain more accurate solution? tol=1e-8

Back to Augmented Lagrangian (Auglag)

• Augmented Lagrangian methods are (super) robust
• Idea: solve Auglag subproblems with IPM

D. Fernández & M.V. Solodov (2012).
Local convergence of exact and inexact augmented Lagrangian methods under the second-order sufficient optimality condition. 15 of 31
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Augmented Lagrangian

From now on, we simplify the nonlinear program as:

min
x∈Rn

f (x) subject to c(x) = 0 , x ≥ 0

Augmented Lagrangian subproblem
For ye ∈ Rm, ρ > 0,

min
x∈Rn

f (x) + y⊤
e c(x) + ρ

2 ∥c(x)∥2 subject to x ≥ 0
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Introducing the NCL algorithm
NCL reformulates the Auglag’s subproblems as constrained optimization problems

At iteration k, the algorithm solves:

min
x,r

f (x) − (y e
k )⊤r + ρk

2 ∥r∥2

subject to c(x) + r = 0 , x ≥ 0
(NCLk)

• Subproblem (NCLk) is always feasible, solvable by IPM!
• Only the objective changes
• Regularization r stabilizes internal IPM iterations

NCL algorithm ≡ Auglag algorithm

• Solve (NCLk) down to a tolerance ωk
• Update parameters as

- If ∥c(xk)∥ ≤ ηk , set y e
k+1 = y e

k − ρk rk
- Else ρk+1 = 10 × ρk .

D. Ma, KL. Judd, D. Orban and MA Saunders. "Stabilized optimization via an NCL algorithm". 17 of 31
.



Highlighting the connection between HyKKT and Augmented Lagrangian

Observation #1
For Kγ = W + Σx + γJ⊤J , HyKKT solves the KKT system:[

Kγ J⊤

J 0

] [
dx
dy

]
= −

[
r1
r2

]

Observation #2
For Kρ := W + Σx + ρJ⊤J , Auglag solves the KKT system:

Kρ dx = −n1

γ ≡ ρ: tune γ automatically using an Augmented Lagrangian strategy!
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Writing the KKT system
Compared to raw IPM, each NCL’s subproblem has an additional variable r

KKT system: IPM
IPM search direction is computed by solving[

W + Σx J⊤

J 0

] [
∆x
∆y

]
= −

[
r1
r2

]
(Kaug )

KKT system: NCL
NCL search direction is computed by solving[W + Σx 0 J⊤

0 ρk I I
J I 0

] [∆x
∆r
∆y

]
= −

[n1
n2
n3

]
(K2)

ZNote that the NCL Jacobian is always full row-rank
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Condensation strategy
To port the method on the GPU, we use the same condensation strategy as before

Step 1: removing ∆r
Eliminate ∆r = (n2 − ∆y)/ρk :[

W + Σx J⊤

J − 1
ρk

] [
∆x
∆y

]
= −

[
n1

n3 − 1
ρk

n2

]
(K2r )

Step 2: removing ∆y
Eliminate ∆y = n2 − ρk(n3 − J∆x):

(W + Σx + ρkJ⊤J)∆x = J⊤(n3 + ρk r1) − r2 (K1s)

The original problem is nonconvex, hence:
• K2r is (almost) SQD (LDL)
• K1s is (almost) positive definite (Cholesky)
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What do we have so far?
• NCL is an augmented Lagrangian algorithm

whose subproblems are solvable by MadNLP
• By exploiting again the structure of the KKT system,

the method runs on the GPU

What can go wrong?

• Augmented Lagrangian has only a linear rate of convergence
• Meaning it takes time to find highly accurate solution...
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Solution: Dussault’s extrapolation method
Denote

• wk = (xk , rk , yk) the primal-dual iterate and
• F (wk) the Auglag residual at wk .

NCL with extrapolation step

• Compute an extrapolation step w+
k solution of

∇w F (wk)(w+
k − wk) + F (wk) = 0

• If ∥F (w+
k )∥ ≤ θk∥F (wk)∥ + εk set wk+1 = w+

k . Else
- Solve (NCLk) down to a tolerance ωk
- Update parameters as

- If ∥c(xk )∥ ≤ ηk , set y e
k+1 = y e

k − ρk rk
- Else ρk+1 = 10 × ρk .

Observations
• According to Dominique Orban, the method can be traced back to JP

Dussault in the 1990s
• We can prove NCL achieves superlinear local convergence: asymptotically,

the method becomes equivalent to a stabilized SQP method

J.P. Dussault, Numerical stability and efficiency of penalty algorithms, SIAM Journal on Numerical Analysis 32 (1995), pp. 296–317.
P. Armand, J. Benoist, D. Orban. From global to local convergence of interior methods for nonlinear optimization. OMS (2013). 22 of 31
.



Safeguarding convergence for degenerate problems
Auglag is more robust than interior-point

Property 1: Problem with redundant constraints
With the dual regularization r , the subproblems (NCLk) automatically satisfy
LICQ

Property 2: Infeasible problems
For infeasible problem, NCL converges to a stationary point of:

min
x,r

ρ

2 ∥r∥2 subject to c(x) + r = 0 , x ≥ 0

Property 3: Problems with complementarity constraints (MPCC)
For MPCC problem, Auglag converges to a strong-stationary point
(under specific technical assumptions)

AF. Izmailov, MV. Solodov, and EI. Uskov. "Global convergence of augmented Lagrangian methods applied to optimization problems with degenerate constraints,
including problems with complementarity constraints." SIAM Journal on Optimization 22 (2012) 23 of 31
.



Open research question
Is Auglag effective at solving MPCC problems?
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Nonlinear program with complementarity constraints

Mathematical program with complementarity constraints (MPCC)
Let f : Rn → R, G : Rn → Rm and H : Rn → Rm. We define the MPCC as

min
x∈Rn

f (x)

s.t. 0 ≤ G(x) ⊥ H(x) ≥ 0

Notation 0 ≤ x ⊥ y ≥ 0 stands for:

0 ≤ xi and 0 ≤ yi and xi yi = 0 ∀i = 1, · · · , m

NLP reformulation
MPCC is equivalent to the NLP:

min
x∈Rn

f (x)

s.t. G(x) ≥ 0 , H(x) ≥ 0
Gi (x)Hi (x) ≤ 0 ∀i = 1, · · · , m

jThe previous NLP is degenerate, in the sense that MFCQ fails at all x
25 of 31
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A set of optimality conditions for MPCC
• Active sets:

IG = {i ∈ {1, · · · , m} | Gi (x) = 0} , IH = {i ∈ {1, · · · , m} | Hi (x) = 0} .

• MPCC Lagrangian:
L(x , λG , λH) := f (x) − λ⊤

G G(x) − λ⊤
H H(x) .

Stationarity conditions

Weak stationary ∇x L(x , λ) = 0 with

(λG)i = 0 for i /∈ IG and (λH)i = 0 for i /∈ IH

Clarke stationary: weak stationary and

(λG)i (λH)i ≥ 0 ∀i ∈ IG ∩ IH

Mordukhovich stationary: Clarke stationary and

Either
(

(λG)i > 0 and (λH)i > 0
)

or (λG)i (λH)i = 0 ∀i ∈ IG∩IH

Strong stationary: Mordukhovich stationary and

(λG)i ≥ 0 and (λH)i ≥ 0 ∀i ∈ IG ∩ IH
26 of 31
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Usual solution methods

• Relaxation: For τ > 0, replace complementarity constraints by

Gi (x)Hi (x) ≤ τ , ∀i = 1, · · · , m

• Smoothening: Use a smooth approximation parameterized by ε > 0:

Φε

(
Gi (x), Hi (x)

)
= 0 ∀i = 1, · · · , m

• Exact penalty: Move the complementarity constraints in the objective:

min
x∈Rn

f (x) + νG(x)⊤H(x)

s.t. G(x) ≥ 0 , H(x) ≥ 0

and solve resulting problem with interior-point

Research question
Can we solve instead the original problem using NCL?

R. Fletcher and S. Leyffer. "Solving mathematical programs with complementarity constraints as nonlinear programs." Optimization Methods and Software27 of 31
.



An application to Corrective Security-Constraint OPF
Suppose we have K potential contingencies, with for each k = 1, · · · , K ,

Automatic generation control system (droop control)

pk
g = min

(
max

(
p0

g + αg ∆k , p
g

)
, pg

)
or, equivalently,

ρk
g,+ − ρk

g,− = pk
g − (p0

g + αg ∆)

0 ≤ ρk
g,− ⊥ pg − pk

g ≥ 0

0 ≤ ρk
g,+ ⊥ pk

g − p
g

≥ 0

Voltage control (PV/PQ switches)

νk
+ − νk

− = v k
m − v 0

m

0 ≤ νk
− ⊥ qg − qk

g ≥ 0

0 ≤ νk
+ ⊥ qk

g − q
g

≥ 0

I. Aravena et al. "Recent developments in security-constrained AC optimal power flow: Overview of challenge 1 in the ARPA-E grid optimization competition."
Operations research 71 (2023) 28 of 31
.



SCOPF problem
Objective: adjusting the base case x0

We keep the Ks most important contingencies in the problem
(generally, Ks ≈ 10)

Corrective SCOPF

min
x0,x1,··· ,xKs

f (x0)

subject to c0(x0) = 0 , x0 ≥ 0
ck(xk) = 0 , xk ≥ 0 ∀k = 1, · · · , Ks

0 ≤ τL
k (x0, xk) ⊥ τU

k (xk) ≥ 0 ∀k = 1, · · · , Ks
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(Preliminary) Numerical results on corrective SCOPF

Observations
• Both MadNLP and Ipopt fail at converging on these instances
• NCL converges (empirically) to stationary points
• Code runs on the GPU, but is less robust than on the CPU – yet

(ill-conditioning in K1s)
• If convergence achieved, we observe again a 10x speed-up w.r.t. the CPU

NCL+K2r+MA27 NCL+K2r+CUDSS NCL+K1s+CUDSS
K st obj it linsolve total st obj it linsolve total st obj it linsolve total

1354pegase 16 1 7.4 282 235.3 259.7 -3 7.4 295 30.0 35.0 1 7.4 231 17.9 21.1
ACTIVSg2000 8 1 122.9 296 543.2 564.1 1 122.9 314 29.1 33.9 -3 122.9 429 31.7 37.0
2869pegase 8 -3 13.4 331 305.0 340.0 1 13.4 211 21.5 26.7 -3 13.4 244 19.1 23.2

Table: st: return status (1 if locally optimal, -3 if step is becoming too small)

30 of 31
.



Take away

1. Large-scale optimization is practical on modern GPU hardware
2. On OPF problems, we observe a x10 speed-up compared to

state-of-the-art
3. Exciting new developments are coming!
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