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A MIXED-INTEGER PDE-CONSTRAINED OPTIMIZATION PROBLEM

minimize
y,v∈L∞(Ω)

1
2∥y+ y0∥2L2(Do) subject to

−∆y− k20(1+ qv)y = k20qvy0 in D,
∂y
∂n − ik0y = 0 in ∂D,

v : Ds → {0, 1, 2}.
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(MIPDECO)

Solution Approaches

• First-discretize, then-optimize (using MINLP techniques) quickly becomes intractable, see e.g.
(Lin, Leyffer, and Munson 2016).

• Relaxation-based solution strategies: bang-bang principles (e.g. Tröltzsch 1979; Kunisch and
Wachsmuth 2013), regularization-based methods (e.g. Stadler 2009; Clason and Kunisch 2014),
combinatorial integral approximation (e.g. Sager, Bock, and Diehl 2012; Hante and Sager 2013; M.
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RELAXATION-BASED APPROACHES (E.G. COMBINATORIAL INTEGRAL APPROXIMATION)

minimize
v

J(y) subject to y = S(v) and
{

v(x) ∈ {ν1, . . . , νM} a.e. (P)
v(x) ∈ conv{ν1, . . . , νM} a.e. (R)

Observation (Sager, Bock, and Diehl 2012; Hante and Sager 2013; Kirches, M., and Ulbrich 2020)
We can prove (and exploit algorithmically) for classes of ODEs, PDEs, and integral equations that

(a) (R) admits a minimizer, and (b) inf (P) = min (R).

Main Limitations

• Strong assumptions on the PDE.
• Highly oscillating controls.

(May be
reduced by regularization that
preserves (b) but generally
unavoidable.)

Unregularized Multibang Regularization
(Clason and Kunisch 2014; M. 2021)

The control regularity is just not enough to limit oscillations.
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REGULARIZATION WITH TOTAL VARIATION

minimize
v

J(y) + TV(v) subject to y = S(v) and v(x) ∈ {ν1, . . . , νM} a.e. (Q)

Observation

• Let J ◦ S : L2(Ω) → R be lower semicontinuous, and bounded below. Then (Q)—unlike (P)!—has
a minimizer in the space BV(Ω) (e.g. (Ambrosio, Fusco, and Pallara 2000)).

• For {ν1, . . . , νM}-valued controls and Ω ⊂ R (1D), TV(v) is the jump heights in 1D =⇒ rapid
oscillations cannot occur.

Function space perspective: the set of feasible controls is weakly-∗ closed in the space BV(Ω).

• L1-balls around a feasible control contain further feasible controls (unlike in finite dimensions).

Definition 1
Let r > 0. Then v ∈ BV(Ω) feasible for (Q) is r-optimal (locally optimal) for (Q) if

(J ◦ S)(v) + TV(v) ≤ (J ◦ S)(ṽ) + TV(ṽ) for all ṽ ∈ BV(Ω) with ∥v− ṽ∥L1 ≤ r.

QUESTION: can we construct descent algorithms that converge to r-optimal points?
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QUESTION: can we construct descent algorithms that converge to r-optimal points?

4



REGULARIZATION WITH TOTAL VARIATION

minimize
v

J(y) + TV(v) subject to y = S(v) and v(x) ∈ {ν1, . . . , νM} a.e. (Q)

Observation

• Let J ◦ S : L2(Ω) → R be lower semicontinuous, and bounded below. Then (Q)—unlike (P)!—has
a minimizer in the space BV(Ω) (e.g. (Ambrosio, Fusco, and Pallara 2000)).

• For {ν1, . . . , νM}-valued controls and Ω ⊂ R (1D), TV(v) is the jump heights in 1D =⇒ rapid
oscillations cannot occur.
Function space perspective: the set of feasible controls is weakly-∗ closed in the space BV(Ω).

• L1-balls around a feasible control contain further feasible controls (unlike in finite dimensions).

Definition 1
Let r > 0. Then v ∈ BV(Ω) feasible for (Q) is r-optimal (locally optimal) for (Q) if
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TRUST-REGION SUBPROBLEM WITH PARTIAL LINEARIZATION IN FUNCTION SPACE

minimize
vnext

(∇(J ◦ S)(v), vnext − v)L2(Ω) + TV(vnext)− TV(v)

subject to ∥v− vnext∥L1(Ω) ≤ ∆ and vnext(x) ∈ {ν1, . . . , νM} a.e.
(TR)

Motivation / justification of the subproblem choice

• (TR) has a minimizer (with objective value ≤ 0).
• L1 trust region allows for nontrivial changes of the control (formally: vnext and v may have level
sets that are not homeomorphic).

• The TV term enforces feasibility of weak-∗ cluster points and suppresses oscillations.
• If Ω ⊂ R is discretized into intervals, then we obtain an integer linear program.
• Piecewise constant functions, defined on uniform discretizations, are dense (with respect to
the right topologies!) in the set of feasible controls for (Q).
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SEQUENTIAL LINEAR INTEGER PROGRAMMING METHOD IN FUNCTION SPACE

Algorithm 1 Reset trust-region method using (TR)

Input: ∆0 > 0, v0 feasible, σ ∈ (0, 1).

1: for n = 0, . . . do
2: k← 0
3: ∆n,0 ← ∆0

4: repeat
5: v̄n,k ← minimizer of (TR) with v = vn−1 , ∆ = ∆n,k .
6: predk ← (∇(J ◦ S), vn−1 − v̄n,k)L2 + TV(vn−1)− TV(v̄n,k).
7: aredk ← (J ◦ S)(vn−1) + TV(vn−1)− (J ◦ S)(v̄n,k)− TV(v̄n,k)
8: if predk ≤ 0 then
9: Terminate. The predicted reduction for vn−1 is zero.
10: else if aredk < σ predk then
11: k← k + 1
12: ∆n,k ← ∆n,k−1/2.
13: else
14: vn ← v̄n,k

15: k← k + 1
16: end if
17: until aredk−1 ≥ σ predk−1

18: end for

Let Ω = (0, T). A feasible v ∈ BV(Ω) has m
switches at t1, . . . , tm ∈ (0, T).

ti
νj

νj+1

Observation
If lim infh↓0

1
h
∫ ti+h
ti

∇(J ◦ S)(v) > 0, then shifting ti
slightly to the right improves the objective of (TR)
without changing the TV term.

Proposition 2
Under a regularity assumption on ∇2(J ◦ S), this
yields a stationarity condition for (Q) and (TR).

Unless stationarity holds, the inner loop
terminates finitely.

If ∇(J ◦ S)(v) ∈ C(Ω̄),
stationarity is ∇(J ◦ S)(v)(ti) = 0.
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SEQUENTIAL LINEAR INTEGER PROGRAMMING METHOD IN FUNCTION SPACE – ASYMPTOTICS IN 1D

Theorem 3 (Leyffer and M. 2021 under review)
The (vn)n produced by Alg. 1 are feasible for (Q) with monotonously decreasing objective values.

Under a regularity condition on ∇2(J ◦ S) one of the following mutually exclusive outcomes holds:

1. (vn)n is finite. Its final element is stationary and solves (TR) with objective value zero.
2. (vn)n is finite. Its final element is stationary and the inner loop does not terminate.
3. (vn)n has a weak-∗ cluster point in BV(Ω). All cluster points are feasible, strict, and stationary.

Results for an LLSQ problem for different (nonadaptive) control discretizations (N) vs MIQP and CIA

SLIP (with SCIP) MIQP (with SCIP) CIA (w./ scipy.optimize, L-BFGS-B, SCARP)
N objective time objective time to best objective objective time
32 9.081 · 10−3 3.543 · 10−1 s 5.079 · 10−35.079 · 10−35.079 · 10−3 3.837 · 103 s 1.839 · 10−2 1.775 · 101 s
64 9.169 · 10−3 1.015 s 4.733 · 10−34.733 · 10−34.733 · 10−3 4.064 · 103 s∗ 6.369 · 10−3 1.775 · 101 s
128 7.080 · 10−3 3.185 s 5.447 · 10−35.447 · 10−35.447 · 10−3 1.434 · 104 s∗ 5.551 · 10−3 1.778 · 101 s
256 5.523 · 10−3 2.350 · 101 s 5.513 · 10−35.513 · 10−35.513 · 10−3 1.644 · 104 s∗ 7.741 · 10−3 1.777 · 101 s
512 4.426 · 10−34.426 · 10−34.426 · 10−3 1.687 · 102 s 6.685 · 10−3 1.776 · 104 s∗ 1.220 · 10−2 1.778 · 101 s
1024 4.529 · 10−34.529 · 10−34.529 · 10−3 3.303 · 102 s 9.153 · 10−3 1.680 · 104 s∗ 2.350 · 10−2 1.784 · 101 s
2048 4.339 · 10−34.339 · 10−34.339 · 10−3 1.698 · 104 s 2.727 · 10−2 1.746 · 104 s∗ 4.610 · 10−2 1.800 · 101 s

∗ Timeout after 1.8 · 104 s
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128 7.080 · 10−3 3.185 s 5.447 · 10−35.447 · 10−35.447 · 10−3 1.434 · 104 s∗ 5.551 · 10−3 1.778 · 101 s
256 5.523 · 10−3 2.350 · 101 s 5.513 · 10−35.513 · 10−35.513 · 10−3 1.644 · 104 s∗ 7.741 · 10−3 1.777 · 101 s
512 4.426 · 10−34.426 · 10−34.426 · 10−3 1.687 · 102 s 6.685 · 10−3 1.776 · 104 s∗ 1.220 · 10−2 1.778 · 101 s
1024 4.529 · 10−34.529 · 10−34.529 · 10−3 3.303 · 102 s 9.153 · 10−3 1.680 · 104 s∗ 2.350 · 10−2 1.784 · 101 s
2048 4.339 · 10−34.339 · 10−34.339 · 10−3 1.698 · 104 s 2.727 · 10−2 1.746 · 104 s∗ 4.610 · 10−2 1.800 · 101 s

∗ Timeout after 1.8 · 104 s
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SEQUENTIAL LINEAR INTEGER PROGRAMMING METHOD – QUALITATIVE RESULTS
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Figure 1: Objective values over running time for SLIP (solid) and MIQP (dashed) for N = 32, . . ., 2048.
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SEQUENTIAL LINEAR INTEGER PROGRAMMING METHOD – QUALITATIVE RESULTS
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Figure 2: Top row: final control trajectories produced by the SLIP method for N = 32 (left, objective value
9.081 · 10−3) and N = 2 048 (right, objective value 4.339 · 10−3). Bottom row: control trajectories produced by the
combinatorial integral approximation decomposition approach using CIA / SCARP for N = 32 (left, objective
value 1.839 · 10−2) and N = 2 048 (right, objective value 4.610 · 10−2).
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SEQUENTIAL LINEAR INTEGER PROGRAMMING METHOD IN FUNCTION SPACE IN 1D – DISCUSSION

Discussion

1. Sufficient regularity condition: ∇2(J ◦ S)[v,w] ≤ C∥v∥L1∥w∥L1 . Why? Need to bound remainder
term in Taylor’s theorem (because we have ∥v∥2L2 ≤ C∥v∥L1 and Cauchy decrease only in L1).

2. The proof is bound to the case Ω = (0, T) so far because it utilizes TV(v)−TV(w) ∈ Z, which is
not true in higher dimensions. A stationarity condition may probably still be derived but
convergence to stationary points may be more difficult to obtain.

3. Reset of the trust region is used in the proof to avoid contraction at nonstationary points.
4. Numerical analysis for discretized algorithm exists only partially so far.
5. Scaling of TV-term wrt. J needs to be chosen sensibly.

Key observation from the proof
The sequence of heights of the step function along (0, T) in 1D settles after finitely many iterations
and only the exact positions vary, which resembles settling of the active set in NLP solvers.

=⇒ Detect this and run second-order methods on switching point optimization NLPs for fast
convergence (e.g. (Maurer and Osmolovskii 2004)).
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HOW TO SOLVE THE TRUST-REGION
PROBLEM (EFFICIENTLY)?



DISCRETIZED TRUST-REGION SUBPROBLEM IN 1D AS AN INTEGER LINEAR PROGRAM

Let V ⊂ Z with |V| < ∞. Let α > 0, ∆ > 0. Let (vi)i∈{1,...,N} ⊂ V be an integer control trajectory.

TR(v,∆) =



min
d,δ,ξ,Ξ

cTd+ αΞ

ci =
∫ ti+1

ti
∇(J ◦ S)(v)(s) ds

s.t. vi + di ∈ V for all i ∈ {1, . . . ,N}

vnext = v + d is integer

− δi ≤ dihi ≤ δi for all i ∈ {1, . . . ,N}

hi is length of ith interval

N∑
i=1

δi ≤ ∆

∥vnext − v∥L1 ≤ ∆

− ξi ≤ vi+1 + di+1 − vi − di ≤ ξi for all i ∈ {1, . . . ,N− 1}

ξi is jump height from i to i + 1

N−1∑
i=1

ξi ≤ Ξ

Ξ = TV(vnext)

Conjecture / Work in Progress
Let hi = 1 for all i. Then TR(v,∆) is (weakly) NP hard. (Reduce Knapsack to TR(v,∆) in polynomial
time – construct V appropriately from weights, capacity, and α.)
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DISCRETIZED TRUST-REGION SUBPROBLEM IN 1D AS A SHORTEST PATH IN A LAYERED DAG

Let hi = 1 for all i (generalization to hi ∈ N possible), ∆ ∈ N.
i− 1

ν1 vi−1+di−1=· · · νM

∆

...

0
Remaining
L1 TR cap.

i
ν1 vi+di=· · · νM

∆

...

0
Remaining
L1 TR cap.

i+ 1
ν1 vi+1+di+1=· · · νM

∆

...

0
Remaining
L1 TR cap.

An edge in a feasible path (feasible d) connects different layers. Every feasible path is
nonincreasing with respect to the remaining trust region capacity.

At edge construction we know vi−1 + di−1 and vi + di+1 ⇒ allows to put TV term costs on the edges.

Work in Progress
The number of nodes is bounded by #nodes = |V|N∆. Using A∗ with a monotone heuristic we can
solve TR(v,∆) in #nodes2. The algorithm is pseudo-polynomial.

12



DISCRETIZED TRUST-REGION SUBPROBLEM IN 1D AS A SHORTEST PATH IN A LAYERED DAG

Let hi = 1 for all i (generalization to hi ∈ N possible), ∆ ∈ N.
i− 1

ν1 vi−1+di−1=· · · νM

∆

...

0
Remaining
L1 TR cap.

i
ν1 vi+di=· · · νM

∆

...

0
Remaining
L1 TR cap.

i+ 1
ν1 vi+1+di+1=· · · νM

∆

...

0
Remaining
L1 TR cap.

An edge in a feasible path (feasible d) connects different layers. Every feasible path is
nonincreasing with respect to the remaining trust region capacity.

At edge construction we know vi−1 + di−1 and vi + di+1 ⇒ allows to put TV term costs on the edges.

Work in Progress
The number of nodes is bounded by #nodes = |V|N∆. Using A∗ with a monotone heuristic we can
solve TR(v,∆) in #nodes2. The algorithm is pseudo-polynomial.

12



DISCRETIZED TRUST-REGION SUBPROBLEM IN 1D AS A SHORTEST PATH IN A LAYERED DAG

Let hi = 1 for all i (generalization to hi ∈ N possible), ∆ ∈ N.
i− 1

ν1 vi−1+di−1=· · · νM

∆

...

0
Remaining
L1 TR cap.

i
ν1 vi+di=· · · νM

∆

...

0
Remaining
L1 TR cap.

i+ 1
ν1 vi+1+di+1=· · · νM

∆

...

0
Remaining
L1 TR cap.

An edge in a feasible path (feasible d) connects different layers. Every feasible path is
nonincreasing with respect to the remaining trust region capacity.

At edge construction we know vi−1 + di−1 and vi + di+1 ⇒ allows to put TV term costs on the edges.

Work in Progress
The number of nodes is bounded by #nodes = |V|N∆. Using A∗ with a monotone heuristic we can
solve TR(v,∆) in #nodes2. The algorithm is pseudo-polynomial.

12



DISCRETIZED TRUST-REGION SUBPROBLEM IN 1D AS A SHORTEST PATH IN A LAYERED DAG

Let hi = 1 for all i (generalization to hi ∈ N possible), ∆ ∈ N.
i− 1

ν1 vi−1+di−1=· · · νM

∆

...

0
Remaining
L1 TR cap.

i
ν1 vi+di=· · · νM

∆

...

0
Remaining
L1 TR cap.

i+ 1
ν1 vi+1+di+1=· · · νM

∆

...

0
Remaining
L1 TR cap.

An edge in a feasible path (feasible d) connects different layers. Every feasible path is
nonincreasing with respect to the remaining trust region capacity.

At edge construction we know vi−1 + di−1 and vi + di+1 ⇒ allows to put TV term costs on the edges.

Work in Progress
The number of nodes is bounded by #nodes = |V|N∆. Using A∗ with a monotone heuristic we can
solve TR(v,∆) in #nodes2. The algorithm is pseudo-polynomial.
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DISCRETIZED TRUST-REGION SUBPROBLEM IN 1D AS A SHORTEST PATH IN A LAYERED DAG

N h1 h2 h3 h4 h5 Top SCIP
256 5.726 5.813 5.391 5.79 1.074 1.114 37.133
512 38.762 39.6 38.384 40.454 3.402 4.926 165.257
1024 244.107 285.039 286.998 286.697 9.039 19.906 544.1
2048 1316.92 1600.44 1659.529 1622.13 15.396 56.425 492.082

Figure 3: Cumulative running times (seconds) for test instances of a 1D elliptic control problem for simple
heuristics (h1 ,. . .,h4), including dual information h5 vs. topological sorting (Top) and IP solver (SCIP).

Figure 4: Distribution of running times (seconds) for the subproblem solves for A∗ with h5 (red) and SCIP (green).
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DISCRETIZED TRUST-REGION SUBPROBLEM IN 1D AS A SHORTEST PATH IN A LAYERED DAG

Discussion

1. Acclerated A∗ approach beats SCIP and topological sorting (on all tested problems so far) when
including dual information.

2. Several tried improvements and heuristics for A∗ (path dominance checks (discard paths with
lower remaining L1 TR capacity and equal or worse objective values); inequalities generated
from the fact that the value of Ξ is the solution of an LP over an integral polytope; etc.) have
not paid off (additional compute time often exceeds running time saves).

3. As for the analysis, the approach does not generalize to the multidimensional case
straightforwardly.
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SUMMARY

We seek to

minimize
v

J(y) + TV(v) subject to y = S(v) and v(x) ∈ {ν1, . . . , νM} a.e. (Q)

To do so, we

1. define locally optimal solutions (local in terms of variations of the level sets of the controls),
2. partially linearize the objective and preserve the TV term in a trust region strategy, which
3. has partial convergence proofs to first-order optimality conditions so far, and which
4. yields large-scale integer linear programs that need to be solved.
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THANK YOU FOR YOUR ATTENTION!
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