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Nonsmooth Dynamics (NSD) - a classification

Regard ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).
Distinguish three cases:

(t)

NSD1: non-differentiable RHS, e.g., =1 + |z

NSD2: state dependent switch of RHS, e.g., & = 2 — sign(z)

S ‘/ NSD3: state dependent jump, e.g., bouncing ball, v(t;) = —0.9 v(t_)

q
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Overview

Dyn. sys
with state
jumps
(NSD3)
user time-freezing
input FESD
PSS (NSD2) DCS oCP MPCC
Stewart l relaxation
or Step NLP
l homotopy
solution

PSS - piecewise smooth systems; DCS - dynamic complementarity system; OCP - optimal control problem; FESD - finite elements
with switch detection; MPCC - mathematical program with complementarity constraints ; NLP - nonlinear program
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Overview

Dyn. sys
with state
jumps
(NSD3)
user time-freezing
input FESD
PSS (NSD2) DCS OoCP MPCC
Stewart l relaxation
or Step NLP
l homotopy
Toolchain implemented in our open-source package NOSNOC solution

PSS - piecewise smooth systems; DCS - dynamic complementarity system; OCP - optimal control problem; FESD - finite elements
with switch detection; MPCC - mathematical program with complementarity constraints ; NLP - nonlinear program
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Overview - Piecewise smooth and Filippov systems
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NSD2 Systems - state dependent switches

Regard discontinuous right-hand side, piecewise smooth on disjoint open regions R; C R"~

Discontinuous ODE (NSD?2)

z = fi(z,u), if ¢ € R;,
iE{l,...,nf}

Numerical aims:
1. exactly detect switching times

2. obtain exact sensitivities across regions
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NSD2 Systems - state dependent switches

Regard discontinuous right-hand side, piecewise smooth on disjoint open regions R; C R"~

Discontinuous ODE (NSD?2)

z = fi(z,u), if ¢ € R;,
iE{l,...,nf}

Numerical aims:
1. exactly detect switching times

2. obtain exact sensitivities across regions

3. appropriately treat evolution on boundaries
(sliding mode — Filippov convexification)

FESD for numerical optimal control of Fillipov systems Armin Nurkanovié 4



Filippov Convexification

Dynamics not yet well-defined on region boundaries OR;. Idea by A.F. Filippov (1923-2006):
replace ODE by differential inclusion, using convex combination of neighboring vector fields.

Filippov Differential Inclusion

& € Fp(z,u) : {Zflxu ‘ Zﬁi:L
i=1

0120, ZZI,...TLf,
0, =0, ifxdR; }

‘
o

Aleksei F. Filippov
(1923-2006)

image source: wikipedia
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Filippov Convexification

Dynamics not yet well-defined on region boundaries OR;. Idea by A.F. Filippov (1923-2006):
replace ODE by differential inclusion, using convex combination of neighboring vector fields.

Filippov Differential Inclusion
ny
& € Fp(z,u) : {Zflxu ‘ ZOi:L
i=1

0120, ZZI,...’I’Lf,
0, =0, ifxdR; }

Aleksei F. Filippov
S . . (1923-2006)
» for interior points x € R; nothing changes: Fr(z,u) = {fi(z,u)} image source: wikipedia

> Provides meaningful generalization on region boundaries.
E.g. on Ry N Ry both #; and 65 can be nonzero
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How to compute convex multipliers 67

Answer in a remarkable paper by David E. Stewart from 1990

Numer. Math. 58, 299-328 (1990) m
Mathematik

© Springer-Verlag 1990

A high accuracy method for solving ODEs
with discontinuous right-hand side

David Stewart
Department of Mathematics, University of Queensland, St. Lucia, Australia 4067

Received August 1, 1987/January 16, 1990

Summary. Ordinary Differential Equations with discontinuities in the state vari-
ables require a differential inclusion formulation to guarantee existence [8].
From this formulation a high accuracy method for solving such initial value
problems is developed which can give any order of accuracy and “tracks” the
discontinuities. The method uses an “active set” approach, and determines
appropriate active sets from solutions to Linear Complementarity Problems.
Convergence results are established under some non-degeneracy assumptions.
The method has been implemented, and results compare favourably with pre-
viously published methods [7, 21].
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How to compute convex multipliers 67

Assume sets R; given by [cf. Stewart, 1990]

R; = {z € R"|gi(x) < minj; g;(x) }
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How to compute convex multipliers 67

Assume sets R; given by [cf. Stewart, 1990]

R; = {z € R"|gi(x) < minj; g;(x) }

Linear program (LP) Representation

ng
= Z fi(x,u)6; with

=1

ny
0 € arg min () 6;
géeR"f th( ) b;

=1
ng _
% 0,1 91 <gs 6 g2<g1 0 91 =92
st. Y 0;=1 I\ X P
- N
f_l - 01 91 01
6>0

Note that the boundary between R; and R; is defined by {z € R" | 0 = g;(x) — g;(x)}.
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From Filippov to dynamic complementarity systems
Using the KKT conditions of the parametric LP

LP representation

&= F(x,u) 0
with 6 € argmin  g(z) "6
GeRr™f
st. 0<6

1=¢'6

F(J},u) = [fl(x7u)’ RN fnf($,u)] c RNaXns

9(x) = [g1(x),. .., gn, ()] € R™
=[1,1,...,1]" e R™

@
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From Filippov to dynamic complementarity systems

Using the KKT conditions of the parametric LP

Express equivalently by optimality conditions:

Dynamic Complementarity System (DCS)

LP representation

r —= F 9 1
&= F(z,u)0 * (2,u) (12)
0=g(x) = A—ep (1b)
with 0 € argmin g(z)T 0 0<0LAX>0 (1c)
ferts ) 1=¢'0 (1d)
st. 0<40 .
~
1=¢'6 .
= F(z,u) 6
where 0= Grp(, 0, p),

Floyu) = (i@, w)s ... fo(0,0)] € RE<7r » p€Rand A& R are Lagrange
( () ( )]T c R multipliers
z) = [g1(x),..., x i
g - i"f » (1c) © min{f,\} =0 € R"™
— ny
e=[L1...1" eR > Together, (1b), (1c), (1d) determine the
(2ny + 1) variables 6, A, i uniquely
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Interpretation of the DCS multipliers

DCS > If x € R;, then 6; > 0, \; = 0 (from
complementarity)
&= F(z,u)0 > )\ = gi(z) — p (from V,L(z, A\, ) = 0)
O0=gi(z) —Xi—p, i=1,...,n5
0<OLA>0
l=e'0
2 4
1.5+

Ry ={z | g2(z) < g1(2)}

0.5 Ry = {z | gi(z) < ga(2)} ] Ly

0 0.5 1 15 2 0 0.5 1 1.5 2
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Interpretation of the DCS multipliers

DCS > If x € R;, then 6; > 0, \; = 0 (from
complementarity)
&= F(z,u)0 > )\ = gi(z) — p (from V,L(z, A\, ) = 0)
O0=gi(z) —Xi—p, i=1,...,n5
0<OLA>0
l=e'0
2 i
5]
| Ry ={z | g:(z) < g1(2)}
§ 0.5
0
05 Ry ={z | g1(z) < g2(2)} 1 Ly
i 05 1 L5 2 2 05 1 L5 2

FESD for numerical optimal control of Fillipov systems Armin Nurkanovié



Interpretation of the DCS multipliers

DCS > If x € R;, then 6; >0, \; =0 (from
complementarity)
&= F(z,u)0 > )\ = gi(z) — p (from V,L(z, A\, ) = 0)
0=gi(x) = X\i—p, i=1,...,ny  P» p=min;g;(x) (from definition of R;)
0<6LA>0 » \; = gi(z) — min; g;(z) continuous functions!
l1=¢'6
2 4 T
—7)
15} 3 Aao(t)
()

Ry ={z | g2(z) < g1(2)}

l;/ 0.5 ; 1
0 0
V4 = mj,
0.5 Ry = {z | gi(z) < ga(2)} 1 LF 1"(!]1(2)
Y.92(,Z')
-1 . . . 2 . . .
0 0.5 1 1.5 2 0 0.5 1 15 2
t t
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Interpretation of the DCS multipliers

DCS > If x € R;, then 6; > 0, \; = 0 (from
complementarity)
&= F(z,u)0 > )\ = gi(z) — p (from V,L(z, A\, ) = 0)
0=gi(x) = X\i—p, i=1,...,ny  P» p=min;g;(x) (from definition of R;)
0<6LA>0 » \; = gi(z) — min; g;(z) continuous functions!
1= eTH » At switch \; = )‘j =0 = gl(l) — gj(l) =0
(region boundary)
2 4 I T
— N0
15 3 Azit)
By = {z | a(a) < ;a()) o
1 2 W/\}
. K
% o
< 05 2\ 3 >
) OR1NORy = {z | g1(x) = ga(x)} o Ao =go(x) —p
0.5 Ri={z | gi1(2) < g2()} A Moz) , (:
1 - L L -2 L L L
0 0.5 1 1.5 2 0 0.5 1 1.5 2
t t
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Step function representation

Step representation

&= F(z,u)0
0= GStep(xa 05 Q, /\)a

» similar properties as
Stewart's representation

» with some modifications -
FESD applicable

» more practical for some
region shapes
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Step representation

&= F(z,u)0
0= GStep(xa 05 Q, /\)a

» similar properties as
Stewart's representation

» with some modifications -
FESD applicable
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Step function representation

Step representation

&= F(z,u)0
0= GStep(xa 05 Q, /\)a

» similar properties as
Stewart's representation

» with some modifications -
FESD applicable

» more practical for some
region shapes
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Numerical simulation of piecewise-linear models of gene regulatory
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Vincent Acary *, Hidde de Jong, Bernard Brogliato
INRIA Grenoble - Rhéne-Alpes, 655 avenue de I'Europe, 38330, Montbonnot, France

Numer. Math. (2011) 117:779-811 Numerische
DOI 10.1007/500211-01 1-0365-4 Mathematik

Sliding motion on discontinuity surfaces of high
co-dimension. A construction for selecting a Filippov
vector field

Luca Dieci - Luciano Lopez
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Overview - Finite Elements with Switch Detection

Dyn. sys
with state
jumps
(NSD3)
user time-freezing
input FESD
PSS (NSD2) DCS OCP MPCC
Stewart l relaxation
or Step NLP
l homotopy
solution
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Optimal control needs to solve Nonlinear Programs (NLPs)

Original optimal control problem
in continuous time

T

- /)me&+E@Hw
z(-),u(-), 0
O(-),A(),pu(-)

s.t. .T(O) = Xo

&(t) = F(z(t),u(t)) 0(t)
0= Grp(x(t),0(t), A(t), u(t))
0> h(z(t),u(t)), t € [0,T
0= r((T))

Assume smooth (convex) L, E, h,r
Nonsmooth dynamics make problem
nonconvex

Direct methods discretize, then optimize
E.g., collocation or multiple shooting
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Optimal control needs to solve Nonlinear Programs (NLPs)

Original optimal control problem Goal: discretized optimal control problem
in continuous time (an NLP)

T

(r§1ir(1) L(z,u)dt + E(z(T)) min Efcv:_olqn(xk,zk,uk) + E(xn)
z(3),u(-), 0 T,z,u
0()AL)u() Tt

s.t. .T(O) = Xo

To = To

Thy1 = B (zk, 2k, ur)

@(t) = F(x(t),u(t)) 0(t) .
0 = Grr(a(t), 0(t), A(t), (1)) VS G )
0> h(z(t),u(t)), t € [0,T] 0> ®p(zk, 2k, ux), k=0,...,N—1
0> r(z(T)) 02r(zn)

Smooth convex &, E, &y, r

Variables z = (zo,...), 2 = (20,...) and
u = (ug,...,un—1) summarized in vector
w € R

Nonsmooth <I>"}1g

Assume smooth (convex) L, E, h,r
Nonsmooth dynamics make problem
nonconvex

Direct methods discretize, then optimize
E.g., collocation or multiple shooting
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Conventional discretization by Implicit Runge Kutta (IRK) method

Continuous time DCS
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Continuous time DCS Discrete time IRK-DCS equation

z(0) = Zo, T0,0 = T0, Th1,0 = Tho + A D n_q1 bnVkin
o(t) = v(t) Tk =Tko+hY 0 1 QjnVkn
v(t) = F(x(t),u(t)) 0(t) Vg = F(xkj,uk ;) Ok j
0=g(z(t)) — At) — en(t) 0=9g(%k,j) — Ak,j — ehik,;
0<0(t) LA >0 0< ;LA >0
1=e"6(t), tel0,T] l=e"Okj, j=1,...,8, k=0,...,N—1

Notation: zj, € R™, 6, € R™ etc. with:
» ke{0,1,...,N} - index of integration step; step length h:=T/N
» jne{0,1,...,s} - index of intermediate IRK stage / collocation point
» a;, and b, - Butcher tableau entries of Implicit Runge Kutta method
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Direct optimal control with a standard IRK discretization
Tutorial example inspired by [Stewart & Anitescu, 2010]

Continuous-time OCP

2
i t)2dt 2) — 5/3)2
i / w(t)%dt + (2(2) — 5/3)

st. @(t) =2 —sign(z(t)), te€]0,2]

Free initial value 2:(0) is the effective degree
of freedom.

Denote by V,(zq) the nonsmooth objective
value for the unique feasible trajectory
starting at z(0) = xo.

Equivalent reduced problem

minV.(zo)

Objective
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Direct optimal control with a standard IRK discretization

Tutorial example inspired by [Stewart & Anitescu, 2010]

. Math 653 Numerische
EOI 16%0117/'5(02&]21 10 1)(11(]):;?1522262i Mathematik

Optimal control of systems with discontinuous
differential equations

David E. Stewart - Mihai Anitescu

(another remarkable paper by D. Stewart)

» discretize the OCP with standard IRK
for DCS

» numerical sensitivities wrong
independent of the step-size

» smoothing works only if step-size smaller
than smoothing parameter
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Direct optimal control with a standard IRK discretization

Tutorial example inspired by [Stewart & Anitescu, 2010]

Numerische
umer. Math. (2010) 114:653-695 .
EOI 10%(1!7/5(()021 1 1) —(17(1)9—05262—2 ° Mathematik
1.9
Optimal control of systems with discontinuous
differential equations Vsua(xo)
1.8 [N — Va(ao)
David E. Stewart - Mihai Anitescu
(another remarkable paper by D. Stewart) g
2
. . . o - -
» discretize the OCP with standard IRK 3 1.7
for DCS ©
» numerical sensitivities wrong 1.6 |- .
independent of the step-size
» smoothing works only if step-size smaller s ‘ | ‘ ‘ ‘
than smoothing parameter 2 -18 -16 -14 -12 -1 —08

Zo
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Direct optimal control with a standard IRK discretization
Tutorial example inspired by [Stewart & Anitescu, 2010]

— 1/
VM&(I)U) = = = Standard - Fixed
1.8 o == Standard - Homotopy .
——— Analytic Solution 1
—1 - -
(IJ
2
=
8 L7 %
L
o
1.6 |- —
1.5
—2 —1.5 —1 —2 —1.5 —1

xo Zo
» Spurious local minima, optimizer gets trapped close to initialization
> Sensitivity correct if step-sizes smaller than smoothing parameter [Stewart & Anitescu,
2010] = homotopy improves convergence

> Still, at best O(h) accuracy can be expected
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Conventional Collocation - illustrative example

Solve with IRK Radau IIA method of order 7

: 2
Regard example with € R“ and s=4 N=5 T=05 h=0.1

constants a, k,c > 0:

i = {fl(.’l,‘), xr1 > O7

fa(x), 21 < 0.

Ao =) p@=

—a —kx1 — cxo Tsf

gl<x) = —T1,
92(:1;) =1,

To=1[0.5,0]".
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Conventional Collocation - illustrative example

Zoom in

-3.5 34t L
026 028
t t

High integration accuracy of 7th order IRK method is lost in fourth time step.
Reason: we try to approximate a nonsmooth function by a (smooth) polynomial.

Question: could we ensure that switches happen only at element boundaries?
— Finite Elements with Switch Detection (FESD)
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Finite Elements with Switch Detection (FESD)

L-CSS 2022 & submitted to Num. Math.

FESD is a novel DCS discretization method based on three ideas:
» make stepsizes hy, free, ensure ZkN:_Ol hi = T [cf. Baumrucker & Biegler, 2009]

» allow switches only at element boundaries, enforce via cross-complementarities

» remove spurious degrees of freedom via step equilibration

\\i OH‘T\“\{

\‘\’:\\y‘

|

2
1
I
| 25
I
I
| 3

T
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L

o 01 02 03 04 05

conventional variable stepsizes and FESD discretization
discretization cross-complementarities with step equilibration
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Conventional DCS and FESD discretization without step equilibration

Conventional discretization FESD discretization without step equilibration

€00 =Z9, h=T/N 200 = Z0, Yonohk =T
Tk41,0 = Th,o + h Zi=1 bnVk,n Th41,0 = Tho + Iy Zizl bnVk,n
Tk = Tho +h 01 GinVkn Tk, = Tho + Mk Dop g GjnVin
Ok = F(T,j, uk,5) Ok, B = 0@ 5 ) O 5
0= g(zr,j) — Ak,j — €lr,j 0 = g(xk,jr) — Ak, jr — efir,jr
0<0k; LA; >0 0< 0y, L Agj» >0 (cross-complementarities)
l=e'b; l=e'0y;
forj=1,...,s for j=1,...,s and k=0,...,N—1
and k=0,...,N—1 and j'=0,1,...,s
» N extra variables (hg,...,hn_1) restricted by one extra equality

» additional multipliers Ay g, ftx,0 are uniquely determined
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Conventional DCS and FESD discretization

Conventional discretization FESD discretization

To0 =9, h=T/N 00 = %0, Yo ohe =T
Tr41,0 = Tho + 0D Dprp Tht1,0 = Th,0 + Mo Yo OnVkn
Thyj = Th,0 T R D02 q AjnVkn Tk,j = Tr,0 + he D ) GinVhn
Ok,j = F(or,5, uk ) Ok, 5 Ok,j = F(2k,5, uk,j) Ok, j
0=9(@k;) = Akj — epin,;j 0= g(zk,jr) — Ak’ — eftk,j
0<6r;LA,;>0 0< 60k, L A\pjs >0 (cross-complementarities)
l=e'b; l=e'b;
0=v(0k,0k+1, \irs \ir+1) - (hgr —hgr41)
forj=1,...,s for j=1,...,s and k=0,...,N—-1
and k=0,...,N—1 and j'=0,1,...,s and £ =0,. ... ] N—2
> N extra FESD variables (ho,...,hn—_1) now locally uniquely determined by N constraints

» Indicator function v(0xs, Ok 1, Ak, Akr+1) only zero if a switch occurs
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Multipliers in conventional and FESD discretization

Conventional Collocation: FESD Discretization:
1 1F wl T ] T wl
| | I
| | I
= L |
05 =05 | | |
| | |
| | I
| | | |
0 0 T M . T 1
0 0.1 0.2 0.3 0.4 0.5
t t
1 1 i 1 i | 4 i i i 1
] ] ] ]
1 I I I o | | |
— | | | ! l 1 1
Sosf 1 1 1 1 I Sosf | | |
l l l | | | | |
1 1 1 1 I | | |
| | | | | | | |
0 I I I T 1 0 1 m ; 1
0 0.1 0.2 03 0.4 05 0 01 0.2 03 04

FESD's cross-complementarities exploit the fact that the multiplier \;(¢) is continuous in time
On boundary, \;(tx) must be zero if 0;(¢) > 0 for any t € [tx_1,tx+1] on the adjacent intervals
This implicitly imposes the constraint g;(xx) — g;(xx) =0

—> hg adapts for exact switch detection
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Regard the following OCP
4
i t) "u(t)dt
min [
st z(0) = (2,1),
) e

—sign(z(t)) + u(t), t € [0,4],
2ey < u(t) < 2eq, t €[0,4],

(¢
2(4) = (—1,-0.5).

FESD for numerical optimal control of Fillipov systems
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x(t)

True switches

False alarm

g

()
@2(t)
~
. . . N
0.5 1 15 25 3.5
0.5 1 15 25 35




Numerical solution without equilibration

Indicator function over time: Step size over time:
0.25 T T
1007 J‘_l_l
| |
= L [
£ g0 o2 [
| | |
| | |
0% S N Y NN SN N N 015 1.
0 0.5 1 15 2 25 3 35 4 = | | |
t 3 t t i
10 “ T “ T “ T J T \ “‘ “ T “ 01 : : :
| | Vot o
| (E \ | | | |
| | Vo [ | (I
I i || A 0.05 N
|/ \/ | o
| \/ \| I\l | | |
| | | i T
o | | I | | o [ I
0 0.5 1 15 f 25 3 35 4 35 4 45
t

Optimizer varies step size randomly, potentially playing with integration errors.
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Step size over time:

Indicator function over time:
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Summary of theoretical results

Submitted to Num. Mat, arXiv:2205.05337

1. Convergence of the FESD method to a Filippov solution of the underlying system with
accuracy O(h?) is proven. Here, p is the order of the underlying smooth IRK scheme.
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Summary of theoretical results

Submitted to Num. Mat, arXiv:2205.05337

1. Convergence of the FESD method to a Filippov solution of the underlying system with
accuracy O(h?) is proven. Here, p is the order of the underlying smooth IRK scheme.

2. Convergence of numerical sensitivities to the true value with O(h?) is given.
The Stewart & Anitescu problem is resolved.
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Summary of theoretical results

Submitted to Num. Mat, arXiv:2205.05337

1. Convergence of the FESD method to a Filippov solution of the underlying system with
accuracy O(h?) is proven. Here, p is the order of the underlying smooth IRK scheme.

2. Convergence of numerical sensitivities to the true value with O(h?) is given.
The Stewart & Anitescu problem is resolved.

3. An FESD problem needs to solve a nonlinear complementarity problem (NCP) to advance
the integration. The solutions of these NCP are locally unique.
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Numerical simulation example: unstable switched oscillator

Regard an unstable nonsmooth oscillator

o J Az, c(x) <0,
() = {Agm, c(x) >0,

with
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FESD recovers high integration order for switched systems

Standard VS. FESD

T T T 11T T T T T 171717

100 |- D

10~ 10 || =©= Midpoint Rule 2 —
=== Gauss-Legendre 4

Gauss-Legendre 6
== Gauss-Legendre 8

10_15 | TTTTT
1072 107"

h h
Integration error E(T) at time T = /2 vs. step-size h, for different IRK methods.
FESD discretization delivers versatile MPCC formulation with high integration order
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FESD recovers high integration order for switched systems

Standard VS. FESD
T 11T T T T T T 11717
10° /\‘, 10°9
e
o 1075 |- - 107°¢
=]
1010 | ==@== Implicit Euler 1 - 10710
=== Radau-11A 3 i
Radau-llIA 5
=== Radau-lIA 7
10715\\\\M Lol 10715\\\\\\
1072 1071 1072 1071
h

h

Integration error E(T') at time T' = 7/2 vs. step-size h, for different IRK methods.
FESD discretization delivers versatile MPCC formulation with high integration order
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FESD recovers high integration order for switched systems

Standard VS. FESD

T T 17177 T T T T TT717 T TTT7T T T T 117717

10°

1075 |- -1 107°

E(T)

=—©— Lobatto-11l 2

—10 | —10 1
10 —4— Lobatto-1ll 4 10

T

Lobatto-1ll 6
== Lobatto-1Il 8
10715\\\\H I —— | 10715
1072 107! 1072 107!
h h

Integration error E(T') at time T' = 7/2 vs. step-size h, for different IRK methods.
FESD discretization delivers versatile MPCC formulation with high integration order
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Revisiting the OCP example - now with FESD

Tutorial example inspired by [Stewart & Anitescu, 2010]

Continuous-time OCP

2
i t)2dt 2) — 5/3)2
i / w(t)%dt + (2(2) — 5/3)

st. @(t) =2 —sign(z(t)), te€]0,2]

Free initial value 2:(0) is the effective degree
of freedom.

Denote by V,(zq) the nonsmooth objective
value for the unique feasible trajectory
starting at z(0) = xo.

Equivalent reduced problem

minV.(zo)

Objective

Armin Nurkanovi¢
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Revisiting the OCP example - now with FESD

Tutorial example inspired by [Stewart & Anitescu, 2010]

1.9 T T
s V510 (0) —0.5 [{ = == Standard - Fixed —
§ === Standard - Homotopy
=== Vemsp (@0) s FESD - Fixed
1.8 Vi (o) === FESD - Homotopy .
—— Analytic Solution 1
. 1 -
2
T 18
3 1 s
e}
(@)
1.6 |- —
1.5 L _92 | |
—2 —1.5 -1 —2 —1.5 -1

. .. o e e Zo
» No spurious local minima, correct sensitivities

» Convergence to the "true" local minima, both with homotopy and without it
» In contrast to the standard approach with accuracy O(h), now we have O(hP)
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Revisiting the OCP example - now with FESD

Tutorial example inspired by [Stewart & Anitescu, 2010]

1.9 T T
—0.5 { === Standard - Fixed -
s Vs 1 (2
Vbtd(lz ) === Standard - Homotopy
VFFjD) 0 s FESD - Fixed
1.8 [ — V(2o === FESD - Homotopy -
—— Analytic Solution 1
. 1 - -
2
T 18
g 1 d
e}
(@)
1.6 |- —
15 | | _92 | |
—2 —1.5 -1 —2 —1.5 -1

. .. o e e Zo
» No spurious local minima, correct sensitivities

» Convergence to the "true" local minima, both with homotopy and without it
» In contrast to the standard approach with accuracy O(h), now we have O(hP)

» FESD resolves the accuracy and convergence issues
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Overview - Solving discrete-time OCPs

Dyn. sys
with state
jumps
(NSD3)
user time-freezing
input FESD
PSS (NSD2) DCS OCP MPCC
Stewart relaxation
or Step NLP
homotopy
solution
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Optimal control needs to solve Nonlinear Programs (NLPs)

Original optimal control problem
in continuous time

T

- / L(z, u)dt + E(z(T))
z(-),u(-), 0
ORPIONTO]

s.t. .23(0) = Xo

0= GLP(x(t)ve t)v )‘(t)vﬂ(t))’
0> h(z(t),u(t)), t €[0,T]
0> r(z(T))

Assume smooth (convex) L, E, h,r
Nonsmooth dynamics make problem
nonconvex

Direct methods discretize, then optimize
E.g., collocation or multiple shooting
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Optimal control needs to solve Nonlinear Programs (NLPs)

Original optimal control problem Discretized optimal control problem
in continuous time (an MPCQC)

T
min L(z,u)dt + E(z(T)) min Efcv:_[f(I’L(xk, Zk, uk) + E(xN)

m()m()7 0 xT,z,u
0(:)sA();n (") s.t.
s.t. .T(O) = Xo

o = Zo
dif
Tiy1 = P (Th, 25, Uk)

0 = (I)?plg(fljk, Zk s Uk)

0= GLP(x(t)70 t)v A(t)vﬂ(t))’
0> h(x(t), u(t)), t € [0,T] e A e
0> r(z(T)) Y=ol

Smooth convex &, E, &y, r

Variables z = (zo,...), 2 = (20,...) and

u = (ug,...,un—1) summarized in vector

w € R

Nonsmooth <I>"}lg, complementarity constraints

Assume smooth (convex) L, E, h,r
Nonsmooth dynamics make problem
nonconvex

Direct methods discretize, then optimize
E.g., collocation or multiple shooting
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Nonlinear Programs (NLP)

Newton-type methods generate a sequence wg, w1, ws, ... by linearizing and solving convex
subproblems.

Summarized NLP

oo, 70

st. 0= F(w)
0> H(w)

Still assume smooth convex J, H.
Nonlinear F' makes problem nonconvex.
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Nonlinear Programs (NLP)

Newton-type methods generate a sequence wg, w1, ws, ... by linearizing and solving convex
subproblems.

Summarized NLP NLP with Complementarity Constraints

i, T®) Jéi%i‘w I(w)
st. 0= F(w) s.t. F(w)
0> H(w) 0> H( )

Still assume smooth convex J, H. 0<Gi(w) L Ga(w) 20

Nonlinear F' makes problem nonconvex. s
There is significant nonconvex and nonsmooth

structure in the NLP.
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NLP with additional constraints of complementarity type: ‘x lyeszTy=0 ‘

MPCC as an NLP

oo, 1)
st. 0= F(w)
0> H(w)
0 < Gy (w)
0 < Ga(w)
0> Gi(w)" Ga(w)

Convex J, H and smooth F.
Smooth G4, Gs.

Toy MPCC example:

min (w; — 1)% 4 (wy — 1)?
weR?

s.t. 0§w1J_UJ220

Two local minimizers.
One local maximizer
(without constraint
qualification)

Due to complementarity constraints, MPCC are nonsmooth and nonconvex.

FESD for numerical optimal control of Fillipov systems
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MPCC solution by relaxation and homotopy

The homotopy MPCC approach [cf. Ferris 1999, Ralph&Wright 2004] generates sequence
wg, wi, ws, ... by solving NLPs with decreasing o9 > 01 > 02 > ..., and NLP warm-starting.

Penalty subproblem for weight 1/c;

min J(w) + %Gl(w)TGg(w)

weRMw ;

st. 0= F(w)
0> H(w)
0 < Gi(w)
0 < Ga(w)

Need good NLP solver (SCP, SQP, Interior
Point, ...)
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MPCC solution by relaxation and homotopy

The homotopy MPCC approach [cf. Ferris 1999, Ralph&Wright 2004] generates sequence

wg, wi, ws, ... by solving NLPs with decreasing o9 > 01 > 02 > ..., and NLP warm-starting.
Penalty subproblem for weight 1/c; Relxed subproblem for parameter o;
1 .
min J(w) + —G1(w) " Ga(w) weRnw Jle)
weERw 0j . 0 F( )
1. 0=F(w
st 0= F(w) i e
02 Hw) 0<G EU))
0< Gilw) ozGl(w
0 < Ga(w) =
0 2 Gi(w) Ga(w)
Ne_ed good NLP solver (SCP, SQP, Interior Crucial: start NLP solver at previous
Point, ...) solution w}_;.

One can often find "good” local minima with the homotopy method.
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NOSNOC: NOnSmooth Numerical Optimal Control

The whole tool chain is available in our open-source package NOSNOC

Dyn. sys
with state
jumps
(NSD3)
user time-freezing
input FESD
PSS (NSD2) DCS OCP MPCC
Stewart relaxation
or Step NLP
homotopy
solution

NOSNOC: https://github.com/nurkanovic/nosnoc
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NOSNOC: NOnSmooth Numerical Optimal Control

Open-source package based on MATLAB, CasADi and IPOPT

1. automatic reformulation of systems with state jumps into switched systems via the
time-freezing reformulation

2. automatic discretization of the OCP via FESD (high accuracy)
3. solution methods for the resulting discrete-time OCP via continuous optimization in a
homotopy (no integers)

NOSNOC: https://github.com/nurkanovic/nosnoc
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OCP example

Benchmark example with entering/leaving sliding mode

States ¢,v € R? and control u € R?,
OCP with sliding modes r e (10) "

+ 0.15¢2
Switching functions ¢(z) = n %

0.05¢3 + q2
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FESD vs standard IRK - number of function evaluations

Benchmark on an optimal control problem with nonlinear sliding modes

I I I I I I
100 |-
: & 3 ! 8 g8, ¢
£ o o 2 a
% o
o
4 107 |- oo
: 0B
° @ @ 0 o
5 o o
i A\
= o & B¢
€ O Radau-IIA-FESD O Radau-I1A-Std
5 OLobatto—lllC-FESD oLobatto—IIIC»Std
F O Gauss-Legendre-FESD B Gauss-Legendre-Std o 0 0@
% Explicit-RK-FESD # Explicit-RK-Std ‘ @

10712
101 1012 101.4 101.6 101,8 102 02 2

Total number of stage points

Terminal constraint satisfaction vs. number of stage points
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FESD vs standard IRK - CPU Time

Benchmark on an optimal control problem with nonlinear sliding modes

T TTT] T
* % ® U ] —
00 Aol B0 eretn §

%
0 »

o2 A ¢ UK o }
Radau-lIA-FESD 8Radau—IIA—Std

8Lobatto—IIIC—FESD Lobatto-111C-Std

0 Gauss-Legendre-FESD B Gauss-Legendre-Std (o]

# Explicit-RK-FESD % Explicit-RK-Std O o 0
10—12[\\\\\\\ | | I EEA | | |
10° 10* 102

CPU time [s]

100 -

1074 -

Terminal constraint satisfaction

Terminal constraint satisfaction vs. CPU time
FESD one million times more accurate than Std. for CPU time of =~ 2 s
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Conclusions and outlook

Conclusions

» Finite Elements with Switch Detection (FESD) allow highly accurate simulation and
optimal control for nonsmooth systems of level NSD2

» FESD resolves many of the issues that standard methods have: integration accuracy,
convergence of sensitivities

» Main difficulty: solving the Mathematical Programs with Complementarity Constraints
(MPCQ)
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Conclusions and outlook

Conclusions

» Finite Elements with Switch Detection (FESD) allow highly accurate simulation and
optimal control for nonsmooth systems of level NSD2

» FESD resolves many of the issues that standard methods have: integration accuracy,
convergence of sensitivities

» Main difficulty: solving the Mathematical Programs with Complementarity Constraints
(MPCQ)

Outlook

» Improve on MPCC methods, test other existing relaxation methods (work in progress,
soon available in NOSNOC)

» Properties of FESD-MPCC solutions. Are all stationary points strongly stationary points?
» Combinatorial methods for MPCC arising in nonsmooth optimal control

» Efficient NCP solvers for FESD subproblems
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Thank you very much for your attention!

FESD for numerical optimal control of Fillipov systems Armin Nurkanovié 43



	Conclusions and outlook

