
Finite Elements with Switch Detection (FESD) for numerical
optimal control of Fillipov systems

Armin Nurkanović
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Nonsmooth Dynamics (NSD) - a classification

Regard ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).
Distinguish three cases:

NSD1: non-differentiable RHS, e.g., ẋ = 1 + |x|

NSD2: state dependent switch of RHS, e.g., ẋ = 2− sign(x)

NSD3: state dependent jump, e.g., bouncing ball, v(t+) = −0.9 v(t−)
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Overview
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PSS - piecewise smooth systems; DCS - dynamic complementarity system; OCP - optimal control problem; FESD - finite elements
with switch detection; MPCC - mathematical program with complementarity constraints ; NLP - nonlinear program

Toolchain implemented in our open-source package NOSNOC
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Overview - Piecewise smooth and Filippov systems
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NSD2 Systems - state dependent switches

Regard discontinuous right-hand side, piecewise smooth on disjoint open regions Ri ⊂ Rnx

Discontinuous ODE (NSD2)

ẋ = fi(x, u), if x ∈ Ri,

i ∈ {1, . . . , nf}

Numerical aims:

1. exactly detect switching times

2. obtain exact sensitivities across regions

3. appropriately treat evolution on boundaries
(sliding mode → Filippov convexification)
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Filippov Convexification

Dynamics not yet well-defined on region boundaries ∂Ri. Idea by A.F. Filippov (1923-2006):
replace ODE by differential inclusion, using convex combination of neighboring vector fields.

Filippov Differential Inclusion

ẋ ∈ FF(x, u) :=
{ nf∑

i=1

fi(x, u) θi

∣∣∣ nf∑
i=1

θi = 1,

θi ≥ 0, i = 1, . . . nf ,

θi = 0, if x /∈ Ri

}
Aleksei F. Filippov
(1923-2006)

image source: wikipedia

▶ for interior points x ∈ Ri nothing changes: FF(x, u) = {fi(x, u)}
▶ Provides meaningful generalization on region boundaries.

E.g. on R1 ∩R2 both θ1 and θ2 can be nonzero
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How to compute convex multipliers θ?
Answer in a remarkable paper by David E. Stewart from 1990
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How to compute convex multipliers θ?

Assume sets Ri given by [cf. Stewart, 1990]

Ri =
{
x ∈ Rn

∣∣gi(x) < minj ̸=i gj(x)
}

Linear program (LP) Representation

ẋ =

nf∑
i=1

fi(x, u) θi with

θ ∈ arg min
θ̃∈Rnf

nf∑
i=1

gi(x) θ̃i

s.t.

nf∑
i=1

θ̃i = 1

θ̃ ≥ 0

Note that the boundary between Ri and Rj is defined by {x ∈ Rn | 0 = gi(x)− gj(x)}.
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From Filippov to dynamic complementarity systems
Using the KKT conditions of the parametric LP

LP representation

ẋ = F (x, u) θ

with θ ∈ argmin
θ̃∈Rnf

g(x)⊤θ̃

s.t. 0 ≤ θ̃

1 = e⊤θ̃

where

F (x, u) := [f1(x, u), . . . , fnf
(x, u)] ∈ Rnx×nf

g(x) := [g1(x), . . . , gnf
(x)]⊤ ∈ Rnf

e := [1, 1, . . . , 1]⊤ ∈ Rnf

Express equivalently by optimality conditions:

Dynamic Complementarity System (DCS)

ẋ = F (x, u) θ (1a)

0 = g(x)− λ− eµ (1b)

0 ≤ θ ⊥ λ ≥ 0 (1c)

1 = e⊤θ (1d)

Compact notation

ẋ = F (x, u) θ

0 = GLP(x, θ, λ, µ),

▶ µ ∈ R and λ ∈ Rnf are Lagrange
multipliers

▶ (1c) ⇔ min{θ, λ} = 0 ∈ Rnf

▶ Together, (1b), (1c), (1d) determine the
(2nf + 1) variables θ, λ, µ uniquely
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ẋ = F (x, u) θ

with θ ∈ argmin
θ̃∈Rnf

g(x)⊤θ̃

s.t. 0 ≤ θ̃

1 = e⊤θ̃

where

F (x, u) := [f1(x, u), . . . , fnf
(x, u)] ∈ Rnx×nf

g(x) := [g1(x), . . . , gnf
(x)]⊤ ∈ Rnf

e := [1, 1, . . . , 1]⊤ ∈ Rnf

Express equivalently by optimality conditions:

Dynamic Complementarity System (DCS)
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Interpretation of the DCS multipliers

DCS

ẋ = F (x, u) θ

0 = gi(x)− λi − µ, i = 1, . . . , nf

0 ≤ θ ⊥ λ ≥ 0

1 = e⊤θ

▶ If x ∈ Ri, then θi > 0, λi = 0 (from
complementarity)

▶ λi = gi(x)− µ (from ∇xL(x, λ, µ) = 0)

▶ µ = minj gj(x) (from definition of Ri)

▶ λi = gi(x)−minj gj(x) continuous functions!

▶ At switch λi = λj = 0 =⇒ gi(x)− gj(x) = 0
(region boundary)
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Step function representation

Step representation

ẋ = F (x, u) θ

0 = GStep(x, θ, α, λ),

▶ similar properties as
Stewart’s representation

▶ with some modifications -
FESD applicable

▶ more practical for some
region shapes
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Step function representation

Step representation
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Overview - Finite Elements with Switch Detection
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Optimal control needs to solve Nonlinear Programs (NLPs)

Original optimal control problem
in continuous time

min
x(·),u(·),

θ(·),λ(·),µ(·)

∫ T

0

L(x, u)dt+ E(x(T ))

s.t. x(0) = x̄0

ẋ(t) = F (x(t), u(t)) θ(t)

0 = GLP(x(t), θ(t), λ(t), µ(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

Assume smooth (convex) L,E, h, r
Nonsmooth dynamics make problem
nonconvex
Direct methods discretize, then optimize
E.g., collocation or multiple shooting

Goal: discretized optimal control problem
(an NLP)

min
x,z,u

∑N−1
k=0 ΦL(xk, zk, uk) + E(xN )

s.t. x0 = x̄0

xk+1 = Φdif
f (xk, zk, uk)

0 = Φalg
f (xk, zk, uk)

0 ≥ Φh(xk, zk, uk), k = 0, . . . , N−1

0 ≥ r(xN )

Smooth convex ΦL, E,Φh, r
Variables x = (x0, . . .), z = (z0, . . .) and
u = (u0, . . . , uN−1) summarized in vector
w ∈ Rnw

Nonsmooth Φalg
f
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Conventional discretization by Implicit Runge Kutta (IRK) method

Continuous time DCS

x(0) = x̄0,

ẋ(t) = v(t)

v(t) = F (x(t), u(t)) θ(t)

0 = g(x(t))− λ(t)− eµ(t)

0 ≤ θ(t) ⊥ λ(t) ≥ 0

1 = e⊤θ(t), t ∈ [0, T ]

Discrete time IRK-DCS equation

x0,0 = x̄0, xk+1,0 = xk,0 + h
∑s

n=1 bnvk,n

xk,j = xk,0 + h
∑s

n=1 ajnvk,n

vk,j = F (xk,j , uk,j) θk,j

0 = g(xk,j)− λk,j − eµk,j

0 ≤ θk,j ⊥ λk,j ≥ 0

1 = e⊤θk,j , j = 1, . . . , s, k = 0, . . . , N − 1

Notation: xk,r ∈ Rnx , θk,r ∈ Rm etc. with:

▶ k ∈ {0, 1, . . . , N} - index of integration step; step length h := T/N

▶ j, n ∈ {0, 1, . . . , s} - index of intermediate IRK stage / collocation point

▶ ajn and bn - Butcher tableau entries of Implicit Runge Kutta method
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Direct optimal control with a standard IRK discretization
Tutorial example inspired by [Stewart & Anitescu, 2010]

Continuous-time OCP

min
x(·)∈C0([0,2])

∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− sign(x(t)), t ∈ [0, 2]

Free initial value x(0) is the effective degree
of freedom.
Denote by V∗(x0) the nonsmooth objective
value for the unique feasible trajectory
starting at x(0) = x0.

Equivalent reduced problem

min
x0∈R

V∗(x0)

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8
1.5

1.6

1.7

1.8

1.9

x0
O
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Direct optimal control with a standard IRK discretization
Tutorial example inspired by [Stewart & Anitescu, 2010]

(another remarkable paper by D. Stewart)

▶ discretize the OCP with standard IRK
for DCS

▶ numerical sensitivities wrong
independent of the step-size

▶ smoothing works only if step-size smaller
than smoothing parameter
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Direct optimal control with a standard IRK discretization
Tutorial example inspired by [Stewart & Anitescu, 2010]

−2 −1.5 −1
1.5
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1.7

1.8
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x0
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VStd(x0)

V∗(x0)

−2 −1.5 −1
−2

−1.5

−1

−0.5

x0

x
∗ 0

Standard - Fixed
Standard - Homotopy
Analytic Solution

▶ Spurious local minima, optimizer gets trapped close to initialization

▶ Sensitivity correct if step-sizes smaller than smoothing parameter [Stewart & Anitescu,
2010] =⇒ homotopy improves convergence

▶ Still, at best O(h) accuracy can be expected
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Conventional Collocation - illustrative example

Regard example with x ∈ R2 and
constants a, k, c > 0:

ẋ =

{
f1(x), x1 > 0,

f2(x), x1 < 0.

f1(x) =

x2

−a

 , f2(x) =

 x2

−kx1 − cx2


g1(x) = −x1,

g2(x) = x1,

x̄0 = [0.5 , 0]⊤.

Solve with IRK Radau IIA method of order 7
s = 4, N = 5, T = 0.5, h = 0.1

0 0.1 0.2 0.3 0.4 0.5
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
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Conventional Collocation - illustrative example
Zoom in

0 0.1 0.2 0.3 0.4 0.5
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42
-3.4

-3.2

-3

-2.8

-2.6

-2.4

-2.2

High integration accuracy of 7th order IRK method is lost in fourth time step.
Reason: we try to approximate a nonsmooth function by a (smooth) polynomial.

Question: could we ensure that switches happen only at element boundaries?
→ Finite Elements with Switch Detection (FESD)
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Finite Elements with Switch Detection (FESD)
L-CSS 2022 & submitted to Num. Math.

FESD is a novel DCS discretization method based on three ideas:

▶ make stepsizes hk free, ensure
∑N−1

k=0 hk = T [cf. Baumrucker & Biegler, 2009]

▶ allow switches only at element boundaries, enforce via cross-complementarities

▶ remove spurious degrees of freedom via step equilibration
Example revisited: comparison of the two schemes 

Unrestricted | © Siemens 2021 | Nurkanović | 6.7.2021| Internal Workshop on Control, Estimation, Learning and Optimization

Standard collocation Variable finite elements 

Page 31

conventional
discretization

Not covered today: ensure piecewise equidistant gird 

Unrestricted | © Siemens 2021 | Nurkanović | 6.7.2021| Internal Workshop on Control, Estimation, Learning and Optimization

With step-size regularization Without step-size regularization

Page 34

variable stepsizes and
cross-complementarities

Not covered today: ensure piecewise equidistant gird 

Unrestricted | © Siemens 2021 | Nurkanović | 6.7.2021| Internal Workshop on Control, Estimation, Learning and Optimization

With step-size regularization Without step-size regularization

Page 34

FESD discretization
with step equilibration
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Conventional DCS and FESD discretization without step equilibration

Conventional discretization

x0,0 = x̄0, h = T/N

xk+1,0 = xk,0 + h
∑s

n=1 bnvk,n

xk,j = xk,0 + h
∑s

n=1 ajnvk,n

vk,j = F (xk,j , uk,j) θk,j

0 = g(xk,j)− λk,j − eµk,j

0 ≤ θk,j ⊥ λk,j ≥ 0

1 = e⊤θk,j

for j = 1, . . . , s

and k = 0, . . . , N − 1

FESD discretization without step equilibration

x0,0 = x̄0,
∑N−1

k=0 hk = T

xk+1,0 = xk,0 + hk

∑s
n=1 bnvk,n

xk,j = xk,0 + hk

∑s
n=1 ajnvk,n

vk,j = F (xk,j , uk,j) θk,j

0 = g(xk,j′)− λk,j′ − eµk,j′

0≤ θk,j ⊥ λk,j′ ≥ 0 (cross-complementarities)

1 = e⊤θk,j

for j = 1, . . . , s and k = 0, . . . , N−1

and j′ = 0, 1, . . . , s

▶ N extra variables (h0, . . . , hN−1) restricted by one extra equality

▶ additional multipliers λk,0, µk,0 are uniquely determined
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Conventional DCS and FESD discretization with step equilibration

Conventional discretization

x0,0 = x̄0, h = T/N

xk+1,0 = xk,0 + h
∑s

n=1 bnvk,n

xk,j = xk,0 + h
∑s

n=1 ajnvk,n

vk,j = F (xk,j , uk,j) θk,j

0 = g(xk,j)− λk,j − eµk,j

0 ≤ θk,j ⊥ λk,j ≥ 0

1 = e⊤θk,j

for j = 1, . . . , s

and k = 0, . . . , N − 1

FESD discretization with step equilibration

x0,0 = x̄0,
∑N−1

k=0 hk = T

xk+1,0 = xk,0 + hk

∑s
n=1 bnvk,n

xk,j = xk,0 + hk

∑s
n=1 ajnvk,n

vk,j = F (xk,j , uk,j) θk,j

0 = g(xk,j′)− λk,j′ − eµk,j′

0≤ θk,j ⊥ λk,j′ ≥ 0 (cross-complementarities)

1 = e⊤θk,j

0 = ν(θk′ , θk′+1, λk′ , λk′+1) · (hk′−hk′+1)

for j = 1, . . . , s and k = 0, . . . , N−1

and j′ = 0, 1, . . . , s and k′ = 0, . . . , N−2

▶ N extra FESD variables (h0, . . . , hN−1) now locally uniquely determined by N constraints

▶ Indicator function ν(θk′ , θk′+1, λk′ , λk′+1) only zero if a switch occurs
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Multipliers in conventional and FESD discretization

Conventional Collocation: FESD Discretization:

Example revisited: comparison of the two schemes- algebraic variables

Unrestricted | © Siemens 2021 | Nurkanović | 6.7.2021| Internal Workshop on Control, Estimation, Learning and Optimization

Standard collocation Variable finite elements 

Page 33

FESD’s cross-complementarities exploit the fact that the multiplier λi(t) is continuous in time
On boundary, λi(tk) must be zero if θi(t) > 0 for any t ∈ [tk−1, tk+1] on the adjacent intervals
This implicitly imposes the constraint gi(xk)− gj(xk) = 0
=⇒ hk adapts for exact switch detection
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Optimal control example: solution trajectory with 3 sliding modes

The uniform grid formulation

Unrestricted | © Siemens 2021 | Nurkanović | 6.7.2021| Internal Workshop on Control, Estimation, Learning and Optimization

True switches False alarmRegard the following OCP

Page 55
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Numerical solution without equilibration

Indicator function over time: Step size over time:Uniform grid reformulation 

Unrestricted | © Siemens 2021 | Nurkanović | 6.7.2021| Internal Workshop on Control, Estimation, Learning and OptimizationPage 58

The optimizer varies the step-size in random way
and plays too much with the accuracy

Optimizer varies step size randomly, potentially playing with integration errors.
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Numerical solution with equilibration

Indicator function over time: Step size over time:
Uniform grid reformulation 

Unrestricted | © Siemens 2021 | Nurkanović | 6.7.2021| Internal Workshop on Control, Estimation, Learning and OptimizationPage 59

We have a step-size change only at switches if we add the 
step-size penalty term

Equidistant grid on each ”switching stage”. Jumps exactly at switching times.
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Summary of theoretical results
Submitted to Num. Mat, arXiv:2205.05337

1. Convergence of the FESD method to a Filippov solution of the underlying system with
accuracy O(hp) is proven. Here, p is the order of the underlying smooth IRK scheme.

2. Convergence of numerical sensitivities to the true value with O(hp) is given.
The Stewart & Anitescu problem is resolved.

3. An FESD problem needs to solve a nonlinear complementarity problem (NCP) to advance
the integration. The solutions of these NCP are locally unique.
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Numerical simulation example: unstable switched oscillator

Regard an unstable nonsmooth oscillator

ẋ(t) =

{
A1x, c(x) < 0,

A2x, c(x) > 0,

with

A1 =

 1 ω

−ω 1

 , A2 =

 1 −ω

ω 1

 ,

c(x) = x2
1 + x2

2 − 1, ω = 2π, x(0) = [e−1 0]⊤
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FESD recovers high integration order for switched systems

Standard vs. FESD

10−2 10−1
10−15
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E
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Midpoint Rule 2
Gauss-Legendre 4
Gauss-Legendre 6
Gauss-Legendre 8
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10−15

10−10

10−5

100

h

Integration error E(T ) at time T = π/2 vs. step-size h, for different IRK methods.
FESD discretization delivers versatile MPCC formulation with high integration order
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Revisiting the OCP example - now with FESD
Tutorial example inspired by [Stewart & Anitescu, 2010]

Continuous-time OCP

min
x(·)∈C0([0,2])

∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− sign(x(t)), t ∈ [0, 2]

Free initial value x(0) is the effective degree
of freedom.
Denote by V∗(x0) the nonsmooth objective
value for the unique feasible trajectory
starting at x(0) = x0.

Equivalent reduced problem

min
x0∈R

V∗(x0)
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Revisiting the OCP example - now with FESD
Tutorial example inspired by [Stewart & Anitescu, 2010]
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x0

x
∗ 0

Standard - Fixed
Standard - Homotopy
FESD - Fixed
FESD - Homotopy
Analytic Solution

▶ No spurious local minima, correct sensitivities

▶ Convergence to the ”true” local minima, both with homotopy and without it

▶ In contrast to the standard approach with accuracy O(h), now we have O(hp)

▶ FESD resolves the accuracy and convergence issues
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Overview - Solving discrete-time OCPs

PSS (NSD2) DCS

Dyn. sys
with state
jumps
(NSD3)

OCP MPCC

NLP

solution

user
input

time-freezing

Stewart
or Step

FESD

relaxation

homotopy
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Optimal control needs to solve Nonlinear Programs (NLPs)

Original optimal control problem
in continuous time

min
x(·),u(·),

θ(·),λ(·),µ(·)

∫ T

0

L(x, u)dt+ E(x(T ))

s.t. x(0) = x̄0

ẋ(t) = F (x(t), u(t)) θ(t)

0 = GLP(x(t), θ(t), λ(t), µ(t)),

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

Assume smooth (convex) L,E, h, r
Nonsmooth dynamics make problem
nonconvex
Direct methods discretize, then optimize
E.g., collocation or multiple shooting

Discretized optimal control problem
(an MPCC)

min
x,z,u

∑N−1
k=0 ΦL(xk, zk, uk) + E(xN )

s.t. x0 = x̄0

xk+1 = Φdif
f (xk, zk, uk)

0 = Φalg
f (xk, zk, uk)

0 ≥ Φh(xk, zk, uk), k = 0, . . . , N−1

0 ≥ r(xN )

Smooth convex ΦL, E,Φh, r
Variables x = (x0, . . .), z = (z0, . . .) and
u = (u0, . . . , uN−1) summarized in vector
w ∈ Rnw

Nonsmooth Φalg
f , complementarity constraints
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Nonlinear Programs (NLP)

Newton-type methods generate a sequence w0, w1, w2, . . . by linearizing and solving convex
subproblems.

Summarized NLP

min
w∈Rnw

J(w)

s.t. 0 = F (w)

0 ≥ H(w)

Still assume smooth convex J,H.
Nonlinear F makes problem nonconvex.

NLP with Complementarity Constraints

min
w∈Rnw

J(w)

s.t. 0 = F (w)

0 ≥ H(w)

0 ≤ G1(w) ⊥ G2(w) ≥ 0

There is significant nonconvex and nonsmooth
structure in the NLP.
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Mathematical Programs with Complementarity Constraints (MPCC)

NLP with additional constraints of complementarity type: x ⊥ y ⇔ x⊤y = 0

MPCC as an NLP

min
w∈Rnw

J(w)

s.t. 0 = F (w)

0 ≥ H(w)

0 ≤ G1(w)

0 ≤ G2(w)

0 ≥ G1(w)
⊤G2(w)

Convex J,H and smooth F .
Smooth G1, G2.

-0.5 0 0.5 1 1.5 2 2.5
-0.5

0
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1

1.5

2

2.5
Toy MPCC example:

min
w∈R2

(w1 − 1)2 + (w2 − 1)2

s.t. 0 ≤ w1 ⊥ w2 ≥ 0

Two local minimizers.
One local maximizer
(without constraint
qualification)

Due to complementarity constraints, MPCC are nonsmooth and nonconvex.
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MPCC solution by relaxation and homotopy

The homotopy MPCC approach [cf. Ferris 1999, Ralph&Wright 2004] generates sequence
w∗

0 , w
∗
1 , w

∗
2 , . . . by solving NLPs with decreasing σ0 > σ1 > σ2 > . . ., and NLP warm-starting.

Penalty subproblem for weight 1/σj

min
w∈Rnw

J(w) +
1

σj
G1(w)

⊤G2(w)

s.t. 0 = F (w)

0 ≥ H(w)

0 ≤ G1(w)

0 ≤ G2(w)

Need good NLP solver (SCP, SQP, Interior
Point, ...)

Relxed subproblem for parameter σj

min
w∈Rnw

J(w)

s.t. 0 = F (w)

0 ≥ H(w)

0 ≤ G1(w)

0 ≤ G2(w)

σj ≥ G1(w)
⊤G2(w)

Crucial: start NLP solver at previous
solution w∗

j−1.

One can often find ”good” local minima with the homotopy method.
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NOSNOC: NOnSmooth Numerical Optimal Control
The whole tool chain is available in our open-source package NOSNOC

PSS (NSD2) DCS

Dyn. sys
with state
jumps
(NSD3)

OCP MPCC

NLP

solution

user
input

time-freezing

Stewart
or Step

FESD

relaxation

homotopy

NOSNOC: https://github.com/nurkanovic/nosnoc
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NOSNOC: NOnSmooth Numerical Optimal Control
Open-source package based on MATLAB, CasADi and IPOPT

Key features

1. automatic reformulation of systems with state jumps into switched systems via the
time-freezing reformulation

2. automatic discretization of the OCP via FESD (high accuracy)

3. solution methods for the resulting discrete-time OCP via continuous optimization in a
homotopy (no integers)

NOSNOC: https://github.com/nurkanovic/nosnoc
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OCP example
Benchmark example with entering/leaving sliding mode

OCP with sliding modes

min
x(·),u(·)

∫ 4

0

u(t)⊤u(t) + v(t)⊤v(t) dt

s.t. x(0) = (
2π

3
,
π

3
, 0, 0)

ẋ(t) =

−sign(c(x(t))) + v(t)

u(t)


− 2e ≤ v(t) ≤ 2e

− 10e ≤ u(t) ≤ 10e t ∈ [0, 4],

q(T ) = (−π

6
,−π

4
)

States q, v ∈ R2 and control u ∈ R2,
x = (q, v)

Switching functions c(x) =

q1 + 0.15q22

0.05q31 + q2



−2 −1 0 1 2

−1

0

1

q1
q
2

q(t)

c1(x) = 0

c2(x) = 0
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FESD vs standard IRK - number of function evaluations
Benchmark on an optimal control problem with nonlinear sliding modes
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Radau-IIA-FESD Radau-IIA-Std
Lobatto-IIIC-FESD Lobatto-IIIC-Std
Gauss-Legendre-FESD Gauss-Legendre-Std
Explicit-RK-FESD Explicit-RK-Std

Terminal constraint satisfaction vs. number of stage points
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FESD vs standard IRK - CPU Time
Benchmark on an optimal control problem with nonlinear sliding modes
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Terminal constraint satisfaction vs. CPU time
FESD one million times more accurate than Std. for CPU time of ≈ 2 s
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Conclusions and outlook

Conclusions

▶ Finite Elements with Switch Detection (FESD) allow highly accurate simulation and
optimal control for nonsmooth systems of level NSD2

▶ FESD resolves many of the issues that standard methods have: integration accuracy,
convergence of sensitivities

▶ Main difficulty: solving the Mathematical Programs with Complementarity Constraints
(MPCC)

Outlook

▶ Improve on MPCC methods, test other existing relaxation methods (work in progress,
soon available in NOSNOC)

▶ Properties of FESD-MPCC solutions. Are all stationary points strongly stationary points?

▶ Combinatorial methods for MPCC arising in nonsmooth optimal control

▶ Efficient NCP solvers for FESD subproblems
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Thank you very much for your attention!
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