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Abstract

The Finite Elements with Switch Detection (FESD) is a high-accuracy method for the numerical simulation
and solution of optimal control problems subject to discontinuous ODEs. In this article, we extend the FESD
method [35] to the dynamic equations of multiple rigid bodies that exhibit state jumps due to impacts and
Coulomb friction. This new method is referred to as FESD with Jumps (FESD-J). Starting from the standard
Runge-Kutta equations, we let the integration step sizes be degrees of freedom. Additional constraints are
introduced to ensure exact switch detection and to remove spurious degrees of freedom if no switches occur.
Moreover, at the boundaries of each finite element, we impose the impact equations in their complementarity
form, at both the position and velocity level. They compute the normal and tangential impulses in case of
contact making. Otherwise, they are reduced to the continuity conditions for the velocities. FESD-J treats
multiple contacts, where each contact can have a different coefficient of restitution and friction. All methods
introduced in this paper are implemented in the open-source software package NOSNOC [32]. We illustrate
the use of FESD-J in both simulation and optimal control examples.

Keywords: nonsmooth mechanics, numerical optimal control, numerical simulation, hybrid systems

1. Introduction & related work

When perfectly rigid bodies get into contact the normal velocities must immediately jump to a non-
negative value to avoid interpenetration. Moreover, Coulomb friction models introduce at the same time
jumps in the tangential directions. Another source of nonsmoothness are frictional slip-stick transitions.
The rigidity and Coulomb friction modeling assumptions simplify the description of the microscopic event of
contact and reduce its macroscopic parametrization to only two parameters: the coefficient of restitution and
friction. However, the nonsmoothness complicates the numerical treatment of such systems in simulation
and optimal control.

In this paper, we propose an equation-based event-driven method for nonsmooth rigid bodies models,
which can be seamlessly used in direct transcription methods of Optimal Control Problems (OCPs). The
method does not need a zero-finding or mode selection procedure, typically used in event-driven methods.
The proposed method has the same accuracy that the underlying Runge-Kutta methods have for smooth
ODEs and DAEs.

For simulating such systems the usual choice are (semi-)implicit Euler time-stepping methods that require
solving a Linear Complementarity Problem (LCP) at each time step. These methods are known for their
stability, ease of use, and ability to handle a large number of contacts [1, 20, 19, 27, 28, 5, 44]. However,
they are limited to first-order accuracy, even in the absence of contacts. Moreover, they approximate the
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nonlinear friction cone with a polyhedral cone. One of the first numerical methods in this class is the Jean-
Moreau time-stepping scheme [20, 19, 27, 28]. It treats the unilateral constraints on velocity level and uses
Newton’s impact law. The Schatzman–Paoli [37, 36] scheme deals directly with the inequality constraints
at the position level. Similar widely used methods are the Anitescu-Potra method (at velocity level) [5] and
the Stewart-Trinkle method (at position level) [47]. A general convergence result of time-stepping methods
was provided by Stewart [43]. Several modifications have been made to these methods, such as those to
handle stiff systems [4] or to improve computational efficiency by solving convex quadratic programs instead
of LCPs [3]. A comprehensive review of time-stepping methods can be found in [48]. Event-driven methods
are less commonly used in the simulation of rigid bodies, cf. [1] for an overview. Moreover, they are not
practical for discretizing optimal control problems due to their external switch-detection procedure, which
cannot easily be incorporated into a direct transcription method.

In direct methods, a continuous time Optimal Control Problem (OCP) is first discretized and one obtains
a finite-dimensional Nonlinear Program (NLP). The ultimate goal of the methods presented in this paperis
to solve optimal control problems subject to nonsmooth rigid body dynamics via direct methods. In the
past two decades, so-called contact-implicit trajectory optimization received a lot of attention in the robotics
community. Trajectory optimization problems subject to such dynamics result in nonsmooth OCPs, where
the contact sequence of the rigid bodies is discovered fully implicitly. Usually, a direct approach is taken to
solve these OCPs. One of the first works to do so is by Posa and Tedrake [39]. They use an implicit Euler
discretization [47, 5] for the discretization and solve the MPCC with an SQP method. Similar approaches
with different (possibly smoothed) contact models, adapted time-stepping methods, and MPCC solution
strategies are presented in [11, 13, 18, 26, 49], to name a few. The recent survey [51] provides a broad
overview of the use of optimization in legged locomotion.

Numerical sensitivities are crucial for the success of direct optimal control, where the NLPs are solved with
Newton-type methods. However, most time-stepping methods and physics engines based on them provide
in general wrong sensitivities [52]. This is no surprise since the same issues arise in the time-discretization of
discontinuous ODEs [35, 46]. Besides the low accuracy, this can lead the solver to get stuck at artificial local
minima arbitrarily close to the initialization point. However, the approaches sometimes lead to practically
satisfying results, since optimization with wrong derivatives still can yield feasible solutions [8]. Moreover,
during the solution process, the discretized OCP is smoothed explicitly or implicitly, which improves the
convergence in the early iterates [46, 31].

In the case of ODEs with a discontinuous r.h.s., these difficulties can be overcome with the Finite
Elements with Switch Detection (FESD) method [32, 33, 35]. In this method, inspired by Baumrucker
and Biegler [7], the integration step sizes hk are degrees of freedom. Additional cross complementarity
conditions are introduced that ensure exact switch detection. If no switches occur there are spurious degrees
of freedom are removed by so-called step equilibration conditions. However, FESD cannot be applied directly
to rigid body systems with state jumps. One solution is to use the time-freezing reformulation [34, 30, 17],
which transforms rigid bodies with friction and impact models into ODEs with a discontinuous r.h.s., with
a continuous solution on a different time domain. The FESD method can be applied to systems obtained
by the time-freezing reformulation and recover the exact solution and thereby overcome the issues of low
accuracy and wrong sensitivities. In this paper, we propose an extension to the FESD method, which we
call FESD-J, that can be directly applied to the nonsmooth systems with state jumps without the use of
the time-freezing reformulation.

The works most similar to the present paper are [38, 41]. In [38], the authors consider an orthogonal
collocation discretization for rigid bodies with inelastic impacts and friction. Inspired by [7], they also let
the step sizes be degrees of freedom and introduce cross complementarity-type constraints, which allow
switching only at the finite element boundaries. Continuity conditions are imposed on the velocity variables
for two adjacent finite elements, and the state jumps are essentially treated within a single finite element that
approximates the entire impacting impulse. The error introduced by this approximation shrinks with element
size. Therefore, the length of this element must be sufficiently close to zero to recover high discretization
accuracies. However, there is no guarantee that the optimizer will always choose an appropriate value. In
[41], the same group improves this approach by imposing impulse equations in a complementarity form at the
element boundaries, which allows discontinuous approximations of the velocity. Both elastic and inelastic
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impacts are treated. However, it is not clear how state jumps in the tangential directions due to friction
are treated in this work. In addition, in the 3D case, they use a polyhedral approximation for the friction
cone [47]. In [41], only Gauss-Legendre implicit RK methods are regarded, which are known to have lower
accuracy than L-stable methods such as Radau II-A for DAEs of index 3 [15], e.g., during persistent contact
motion phases.

Contributions. In this paper, we introduce the FESD-J method, which extends the FESD method [35, 32,
33] to rigid bodies with Coulomb friction and both elastic and inelastic impacts. In particular, all the
contacts can have different coefficients of restitution and friction. Moreover, in the 3D case, we consider the
exact nonlinear friction cone and do not make modeling approximations. Our method can use any Runge-
Kutta scheme and is thus more general than [38, 41]. Building on the ideas presented in [41], we derive a
complementarity form for the impact equations that can handle both normal and tangential state jumps,
enabling a discontinuous approximation of the velocity state. The impact equations are both on position and
velocity level, and additional inequality constraints exclude spurious solutions in case of contact making. We
also establish cross-complementarity conditions that ensure accurate switch detection in the case of contact
making and breaking, slip-stick transitions, or zero crossing of the tangential velocity in slip motions. Finally,
we derive step equilibration conditions that eliminate spurious degrees of freedom if no switches occur. The
presented method and its variations are implemented in the open-source toolbox NOSNOC [35]. Numerical
simulations and examples of optimal control problems are used to illustrate the effectiveness of the proposed
method.

Outline. The paper is structured as follows. Section 2 introduces the dynamic model equations for rigid
bodies subject to friction and impact. Moreover, we propose a complementarity formulation for the impact
conditions, which is convenient for event-based time discretizations. In Section 3, we introduce the novel
FESD-J method. Section 4 discusses how to use the FESD-J method in the direct transcription of optimal
control problems. Section 5 provides numerical examples. The paper finishes with Section 6, which concludes
the paper and discusses open problems.

Notation. All vector inequalities are to be understood element-wise, diag(x) ∈ Rn×n returns a diagonal
matrix with x ∈ Rn containing the diagonal entries. The concatenation of two column vectors a ∈ Rna ,
b ∈ Rnb is denoted by (a, b) := [a⊤, b⊤]⊤, the concatenation of several column vectors is defined analogously.
The complementary conditions for two vectors a, b ∈ Rn read as 0 ≤ a ⊥ b ≥ 0, where a ⊥ b means a⊤b = 0.
The superscript i denotes the contact index, e.g., J i

n(q) is the contact normal of the i-th contact. The
subscripts ”n” and ”t” highlight if a variable or function is related to normal or tangential quantities.
For the left and the right limits, we use the notation x(t+s ) = lim

t→ts, t>ts
x(t) and x(t−s ) = lim

t→ts, t<ts
x(t),

respectively. The identity matrix is denoted by I ∈ Rn×n and a column vector with all ones is denoted by
e = (1, 1, . . . , 1) ∈ Rn, their dimension is clear from the context. With 0m,n ∈ Rm×n we denote a matrix
whose entries are all zeros.

2. Problem formulation

In this section, we introduce the equations of motion for rigid bodies with impacts and Coulomb friction.
Subsection 2.1 introduces the complementarity Lagrangian system. In Subsection 2.2, we modify the basic
equations of motion and in Subsection 2.3 we discuss the complementarity formulation of the Coulomb
friction model. We finish this section by deriving the impulse equations in a convenient complementarity
form. Our modifications pave the way for deriving the FESD-J method.

2.1. The complementarity Lagrangian system

There are many ways to represent nonsmooth rigid body systems, e.g., as second-order sweeping process
[9, 27, 28], measure differential inclusion [9, 44, 45], hybrid dynamical system [21, 25], differential variational
inequalities of index 2 [44, 45] or Complementarity Lagrangian System (CLS) [1, 9, 45]. In this paper,
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we focus on the CLS representation, which is the usual choice in the development of time-discretization
methods. The CLS model equations with friction read as:

q̇ = v, (1a)

M(q)v̇ = fv(q, v) +Bu(q)u+

nc∑
i=1

(J i
n(q)λ

i
n + J i

t(q)λ
i
t), (1b)

0 ≤ λin ⊥ f ic(q) ≥ 0, i = 1, . . . , nc, (1c)

0 = J i
n(q(ts))

⊤(v(t+s ) + ϵirv(t
−
s )), if f ic(q(ts)) = 0 and J i

n(q(ts))
⊤v(t−s ) < 0, i = 1, . . . , nc, (1d)

λit ∈ arg min
λ̃i
t∈Rnt

−v⊤J i
t (q)λ̃

i
t s.t. ∥λ̃it∥2 ≤ µiλin, i = 1, . . . , nc. (1e)

For ease of notation, we omitted the time dependencies in the differential and algebraic states. The matrix
M(q) ∈ Rnq×nq is the inertia matrix and is assumed to be symmetric positive definite. The differential state
are the generalized coordinates q(t) ∈ Rnq and generalized velocities v(t) ∈ Rnq . The function fv(q, v) ∈ Rnq

collects gravitational, Coriolis, and all other external forces. The matrix B(q) ∈ Rnq×nu is the control input
mapping and we assume that the generalized control force u(t) ∈ Rnu is known, e.g., obtained by solving
an Optimal Control Problem (OCP).

We say that we have nc possible frictional contacts indexed by i, which are modeled by the unilateral
constraints f ic(q) ≥ 0, i = 1, . . . , nc. The smooth scalar functions f ic(q) represent the signed distances.
Consequently, we have the generalized normal contact forces, λin ∈ R, and tangential contact forces, λit ∈
Rnt , acting on the rigid body. For planar contacts we have nt = 1 and for 3D contacts nt = 2. All
algebraic variables are grouped into the vectors λ = (λn, λt) ∈ Rnc(1+nt), where λn = (λ1n, . . . , λ

nc
n ) and

λt = (λ1t , . . . , λ
nc
t ).

The complementarity constraint (1c) expresses for every contact that: either the body is not in contact
(f ic(q) > 0) and there is no normal contact force (λin = 0), or the body is in contact (fc,i(q) = 0) and
a nonnegative normal contact force (λin ≥ 0, i.e., there is no adhesion) acts along the surface contact
normal J i

n(q) := ∇qf
i
c(q) ∈ Rnq . Whenever a contact becomes active with a respective negative normal

velocity J i
n(q)

⊤v < 0, then a state jump must occur to avoid interpenetration. This is expressed with
(1d), where the first part is Newton’s restitution law, which expresses the post-impact normal velocity
J i
n(q(ts))

⊤v(t+s ) = ϵirJ
i
n(q(ts))

⊤v(t−s ) ≥ 0, as a function of the pre-impact velocity. The scalar ϵir ∈ [0, 1] is
the coefficient of restitution of the i-th contact. For ϵir = 0 we speak of inelastic impacts and for ϵir > 0 of
(partially) elastic impacts.

The last part of the CLS is the Coulomb friction model expressed via the convex optimization prob-
lem (1e). The friction force of the i-th contact acts in the tangent space at the contact point, which is
spanned by the tangent Jacobian J i

t(q) ∈ Rnq×nt . It models the maximum dissipation principle, which
expresses that the friction force λit is chosen such that it maximizes the energy dissipation. This friction law
has the following features:

� the friction force has the opposite direction to the tangential slip direction J i
t(q)

⊤v

� the maximal magnitude of the friction force λit is the product of µi, the coefficient of friction of the
i-th contact, and the normal contact force λin.

Note that if we have nonzero tangential velocity, i.e., J i
t(q)

⊤v ̸= 0, then ∥λit∥2 = µλin (slip motion phase) and
for J i

t(q)
⊤v = 0, we have ∥λit∥2 ≤ µλin (stick phase). The friction model is another source of nonsmoothness.

Note that extensions to anisotropic friction are straightforward if we replace the Euclidian norm in (1e) with
an appropriately weighted norm.

The set of all possible contact forces at the i-th contact is called the friction cone and is defined as

FCi(q) = {J i
n(q)λ

i
n + J i

t(q)λ
i
t | λin ≥ 0, ∥λit∥2 ≤ µλin}.
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The total friction cone is the sum of all friction cones generated by each contact:

FC(q) =
∑

i∈{j|fc,j(q)=0}

FCi(q).

We assume that the functions M(q), fv(q, v), B(q), fc(q), J
i
n(q) and J

i
t(q) are at least twice continuously

differentiable. We proceed by reformulating some parts of (1) to obtain a formulation more suitable for
discretization via the FESD-J method presented below.

2.2. Modified equations of motion

For ease of notation, we rewrite the velocity dynamics equation as

v̇ = Fv(q, v, u, λ) :=M(q)−1(fv(q, v) +Bu(q)u+

nc∑
i=1

(J i
n(q)λ

i
n + J i

t(q)λ
i
t)) (2)

In general, it might be costly to symbolically invert the matrix M(q). Alternatively, one can introduce a
lifting variable zv ∈ Rnq and impose the equations:

v̇ = zv,

M(q)zv = fv(q, v) +Bu(q) u+

nc∑
i=1

(J i
n(q)λ

i
n + J i

t(q)λ
i
t),

where the inverse is computed during the numerical solution of this algebraic equation within the time-
discretization method.

2.3. Friction model

We discuss the complementarity formulations of the nonlinear friction cone model in (1e) and a commonly
used polyhedral approximation [44, 47]. In the planar cases, they are equivalent and in the 3D case, the
polyhedral cone is an approximation that can be made arbitrarily accurate.

2.3.1. Nonlinear friction cone

Let us introduce the shorthand for the tangential velocity at the i-th contact point vit := J i
t
⊤
v ∈ Rnt .

For a given normal contact force λin, the solution map of (1e) reads as:

λit ∈

{
{−µiλin

vi
t

∥vi
t∥2

}, if ∥vit∥2 > 0,

{λ̃t | ∥λ̃t∥2 ≤ µiλin}, if ∥vit∥2 = 0.
(3)

Note that in the planar case, this reduces to the well-known expression λit ∈ −µiλinsign(v
i
t). For differentia-

bility, we replace the inequality constraint in (1e) by the equivalent constraint

∥λ̃it∥22 ≤ (µiλin)
2. (4)

The KKT conditions of the modified system ((1e), now with the inequality constraint (4)) for i = 1, . . . , nc

read as:

0 = −J i
t(q)

⊤v − 2γiλit, (5a)

0 = βi − (µiλin)
2 + ∥λit∥22, (5b)

0 ≤ γi ⊥ βi ≥ 0. (5c)

where γi ∈ R is the Lagrange multiplier for (4) and βi is an auxiliary lifting variable used to remove the
nonlinearity from the complementarity condition (5c).
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If the i-th contact is active, with λin > 0, and no further impacts occur, then vit = J i
t (q)

⊤v is continuous
in time. Suppose that is λin continuous during persistent contact. By manipulating (5), we can obtain that

γi =
∥vi

t∥
2µiλi

n
, which implies that γi is also a continuous function of time. To achieve switch detection in

all cases, we will need to look at the positive and negative parts of the tangential velocity components, cf.
Section 3.3. We can obtain them by introducing the two slack variables ξi+, ξ

i
− ∈ Rnt and augmenting (5)

by:

0 = J i
t(q)

⊤v − ξi+ + ξi−, (6a)

0 ≤ ξi+ ⊥ ξi− ≥ 0. (6b)

It can be seen that ξi+ = max(0, J i
t(q)

⊤v) and ξi− = max(0,−J i
t(q)

⊤v). If no impact occurs, the tangential
velocity J i

t(q)
⊤v is a continuous but not necessarily smooth function of time. Therefore, the variables ξi+

and ξi− are also continuous functions of time. These continuity properties in the formulations above are
essential for the derivation of the FESD-J discretization for CLS and its exact switch detection capabilities.

2.3.2. Polyhedral friction cone

The nonlinear 3D friction cone is often approximated by a polyhedral cone [47], which yields a linear
programming friction model. However, the polyhedral friction cone can introduce drifting if the tangential
velocity is not aligned with some of the vectors spanning the tangent plane [42]. Regard the matrix Di(q) ∈
Rnq×nd , such that for every column dik(q) of Di(q) there exist another column vector dij(q) such that

dik(q) = −dij(q). An example choice is Di(q) =
[
J i
t(q) −J i

t(q)
]
. For a fixed λin > 0, the convex combination

of the columns of Di(q) defines a polyhedron that approximates the circle (4), for an illustration cf. [44,
Figure 2.2]. Therefore, the friction force is approximated by

nc∑
i=1

Di(q)λid ≈
nc∑
i=1

J i
t(q)λt.

The convex problem (1e) in the CLS is replaced by the linear program:

min
λi
d∈Rnd

− v⊤Di(q)λid (7a)

s.t. e⊤λid ≤ µiλin, (7b)

λid ≥ 0. (7c)

Using its KKT conditions and expressing the Lagrange multipliers for the second inequality from the sta-
tionarity conditions, we obtain for all i = 1, . . . , nc the following set of complementarity conditions:

0 ≤ λid ⊥ Di(q)
⊤
v + γide ≥ 0, (8a)

0 ≤ γid ⊥ µiλin − e⊤λid ≥ 0, (8b)

where γd ∈ R approximates the magnitude of the tangential contact velocity and is, if no impact occurs a
continuous function of time [44], whereas the functions λid do not have in general continuity properties. The
polyhedral approximation (7) is in the planar case exact. Note that in the 3D case, for a single contact, if
we have at least four columns in Di(q), Eq. (8) has more complementarity constraints than the augmented
nonlinear model (5)-(6). In the remainder of this paper, we focus on the nonlinear friction cone. The
developments for the polyhedral case follow similar lines. Implementations of both variants are available in
NOSNOC.

2.4. Impulse equations and state jump laws

The point-wise algebraic law (1d) complicates the numerical treatment of the CLS. Let us regard a single
contact and suppose for a moment that there is no friction, i.e., λt = 0 and we omit Eq. (1e) in the CLS
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model. At the time of impact, the normal contact force λin is a Dirac ”function”. If we would know that at
time ts an impact would occur at the i-th contact, to obtain the post-impact velocity v(t+s ), we can solve
the point-wise impulse equations [9]:

M(q(ts))(v(t
+
s )− v(t−s )) = J i

n(q(ts))Λ
i
n, (9a)

J i
n(q(ts))

⊤(v(t+s ) + ϵirv(t
−
s )) = 0, (9b)

where Λi
n is the normal contact impulse, i.e., the integral of the normal contact force at the impact Λi

n =

limϵ→0

∫ ts+ϵ

ts−ϵ
λin(t)dt. In the sequel, the function q(·) is always evaluated at ts and we omit this dependency

for brevity.
However, in practice, we usually do not know when and how many impacts will occur. We propose to

rewrite the impulse equations in complementarity form both at position and velocity level:

M(q)(v(t+s )− v(t−s )) = J i
n(q)Λ

i
n, (10a)

0 ≤ Λi
n ⊥ f ic(q) ≥ 0, (10b)

0 = Λi
nJ

i
n(q)

⊤(v(t+s ) + ϵirv(t
−
s )). (10c)

Note that we do not impose nonnegativity constraints on J i
n(q)

⊤(v(t+s ) + ϵirv(t
−
s )), which is usually done

when writing the impulse equation on velocity level [9]. We do this to be able to use (10) even if no contacts
happen, i.e., f ic(q) > 0. In this case, it is also possible that J i

n(q)
⊤(v(t+s ) + ϵirv(t

−
s )) < 0. This system

of equations (10) is over-determined, but still yields well-defined solutions and efficiently encodes different
impacts, as we discuss next. On the one hand, if f ic(q) > 0 (no contact), we have that Λi

n = 0, and since
the matrix M(q) is full rank, we have that the velocity stays continuous, i.e., v(t+s ) = v(t−s ). Since, Λ

i
n = 0,

equation (10c) is implicitly satisfied it does not affect the solution. On the other hand, for f ic(q) = 0, we
have from (10b) that Λi

n ≥ 0. In this case, equation (10c) helps us to determine the value of Λi
n, and we

obtain the following reduced linear system:

M(q)(v(t+s )− v(t−s )) = J i
n(q)Λ

i
n,

0 = J i
n(q)

⊤(v(t+s ) + ϵirv(t
−
s )),

that permits two solutions. First if, Λi
n > 0, then we can compute that

Λi
n = −

(
J i
n(q)

⊤M(q)−1J i
n(q)

)−1
(1 + ϵir)J

i
n(q)

⊤v(t−s ),

J i
n(q)

⊤v(t+s ) = J i
n(q)

⊤M(q)−1J i
n(q)Λ

i
n + J i

n(q)
⊤v(t−s ) ≥ 0.

Second, if Λi
n = 0, we obtain that v(t+s ) = v(t−s ). In an impacting scenario thus would imply that

J i
n(q)

⊤v(t+s ) = J i
n(q)

⊤v(t−s ) < 0. However, this would lead to the violation of f ic(q(t)) ≥ 0 for t > t+s .
Consequently, only the first solution is feasible for the overall CLS.

A similar formulation that aggregates the position and velocity constraints with the help of slack variables
is provided in [41]. For the reader’s convenience, we restate them in Appendix A.

We proceed with extending these equations to the frictional case. The normal contact impulse Λi
n results

in a tangential impulse Λi
t ∈ Rnt . Following the contact model used in [5], we require that the maximum

dissipation principle be satisfied for the contact impulses at the post-impact tangential velocity vit(t
+
s ). Using

(5), and combining it with (10), we obtain the full impact model for the i-th contact as:

M(q)(v(t+s )− v(t−s )) = J i
n(q)Λ

i
n + J i

t(q)Λ
i
t,

0 ≤ Λi
n ⊥ f ic(q) ≥ 0,

0 = Λi
nJ

i
n(q)

⊤(v(t+s ) + ϵirv(t
−
s )),

0 = −vit(t+s )− 2ΓiΛi
t,

0 = Bi − (µiΛi
n)

2 + ∥Λi
t∥22,

0 ≤ Γi ⊥ Bi ≥ 0,

7



where Γi is the Lagrange multiplier corresponding to ∥Λi
t∥2 ≤ (µiΛi

n)
2 and Bi is a lifting variable. In our

notation, all impulse-related quantities are denoted by uppercase letters. In the case of multiple simulations
impacts, the equations are simply aggregated and we obtain the impact model:

M(q)(v(t+s )− v(t−s )) =

nc∑
i=1

J i
n(q)Λ

i
n + J i

t(q)Λ
i
t, (11a)

0 ≤ Λi
n ⊥ f ic(q) ≥ 0, i = 1, . . . , nc, (11b)

0 = Λi
nJ

i
n(q)

⊤(v(t+s ) + ϵirv(t
−
s )), i = 1, . . . , nc, (11c)

0 = −vit(t+s )− 2ΓiΛi
t, i = 1, . . . , nc, (11d)

0 = Bi − (µiΛi
n)

2 + ∥Λi
t∥22, i = 1, . . . , nc, (11e)

0 ≤ Γi ⊥ Bi ≥ 0, i = 1, . . . , nc. (11f)

Note that there might be different simultaneous contact models [29] and which is used is a modeling decision.
We take this model, which is commonly used in time-stepping methods and has proven to provide physically
realistic results [3, 4, 5, 29, 44]. In a concrete application, one should always verify the physical soundness
of the produced results.

To summarize, during impacts, the position stays continuous q(t+s ) = q(t−s ), and the velocities are
updated in the according directions, since Λn ̸= 0 and Λi

t ̸= 0 (if µi > 0 and ∥vit∥2 ̸= 0). On the other
hand, if fc(q) > 0, then Λn = 0, Λt = 0, and the velocity stays continuous as well v(t+s ) = v(t−s ). The
formulation (11) helps to encode the continuity and state jump equations in one shot, for both elastic and
inelastic impacts.

3. Finite Elements with Switch and Jump Detection (FESD-J)

In this section, we derive the FESD-J method for (1). We discretize the equations of motions and the
complementarity conditions with a standard Runge-Kutta method. Additionally, we let the integration step
size hn be degrees of freedom. Similarly to [7, 35], we introduce cross complementarity conditions that make
active set changes, switches, and impacts possible only at the boundaries of the finite element (integration
step). This will lead to exact switch detection. However, if no switches occur, for a fixed active set Eq. (1)
reduces to a smooth ODE or differential algebraic equations. Consequently, the step sizes hn are spurious
degrees of freedom in this case. By adapting the ideas from [35], we introduce step equilibration conditions,
which resolve this degeneracy. As in any event-based method, we assume that there are sufficiently many
finite elements NFE to be able to detect all switches.

FESD-J should detect several different kinds of discontinuities: 1) discontinuities due to contact making
and breaking, which usually introduce discontinuities in the velocities, 2) discontinuities due to friction
during persistent contact: transitions from slip to stick, from stick to slip, or zero crossing of tangential
velocities in slip motion, which all may lead to discontinuities in the friction forces and kinks in the velocity.

3.1. Runge-Kutta discretization

We regard a single control interval [0, T ] with a constant known control input û ∈ Rnu , i.e., we set
u(t) = û for t ∈ [0, T ]. Section 4 will treat the discretization of optimal control problems with multiple
control intervals. The time interval [0, T ] is divided into NFE finite elements [tn, tn+1], with the grid points
0 = t0 < t1 < . . . < tNFE = T . On each of the finite elements we regard an ns-stage Runge-Kutta
method which is parameterized by its Butcher tableau entries ai,j , bi and ci with i, j ∈ {1, . . . , ns} [16]. The
integration step sizes are defined as the finite element lengths, i.e., hn = tn+1 − tn, n = 0, . . . , NFE − 1.

The approximations of the differential states at the grid points tn are denoted by qn ≈ q(tn), vn ≈ v(tn).
Their values at the RK stage points tn,i := tn + cihn, i = 1, . . . , ns, are denoted by qn,i, vn,i. Likewise, the
stage values of the algebraic variables are denoted by λin,n,j ,λ

i
t,n,j , γ

i
n,j , β

i
n,j , ξ

i
+,n,j and ξi−,n,j . Moreover,

we denote the differential state approximations at the left boundary point of a finite element by qn,0 and
vn,0, which corresponds to q(t+n ) and v(t+n ). In the case of state jumps we have at tn that v(t−n ) ̸= v(t+n ).
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Figure 1: Illustration of the FESD-J approximation for the velocity state. At tn an impact occurs and the impulse approximation
Λn,n leads to a discontinuity in the velocity, i.e., vn ̸= vn,0. At time tn+1, there is no impact, Λn,n+1 = 0, and the velocity is
continuous, , i.e., vn+1 = vn+1,0.

Similarly, in the time-discretization derived below, we may have vn ̸= vn,0. Figure 1 provides a schematic
illustration of our notation conventions. For ease of notation, we assume that cns

= 1 and comment on how
to extend to the case when cns

̸= 1, e.g. in Gauss-Legendre implicit RK schemes, later in Remark 1.
Given the initial value s0 := (q0, v0), we first discretize the differential equations for the position (1a)

and velocity (1b) for all n = 0, . . . , NFE − 1:

0 = qn,j − (qn,0 + hn

ns∑
k=1

aj,kvn,k), j = 1, . . . , ns, (12a)

0 = vn,j − (vn,0 + hn

ns∑
k=1

aj,kFv(vn,k, qn,k, λn,k, û)), j = 1, . . . , ns, (12b)

0 = qn+1 − (qn,0 + hn

ns∑
k=1

bkvn,k), (12c)

0 = vn+1 − (qn,0 + hn

ns∑
k=1

bkF (vn,k, qn,k, λn,k, û)), (12d)

where λn,k = (λn,n,k, λt,n,k) ∈ Rnc(1+nt) collects the stage values for the normal and tangential contact force
approximations. The algebraic contact conditions (1c) and friction model equations (5) are evaluated for
n = 0, . . . , NFE − 1, at the RK stage points:

0 ≤ f ic(qn,j) ⊥ λin,n,j ≥ 0, i = 1, . . . , nc, j = 1, . . . , ns, (13a)

0 = −J i
t(qn,j)

⊤vn,j + 2γin,jλ
i
t,n,j , i = 1, . . . , nc, j = 1, . . . , ns, (13b)

0 = βi
n,j − (µiλn,n,j)

2 + ∥λt,n,j∥22, i = 1, . . . , nc, j = 1, . . . , ns, (13c)

0 ≤ γin,j ⊥ βi
n,j ≥ 0, i = 1, . . . , nc, j = 1, . . . , ns. (13d)

Additionally, we discretized the auxiliary conditions (6) for all n = 0, . . . , NFE − 1, at all RK stage points
j = 1, . . . , ns, and at the left boundary point of every finite element (we assign the index j = 0 for these
variables):

0 = J i
t(qn,j)

⊤vn,j − ξi+,n,j + ξi−,n,j , i = 1, . . . , nc, j = 0, . . . , ns, (14a)

0 ≤ ξi+,n,j ⊥ ξi−,n,j ≥ 0, i = 1, . . . , nc, j = 0, . . . , ns. (14b)

Including the left boundary point is crucial for switch detection, as we show below.
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Remark 1. (Extension for cns ̸= 1) In the cross complementarity conditions introduced in Section 3.3, we
exploit the continuity properties of some of the algebraic variables. For the differential and some algebraic
states we need the left and right boundary points of a finite element. If cns

̸= 1, then the right boundary point
is not an RK stage point. We only must extend (14) by adding the constraints for all n = 0, . . . , NFE − 1:

0 = J i
t (qn+1)

⊤vn+1 − ξi+,n+1 + ξi−,n+1, i = 1, . . . , nc,

0 ≤ ξi+,n+1 ⊥ ξi−,n+1 ≥ 0, i = 1, . . . , nc.

The variables vn+1 and qn+1 are naturally obtained from the IRK discretization via (12c) and (12d), while
the algebraic variables ξi+,n+1 and ξi−,n+1 need to be additionally defined for the right boundary point of the
n-th finite element.

As the step sizes are degrees of freedom, we require that their sum equals the total interval length:

0 = T −
NFE−1∑
n=0

hn. (15)

3.2. Continuity and state jumps

We proceed with linking the right boundary points of a finite element qn, vn with the left boundary
points qn,0,vn,0, of the following finite element. The generalized positions are continuous functions of time
and we impose for their discrete-time counterparts for all n = 0, . . . , NFE:

0 = qn,0 − qn. (16)

The junction conditions for the velocities are more elaborate as they can be continuous or have jumps in both
normal and tangential directions. We express all the possible combinations at once with the discrete-time
version of (11). Recall that vn corresponds to the pre-impact velocity v(t−n ) and vn,0 to the post-impact
velocity v(t+n ). Thus, for all n = 0, . . . , NFE − 1 we have:

0 =M(qn)(vn,0 − vn)−
nc∑
i=1

(
J i
n(qn)Λ

i
n,n + J i

t(qn)Λ
i
t,n

)
, (17a)

0 ≤ Λi
n,n ⊥ f ic(qn) ≥ 0, i = 1, . . . , nc, (17b)

0 = Λi
n,nJ

i
n(qn)

⊤(vn,0 + ϵirvn), i = 1, . . . , nc, (17c)

0 = −J i
t(qn)

⊤vn,0 − 2Γi
nΛ

i
t,n, i = 1, . . . , nc, (17d)

0 = Bi
n − (µiΛi

n,n)
2 + ∥Λi

t,n∥2, i = 1, . . . , nc, (17e)

0 ≤ Γi
n ⊥ Bi

n ≥ 0, i = 1, . . . , nc. (17f)

Observer that if for the initial conditions for n = 0, it holds that some f ic(q0) = 0 and J i
n(q0)

⊤v0 < 0 a state
jump will occur and reinitialize the velocity v0,0 to a feasible value. In the sequel, we introduce conditions
that will not allow active set changes in the complementarity conditions (i.e., switches) on the RK-stage
points within the finite element, cf. Figure 1. Consequently, the jumps can happen only at the grid points
tn. Therefore, impulse equations are evaluated only at the grid points tn, n = 0, . . . , NFE. Note that if
fc(qn) > 0, then Λn,n = 0, Λt,n = 0, and (17) implies the continuity condition vn,0 = vn.

Remark 2. (Excluding continuity conditions in case of impacts) Recall from the discussion at the beginning
of Section 2.4, that the constraints fc(q(t)) ≥ 0 prevent post-impact velocities v(t+n ) = v(t−n ), even if we do
not explicitly impose the constraints J i

n(q(tn))
⊤v(t+n ) + ϵirJ

i
n(q(tn))

⊤v(t−n ) ≥ 0. In the discrete-time setting,
the non-negativity of the gap function is only imposed at the RK stage points, and at the finite elements
boundaries, cf. Eq. (13a) and Eq. (17b), respectively. However, this might not always be sufficient to
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exclude solutions with Λi
n = 0 and very large λin > 0, which may lead to the satisfaction of the non-negativity

of gap function constraints. Therefore, we propose to add the following inequality constraints:

f ic(qn,0 + ϵchnvn,0) ≥ 0, n = 0, . . . , NFE − 1, i = 1, . . . , nc, (18)

where ϵc is a small positive number, e.g. ϵc = 10−3. The point qn,0+ϵchnvn,0 corresponds to an explicit Euler
step of length ϵchn and the non-negativity of the gap functions is imposed there, i.e., shortly after the impact.
In case of impacts, this excludes solutions with Λi

n = 0 and λin ≫ 0. It can be seen that this constraint is
always satisfied for the continuous time variant of the system and only excludes spurious solutions.

We introduce a more compact notation for the conditions and variables introduced so far. All
position and velocity variables (stage and boundary points) are collected into the vectors q =
(q0, q0,0, . . . , q0,ns

, q1, . . . , qNFE−1,0, . . . , qNFE
), v = (v0, v0,0, . . . , v0,ns

, v1, . . . , vNFE−1,0, . . . , vNFE
), respec-

tively, and we define x = (q,v). We collect all step sizes into h = (h0, . . . , hNFE−1). The stage values
of all algebraic variables λin,n,j ,λ

i
t,n,j , γ

i
n,j , β

i
n,j , ξ

i
+,n,j , ξ

i
−,n,j , for all i = 1, . . . , nc, n = 0, . . . , NFE − 1 and

j = 1, . . . , ns, and all algebraic variables appearing in the discrete-time impulse equations (17), namely Λi
n,n,

Λi
t,n, Γ

i
n, B

i
n, for all i = 1, . . . , nc and n = 0, . . . , NFE and j = 1, . . . , ns are collected in the vector z. By

noting that complementarity conditions 0 ≤ a ⊥ b ≥ 0 can be equivalently written as a nonsmooth equations
via C-functions ψ(a, b) = 0, we collect the equations (12), (13), (14), (16) and (17) into the equation:

0 = Grk(x, z,h; s0, û). (19)

3.3. Cross complementarity and switch detection

We proceed with stating the cross complementarity conditions. Their objective is to prohibit active set
changes within a finite element and to ensure exact switch detection.

3.3.1. Contact making and breaking

We regard first the discrete-time version of the contact conditions 0 ≤ f ic(q(t)) ⊥ λin(t) ≥ 0. Recall
that under our assumptions, f ic(q(t)) is a continuous function of time, whereas the functions λin(t) are in
general discontinuous. Consequently, during an active set change in the i-th complementarity pair, i.e.,
during contact breaking or making, we have that f ic(q(ts)) = 0, cf. Figure 2. These observations motivate,
to define in addition to (13a), the following cross complementarity conditions for CLS

0 = λin,n,j f
i
c(qn,j′), i = 1, . . . , nc, j = 1, . . . , ns, j

′ = 0, . . . , ns. (20)

Note that we also include the boundary point values f ic(qn,0), as they play a crucial role in the switch
detection, as discussed next.

Lemma 3. Regard a fixed n ∈ {0, . . . , NFE − 1}. If any λin,n,j with j ∈ {1, . . . , ns} is positive, then all

f ic(qn,j′) with j
′ ∈ {0, . . . , ns} must be zero. Conversely, if any f ic(qn,j′) is positive, then all λin,n,j are zero.

Proof. Let λin,n,j > 0, and suppose f ic(qn,j) = 0 and f ic(qn,k) > 0 for some j ∈ {1, . . . , ns}, k ∈
{0, . . . , ns}, k ̸= j, then λin,n,jf

i
c(qn,k) > 0, which contradicts (20), thus all f ic(qn,k) = 0, k ∈ {0, . . . , ns}.

The converse is proven with the same argument. □
In the case of an inelastic impact, suppose that some f ic(qn−1,k) > 0 and that λin,n,j > 0. As a consequence

of Lemma 3, it follows that:

f ic(qn,0) = 0.

Therefore, we have implicitly a constraint that forces hn to adapt such that the switch is detected exactly.
The left plots in Figure 2 illustrate this switching case.

In the case of elastic impacts, we have before and after the impact a zero contact force, i.e., λin,n−1,j = 0

and λin,n+1,j = 0 for all j = 1, . . . , nq. Consequently, we have f ic(qn−1,j) ≥ 0 and f ic(qn,j) ≥ 0. However,
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Figure 2: Illustration of trajectories corresponding to an elastic and an inelastic impact. The top plots show the position, the
middle the normal contact force, and the bottom the normal velocity. The left plots correspond to an inelastic impact and the
right plots to a partially elastic impact. The black markers represent the stage values of a Runge-Kutta Radau IIA method
with ns = 5. The vertical dashed line marks the switching time. It can be seen that f i

c(qn,j) > 0 and λn,n,j′ > 0 with j ̸= j′

would lead to the violation of the cross complementarity conditions (20).

since Λi
n,n > 0 in this case, from (17b) it follow that f ic(qn,0) = 0 must hold, and the correct hn is selected.

The right plots in Figure 2 illustrate this switching case.
The constraints (20) are for the sake of clarity given in their sparsest form. However, the nonnegativity

of λin,n,j and f ic(qn,j) allows to aggregate the constraint and obtain equivalent formulations with fewer
constraints.

3.3.2. Switches due to friction

Making and breaking contacts is not the only type of switching that occurs in a CLS. If a contact is
active, also friction forces act on the body that may lead to further discontinuities. In particular, during
this phase of motion, there may be discontinuous changes in the velocity, i.e., due to transition from slip to
stick motion, from stick to slip, or during the slip motions, the velocity may change its direction and thus
the friction force changes discontinuously.

These switches will be isolated with another set of cross complementarity constraints. If no impacts occur,
we have that the velocity is continuous, i.e., vn = vn,0. From (17d), we have that the approximation of
Lagrange multiplier γi corresponding to vn,0 is Γi

n, and for ease of notation we define γin,0 = Γi
n. Recall that

γi is proportional to the magnitude of the tangential velocity, which is a continuous function of time as long
as the i-th contact stays active. On the other hand, the friction force λit might have jump discontinuities
if the tangential velocity has a zero crossing. Therefore, similar to the contact conditions, we have in
0 ≤ γi ⊥ βi = ((µiλin)

2 − ∥λit∥22) ≥ 0 a complementarity between a continuous and discontinuous function
of time. In order to prohibit active set-changes within the finite elements, similar to (20), we introduce the
following set of cross complementarity constraints for i = 1, . . . , nc:

0 = γin,j′ β
i
n,j , j = 1, . . . , ns, j

′ = 0, . . . , ns. (21)

12



0 0.5 1 1.5 2
-1

-0.5

0

0 0.5 1 1.5 2

0

0.5

1

0 0.5 1 1.5 2
0

0.5

1

0 0.5 1 1.5 2
-2

0

2

0 0.5 1 1.5 2

0

0.5

1

0 0.5 1 1.5 2
0

1

2

0 0.5 1 1.5 2
1

2

3

0 0.5 1 1.5 2

0

0.5

1

1.5

0 0.5 1 1.5 2
0

1

2

3

Figure 3: Different switching cases due to friction. The left plot shows a particle that transitions from slip to stick motion,
where the friction force during the stick phase is variable. The middle plot shows a discontinuity where a particle remains in
slip motion. The right plot shows a particle in slip motion with no switches.

For the approximation of the continuous-time variable γi, we include the boundary point value γin,0. If we

have some γin−1,j > 0 and βi
n,j = (µiλin,n,j)

2 − ∥λit,n,j∥22 = 0, then by the same arguments as in Lemma 3,

we have that γin,0 = Γi
n = 0. From (17d) it follows that

J i
t(qn)

⊤vn,0 = 0,

which implicitly provides a condition that isolates the zero crossing of the tangential velocity.
These conditions are sufficient to detect the switches in the cases of a transition from slip to stick mode

or from stick to slip, cf. Figure 3 (left column). However, they are not sufficient for detecting a zero crossing
if the friction force changes discontinuously while the body stays in a slipping motion. This situation is
illustrated in the middle column of Figure 3, where a particle with a negative initial velocity in slipping
motion. Moreover, a force larger in magnitude than the friction force acts in the opposite direction of the
particle’s motion. The particle will at some point reach zero velocity and continue to slip in the opposite
direction, now with a smaller acceleration, since the external force and friction act in opposite directions.
Compared to smooth slip motion with no switches (cf. middle plots in second and third column of Figure 3),
the active sets in 0 ≤ γin,j ⊥ βi

n,j ≥ 0, j = 1, . . . , ns from (13d) remain unchanged. Consequently, the
conditions in (21) are trivially satisfied and cannot isolate the switch. To over come this problem, one can
use the positive and negative parts (ξi+ and ξi−) of the tangential velocities with Eq. (6). We propose the
following set of cross complementarity conditions:

0 = diag(ξi+,n,j′)ξ
i
−,n,j , j = 0, . . . , ns, j

′ = 0, . . . , ns. (22)

It can be seen from the bottom plots in the second and third column of Figure 3, that the active sets in (14b)
are not the same. Therefore, the cross complementarity conditions (22) are not implied by the standard
stage-wise complementarity conditions (14). By similar reasoning, we have in the described switching case
that ξi+,n,j′ = ξi−,n,j = 0, and from (14a) we obtain that:

J i
t(qn)

⊤vn,0 = 0,
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Table 1: Switching logic for contact making and breaking in the case of elastic impacts. One indicates that a variable is strictly
positive and a zero that it is zero.

Switching case f ic(qn,j) σ
fi
c,B

n σ
fi
c,F

n σ
λi
n,B

n σ
λi
n,F

n π
fi
c

n π
λi
n

n κin Switch at tn
Contact making 0 1 1 0 0 0 0 0 yes
Contact breaking 0 0 1 1 0 0 0 0 yes

Free flight 1 1 1 0 0 1 0 1 no
Persistent contact 0 0 0 1 1 0 1 1 no

which makes sure that the switches are detected also if the body remains in slipping motion.
We collect all cross complementarity conditions (20), (21) and (22) into the equation:

0 = Gcross(x, z; s0). (23)

3.4. Step equilibration

If two neighboring finite elements have the same active set in the corresponding complementarity con-
ditions, then the cross complementarity conditions are implied by the standard stage-wise complementarity
conditions [35]. Consequently, we obtain spurious degrees of freedom in the step sizes hn. We overcome
this by introducing additional constraints that appear only in this case, and that remove these degrees of
freedom.

For this purpose we need to introduce an indicator function ηn(x, z), which is strictly positive if no switch
happens at the n-th grid point and zero if a switch occurs. The step equilibration equations read as

0 = Geq(x, z,h; s0) :=

 (h1 − h0)η1(x, z)
...

(hNFE−1 − hNFE−2)ηNFE−1(x, z)

 . (24)

If no switches happen, these conditions imply an equidistant grid. If switches occur at some grid points tn,
then the resulting grid will be piecewise equidistant.

In the remainder of this section, we define the functions ηn, which encode the switching logic. We start
with the switches that happen by making and breaking contact. Following [35], we define for n = 1, . . . , NFE

forward and backward sums for the normal contact force and gap function for every i = 1, . . . , nc:

σ
fi
c,B

n =

ns∑
j=0

f ic(qn−1,j), σ
fi
c,F

n =

ns∑
j=0

f ic(qn,j), (25a)

σ
λi
n,B

n =

ns∑
j=1

λin,n−1,j , σ
λi
n,F

n =

ns∑
j=1

λin,n,j . (25b)

The values of these sums change qualitatively before and after a switch, which enables us to encode the

switching logic. For example, in the case of making contact at tn, in the inelastic case we have σ
fi
c,B

n > 0,

σ
fi
c,F

n = 0 and σ
λi
n,B

n = 0, σ
λi
n,F

n > 0. In the case of elastic impacts, only f ic(qn,0) = 0 and σ
fi
c,B

n > 0, σ
fi
c,F

n > 0,
cf. Figure 2. With logical or and and operations on these quantities we can indicate whether there was a
switch or not. The contact conditions permit four different switching scenarios, which are listed in Table 1.
For ease of readability, positive values of a variable are represented by one, and zero values are represented
by zero. To mimic logical and operations for the gap functions we define:

π
fi
c

n = f ic(qn,0)σ
fi
c,B

n σ
fi
c,B

n .

If there is persistent contact, all terms in the product are zero, and it follows that π
fi
c

n = 0. Similarly, we
define the product of the sums of contact forces:

π
λi
n

n = σ
λi
n,B

n σ
λi
n,B

n .
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In the persistent contact case, π
λi
n

n is strictly positive. In case of free flight, we have the symmetric case of

π
fi
c

n > 0 and π
λi
n

n = 0. If neither contact breaking or making happens, one of the two expressions is zero and
one is positive. On the other hand, if we have contact making or breaking, both products are zero. This
can be summarized with a logical or operation, which is modeled with

κin = π
fi
c

n + π
λi
n

n . (26)

If no switch occurs κin is positive, and otherwise it is zero. All switching cases are enumerated in Table 1.
For inelastic impacts, the reasoning is only different for the case of contact making. In this case, we have

that f ic(qn,j) = 0, σ
fi
c,B

n > 0 and σ
fi
c,F

n = 0. F For the backward and forward sums for the contact forces it

holds that σ
λi
n,B

n = 0 and σ
λi
n,B

n > 0. Thus, we obtain that π
fi
c

n = 0, π
λi
n

n = 0 and κin = 0.
Next, we define similar functions for switches due to the nonsmooth friction forces. We have qualitatively

five different scenarios, three with a switch and two without. They are listed in Table 2. We assume in
the table for the slip-stick transition positive tangential velocity before the switch, and for the stick to slip
negative tangential velocity after the switch. All other combinations follow the same reasoning and we omit
stating them explicitly for brevity.

To encode the switching logic, we follow a similar approach and define the following forward and backward
sums:

σ
ξi+,B

n,k =

ns∑
j=0

ξi+,n−1,j , σ
ξi+,F

n,k =

ns∑
j=0

ξi+,n,j , k = 1, . . . , nt,

σ
ξi−,B

n,k =

ns∑
j=0

ξi−,n−1,j , σ
ξi−,F

n,k =

ns∑
j=0

ξi−,n,j , k = 1, . . . , nt,

σβi,B
n =

ns∑
j=1

βi
n−1,j , σβi,F

n,k =

ns∑
j=1

βi
n,j .

We omitted to define forward and backwards sums for the variables γin,j , as the three above are sufficient
to cover all switching cases. For the positive and negative tangential velocity parts, we have for every
component a separate sum. In the planar case, it is simply nt = 1 and in the three-dimensional case we
have nt = 2. For brevity, Table 2 reports the cases with nt = 1, but the reasoning is similar for nt = 2.

Similar to contact making and breaking, we define variables that relate the sums before and after a grid
point tn

π
ξi+
n,k = σ

ξi+,B

n,k σ
ξi+,F

n,k , k = 1, . . . , nt, (27a)

π
ξi−
n,k = σ

ξi−,B

n,k σ
ξi−,F

n,k , k = 1, . . . , nt, (27b)

πβi

n = σβi,B
n σβi,F

n . (27c)

For sake of illustration, we discuss the example of a transition from slip to stick mode in the two dimensional

case. Suppose that the tangential velocity before the switch is positive. In this case, we have that σ
ξi+,B
n > 0,

σ
ξi+,F
n = 0 and σ

ξi−,B
n = 0, σ

ξi−,F
n = 0. During slip motion, the friction force had its maximum value, hence

σβi,B
n = 0. After the switch during stick motion motion, the friction force might be at its maximum or not,

hence σβi,B
n ≥ 0. Therefore, all variables defined in (27) are zero.

To summarize, the effects of all switches in the frictional case, we define

ζin = (σ
fi
c,B

n + σ
fi
c,F

n ) + (

nt∑
k=1

(π
ξi+
n,k + π

ξi−
n,k) + πβi

n ).
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Table 2: Switching logic in contact making and breaking in the case of elastic impacts. In the table there is a one if a variable

is strictly positive and a zero if it is zero. It is assumed that σ
fi
c,B

n + σ
fi
c,F

n = 0.

Switching case σ
ξi+,B
n σ

ξi+,F
n σ

ξi−,B
n σ

ξi−,F
n σβi,B

n σβi,F
n π

ξi+
n π

ξi−
n πβi

n ζin Switch
Switch during slip 1 0 0 1 0 0 0 0 0 0 yes

Slip to stick 1 0 0 0 0 1 0 0 0 0 yes
Stick to slip 0 0 0 1 1 0 0 0 0 0 yes
Stick phase 0 0 0 0 1 1 0 1 1 1 no
Slip motion 1 1 0 0 0 0 1 0 0 1 no

The first term makes sure that ζin can be zero only if the i-th contact is active before and after tn. Only
in this case the first term is zero, otherwise it is strictly positive, cf. Table 1. This avoids that the step
equilibration for the frictional switches has any influences for inactive contacts. If any of the terms in the
second parentheses is positive, then there was no switch, i.e., ζin > 0. The sign and switching logic for all
cases is summarized in Table 2. The validity of the entries in Table 2 can be easily verified by looking at
Figure 3.

It is left to summarize the effects of all contacts. For a single contact, we introduce the switching logic
via

νin = κin ζ
i
n.

The variable νin is zero if there is a switch due to contact making or breaking or due to friction. If there
are no switches it is positive. The step equilibration should not be present if there is a switch in any of the
contact. This is modeled by defining:

ηin =

nc∏
i=1

νin. (28)

This completes the definition of the step equilibration conditions (24).

Remark 4. (Heuristic step equilibration) The term ηin involves products of many different terms and it
may take values in a broad range. For a better scaling we may use tanh(ηin/ϵη), with ϵη ∈ (0, 1]. Moreover,
since ηin might be quite nonlinear, we propose to use the following heuristic approach. Step equilibration can

approximately be achieved by adding the term ρh
∑NFE−2

n=0 (hn+1 − hn)
2 to the cost function, where ρh > 0

is a weighting factor. In optimal control problems, one should not choose a too large value for ρh relative
to the other objective terms, as this might introduce a bias towards controls that result in an equidistant
discretization grid.

3.5. FESD-J - summary

We have now introduced all equations that define the FESD-J discretization of the CLS (1). Given an
initial state s0, these equations provide a numerical approximation of the differential and algebraic states
over the time interval [0, T ]. We collect the FESD equations (19), (23) (24), and (15) in the discrete-time
system

s1 = Ffesd(x), (29a)

0 = Gfesd(x, z,h; s0, û, T ) :=


Grk(x, z,h; s0, û)
Gcross(x, z; s0)
Geq(x, z,h; s0)∑NFE−1

n=0 hn − T

 , (29b)

where the state transition map Ffesd(x) = (qNFE
, vNFE

) provides the state approximation s1 ≈ x(T ), and
Gfesd(x, z,Z,h; s0, û, T ) collects all other internal computations. Here, the control variable û, the interval
length T , and the initial value s0 are given parameters.
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Remark 5. (Switching time interpretation) An alternative interpretation for the variable step sizes hn is
that they are discrete time control variables that control the interval lengths and thus implicitly determine
the switching times. This can be seen by interpreting t as a clock state, with the dynamics

ṫ = h, t(0) = 0, t(1) = T,

whose time discretization reads as:

tn+1 = tn + hn, n = 0, . . . , NFE − 1,

t0 = 0, tNFE
= T.

The control variables hn are determined implicitly via cross complementarity and step equilibration con-
straints.

4. Direct optimal control

Our main motivation for introducing FESD-J is to discretize and solve Optimal Control Problems (OCPs)
subject to CLS. A continuous time OCP reads as

min
x(·),λ(·),u(·)

∫ T

0

L(x(t), u(t))dt+ Lt(x(T )) (30a)

s.t. x(0) = x0, (30b)

Eq (1), a.a. t ∈ [0, T ], (30c)

0 ≥ Gp(x(t), u(t)), t ∈ [0, T ], (30d)

0 ≥ Gt(x(T )), (30e)

where x0 is a given initial value, L : Rnx × Rnu → R is the running cost and Lt : Rnx → R is the terminal
cost, s0 ∈ Rnx is a given initial value. The path and terminal constraints are defined by the functions
Gp : Rnx × Rnu → Rnp and Gt : Rnx → Rnt , respectively.

Now we consider a direct transcription of (30), with the FESD-J method from the previous section.
In particular, we make use of the short discrete-time system notation in (29) for the time-discretization
of (30c). Consider N ≥ 1 control intervals of equal length, which are indexed by k. We take a piecewise
constant control discretization, where the control variables are collected u = (û0, . . . , ûN−1) ∈ RNnu . On
each control interval k, we use a FESD-J discretization with NFE internal finite elements. The state values
at the control interval boundaries are collected in the vector s = (s0, . . . , sN ) ∈ R(N+1)nx . We collect in
Z = (z0, . . . , zN−1), X = (x0, . . . ,xN−1) all internal variables, and in H = (h0, . . . ,hN−1) all step sizes.

The discrete-time variant of (30) is given as

min
s,u,Z,X ,H

N−1∑
k=0

L̂(sk,xk, qk) + Lt(sN ) (31a)

s.t. s0 = x0, (31b)

sk+1 = Ffesd(xk), k = 0, . . . , N − 1, (31c)

0 = Gfesd(xk, zk,hk; sk, ûk,
T

N
), k = 0, . . . , N − 1, (31d)

0 ≥ Gp(sk, ûk), k = 0, . . . , N − 1, (31e)

0 ≥ Gt(sN ), (31f)

where L̂ : Rnx ×R(NFE+1)nsnx ×Rnu → R is the discretized running costs. Since (31d) contains all comple-
mentarity constraints appearing in the FESD-J discretization, the nonlinear program (31) is a mathematical
program with complementarity constraints. In NOSNOC [32], MPCCs are solved by solving a sequence of
related and relaxed NLPs within a homotopy approach [6, 40].
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Figure 4: Trajectory of two balls connected by a spring.

5. Illustrative numerical examples

In this section, we demonstrate the use of the FESD-J method on simulation and optimal control exam-
ples. All presented examples are publicly available in NOSNOC v0.4.03.

5.1. Two balls connected by a spring – an integration order experiment

In this section, we demonstrate the integration order of the proposed discretization scheme experimen-
tally, on an example of two balls connected by a spring, which has been studied before in [12]. The model
consists of q = [q1, q2], v = [v1, v2] ∈ R2, where qi, vi denote the position and velocity of ball i ∈ {1, 2},
respectively. The radii of both balls is R = 0.2 and the first ball can make contact with the ground, which
is modeled with the gap function

fc(q) = q1 −R ≥ 0. (32)

The impact is partially elastic with ϵr = 0.8. The gravitational acceleration is g = 9.81, the stiffness of
the spring connecting the balls is k = 104 and its rest length is l = 1. The mass matrix is constant
M = diag(m1,m2), where m1 = 1 and m2 = 1 are the masses of the two balls. The CLS reads

q̇ = v, (33)

Mv̇ =

[
−m1g + k(q2 − q1 − l)
−m2g − k(q2 − q1 − l)

]
+ Jn(q)λn, (34)

0 ≤ λn ⊥ fc(q) ≥ 0. (35)

The system is simulated with initial zero velocities and initial position q1(0) = 1, q2(0) = 2 for a time interval
of T = 1.0. Figure 4 shows the resulting trajectories.

In the simulation experiment, we vary the number of simulation steps Nsim and fix the number of finite
Elements to NFE = 2. We use the proposed FESD-J method with the Gauss-Legendre and Radau IIA
Butcher tableaus with ns ∈ {1, 2, 3, 4} to simulate the system. In Figure 5, we plot the solution accuracy
against the time step of one simulation step h̄ = T

NsimNFE
. Since solving this simulation problem numerically

with the existing homotopy methods in NOSNOC can be challenging, in case of indefeasibly, we attempt
to solve the subproblem with a modified initial guess, with the impact impulse Λn > 0. This improves the
overall solutiont robustness significantly. Moreover, we exclude runs, where any of the Nsim subproblems
did not converge to the required accuracy, which make up 4.17% and 5.2% of runs for Radau IIA and
Gauss-Legendre, respectively. The plot shows that the established order properties of implicit RK methods
are preserved when using them within FESD-J.

3https://github.com/nurkanovic/nosnoc/releases/tag/v0.4.0
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Figure 5: Experimental integration order simulating the scenario depicted in Figure 4.

5.2. Manipulation task - inelastic impacts

In the first optimal control example, we regard two discs that lie in a two-dimensional plane. Only one
disc can be controlled by a thrust force, whereas the second can only be moved by making inelastic contact
(with ϵr = 0) with the first one. The goal is that the discs swap their position with minimal control effort.
This can be modeled with the following optimal control problem:

min
x(·),λn(·),u(·),

∫ T

0

∥x(t)− xr∥2Q + ∥u(t)∥2R dt+ ∥x(T )− xr∥2QT

s.t. x(0) = x0,

q̇(t) = v(t), t ∈ [0, T ],

Mv̇(t) =

[
u(t)− cf

v1
∥v1+ϵf∥

02,1 − cf
v2

∥v2+ϵrf∥

]
+ Jn(q(t))λn(t), t ∈ [0, T ],

0 ≤ λn(t) ⊥ fc(q) ≥ 0, t ∈ [0, T ],

0 = Jn(q(t))
⊤v(t+s ), if fc(q(ts)) = 0 and n(q(t))⊤v(t−s ) < 0,

− 10e ≤ q(t) ≤ 10e, t ∈ [0, T ],

− 5e ≤ v(t) ≤ 5e, t ∈ [0, T ],

− 30e ≤ u(t) ≤ 30e, t ∈ [0, T ],

0 ≤ ∥q1(t)∥2 − (rob + r1)
2, t ∈ [0, T ],

0 ≤ ∥q2(t)∥2 − (rob + r2)
2, t ∈ [0, T ].

The states are the positions of the two discs q1 = (q1,1, q1,2), q2 = (q2,1, q2,2) and their velocities v1 =
(v1,1, v1,2), v2 = (v2,1, v2,2). The initial positions are q1(0) = (−2, 0) and q2(0) = (2, 0), and the initial
velocities are zero v1(0) = v2(0) = 02,1. The reference is xr = (q2(0), q1(0), v1(0), v2(0)), i.e., the discs
should swap their positions and be at rest. Additionally, the overall control effort should be minimized.
This is modeled with least squares running and terminal objective terms with the weighting matrices:
Q = diag(10, 10, 10, 10, 0.01, 0.01, 0.01, 0.01)), R = diag(0.1, 0.1) and QT = 100Q. The control forces u =
(u1,1, u1,2) act only on the first disc. We model a constant air friction force in the plane with cf = 2
and ϵf = 0.1 to regularize the norm at zero. The contact between the discs is frictionless. The constant
mass matrix reads as M = diag(m1,m1,m2,m2) with m1 = 2 and m2 = 1. The gap function reads as
fc(q) = ∥q1(t) − q2(t)∥2 − (r1 + r2)

2, where the radii of the balls are r1 = 0.3 and r2 = 0.2. We introduce
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Figure 6: Several frames of the optimal solution. The first disc is marked with blue, the second with red, and the obstacle with
black.
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guiding box constraints on the position and velocity and bound the control input in every direction. The
last two inequality constraints model the obstacle, which is a ball with a radius of rob = 1 and located at
the origin.

The problem is discretized and solved with NOSNOC. We discretize this OCP with a control horizon of
T = 4 with N = 25 control intervals. At every control interval, we the 3rd order Radau IIA FESD-J method
(ns = 2) with NFE = 2. The underlying MPCC is solved in a homotopy loop with a Scholtes relaxation [40],
cf. [32] for more details. The NLPs are solved with the interior-point solver IPOPT [50], which is called via
its CasADi interface [2].

Figure 6 shows twelve frames of the optimal solution. The optimizer finds a creative solution without
any hints or sophisticated initial guesses. The first ball goes to the second ball, makes contact with it,
pushes it around the obstacle, and brings it to its final position. It breaks the contact and returns to the
final position. Figure 7 shows the states and optimal controls as a function of time. One can see that the
second ball is at rest until the first ball touches it and creates a velocity jump.

5.3. Optimal control problem with elastic and inelastic impacts

We regard an optimal control problem with multiple contacts, of which some are elastic and some
inelastic. The problem involves three two-dimensional square boxes lying on a horizontal plane. Only the
middle box is actuated with a horizontal control force. There are five possible contacts (nc = 5). The contact
between the left and middle box is inelastic (ϵ1r = 0) and between the middle and right is it partially elastic
(ϵ2r = 0.5). Moreover, each box makes inelastic contact with the ground, i.e., ϵir = 0, i = 3, 4, 5. The middle
box should, by making contact with the other two, bring all of them to their desired reference positions. A
one-dimensional variant without friction and similar to our example was considered in [24].

We model this with the following optimal control problem:

min
x(·),λn(·),λt(·),u(·),

∫ T

0

∥x(t)− xr∥2Q + ∥u(t)∥2R dt+ ∥x(T )− xr∥2QT
(36a)

s.t. x(0) = x0, (36b)

Eq. (1), t ∈ [0, T ], (36c)

qlb ≤ q(t) ≤ qub, t ∈ [0, T ], (36d)

vlb ≤ v(t) ≤ vub, t ∈ [0, T ], (36e)

ulb ≤ u(t) ≤ uub, t ∈ [0, T ]. (36f)

The states are the positions of the boxes: q1 = (q1,1, q1,2), q2 = (q2,1, q2,2), q3 = (q3,1, q3,2), collected into the
vector q = (q1, q2, q3) ∈ R6 and their velocities v ∈ R6, which are defined accordingly. The initial positions
are q1(0) = (−3, 0), q2(0) = (0, 0) and q3(0) = (3, 0), which collected in the vector q0. The initial velocities
are zero v0 = 06,1, thus the initial state is x0 = (q0, v0).

All three boxes are square with side length a = 2, and they have the same masses of mi = 1, i = 1, 2, 3.
The inertia matrix is the constant diagonal matrix M = diag(m1,m1,m2,m2, ,m3,m3). The control forces
u(t) ∈ R act only on the third box, i.e., Bu = (0, 0, 1, 0, 0, 0). Beside the contact and friction forces, only
gravity acts on the boxes, i.e., fv(q, v) = (0,−m1g, 0,−m2g, 0,−m3g) with g = 9.81. The gap function for
the five possible contacts is:

fc(q) =


q2,1 − q1,1 − a
q3,1 − q2,1 − a

q1,2 − a
2

q2,2 − a
2

q3,2 − a
2

 ≥ 0.

All of the five contacts are frictional and the coefficient of friction are collected in the vector µ =
(0.1, 0.1, 0.2, 0.2, 0.2). The control force is bounded and we have that ulb = −30 and uub = 30. Additionally,
we add guiding constraints (36d)-(36e), which prevent and that the position and velocity take too large
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Figure 8: Several frames of the optimal solution. The shaded boxes show the desired final reference positions.
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values in the intermediate iterates, which could impair the convergence. We pick qub = vub = 10e and
qlb = vlb = −10e.

The desired final position are qr = (−7, 1, 0, 1, 6, 1), i.e., the left box should be moved further to the left,
the right box further to right and the middle box should return to its initial position. The boxes should
rest at their final position, i.e., the reference velocity is vr = 06,1, and we define xr = (qr, vr). To achieve
this motion, we define a least squares running and terminal objective terms with the weighting matrices:
Q = diag(10, 0.001, 1, 0.00, 10, 0.001, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1), R = 0.1 and QT = 100Q.

The control horizon is T = 6, and the OCP (36) is discretized using the FESD-J method with the 3rd
order Radau IIA method (ns = 2), with N = 15 equidistant control intervals and NFE = 2 finite elements
on every control interval. The underlying MPCC is solved in a homotopy loop within NOSNOC [32] using
IPOPT [50].

Figure 8 shows ten frames of the optimal solution. The middle red box goes first slightly to the right,
to have more space for accelerating. Afterwards, it hits the blue box which slides to its final position and
stops due to friction. In the meantime, the middle red box hits the orange box on the right, which slides
to its target position and stops due to the friction force. The optimizer finds a creative solution without a
sophisticated initial guess. The solution contains two impacts and several transitions from stick to slip and
slip to slick due to the friction forces. Figure 9 shows the states, optimal control, contact and friction forces
and the impulses. Note that λin = g for i = 3, 4, 5 due to the contact with ground, and λin = 0 for i = 1, 2,
since these contacts are only active for an atom of the time during the impacts. The impact impulses are
captured via Λn.

6. Discussion and outlook

This paper introduced the Finite Elements with Switch and Jump Detection (FESD-J) method for rigid
bodies with friction and impact. This extends our previous work, where the FESD method was developed for
ODEs with a discontinuous right-hand side [32, 33, 35]. FESD-J is an event-based discretization method that
relies entirely on the solution of nonlinear complementarity problems and does not require any additional
zero-location or mode selection algorithms. Its four key algorithmic ingredients are:

1. The integration step sizes as degrees of freedom.

2. Cross complementarity conditions allow switches at the finite element boundary and implicitly force
exact switch detection.

3. Step equilibration conditions remove spurious degrees of freedom.

4. Modified impact equations in complementarity form such that, depending on the active set, they
impose either state jump or continuity conditions.

The FESD-J method can handle both elastic and inelastic impacts simultaneously. It can also handle
frictional impacts and switch detection in slip-stick transitions. It relies on the time-discretization of the
nonlinear friction cone without polyhedral modeling approximations. The method’s intended use is for the
direct transcription of continuous-time optimal control problems subject to a complementarity Lagrangian
system (CLS). We showed empirically that it recovers the integration accuracy that the underlying Runge-
Kutta method has for smooth ODEs. We recall that one can use any Runge-Kutta method within FESD-J.
Furthermore, we show that it is suitable for solving optimal control problems with both elastic and inelastic
impacts, which provides great modeling flexibility. Our work extends previous results [41], which was only
used with Gauss-Legendre RK methods, used polyhedral friction cone approximations, was not covering all
possible switching cases, and did not deal with spurious degrees of freedoms in the absence of switches.

The FESD-J method provides an alternative our previous approach, which transforms a CLS into a
Filippov system via the time-freezing reformulation [30, 34], and uses the FESD method for discontinuous
ODEs [35]. Both approaches lead to high-accuracy approximations of the solution trajectory. The advantage
of FESD-J is that it can treat both elastic and inelastic impacts at the same time. The discretization of an
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OCP with FESD or FESD-J results in a Mathematical Program with Complementarity Constraints (MPCC).
We observed in our experiments that the MPCCs obtained from FESD-J are difficult to solve with standard
relaxation and penalty methods, i.e., where MPCCs are solved by solving a sequence of relaxed and more
regular nonlinear programs with a standard solver. In our experiments, we used IPOPT [50] and SNOPT [14],
and observed similar performance. In particular, for FESD-Jwe required more tuning of the homotopy
parameters to obtain convergence for complicated OCPs compared to previous FESD approaches [30, 33].
Arguably, this is rather a limitation of the relaxation-based MPCC solutions strategies than the FESD-J
formulation itself. In future work, we aim to exploit pivoting-based MPCC methods [23, 22], which explicitly
treat the nonsmoothness and combinatorial structures in the complementarity constraints. Moreover, with
a more sophisticated MPCC solver at hand, we aim to perform an extensive numerical comparison of FESD
with time-freezing and FESD-J.

Like any event-based method, FESD cannot, in principle, handle the accumulation of switching events,
i.e., the Zeno phenomenon. However, in an optimal control problem, more switches than finite elements
would lead to an infeasible problem. Therefore, if the optimizer finds an optimal solution, it will have finitely
many switches.

It remains to rigorously prove the empirically observed high accuracy and convergence of numerical
sensitivities. We expect to obtain similar theoretical results as in [35], since FESD-J extends ideas of FESD
for discontinuous ODEs. In particular, we expect that the solutions to the FESD-J problems (29) have
locally unique solutions, although they always consist of an overdetermined system of equations. Without
switches, the cross complementarities are implicitly satisfied by the standard stage-wise complementarity
conditions. Similarly, if switches occur, the step equilibration conditions are implicitly satisfied. Overall, it
should be possible to formally show that for a fixed active set, the problem always reduces to a well-defined
square system of equations. Moreover, using the proof techniques from [35], one should be able to prove the
convergence of solutions and numerical sensitivities of the FESD-J method with the same accuracy as the
underlying RK method.

Interestingly, we observed in numerical experiments that if an accumulation of events is expected, e.g.,
in the bouncing ball example, the FESD-J method would result at some point in an impulse Λn that brings
the ball to rest. It would be interesting to understand this event-capturing feature in more detail and to
provide quantitative error estimates for this scenario. Finally, another interesting extension would be to
consider bilateral constraints within the complementarity Lagrangian model [9, 10].
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Appendix A. Alternative formulation of impulse equations

Inspired by [41], we rewrite the impulse equations in the complementarity form:

M(q)(v(t+s )− v(t−s )) = J i
n(q)Λ

i
n, (A.1a)

0 ≤ Λi
n ⊥ f ic(q) + |J i

n(q)
⊤(v(t+s ) + ϵirv(t

−
s ))| ≥ 0. (A.1b)

Note that if f ic(q) > 0 (no contact), we have that Λi
n = 0 and since the matrix M(q) is full rank, we have

that the velocity stays continuous, i.e., v(t+s ) = v(t−s ). We take the absolute value of the restitution law
equations in (A.1b) since it can be negative when f ic(q) > 0 and violate the nonnegativity condition. On
the other hand, for f ic(q) = 0, we have that the state jumps are triggered, which implies that Λi

n > 0 and
|J i

n(q(ts))
⊤(v(t+s ) + ϵirv(t

−
s ))| = 0 ⇐⇒ J i

n(q(ts))
⊤(v(t+s ) + ϵirv(t

−
s )) = 0, thus (9) is recovered. The absolute

value makes one of the functions involved in the complementarity constraint nondifferentiable. To get rid of
this, we introduce another complementarity condition and rewrite (A.1) as

M(q)(v(t+s )− v(t−s )) = J i
n(q)Λ

i
n, (A.2a)

0 ≤ Λi
n ⊥ f ic(q) + Υi

+ +Υi
− ≥ 0, (A.2b)

Υi
+ −Υi

− = J i
n(q)

⊤(v(t+s ) + ϵirv(t
−
s )), (A.2c)

0 ≤ Υi
+ ⊥ Υi

− ≥ 0. (A.2d)

Except for the last complementarity condition, this formulation is equivalent to the one proposed in [41].
Note that without this complementarity condition, the variables Υi

+,Υ
i
− are not unique. It is not difficult to

see this formulation has similar properties at the one from Section 2.4. However, it requires more variables
and mixes the complementarity conditions on position and velocity level.
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