Exercises for Lecture Course on Numerical Optimization (NUMOPT)

 Albert-Ludwigs-Universität Freiburg - Winter Term 2023/2024
Exercise 5: Exam Type Question

Prof. Dr. Moritz Diehl, Dimitris Kouzoupis, Andrea Zanelli, Florian Messerer, Yizhen Wang

Exercise Tasks

1. A sample exam question.

Regard the following minimization problem:

$$
\min _{x \in \mathbb{R}^{2}} x_{2}^{4}+\left(x_{1}+2\right)^{4} \quad \text { s.t. } \quad\left\{\begin{array}{l}
x_{1}^{2}+x_{2}^{2} \leq 8 \\
x_{1}-x_{2}=0
\end{array}\right.
$$

(a) How many scalar decision variables, how many equality, and how many inequality constraints does this problem have?
(b) Sketch the feasible set $\Omega \in \mathbb{R}^{2}$ of this problem.
(c) Bring this problem into the NLP standard form

$$
\min _{x \in \mathbb{R}^{n}} f(x) \quad \text { s.t. } \quad\left\{\begin{array}{l}
g(x)=0 \\
h(x) \geq 0
\end{array}\right.
$$

by defining the functions f, g, h appropriately.
(d) Is this optimization problem convex? Justify.
(e) Write down the Lagrangian function of this optimization problem.
(f) A feasible solution of the problem is $\bar{x}=(2,2)^{T}$. What is the active set $\mathcal{A}(\bar{x})$ at this point?

(g) Is the linear independence constraint qualification (LICQ) satisfied at \bar{x} ? Justify.

3	

(h) An optimal solution of the problem is $x^{*}=(-1,-1)^{T}$. What is the active set $\mathcal{A}\left(x^{*}\right)$ at this point?
(i) Is the linear independence constraint qualification (LICQ) satisfied at x^{*} ? Justify.
(j) Describe the tangent cone $T_{\Omega}\left(x^{*}\right)$ (the set of feasible directions) to the feasible set at this point x^{*}, by a set definition formula with explicitly computed numbers.
(k) Compute the Lagrange gradient and find the multiplier vectors λ^{*}, μ^{*} so that the above point x^{*} satisfies the KKT conditions.
(l) Describe the critical cone $C\left(x^{*}, \mu^{*}\right)$ at the point $\left(x^{*}, \lambda^{*}, \mu^{*}\right)$ in a set definition using explicitly computed numbers

3	

(m) Formulate the second order necessary conditions for optimality (SONC) for this problem and test if they are satisfied at $\left(x^{*}, \lambda^{*}, \mu^{*}\right)$. Can you prove whether x^{*} is a local or even global minimizer?

