Exercises for Lecture Course on Numerical Optimization (NUMOPT) Albert-Ludwigs-Universität Freiburg – Winter Term 2023/2024

Exercise 5: Exam Type Question

Prof. Dr. Moritz Diehl, Dimitris Kouzoupis, Andrea Zanelli, Florian Messerer, Yizhen Wang

Exercise Tasks

1. A sample exam question.

Regard the following minimization problem:

- $\min_{x \in \mathbb{R}^2} \quad x_2^4 + (x_1 + 2)^4 \quad \text{s.t.} \quad \begin{cases} x_1^2 + x_2^2 \leq 8\\ x_1 x_2 = 0. \end{cases}$
- (a) How many scalar decision variables, how many equality, and how many inequality constraints does this problem have?

2

3

3

(b) Sketch the feasible set $\Omega \in \mathbb{R}^2$ of this problem.

(c) Bring this problem into the NLP standard form

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{s.t.} \quad \left\{ \begin{array}{ll} g(x) &= 0\\ h(x) &\geq 0 \end{array} \right.$$

by defining the functions f, g, h appropriately.

FROM NOW (ON LINTH	THE END	TREAT THE	PROBLEM	IN THIS STANL	DARD FORM
$\Gamma \Lambda O M \Gamma O M C$		IIIL LND		I NODLLM I		mn D T O nm

- (d) Is this optimization problem convex? Justify.
- (e) Write down the Lagrangian function of this optimization problem.
- (f) A feasible solution of the problem is $\bar{x} = (2, 2)^T$. What is the active set $\mathcal{A}(\bar{x})$ at this point?
- (g) Is the *linear independence constraint qualification* (*LICQ*) satisfied at \bar{x} ? Justify.

- (h) An optimal solution of the problem is $x^* = (-1, -1)^T$. What is the active set $\mathcal{A}(x^*)$ at this point?
- (i) Is the linear independence constraint qualification (LICQ) satisfied at x^* ? Justify.
- (j) Describe the tangent cone $T_{\Omega}(x^*)$ (the set of feasible directions) to the feasible set at this point x^* , by a set definition formula with explicitly computed numbers.

2

3

2

2

1

2

(k) Compute the Lagrange gradient and find the multiplier vectors λ^*, μ^* so that the above point x^* satisfies the KKT conditions.

(1) Describe the critical cone $C(x^*, \mu^*)$ at the point (x^*, λ^*, μ^*) in a set definition using explicitly computed numbers

3	
(m) Formulate the second order necessary conditions for optimality (SONC) for this problem test if they are satisfied at (x^*, λ^*, μ^*) . Can you prove whether x^* is a local or even g	
minimizer?	,1000

4	