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Nonsmooth Dynamics (NSD) - a classification

Regard ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).
Distinguish three cases:

NSD1: non-differentiable RHS, e.g., ẋ = 1 + |x|

NSD2: state dependent switch of RHS, e.g., ẋ = 2− sign(x)

NSD3: state dependent jump, e.g., bouncing ball, v(t+) = −0.9 v(t−)
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Aim of time-freezing: transform NSD3 to NSD2 (and then use the rest of
the toolchain)

PSS (NSD2) DCS

Dyn. sys
with state
jumps
(NSD3)

OCP MPCC

NLP

solution

user
input

time-freezing

Stewart
or Step

FESD

relaxation

homotopy

PSS - piecewise smooth systems; DCS - dynamic complementarity system; OCP - optimal control problem; FESD - finite elements
with switch detection; MPCC - mathematical program with complementarity constraints ; NLP - nonlinear program
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Overview

▶ The time-freezing reformulation

▶ Elastic impacts

▶ Inelastic impacts

▶ Hybrid systems with hysteresis

▶ Conclusions and outlook
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NSD3 state jump example: bouncing ball

Bouncing ball with state x = (q, v):

q̇ = v, mv̇ = −mg, if q > 0

v(t+) = −0.9 v(t−), if q(t−) = 0 and v(t−) < 0

Time plot of bouncing ball trajectory:

Phase plot of bouncing ball trajectory:

Question: could we transform NSD3 systems into (easier) NSD2 systems?
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Three ideas:

1. mimic state jump by auxiliary dynamic system ẋ = faux(x) on prohibited region

2. introduce a clock state t(τ) that stops counting when the auxiliary system is active

3. adapt speed of time, dt
dτ = s with s ≥ 1, and impose terminal constraint t(T ) = T
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The time-freezing reformulation

Augmented state (x, t) ∈ Rn+1 evolves in
numerical time τ . Augmented system is
nonsmooth, of NSD2 type:

d

dτ

x
t

 =



s

[
f(x)

1

]
, if c(x) ≥ 0

[
sfaux(x)

0

]
, if c(x) < 0

▶ During normal times, system and clock
state evolve with adapted speed s ≥ 1.

▶ Auxiliary system dx
dτ = faux(x) mimics

state jump while time is frozen, dt
dτ = 0.
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Time-freezing for bouncing ball example

Evolution of physical time (clock state)
during augmented system simulation
(s = 1).

We can recover the true solution by plotting
x(τ) vs. t(τ) and disregarding ”frozen pieces”.
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A tracking OCP example with Time-Freezing and FESD in NOSNOC

Regard bouncing ball in two dimensions driven by bounded force: q̈ = u
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▶ augmented state
x = (q, q̇, t) ∈ R5

▶ nf = 9 regions (8 with auxiliary
dynamics for state jumps)

min
x(.),u(.),s(.),
θ(.),λ(.),µ(.)

∫ T

0

(q − qref(τ))
⊤(q − qref(τ)) s(τ) dτ

s.t. x(0) = x0, t(T ) = T,

x′(τ) =

nf∑
i=1

θi(τ)fi(x(τ), u(τ), s(τ)),

0 = g(x(τ))− λ(τ)− µ(τ)e,

0 ≤ λ(τ) ⊥ θ(τ) ≥ 0,

1 = e⊤θ(τ),

∥u(τ)∥22 ≤ u2max,

1 ≤ s(τ) ≤ smax, τ ∈ [0, T ].

qref(τ) = (R cos(ω t(τ)), R sin(ω t(τ))).
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Results with slowly moving reference
For ω = π, tracking is easy: no jumps occur in optimal solution.

▶ Regard time horizon of two periods

▶ N = 25 equidistant control intervals

▶ use FESD with NFE = 3 finite elements
with Radau 3 on each control interval

▶ each FESD interval has one constant
control u and one speed of time s

▶ MPCC solved via ℓ∞ penalty
reformulation and homotopy

▶ For homotopy convergence: in total 4
NLPs solved with IPOPT via CasADi
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Results with slowly moving reference - movie
For ω = π, tracking is easy: no jumps occur in optimal solution.
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Results with fast reference
For ω = 2π, tracking is only possible if ball bounces against walls.
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Results with fast reference - movie
For ω = 2π, tracking is only possible if ball bounces against walls.
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Homotopy: first iteration vs converged solution
Geometric trajectory
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After the first homotopy iteration
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The solution trajectory after convergence
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Physical vs. Numerical Time

for ω = π
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Overview

▶ The time-freezing reformulation

▶ Elastic impacts

▶ Inelastic impacts

▶ Hybrid systems with hysteresis

▶ Conclusions and outlook
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Complementarity Lagrangian systems with impacts and friction

Complementarity Lagrangian Systems (CLS)

q̇ = v,

M(q)v̇ = f̃v(q, v, u) +∇qfc(q)λn +B(q)λt,

0 ≤ λn ⊥ fc(q) ≥ 0,

0 = n(q(ts))
⊤v(t+s ), if fc(q(ts)) = 0 and n(q(ts))

⊤v(t−s ) < 0,

λt ∈ arg min
λ̃t∈Rnt

−v⊤B(q)λ̃t

s.t. ∥λ̃t∥2 ≤ µλn.

▶ we regard a single unilateral constraint fc(q) ≥ 0

▶ n(q) := ∇qfc(q) is the normal vector of the contact manifold {q ∈ Rnq | fc(q) = 0}
▶ B(q) ∈ Rnq×nt , nt = nq − 1 spans the tangent plane

▶ For a moment let us ignore tangential friction (red terms)
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Notation and basic definitions
CLS modes and contact LCP

unconstrained ODE mode

q̇ = v,

v̇ =M(q)−1f̃v(q, v, u)︸ ︷︷ ︸
=:fv(q,v,u)

,

contact mode - DAE of index 3

q̇ = v

v̇ =M(q)−1
(
f̃v(q, v, u) +∇qfc(q)λn

)
,

0 = fc(q).

The contact LCP tells us if the system will stay in contact mode or switch to the ODE mode:

0 ≤ d2

dt2
fc(q(t)) ⊥ λn(t) ≥ 0 ⇐⇒

0 ≤ D(q)λn + φ(x) ⊥ λn ≥ 0, solution: λn = max(0,−D(q)−1φ(x))

where D(q) is the Delassus’ matrix (scalar in this case) and

D(q) := ∇qfc(q)
⊤M(q)−1∇qfc(q) ≻ 0, φ(x) := ∇qfc(q)

⊤fv(q, v, u) +∇q(∇qfc(q)
⊤v)⊤v.
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Warm up example
A 2D particle without friction

2D frictionless particle with an inelastic impact

q̇ = v,

mv̇ =

 0

−mg

+

0
1

λn +

u1
u2

 ,
0 ≤ λn ⊥ q2 ≥ 0,

v2(t
+
s )=0, if q2(ts)=0 and v2(t

−
s )<0.

Trajectory with u(t) = 0:
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Warm up example
Phase plots: elastic vs. inelastic impact

elastic impact inelastic impact
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Time-freezing for inelastic impacts
Back to the more general setting

▶ State space in numerical time τ : y = (q, v, t) ∈ Rny , ny = nx + 1 and x = (q, v)

Switching functions

c1(y) := fc(q)

c2(y) := ∇qfc(q)
⊤

(
=

dfc
dt

(q)

)

Regions

Ra1 = {y ∈ Rny | c1(y) > 0}
Rb1 = {y ∈ Rny | c1(y) < 0, c2(y) > 0}
R1 = Ra1 ∪R2

b

R2 = {y ∈ Rny | c1(y) < 0, c2(y) < 0}

▶ R1 - unconstrained dynamics

▶ R2 - auxiliary dynamics

▶ After impact: c1(y) = c2(y) = 0

▶ sliding mode on Σ={y | c1(y) = 0, c2(y) = 0}
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Unconstrained and auxiliary dynamics

Unconstrained free-flight ODE in R1

y′ = fODE(y, u) :=


v

fv(q, v, u)

1


Auxiliary ODE in R2

y′(τ) = faux,n(y) :=


0nq,1

M(q)−1n(q)an

0


with an > 0.

▶ fODE(y, u) stops y(τ) on Σ

▶ dynamics on Σ is y′ ∈ conv{fODE(y)faux,n(y)}
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Contact breaking
The contact LCP function φ(x) tells us about the vector field in R1

▶ φ(x) determines stability of Σ (remember the contact LCP)
▶ staying in sliding mode (persistent contact) or leaving sliding mode (contact breaking) is

possible

Sliding mode if φ(x) ≤ 0

Breaking contact if φ(x) > 0
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Animation of leaving of sliding mode

Warm up example: a linearly increasing vertical force beats gravity
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Why is the time slowed-down?

Time-freezing system

y′ ∈ FTF(y, u) = {θ1fODE(y, u) + θ2faux,n(y) | θ⊤e = 1, θ ≥ 0}

▶ fractional θ1, θ2 ∈ (0, 1) ensures sliding on Σ

▶ speed of time dt
dτ = θ1 · 1 + θ2 · 0 < 1 - slow

down

▶ resulting dynamics equal to reduced DAE
index 3 dynamics fDAE(x, u) (contact mode)

▶ auxiliary dynamics plays role of contact force
(keeps v = 0 and avoids penetration)
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The sliding mode is unique

Time-freezing system

y′ ∈ FTF(y, u) = {θ1fODE(y, u) + θ2faux,n(y) | θ⊤e = 1, θ ≥ 0} (1)

Theorem

Let y(τ) be a solution of the dyn. system (1) with
y(0) ∈ Σ = {y ∈ Rny | c1(y) = 0, c2(y) = 0} and τ ∈ [0, τf ]. Suppose that φ(x(τ), u(τ)) ≤ 0
for all τ ∈ [0, τf ] (persistent contact), then the following statements are true:

(i) the convex multipliers θ1, θ2 ≥ 0 are unique,

(ii) the dynamics of the sliding mode are given by y′ = γ(x, u)

fDAE(x, u)

1

, where
γ(x, u) ∈ (0, 1] is a time-rescaling factor given by

γ(x, u) :=
D(q)an

D(q)an − φ(x, u)
. (2)
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Time-freezing with friction
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Complementarity Lagrangian systems with impact and friction

Complementarity Lagrangian Systems (CLS)

q̇ = v,

M(q)v̇ = f̃v(q, v, u) +∇qfc(q)λn +B(q)λt,

0 ≤ λn ⊥ fc(q) ≥ 0,

0 = n(q(ts))
⊤v(t+s ), if fc(q(ts)) = 0 and n(q(ts))

⊤v(t−s ) < 0,

λt ∈ arg min
λ̃t∈Rnt

−v⊤B(q)λ̃t

s.t. ∥λ̃t∥2 ≤ µλn.

▶ we regard fc(x) ∈ R (single unilateral constraint)

▶ B(q) ∈ Rnq×nt spans the tangent plane at contact points C(q) := {q ∈ Rnq | fc(q) = 0},
nt ∈ {1, 2}, tang. velocity vt = B(q)v

▶ We derive time-freezing for the red terms
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Coulomb’s friction
Solution map for a given λn

Coulomb’s friction law

λt ∈ arg min
λ̃t∈Rnt

−v⊤t λ̃t

s.t. ∥λ̃t∥2 ≤ µλn.

Friction solution map

λt ∈

{
{−µλn vt

∥vt∥2
}, if ∥vt∥2 > 0,

{λ̃t | ∥λ̃t∥2 ≤ µλn}, if ∥vt∥2 = 0.

▶ reduces to λt ∈ −λnsign(vt) in planar case

▶ the normal impulse is anτjump =⇒ the tangential impulse should be −µanτjumpsign(vt)

▶ trivially, tangential impulse happens at same time as the normal impulse

▶ Conclusion: make aux. dyn. in tangential directions B(q) ”proportional” to faux,n and
let them evolve simultaneously
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Regions with tangential auxiliary dynamics
Refine the definitions for c1(y) < 0 and c2(y) < 0 to account for the sign of vt

New additional switching function c3(y) = vt

Regions

Q = {y ∈ Rny | c1(y) < 0, c2(y) < 0}
R1 = Ra1 ∪Rb1
R2 = Q ∩ {y ∈ Rny | c3(y) > 0}
R3 = Q ∩ {y ∈ Rny | c3(y) < 0}

Time-freezing system with friction

y′ ∈ FTF(y, u) =
{ 3∑
i=1

fi(y, u) | θ ≥ 0, e⊤θ = 1
}

(3)
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New additional switching function c3(y) = vt

Regions

Q = {y ∈ Rny | c1(y) < 0, c2(y) < 0}
R1 = Ra1 ∪Rb1
R2 = Q ∩ {y ∈ Rny | c3(y) > 0}
R3 = Q ∩ {y ∈ Rny | c3(y) < 0}

Time-freezing system with friction

y′ ∈ FTF(y, u) =
{ 3∑
i=1
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Time-freezing with friction in the planar case

PSS modes

f1(y, u) = (fODE(x, u), 1)

f2(y) = faux,n(y)− faux,t(y)

f3(y) = faux,n(y) + faux,t(y)

Auxiliary ODE for tangential directions

faux,t(y) :=


0nq,1

M(q)−1B(q)µ an

0



faux,n(y) :=


0nq,1

M(q)−1n(q)an

0


▶ Simply sum the auxiliary dynamics in normal and tangential directions (recall that
B(q) ∈ Rnq×1 and n(q) ⊥ B(q))

▶ State jump is over when n(q)⊤v = 0, friction to slow down

▶ With vt = 0 sliding mode on Γ = {y | c1(y) = 0, c2(y) = 0, c3(y) = 0}
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Time-freezing with friction - sliding mode dynamics

▶ ẋ = fSlip(x, u) reduced DAE in slip mode, vt ̸= 0

▶ ẋ = fStick(x, u) reduced DAE in stick mode, vt = 0

Theorem (Slip-stick sliding mode)

Let y(τ) be a solution of time freezing system (3) with y(0) ∈ Σ and τ ∈ [0, τf ]. Suppose that
φ(x(τ), u(τ)) ≤ 0 for all τ ∈ [0, τf ] (persistent contact), then the following statements are
true:

(i) If vt ̸= 0 (slip motion), then the sliding mode dynamics are given by

y′ = γ(x, u)

fSlip(x, u)
1


(ii) If vt = 0 (stick motion), then the sliding mode dynamics are given by

y′ = γ(x, u)

fStick(x, u)
1


where γ(x, u) ∈ (0, 1] is a time-rescaling factor defined in Eq. (2).
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Simulation example - slip/stick
Increasing µ = 0 to µ = 0.5 with ∆µ = 0.1.

External force ux = 2
µ = 0

No friction
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Simulation example - slip/stick
Increasing µ = 0 to µ = 0.5 with ∆µ = 0.1.

External force ux = 2
µ = 0.1

External force stronger than friction
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Simulation example - slip/stick
Increasing µ = 0 to µ = 0.5 with ∆µ = 0.1.

External force ux = 2
µ = 0.2

External force equal to friction
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Simulation example - slip/stick
Increasing µ = 0 to µ = 0.5 with ∆µ = 0.1.

External force ux = 2
µ = 0.3

External force weaker than friction
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Simulation example - slip/stick
Increasing µ = 0 to µ = 0.5 with ∆µ = 0.1.

External force ux = 2
µ = 0.4

External force weaker than friction
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Simulation example - slip/stick
Increasing µ = 0 to µ = 0.5 with ∆µ = 0.1.

External force ux = 2
µ = 0.5

Tangential velocity zero after impact
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Friction for 3D contacts

Friction solution map

λt ∈

{
{−µλn vt

∥vt∥2
}, if ∥vt∥2 > 0,

{λ̃t | ∥λ̃t∥2 ≤ µλn}, if ∥vt∥2 = 0.

▶ The set {vt | vt = 0} has an empty
interior

▶ Problematic for defining Filippov system
via θ multipliers

▶ Problem not present with polyhedral
approximations
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Friction for 3D contacts - relaxed solution

Relaxed riction solution map

λt =

{
−µλn vt

∥vt∥2
, if ∥vt∥2 > ϵt,

vt, if ∥vt∥2 < ϵt,

▶ ϵt > 0 can be arbitrarily small

▶ Obtain set with nonempty interior

▶ Slip mode: approximation is exact

▶ Stick mode: sliding mode on ∥vt∥2 = ϵt
▶ Approximation can be made arbitrarily

good
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Friction for 3D contacts - the time-freezing system

Time-freezing system with friction

y′ ∈ FTF(y, u) =
{ 3∑
i=1

fi(y, u) | θ ≥ 0, e⊤θ = 1
}

PSS modes

f1(y, u) = (fODE(x, u), 1)

f2(y) = faux,n(y)− faux,t,2(y)

f3(y) = faux,n(y) + faux,t,3(y)

▶ Use same definition of regions R1, R2

and R3

▶ Switching function c3(y) = ∥vt∥2 − ϵt

Auxiliary ODEs for 3D friction

faux,t,2(y)=


0nq,1

M(q)−1B(q)µan
vt

∥vt∥

0



faux,t,3(y)=


0nq,1

M(q)−1B(q)vt

0


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Hopping robot - move with minimal effort from start to end position
Homotopy initialized with start position everywhere. Optimizer finds creative solution.
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Overview

▶ The time-freezing reformulation

▶ Elastic impacts

▶ Inelastic impacts

▶ Hybrid systems with hysteresis

▶ Conclusions and outlook
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Hybrid systems and finite automaton

ẋ = fA(x)
w = 0

ẋ = fB(x)
w = 1

ψ(x) ≥ 1

ψ(x) ≤ 0

0 1

0

1

ψ(x)

w
∈

H
(ψ

(x
))

Hybrid system with hysteresis (incomplete description)

ẋ = f(x,w) = (1− w)fA(x) + wfB(x)
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Tutorial example: thermostat with hysteresis

ẋ = −0.2x
w = 0

ẋ = −0.2x+ uh
w = 1

x ≤ 18

x ≥ 20

0 0.5 1 1.5 2 2.5 3 3.5
14

16

18

20

t [phyisical time]

x
(t
)

0 0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

t [phyisical time]

w
(t
)
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Hysteresis: a system with state jumps

Hybrid system with hysteresis

ẋ = f(x,w) = (1− w)fA(x) + wfB(x)

ẇ = 0

0 1

0

1

ψ(x)

w
∈

H
(ψ

(x
))

The State Jump Law

1. if w(t−s ) = 0 and ψ(x(t−s )) = 1, then x(t+s ) = x(t−s ) and w(t
+
s ) = 1

2. if w(t−s ) = 1 and ψ(x(t−s )) = 0, then x(t+s ) = x(t−s ) and w(t
+
s ) = 0

Remember: w(t) is now a discontinuous differential state!
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Recap: principles of time-freezing

1. mimic state jump by auxiliary dynamical system on prohibited region

2. introduce a clock state t(τ) that stops counting when the auxiliary system is active

3. time-freezing system (a PSS) evolves in numerical time τ , initial system (with state
jumps) in physical time t(τ)

4. adapt speed of time, dt
dτ = s with s ≥ 1, and impose terminal constraint t(T ) = T

5. if the state dimension reduces after a state jump, construct an appropriate sliding mode

6. take x(t(τ)) instead of x(τ) to recover the original solution with state jumps

7. . . .
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Tutorial example: thermostat and time-freezing
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Time-freezing: the state space
A look at the (ψ(x), w)−plane

▶ Everything except the blue solid curve is prohibited in the (ψ,w)− space (use 1st principle
of time-freezing)

▶ The evolution happens in a lower-dimensional space =⇒ sliding mode (use 4th principle
of time-freezing)
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Time-freezing: partitioning of the space
An efficient partition leads to less variables in FESD

▶ Partition the state space into Voronoi regions:
Ri = {z | ∥z − zi∥2 < ∥z − zj∥2, j = 1, . . . , 4, j ̸= i}, z = (ψ(x), w)

▶ Feasible region for initial hybrid system with hysteresis on the region boundaries
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Time-freezing: auxiliary dynamics
To mimic state jumps in finite numerical time

▶ Use regions R2 and R3 to define auxiliary dynamics for the state jumps of w(·)

▶ Evolution in w−direction happens only for ψ ∈ {0, 1}
▶ Zoom in: with a naive approach one has locally nonunique solutions
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Time-freezing: auxiliary dynamics

The new state space of the system is y = (x,w, t) ∈ Rnx+2

Auxiliary dynamics

dy

dτ
= faux,A(y) :=


0

−γ(ψ(x))

0


dy

dτ
= faux,B(y) :=


0

γ(ψ(x)− 1)

0


γ(x) =

ax2

1 + x2
−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

x
γ
(x

)
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Time-freezing: auxiliary dynamics

▶ Smart choice of auxiliary dynamics resolves the nonuniqueness issue

▶ Zoom in: escape only in one direction possible
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Time-freezing: DAE forming dynamics
Stop the state jump and construct suitable sliding mode

▶ Dynamics in R1 and R4 stops evolution of auxiliary ODE - similar to inelastic impacts

▶ Sliding modes on RA := ∂R1 ∩ ∂R2 and RB := ∂R3 ∩ ∂R4 match fA(y) and fB(y), resp.
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Time-freezing: summary

DAE-forming dynamics

y = (x,w, t)

dy

dτ
= fdf,A(y) :=


2fA(x)

γ(ψ(x))

2


dy

dτ
= fdf,B(y) :=


2fB(x)

−γ(ψ(x)− 1)

2



▶ In total four regions Ri , i = 1, 2, 3, 4 and evolution of
original system is the sliding mode

▶ Regions R2 and R3 equipped with aux. dynamics
y′ = f2(y) = faux,A(y) and y

′ = f3(y) = faux,B(y),
resp., to mimic state jump

▶ Regions R1 and R4 equipped with DAE-forming
dynamics y′ = f1(y) = fdf,A(y) and
y′ = f4(y) = fdf,B(y), resp., to recover original
dynamics in sliding mode

▶ E.g., w′ = 0 =⇒ θ1fdf,A(y) + θ2faux,A(y) = fA(y)
(sliding mode)

▶ Conclusion: we have a PSS and can treat it with FESD
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Time optimal control of a car with a turbo accelerator
Example from [Avraam, 2000] solved with NOSNOC

q̇ = v
v̇ = u
L̇ = cN
w = 0

q̇ = v
v̇ = 3u
L̇ = cT
w = 1

v ≥ 15

v ≤ 10

Time optimal control problem

min
y(·),u(·),s(·)

t(τf) + L(τf)

s.t. y(0) = (z0, 0)

y′(τ)∈s(τ)FTF(y(τ), u(τ))

− ū ≤ u(τ) ≤ ū

s̄−1 ≤ s(τ) ≤ s̄

− v̄ ≤ v(τ) ≤ v̄ τ ∈ [0, τf ]

(q(τf), v(τf)) = (qf , vf)

Time-freezing for optimal control with state jump Moritz Diehl 48



Time optimal control of a car with a turbo accelerator
Example from [Avraam, 2000] solved with NOSNOC

q̇ = v
v̇ = u
L̇ = cN
w = 0

q̇ = v
v̇ = 3u
L̇ = cT
w = 1

v ≥ 15

v ≤ 10

Time optimal control problem

min
y(·),u(·),s(·)

t(τf) + L(τf)

s.t. y(0) = (z0, 0)

y′(τ)∈s(τ)FTF(y(τ), u(τ))
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Scenario 1: turbo and nominal cost the same
cN = cT
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Scenario 2: Turbo is Expensive
cN < cT
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NOSNOC vs MILP/MINLP formulations
Benchmark on time-optimal control problem of a car with turbo

▶ compare CPU time as function of number of control intervals N (left) and solution
accuracy (right)

▶ MILP (Gurobi): solve problem with fixed T until indefeasibly happens with grid search in T

▶ MILP/MINLP and NOSNOC-Std no switch detection = low accuracy
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Conclusions and Outlook

Conclusions

▶ Mathematical Programs with Complementarity Constraints (MPCC) are a powerful tool to
formulate and solve nonsmooth and nonconvex optimization problems.

▶ Time-freezing allows us to transform systems with state jumps of level NSD3 to the easier
level NSD2.

▶ Finite Elements with Switch Detection (FESD) allow highly accurate simulation and
optimal control for switched systems of level NSD2.

Outlook

▶ Time-freezing for multiple and simultaneous impacts with friction (work in progress)

▶ Time-freezing for more general hybrid automaton

▶ Do generic time-freezing principles, easily applicable to any system with state jumps, exist?
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Thank you very much for your attention!
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