Time-freezing for optimal control of systems with state jumps

Moritz Diehl

Systems Control and Optimization Laboratory Department of Microsystems Engineering and Department of Mathematics University of Freiburg, Germany

based on joint work with Armin Nurkanović, Sebastian Albrecht, Bernard Brogliato

> 9th Annual Symposium, Toulouse LAAS – CNRS, Toulouse, France 20th – 22nd September, 2022

Nonsmooth Dynamics (NSD) - a classification

Regard ordinary differential equation (ODE) with a **nonsmooth** right-hand side (RHS). Distinguish three cases:

x(t)

NSD2: state dependent switch of RHS, e.g.,
$$\dot{x} = 2 - \operatorname{sign}(x)$$

NSD3: state dependent jump, e.g., bouncing ball, $v(t_{+}) = -0.9 v(t_{-})$

Aim of time-freezing: transform NSD3 to NSD2 (and then use the rest of the toolchain)

PSS - piecewise smooth systems; DCS - dynamic complementarity system; OCP - optimal control problem; FESD - finite elements with switch detection; MPCC - mathematical program with complementarity constraints ; NLP - nonlinear program

- ► The time-freezing reformulation
- Elastic impacts
- Inelastic impacts
- Hybrid systems with hysteresis
- Conclusions and outlook

NSD3 state jump example: bouncing ball

Bouncing ball with state x = (q, v):

$$\begin{split} \dot{q} &= v, \, m \dot{v} = -mg, \quad \text{if} \, q > 0 \\ v(t^+) &= -0.9 \, v(t^-), \qquad \text{if} \, q(t^-) = 0 \text{ and } v(t^-) < 0 \end{split}$$

Time plot of bouncing ball trajectory:

Phase plot of bouncing ball trajectory:

Question: could we transform NSD3 systems into (easier) NSD2 systems?

- 1. mimic state jump by auxiliary dynamic system $\dot{x} = f_{\mathrm{aux}}(x)$ on prohibited region
- 2. introduce a **clock state** $t(\tau)$ that stops counting when the auxiliary system is active
- 3. adapt speed of time, $\frac{dt}{d\tau} = s$ with $s \ge 1$, and impose terminal constraint t(T) = T

The time-freezing reformulation

Augmented state $(x,t) \in \mathbb{R}^{n+1}$ evolves in numerical time τ . Augmented system is nonsmooth, of NSD2 type:

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \begin{bmatrix} x \\ t \end{bmatrix} = \begin{cases} s \begin{bmatrix} f(x) \\ 1 \end{bmatrix}, & \text{ if } c(x) \ge 0 \\ \\ \begin{bmatrix} s f_{\mathrm{aux}}(x) \\ 0 \end{bmatrix}, & \text{ if } c(x) < 0 \end{cases}$$

- ► During normal times, system and clock state evolve with adapted speed s ≥ 1.
- ► Auxiliary system dx/dτ = f_{aux}(x) mimics state jump while time is frozen, dt/dτ = 0.

Time-freezing for bouncing ball example

Evolution of physical time (clock state) during augmented system simulation (s = 1).

We can recover the true solution by plotting $x(\tau)$ vs. $t(\tau)$ and disregarding "frozen pieces".

Time-freezing for optimal control with state jump

 $\min_{\substack{x(.),u(.)\\\theta(.),\lambda(.)}}$

Regard bouncing ball in two dimensions driven by bounded force: $\left| \, \ddot{q} = u \right.$

$$\begin{split} & \int_{s(.), \mu(.)}^{T} (q - q_{ref}(\tau))^{\top} (q - q_{ref}(\tau)) \, s(\tau) \, \mathrm{d}\tau \\ & \text{s.t.} \quad x(0) = x_0, \quad t(T) = T, \\ & x'(\tau) = \sum_{i=1}^{n_f} \theta_i(\tau) f_i(x(\tau), u(\tau), s(\tau)), \\ & 0 = g(x(\tau)) - \lambda(\tau) - \mu(\tau) e, \\ & 0 \leq \lambda(\tau) \perp \theta(\tau) \geq 0, \\ & 1 = e^{\top} \theta(\tau), \\ & \| u(\tau) \|_2^2 \leq u_{\max}^2, \\ & 1 \leq s(\tau) \leq s_{\max}, \ \tau \in [0, T]. \end{split}$$

$$q_{\rm ref}(\tau) = (R\cos(\omega t(\tau)), R\sin(\omega t(\tau))).$$

Results with slowly moving reference

For $\omega = \pi$, tracking is easy: no jumps occur in optimal solution.

- Regard time horizon of two periods
- ▶ N = 25 equidistant control intervals
- ▶ use FESD with $N_{\rm FE} = 3$ finite elements with Radau 3 on each control interval
- each FESD interval has one constant control u and one speed of time s
- MPCC solved via l_∞ penalty reformulation and homotopy
- For homotopy convergence: in total 4 NLPs solved with IPOPT via CasADi

States and controls in physical time.

Results with slowly moving reference - movie

For $\omega = \pi$, tracking is easy: no jumps occur in optimal solution.

Results with fast reference

For $\omega = 2\pi$, tracking is only possible if ball bounces against walls.

States and controls in numerical time.

States and controls in physical time.

Results with fast reference - movie

For $\omega=2\pi,$ tracking is only possible if ball bounces against walls.

Homotopy: first iteration vs converged solution

Geometric trajectory

The solution trajectory after convergence

Physical vs. Numerical Time

- ► The time-freezing reformulation
- Elastic impacts

Inelastic impacts

- Hybrid systems with hysteresis
- Conclusions and outlook

Complementarity Lagrangian Systems (CLS)

$$\begin{split} \dot{q} &= v, \\ M(q) \dot{v} &= \tilde{f}_{v}(q, v, u) + \nabla_{q} f_{c}(q) \lambda_{n} + B(q) \lambda_{t}, \\ 0 &\leq \lambda_{n} \perp f_{c}(q) \geq 0, \\ 0 &= n(q(t_{s}))^{\top} v(t_{s}^{+}), \text{ if } f_{c}(q(t_{s})) = 0 \text{ and } n(q(t_{s}))^{\top} v(t_{s}^{-}) < 0, \\ \lambda_{t} &\in \arg \min_{\tilde{\lambda}_{t} \in \mathbb{R}^{n_{t}}} -v^{\top} B(q) \tilde{\lambda}_{t} \\ \text{ s.t. } \|\tilde{\lambda}_{t}\|_{2} \leq \mu \lambda_{n}. \end{split}$$

- ▶ we regard a single unilateral constraint $f_c(q) \ge 0$
- ▶ $n(q) := \nabla_q f_c(q)$ is the normal vector of the contact manifold $\{q \in \mathbb{R}^{n_q} \mid f_c(q) = 0\}$
- $\blacktriangleright~B(q)\in \mathbb{R}^{n_q\times n_t}$, $n_{\rm t}=n_q-1$ spans the tangent plane
- For a moment let us ignore tangential friction (red terms)

Complementarity Lagrangian Systems (CLS)

$$\begin{split} \dot{q} &= v, \\ M(q)\dot{v} &= \tilde{f}_{v}(q, v, u) + \nabla_{q}f_{c}(q)\lambda_{n} \\ 0 &\leq \lambda_{n} \perp f_{c}(q) \geq 0, \\ 0 &= n(q(t_{s}))^{\top}v(t_{s}^{+}), \text{ if } f_{c}(q(t_{s})) = 0 \text{ and } n(q(t_{s}))^{\top}v(t_{s}^{-}) < 0, \end{split}$$

• we regard a single unilateral constraint $f_c(q) \ge 0$

▶ $n(q) := \nabla_q f_c(q)$ is the normal vector of the contact manifold $\{q \in \mathbb{R}^{n_q} \mid f_c(q) = 0\}$

For a moment let us ignore tangential friction

Notation and basic definitions

CLS modes and contact LCP

unconstrained ODE mode

$$\dot{q} = v,$$

$$\dot{v} = \underbrace{M(q)^{-1}\tilde{f}_{v}(q, v, u)}_{=:f_{v}(q, v, u)},$$

contact mode - DAE of index 3

$$\begin{split} \dot{q} &= v \\ \dot{v} &= M(q)^{-1} \left(\tilde{f}_{\rm v}(q,v,u) + \nabla_q f_c(q) \lambda_{\rm n} \right), \\ 0 &= f_c(q). \end{split}$$

Notation and basic definitions

CLS modes and contact LCP

unconstrained ODE mode

$$\dot{q} = v,$$

$$\dot{v} = \underbrace{M(q)^{-1}\tilde{f}_{v}(q, v, u)}_{=:f_{v}(q, v, u)},$$

contact mode - DAE of index 3 $\dot{q} = v$ $\dot{v} = M(q)^{-1} \left(\tilde{f}_{v}(q, v, u) + \nabla_{q} f_{c}(q) \lambda_{n} \right),$ $0 = f_{c}(q).$

The contact LCP tells us if the system will stay in contact mode or switch to the ODE mode:

$$\begin{split} 0 &\leq \frac{\mathrm{d}^2}{\mathrm{d}t^2} f_c(q(t)) \perp \lambda_{\mathrm{n}}(t) \geq 0 \iff \\ 0 &\leq D(q)\lambda_{\mathrm{n}} + \varphi(x) \perp \lambda_{\mathrm{n}} \geq 0, \text{ solution:} \quad \lambda_{\mathrm{n}} = \max(0, -D(q)^{-1}\varphi(x)) \end{split}$$

Notation and basic definitions

CLS modes and contact LCP

unconstrained ODE mode

$$\dot{q} = v,$$

$$\dot{v} = \underbrace{M(q)^{-1} \tilde{f}_{v}(q, v, u)}_{=:f_{v}(q, v, u)},$$

contact mode - DAE of index 3 $\dot{q} = v$ $\dot{v} = M(q)^{-1} \left(\tilde{f}_{v}(q, v, u) + \nabla_{q} f_{c}(q) \lambda_{n} \right),$ $0 = f_{c}(q).$

The contact LCP tells us if the system will stay in contact mode or switch to the ODE mode:

$$\begin{split} 0 &\leq \frac{\mathrm{d}^2}{\mathrm{d}t^2} f_c(q(t)) \perp \lambda_{\mathrm{n}}(t) \geq 0 \iff \\ 0 &\leq D(q)\lambda_{\mathrm{n}} + \varphi(x) \perp \lambda_{\mathrm{n}} \geq 0, \text{ solution:} \quad \lambda_{\mathrm{n}} = \max(0, -D(q)^{-1}\varphi(x)) \end{split}$$

where D(q) is the Delassus' matrix (scalar in this case) and

$$D(q) \coloneqq \nabla_q f_c(q)^\top M(q)^{-1} \nabla_q f_c(q) \succ 0, \quad \varphi(x) \coloneqq \nabla_q f_c(q)^\top f_v(q, v, u) + \nabla_q (\nabla_q f_c(q)^\top v)^\top v.$$

Trajectory with u(t) = 0:

Warm up example

Phase plots: elastic vs. inelastic impact

Time-freezing for inelastic impacts

Back to the more general setting

State space in numerical time
$$\tau$$
: $y = (q, v, t) \in \mathbb{R}^{n_y}, n_y = n_x + 1$ and $x = (q, v)$

Switching functions

$$c_1(y) := f_c(q)$$

$$c_2(y) := \nabla_q f_c(q)^\top \quad \left(= \frac{\mathrm{d}f_c}{\mathrm{d}t}(q)\right)$$

Regions

$$\begin{split} R_1^a &= \{ y \in \mathbb{R}^{n_y} \mid c_1(y) > 0 \} \\ R_1^b &= \{ y \in \mathbb{R}^{n_y} \mid c_1(y) < 0, c_2(y) > 0 \} \\ R_1 &= R_1^a \cup R_2^b \\ R_2 &= \{ y \in \mathbb{R}^{n_y} \mid c_1(y) < 0, c_2(y) < 0 \} \end{split}$$

- R₁ unconstrained dynamics
- R₂ auxiliary dynamics
- After impact: $c_1(y) = c_2(y) = 0$
- ► sliding mode on $\Sigma = \{y \mid c_1(y) = 0, c_2(y) = 0\}$

Time-freezing for inelastic impacts

Back to the more general setting

• State space in numerical time
$$au\colon y=(q,v,t)\in\mathbb{R}^{n_y},\ n_y=n_x+1$$
 and $x=(q,v)$

Switching functions

$$c_1(y) := f_c(q)$$

$$c_2(y) := \nabla_q f_c(q)^\top \quad \left(= \frac{\mathrm{d}f_c}{\mathrm{d}t}(q) \right)$$

Regions

$$\begin{split} R_1^a &= \{ y \in \mathbb{R}^{n_y} \mid c_1(y) > 0 \} \\ R_1^b &= \{ y \in \mathbb{R}^{n_y} \mid c_1(y) < 0, c_2(y) > 0 \} \\ R_1 &= R_1^a \cup R_2^b \\ R_2 &= \{ y \in \mathbb{R}^{n_y} \mid c_1(y) < 0, c_2(y) < 0 \} \end{split}$$

- R₁ unconstrained dynamics
- R₂ auxiliary dynamics
- After impact: $c_1(y) = c_2(y) = 0$
- ► sliding mode on $\Sigma = \{y \mid c_1(y) = 0, c_2(y) = 0\}$

Unconstrained and auxiliary dynamics

Unconstrained free-flight ODE in R_1

$$y' = f_{\text{ODE}}(y, u) \coloneqq \begin{bmatrix} v \\ f_{v}(q, v, u) \\ 1 \end{bmatrix}$$

Auxiliary ODE in R_2

$$y'(\tau) = f_{\text{aux},n}(y) \coloneqq \begin{bmatrix} \mathbf{0}_{n_q,1} \\ M(q)^{-1}n(q)a_n \\ \mathbf{0} \end{bmatrix}$$

with $a_n > 0$.

Unconstrained and auxiliary dynamics

Unconstrained free-flight ODE in R_1

$$y' = f_{\text{ODE}}(y, u) \coloneqq \begin{bmatrix} v \\ f_v(q, v, u) \\ 1 \end{bmatrix}$$

Auxiliary ODE in R_2

$$y'(\tau) = f_{\text{aux},n}(y) \coloneqq \begin{bmatrix} \mathbf{0}_{n_q,1} \\ M(q)^{-1}n(q)a_n \\ \mathbf{0} \end{bmatrix}$$

with $a_n > 0$.

Unconstrained and auxiliary dynamics

Unconstrained free-flight ODE in R_1

$$y' = f_{\text{ODE}}(y, u) \coloneqq \begin{bmatrix} v \\ f_v(q, v, u) \\ 1 \end{bmatrix}$$

Auxiliary ODE in R_2

$$y'(\tau) = f_{\text{aux},\mathbf{n}}(y) \coloneqq \begin{bmatrix} \mathbf{0}_{n_q,1} \\ M(q)^{-1}n(q)a_{\mathbf{n}} \\ \mathbf{0} \end{bmatrix}$$

with $a_n > 0$.

Contact breaking

The contact LCP function $\varphi(x)$ tells us about the vector field in R_1

- $\varphi(x)$ determines stability of Σ (remember the contact LCP)
- staying in sliding mode (persistent contact) or leaving sliding mode (contact breaking) is possible

Sliding mode if $\varphi(x) \leq 0$

Contact breaking

The contact LCP function $\varphi(x)$ tells us about the vector field in R_1

- $\varphi(x)$ determines stability of Σ (remember the contact LCP)
- staying in sliding mode (persistent contact) or leaving sliding mode (contact breaking) is possible

Breaking contact if $\varphi(x) > 0$

Sliding mode if $\varphi(x) \leq 0$

Moritz Diehl

Warm up example: a linearly increasing vertical force beats gravity

Time-freezing system

$$y' \in F_{\mathrm{TF}}(y, u) = \{\theta_1 f_{\mathrm{ODE}}(y, u) + \theta_2 f_{\mathrm{aux}, n}(y) \mid \theta^\top e = 1, \ \theta \ge 0\}$$

- fractional $\theta_1, \theta_2 \in (0, 1)$ ensures sliding on Σ
- ▶ speed of time $\frac{\mathrm{d}t}{\mathrm{d}\tau} = \theta_1 \cdot 1 + \theta_2 \cdot 0 < 1$ slow down
- resulting dynamics equal to reduced DAE index 3 dynamics f_{DAE}(x, u) (contact mode)
- auxiliary dynamics plays role of contact force (keeps v = 0 and avoids penetration)

The sliding mode is unique

Time-freezing system

$$y' \in F_{\rm TF}(y, u) = \{\theta_1 f_{\rm ODE}(y, u) + \theta_2 f_{{\rm aux}, n}(y) \mid \theta^\top e = 1, \ \theta \ge 0\}$$
 (1)

Theorem

Let $y(\tau)$ be a solution of the dyn. system (1) with $y(0) \in \Sigma = \{y \in \mathbb{R}^{n_y} \mid c_1(y) = 0, c_2(y) = 0\}$ and $\tau \in [0, \tau_f]$. Suppose that $\varphi(x(\tau), u(\tau)) \leq 0$ for all $\tau \in [0, \tau_f]$ (persistent contact), then the following statements are true:

- (i) the convex multipliers $\theta_1, \theta_2 \ge 0$ are unique,
- (ii) the dynamics of the sliding mode are given by $y' = \gamma(x, u) \begin{vmatrix} f_{\text{DAE}}(x, u) \\ 1 \end{vmatrix}$, where

 $\gamma(x,u)\in(0,1]$ is a time-rescaling factor given by

$$\gamma(x,u) \coloneqq \frac{D(q)a_{n}}{D(q)a_{n} - \varphi(x,u)}.$$
(2)

Time-freezing with friction

Complementarity Lagrangian Systems (CLS)

$$\begin{split} \dot{q} &= v, \\ M(q)\dot{v} &= \tilde{f}_{v}(q, v, u) + \nabla_{q}f_{c}(q)\lambda_{n} + B(q)\lambda_{t}, \\ 0 &\leq \lambda_{n} \perp f_{c}(q) \geq 0, \\ 0 &= n(q(t_{s}))^{\top}v(t_{s}^{+}), \text{ if } f_{c}(q(t_{s})) = 0 \text{ and } n(q(t_{s}))^{\top}v(t_{s}^{-}) < 0, \\ \lambda_{t} &\in \arg\min_{\tilde{\lambda}_{t} \in \mathbb{R}^{n_{t}}} -v^{\top}B(q)\tilde{\lambda}_{t} \\ \text{ s.t. } \|\tilde{\lambda}_{t}\|_{2} \leq \mu\lambda_{n}. \end{split}$$

• we regard $f_c(x) \in \mathbb{R}$ (single unilateral constraint)

- ▶ $B(q) \in \mathbb{R}^{n_q \times n_t}$ spans the tangent plane at contact points $C(q) := \{q \in \mathbb{R}^{n_q} \mid f_c(q) = 0\}$, $n_t \in \{1, 2\}$, tang. velocity $v_t = B(q)v$
- ▶ We derive time-freezing for the red terms

Coulomb's friction

Solution map for a given λ_n

Coulomb's friction law

$$egin{aligned} &\lambda_{\mathrm{t}} \in \arg\min_{ ilde{\lambda}_{\mathrm{t}} \in \mathbb{R}^{n_{\mathrm{t}}}} & -v_{\mathrm{t}}^{ op} ilde{\lambda}_{\mathrm{t}} \ &\mathrm{s.t.} & \| ilde{\lambda}_{\mathrm{t}}\|_{2} \leq \mu\lambda_{\mathrm{n}}. \end{aligned}$$

Friction solution map

$$\lambda_{\mathbf{t}} \in \begin{cases} \{-\mu\lambda_{\mathbf{n}}\frac{v_{\mathbf{t}}}{\|v_{\mathbf{t}}\|_{2}}\}, & \text{if } \|v_{\mathbf{t}}\|_{2} > 0, \\ \{\tilde{\lambda}_{\mathbf{t}} \mid \|\tilde{\lambda}_{\mathbf{t}}\|_{2} \le \mu\lambda_{\mathbf{n}}\}, & \text{if } \|v_{\mathbf{t}}\|_{2} = 0. \end{cases}$$

Coulomb's friction

Solution map for a given λ_n

Coulomb's friction law

$$\begin{split} \lambda_{\mathbf{t}} &\in \arg\min_{\tilde{\lambda}_{\mathbf{t}} \in \mathbb{R}^{n_{\mathbf{t}}}} \quad -v_{\mathbf{t}}^{\top} \tilde{\lambda}_{\mathbf{t}} \\ \text{s.t.} \quad \|\tilde{\lambda}_{\mathbf{t}}\|_{2} \leq \mu \lambda_{\mathbf{n}}. \end{split}$$

Friction solution map

$$\lambda_{\mathbf{t}} \in \begin{cases} \{-\mu\lambda_{\mathbf{n}} \frac{v_{\mathbf{t}}}{\|v_{\mathbf{t}}\|_{2}}\}, & \text{if } \|v_{\mathbf{t}}\|_{2} > 0, \\ \{\tilde{\lambda}_{\mathbf{t}} \mid \|\tilde{\lambda}_{\mathbf{t}}\|_{2} \le \mu\lambda_{\mathbf{n}}\}, & \text{if } \|v_{\mathbf{t}}\|_{2} = 0. \end{cases}$$

▶ reduces to $\lambda_t \in -\lambda_n sign(v_t)$ in planar case

- ▶ the normal impulse is $a_n \tau_{jump} \implies$ the tangential impulse should be $-\mu a_n \tau_{jump} \operatorname{sign}(v_t)$
- trivially, tangential impulse happens at same time as the normal impulse
- ▶ **Conclusion**: make aux. dyn. in tangential directions B(q) "proportional" to $f_{\text{aux,n}}$ and let them evolve simultaneously

Refine the definitions for $c_1(y) < 0$ and $c_2(y) < 0$ to account for the sign of $v_{\rm t}$

New additional switching function $c_3(y) = v_t$

Regions

$$Q = \{ y \in \mathbb{R}^{n_y} \mid c_1(y) < 0, c_2(y) < 0 \}$$

$$R_1 = R_1^a \cup R_1^b$$

$$R_2 = Q \cap \{ y \in \mathbb{R}^{n_y} \mid c_3(y) > 0 \}$$

$$R_3 = Q \cap \{ y \in \mathbb{R}^{n_y} \mid c_3(y) < 0 \}$$

$$y' \in F_{\rm TF}(y, u) = \left\{ \sum_{i=1}^{3} f_i(y, u) \mid \theta \ge 0, \ e^{\top} \theta = 1 \right\}$$
 (3)

Refine the definitions for $c_1(y) < 0$ and $c_2(y) < 0$ to account for the sign of $v_{\rm t}$

New additional switching function $c_3(y) = v_t$

Regions

$$Q = \{ y \in \mathbb{R}^{n_y} \mid c_1(y) < 0, c_2(y) < 0 \}$$

$$R_1 = R_1^a \cup R_1^b$$

$$R_2 = Q \cap \{ y \in \mathbb{R}^{n_y} \mid c_3(y) > 0 \}$$

$$R_3 = Q \cap \{ y \in \mathbb{R}^{n_y} \mid c_3(y) < 0 \}$$

$$y' \in F_{\rm TF}(y, u) = \left\{ \sum_{i=1}^{3} f_i(y, u) \mid \theta \ge 0, \ e^{\top} \theta = 1 \right\}$$
 (3)

Refine the definitions for $c_1(y) < 0$ and $c_2(y) < 0$ to account for the sign of $v_{\rm t}$

New additional switching function $c_3(y) = v_t$

Regions

$$Q = \{ y \in \mathbb{R}^{n_y} \mid c_1(y) < 0, c_2(y) < 0 \}$$

$$R_1 = R_1^a \cup R_1^b$$

$$R_2 = Q \cap \{ y \in \mathbb{R}^{n_y} \mid c_3(y) > 0 \}$$

$$R_3 = Q \cap \{ y \in \mathbb{R}^{n_y} \mid c_3(y) < 0 \}$$

$$y' \in F_{\rm TF}(y, u) = \left\{ \sum_{i=1}^{3} f_i(y, u) \mid \theta \ge 0, \ e^{\top} \theta = 1 \right\}$$
 (3)

Refine the definitions for $c_1(y) < 0$ and $c_2(y) < 0$ to account for the sign of $v_{\rm t}$

New additional switching function $c_3(y) = v_t$

Regions

$$Q = \{ y \in \mathbb{R}^{n_y} \mid c_1(y) < 0, c_2(y) < 0 \}$$

$$R_1 = R_1^a \cup R_1^b$$

$$R_2 = Q \cap \{ y \in \mathbb{R}^{n_y} \mid c_3(y) > 0 \}$$

$$R_3 = Q \cap \{ y \in \mathbb{R}^{n_y} \mid c_3(y) < 0 \}$$

$$y' \in F_{\rm TF}(y,u) = \left\{ \sum_{i=1}^{3} f_i(y,u) \mid \theta \ge 0, \ e^{\top}\theta = 1 \right\}$$
 (3)

Refine the definitions for $c_1(y) < 0$ and $c_2(y) < 0$ to account for the sign of v_t

New additional switching function $c_3(y) = v_t$

Regions

$$Q = \{ y \in \mathbb{R}^{n_y} \mid c_1(y) < 0, c_2(y) < 0 \}$$

$$R_1 = R_1^a \cup R_1^b$$

$$R_2 = Q \cap \{ y \in \mathbb{R}^{n_y} \mid c_3(y) > 0 \}$$

$$R_3 = Q \cap \{ y \in \mathbb{R}^{n_y} \mid c_3(y) < 0 \}$$

$$y' \in F_{\rm TF}(y, u) = \left\{ \sum_{i=1}^{3} f_i(y, u) \mid \theta \ge 0, \ e^{\top} \theta = 1 \right\}$$
(3)

Time-freezing with friction in the planar case

PSS modes

$$\begin{split} f_1(y,u) &= (f_{\text{ODE}}(x,u),1) \\ f_2(y) &= f_{\text{aux},n}(y) - f_{\text{aux},t}(y) \\ f_3(y) &= f_{\text{aux},n}(y) + f_{\text{aux},t}(y) \end{split}$$

Auxiliary ODE for tangential directions

$$f_{\text{aux,t}}(y) \coloneqq \begin{bmatrix} \mathbf{0}_{n_q,1} \\ M(q)^{-1} \mathbf{B}(q) \mu \ a_n \\ \mathbf{0} \end{bmatrix}$$
$$f_{\text{aux,n}}(y) \coloneqq \begin{bmatrix} \mathbf{0}_{n_q,1} \\ M(q)^{-1} n(q) a_n \\ \mathbf{0} \end{bmatrix}$$

Simply sum the auxiliary dynamics in normal and tangential directions (recall that $B(q) \in \mathbb{R}^{n_q \times 1}$ and $n(q) \perp B(q)$)

State jump is over when $n(q)^{\top}v = 0$, friction to slow down

 $\blacktriangleright \text{ With } v_t = 0 \text{ sliding mode on } \Gamma = \{y \mid c_1(y) = 0, c_2(y) = 0, c_3(y) = 0\}$

Time-freezing with friction - sliding mode dynamics

•
$$\dot{x} = f_{Slip}(x, u)$$
 reduced DAE in slip mode, $v_t \neq 0$

• $\dot{x} = f_{\mathrm{Stick}}(x, u)$ reduced DAE in stick mode, $v_{\mathrm{t}} = 0$

Theorem (Slip-stick sliding mode)

Let $y(\tau)$ be a solution of time freezing system (3) with $y(0) \in \Sigma$ and $\tau \in [0, \tau_f]$. Suppose that $\varphi(x(\tau), u(\tau)) \leq 0$ for all $\tau \in [0, \tau_f]$ (persistent contact), then the following statements are true:

Increasing $\mu = 0$ to $\mu = 0.5$ with $\Delta \mu = 0.1$.

External force $u_x = 2$ $\mu = 0$ No friction

Increasing $\mu = 0$ to $\mu = 0.5$ with $\Delta \mu = 0.1$.

 $\begin{array}{l} \mbox{External force } u_x = 2 \\ \mu = 0.1 \\ \mbox{External force stronger than friction} \end{array}$

Increasing $\mu = 0$ to $\mu = 0.5$ with $\Delta \mu = 0.1$.

External force $u_x = 2$ $\mu = 0.2$ External force equal to friction

Increasing $\mu = 0$ to $\mu = 0.5$ with $\Delta \mu = 0.1$.

External force $u_x=2$ $\mu=0.3$ External force weaker than friction

Increasing $\mu = 0$ to $\mu = 0.5$ with $\Delta \mu = 0.1$.

External force $u_x=2$ $\mu=0.4$ External force weaker than friction

Increasing $\mu = 0$ to $\mu = 0.5$ with $\Delta \mu = 0.1$.

External force $u_x=2$ $\mu=0.5$ Tangential velocity zero after impact

Friction for 3D contacts

Friction solution map

$$\lambda_{\mathbf{t}} \in \begin{cases} \{-\mu\lambda_{\mathbf{n}} \frac{v_{\mathbf{t}}}{\|v_{\mathbf{t}}\|_{2}}\}, & \text{if } \|v_{\mathbf{t}}\|_{2} > 0, \\ \{\tilde{\lambda}_{\mathbf{t}} \mid \|\tilde{\lambda}_{\mathbf{t}}\|_{2} \le \mu\lambda_{\mathbf{n}}\}, & \text{if } \|v_{\mathbf{t}}\|_{2} = 0. \end{cases}$$

- ▶ The set $\{v_t \mid v_t = 0\}$ has an empty interior
- Problematic for defining Filippov system
 via θ multipliers
- Problem not present with polyhedral approximations

Relaxed riction solution map

$$\lambda_{t} = \begin{cases} -\mu \lambda_{n} \frac{v_{t}}{\|v_{t}\|_{2}}, & \text{if } \|v_{t}\|_{2} > \epsilon_{t}, \\ v_{t}, & \text{if } \|v_{t}\|_{2} < \epsilon_{t}, \end{cases}$$

- $\epsilon_t > 0$ can be arbitrarily small
- Obtain set with nonempty interior
- Slip mode: approximation is exact
- Stick mode: sliding mode on $||v_t||_2 = \epsilon_t$
- Approximation can be made arbitrarily good

Friction for 3D contacts - the time-freezing system

Time-freezing system with friction

$$y' \in F_{\rm TF}(y, u) = \left\{ \sum_{i=1}^{3} f_i(y, u) \mid \theta \ge 0, \ e^{\top} \theta = 1 \right\}$$

PSS modes

$$\begin{split} f_1(y, u) &= (f_{\text{ODE}}(x, u), 1) \\ f_2(y) &= f_{\text{aux}, n}(y) - f_{\text{aux}, t, 2}(y) \\ f_3(y) &= f_{\text{aux}, n}(y) + f_{\text{aux}, t, 3}(y) \end{split}$$

- ► Use same definition of regions R₁, R₂ and R₃
- Switching function $c_3(y) = \|v_t\|_2 \epsilon_t$

Auxiliary ODEs for 3D friction

$$f_{\text{aux,t,2}}(y) = \begin{bmatrix} \mathbf{0}_{n_q,1} \\ M(q)^{-1} B(q) \mu a_n \frac{v_t}{\|v_t\|} \\ 0 \end{bmatrix}$$
$$f_{\text{aux,t,3}}(y) = \begin{bmatrix} \mathbf{0}_{n_q,1} \\ M(q)^{-1} B(q) v_t \\ 0 \end{bmatrix}$$

Hopping robot - move with minimal effort from start to end position

Homotopy initialized with start position everywhere. Optimizer finds creative solution.

- ► The time-freezing reformulation
- ► Elastic impacts
- Inelastic impacts
- Hybrid systems with hysteresis
- Conclusions and outlook

Hybrid systems and finite automaton

Hybrid systems and finite automaton

Hybrid system with hysteresis (incomplete description)

$$\dot{x} = f(x, w) = (1 - w)f_{\rm A}(x) + wf_{\rm B}(x)$$

Tutorial example: thermostat with hysteresis

Tutorial example: thermostat with hysteresis

Hysteresis: a system with state jumps

Hysteresis: a system with state jumps

The State Jump Law

1. if
$$w(t_s^-) = 0$$
 and $\psi(x(t_s^-)) = 1$, then $x(t_s^+) = x(t_s^-)$ and $w(t_s^+) = 1$

2. if
$$w(t_{
m s}^-)=1$$
 and $\psi(x(t_{
m s}^-))=0$, then $x(t_{
m s}^+)=x(t_{
m s}^-)$ and $w(t_{
m s}^+)=0$

Remember: w(t) is now a discontinuous differential state!

- 1. mimic state jump by auxiliary dynamical system on prohibited region
- 2. introduce a **clock state** $t(\tau)$ that stops counting when the auxiliary system is active

- 1. mimic state jump by auxiliary dynamical system on prohibited region
- 2. introduce a **clock state** $t(\tau)$ that stops counting when the auxiliary system is active
- 3. time-freezing system (a PSS) evolves in numerical time τ , initial system (with state jumps) in physical time $t(\tau)$
- 4. adapt speed of time, $\frac{dt}{d\tau} = s$ with $s \ge 1$, and impose terminal constraint t(T) = T

- 1. mimic state jump by auxiliary dynamical system on prohibited region
- 2. introduce a **clock state** $t(\tau)$ that stops counting when the auxiliary system is active
- 3. time-freezing system (a PSS) evolves in numerical time τ , initial system (with state jumps) in physical time $t(\tau)$
- 4. adapt speed of time, $\frac{dt}{d\tau} = s$ with $s \ge 1$, and impose terminal constraint t(T) = T
- 5. if the state dimension reduces after a state jump, construct an appropriate sliding mode

- 1. mimic state jump by auxiliary dynamical system on prohibited region
- 2. introduce a clock state $t(\tau)$ that stops counting when the auxiliary system is active
- 3. time-freezing system (a PSS) evolves in numerical time τ , initial system (with state jumps) in physical time $t(\tau)$
- 4. adapt speed of time, $\frac{dt}{d\tau} = s$ with $s \ge 1$, and impose terminal constraint t(T) = T
- 5. if the state dimension reduces after a state jump, construct an appropriate sliding mode 6. take $x(t(\tau))$ instead of $x(\tau)$ to recover the original solution with state jumps
- 7. ...

Tutorial example: thermostat and time-freezing

Time-freezing: the state space

A look at the $(\psi(x),w)-{\rm plane}$

- Everything except the blue solid curve is prohibited in the (ψ, w) space (use 1st principle of time-freezing)
- ► The evolution happens in a lower-dimensional space ⇒ sliding mode (use 4th principle of time-freezing)

Time-freezing: partitioning of the space

An efficient partition leads to less variables in FESD

Partition the state space into Voronoi regions: $R_i = \{z \mid ||z - z_i||^2 < ||z - z_j||^2, \ j = 1, \dots, 4, j \neq i\}, \ z = (\psi(x), w)$

Time-freezing: partitioning of the space

An efficient partition leads to less variables in FESD

Partition the state space into Voronoi regions: $R_i = \{z \mid ||z - z_i||^2 < ||z - z_j||^2, j = 1, \dots, 4, j \neq i\}, z = (\psi(x), w)$

▶ Feasible region for initial hybrid system with hysteresis on the region boundaries

To mimic state jumps in finite numerical time

 \blacktriangleright Use regions R_2 and R_3 to define auxiliary dynamics for the state jumps of $w(\cdot)$

To mimic state jumps in finite numerical time

 \blacktriangleright Use regions R_2 and R_3 to define auxiliary dynamics for the state jumps of $w(\cdot)$

• Evolution in w-direction happens only for $\psi \in \{0, 1\}$

To mimic state jumps in finite numerical time

- Use regions R_2 and R_3 to define auxiliary dynamics for the state jumps of $w(\cdot)$
- Evolution in w-direction happens only for $\psi \in \{0, 1\}$
- Zoom in: with a naive approach one has locally nonunique solutions

The new state space of the system is $y=(x,w,t)\in \mathbb{R}^{n_x+2}$

Auxiliary dynamics

$$\frac{\mathrm{d}y}{\mathrm{d}\tau} = f_{\mathrm{aux,A}}(y) \coloneqq \begin{bmatrix} 0\\ -\gamma(\psi(x))\\ 0 \end{bmatrix}$$
$$\frac{\mathrm{d}y}{\mathrm{d}\tau} = f_{\mathrm{aux,B}}(y) \coloneqq \begin{bmatrix} 0\\ \gamma(\psi(x) - 1)\\ 0 \end{bmatrix}$$
$$y(x) = \frac{ax^2}{1 + x^2}$$

Moritz Diehl

Smart choice of auxiliary dynamics resolves the nonuniqueness issue

- Smart choice of auxiliary dynamics resolves the nonuniqueness issue
- Zoom in: escape only in one direction possible

Time-freezing: DAE forming dynamics

Stop the state jump and construct suitable sliding mode

b Dynamics in R_1 and R_4 stops evolution of auxiliary ODE - similar to inelastic impacts

Time-freezing: DAE forming dynamics

Stop the state jump and construct suitable sliding mode

Dynamics in R₁ and R₄ stops evolution of auxiliary ODE - similar to inelastic impacts
 Sliding modes on R_A := ∂R₁ ∩ ∂R₂ and R_B := ∂R₃ ∩ ∂R₄ match f_A(y) and f_B(y), resp.

DAE-forming dynamics

y = (x, w, t) $\frac{\mathrm{d}y}{\mathrm{d}\tau} = f_{\mathrm{df}, \mathrm{A}}(y) \coloneqq \begin{bmatrix} 2f_{\mathrm{A}}(x) \\ \gamma(\psi(x)) \\ 2 \end{bmatrix}$ $\frac{\mathrm{d}y}{\mathrm{d}\tau} = f_{\mathrm{df}, \mathrm{B}}(y) \coloneqq \begin{bmatrix} 2f_{\mathrm{B}}(x) \\ -\gamma(\psi(x) - 1) \\ 2 \end{bmatrix}$

In total four regions R_i , i = 1, 2, 3, 4 and evolution of original system is the **sliding mode**

DAE-forming dynamics

$$\begin{split} y &= (x, w, t) \\ \frac{\mathrm{d}y}{\mathrm{d}\tau} &= f_{\mathrm{df}, \mathrm{A}}(y) \coloneqq \begin{bmatrix} 2f_{\mathrm{A}}(x) \\ \gamma(\psi(x)) \\ 2 \end{bmatrix} \\ \frac{\mathrm{d}y}{\mathrm{d}\tau} &= f_{\mathrm{df}, \mathrm{B}}(y) \coloneqq \begin{bmatrix} 2f_{\mathrm{B}}(x) \\ -\gamma(\psi(x) - 1) \\ 2 \end{bmatrix} \end{split}$$

- In total four regions R_i, i = 1, 2, 3, 4 and evolution of original system is the sliding mode
- ▶ Regions R₂ and R₃ equipped with aux. dynamics y' = f₂(y) = f_{aux,A}(y) and y' = f₃(y) = f_{aux,B}(y), resp., to mimic state jump

DAE-forming dynamics

$$y = (x, w, t)$$

$$\frac{\mathrm{d}y}{\mathrm{d}\tau} = f_{\mathrm{df}, \mathrm{A}}(y) \coloneqq \begin{bmatrix} 2f_{\mathrm{A}}(x) \\ \gamma(\psi(x)) \\ 2 \end{bmatrix}$$

$$\frac{\mathrm{d}y}{\mathrm{d}\tau} = f_{\mathrm{df}, \mathrm{B}}(y) \coloneqq \begin{bmatrix} 2f_{\mathrm{B}}(x) \\ -\gamma(\psi(x) - 1) \\ 2 \end{bmatrix}$$

- In total four regions R_i, i = 1, 2, 3, 4 and evolution of original system is the sliding mode
- ▶ Regions R_2 and R_3 equipped with aux. dynamics $y' = f_2(y) = f_{aux,A}(y)$ and $y' = f_3(y) = f_{aux,B}(y)$, resp., to mimic state jump
- Regions R₁ and R₄ equipped with DAE-forming dynamics y' = f₁(y) = f_{df,A}(y) and y' = f₄(y) = f_{df,B}(y), resp., to recover original dynamics in sliding mode

DAE-forming dynamics

$$y = (x, w, t)$$

$$\frac{\mathrm{d}y}{\mathrm{d}\tau} = f_{\mathrm{df,A}}(y) \coloneqq \begin{bmatrix} 2f_{\mathrm{A}}(x) \\ \gamma(\psi(x)) \\ 2 \end{bmatrix}$$

$$\frac{\mathrm{d}y}{\mathrm{d}\tau} = f_{\mathrm{df,B}}(y) \coloneqq \begin{bmatrix} 2f_{\mathrm{B}}(x) \\ -\gamma(\psi(x) - 1) \\ 2 \end{bmatrix}$$

- In total four regions R_i, i = 1, 2, 3, 4 and evolution of original system is the sliding mode
- ▶ Regions R_2 and R_3 equipped with aux. dynamics $y' = f_2(y) = f_{aux,A}(y)$ and $y' = f_3(y) = f_{aux,B}(y)$, resp., to mimic state jump
- ▶ Regions R₁ and R₄ equipped with DAE-forming dynamics y' = f₁(y) = f_{df,A}(y) and y' = f₄(y) = f_{df,B}(y), resp., to recover original dynamics in sliding mode
- ► E.g., $w' = 0 \implies \theta_1 f_{df,A}(y) + \theta_2 f_{aux,A}(y) = f_A(y)$ (sliding mode)
- Conclusion: we have a PSS and can treat it with FESD

Time optimal control of a car with a turbo accelerator

Example from [Avraam, 2000] solved with NOSNOC

Time optimal control of a car with a turbo accelerator

Example from [Avraam, 2000] solved with NOSNOC

 $y(\cdot$

$$\min_{\substack{y,u(\cdot),s(\cdot)}} t(\tau_{\rm f}) + L(\tau_{\rm f})$$

s.t.
$$y(0) = (z_0, 0)$$
$$y'(\tau) \in s(\tau) F_{\rm TF}(y(\tau), u(\tau))$$
$$-\bar{u} \leq u(\tau) \leq \bar{u}$$
$$\bar{s}^{-1} \leq s(\tau) \leq \bar{s}$$
$$-\bar{v} \leq v(\tau) \leq \bar{v} \tau \in [0, \tau_{\rm f}]$$
$$(q(\tau_{\rm f}), v(\tau_{\rm f})) = (q_{\rm f}, v_{\rm f})$$

Scenario 1: turbo and nominal cost the same

 $c_{\rm N} = c_{\rm T}$

Moritz Diehl

Scenario 2: Turbo is Expensive

 $c_{\rm N} < c_{\rm T}$

Moritz Diehl

NOSNOC vs MILP/MINLP formulations

Benchmark on time-optimal control problem of a car with turbo

- compare CPU time as function of number of control intervals N (left) and solution accuracy (right)
- \blacktriangleright MILP (Gurobi): solve problem with fixed T until indefeasibly happens with grid search in T
- MILP/MINLP and NOSNOC-Std no switch detection = low accuracy

Conclusions

- Mathematical Programs with Complementarity Constraints (MPCC) are a powerful tool to formulate and solve nonsmooth and nonconvex optimization problems.
- Time-freezing allows us to transform systems with state jumps of level NSD3 to the easier level NSD2.
- Finite Elements with Switch Detection (FESD) allow highly accurate simulation and optimal control for switched systems of level NSD2.

Conclusions

- Mathematical Programs with Complementarity Constraints (MPCC) are a powerful tool to formulate and solve nonsmooth and nonconvex optimization problems.
- Time-freezing allows us to transform systems with state jumps of level NSD3 to the easier level NSD2.
- Finite Elements with Switch Detection (FESD) allow highly accurate simulation and optimal control for switched systems of level NSD2.

Outlook

- ▶ Time-freezing for multiple and simultaneous impacts with friction (work in progress)
- Time-freezing for more general hybrid automaton
- > Do generic time-freezing principles, easily applicable to *any* system with state jumps, exist?

- A time-freezing approach for numerical optimal control of nonsmooth differential equations with state jumps.
 A. Nurkanović, T. Sartor, S. Albrecht, and M. Diehl, IEEE Cont. Sys. Lett., 2021.
- Continuous optimization for control of hybrid systems with hysteresis via time-freezing A. Nurkanović and M. Diehl, IEEE Cont. Sys. Lett., 2022.
- The Time-Freezing Reformulation for Numerical Optimal Control of Complementarity Lagrangian Systems with State Jumps.
 A. Nurkanović, S. Albrecht, B. Brogliato, and M. Diehl, arXiv preprint 2022
- Set-Valued Rigid Body Dynamics for Simultaneous Frictional Impact. Mathew Halm and Michael Posa, arXiv Preprint, 2021.

Thank you very much for your attention!