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What is an optimization problem?

Minimize (or maximize) an objective function F (w) depending on deceision variables w subject
to equality and/or inequality constrains

An optimization problem

min
w

F (w) (1a)

s.t. G(w) = 0 (1b)

H(w) ≥ 0 (1c)

Terminology

I w - decision variable

I F : objective/cost function

I G,H: equality and inequality constraint
functions

I Optimization is a powerful tool used in all quantitative sciences

I Only in few special cases a closed form solution exist

I Use an iterative algorithm to find solution

I The optimization problem may be parametric, and all functions depend on a fixed
parameter p
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Basic definitions: the feasible set

Definition

The feasible set of the optimization problem (1) is defined as
Ω = {w ∈ Rn | G(w) = 0, H(w) ≥ 0}. A point w ∈ Ω is is called a feasible point.

The feasible set is the intersection of the two grey areas (halfspace and circle)
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Basic definitions: local and global minimizer

Definition

I A point w∗ ∈ Ω is called a local minimizer of
the NLP (1) if there exists an open ball Bε(w∗)
with ε > 0, such that for all w ∈ Bε(w∗) ∩ Ω it
holds that F (w) ≥ F (w∗).

I A point w∗ ∈ Ω is called a global minimizer of
the NLP (1) if for all w ∈ Ω it holds that
F (w) ≥ F (w∗).

The value F (w∗) at a local/global minimizer w∗ is
called local/global minimum.
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Convex sets
A key concept in optimization is convexity

A set Ω is said to be convex if for any w1, w2 and any θ ∈ [0, 1] it holds θw1 + (1− θ)w2 ∈ Ω
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Convex functions

I A function F is convex if for every
w1, w2 ∈ Rn and θ ∈ [0, 1] it holds that

F (θw1+(1−θ)w2) ≤ θF (w1)+(1−θ)F (w2)

I F is concave if and only if −F is convex

I F is convex if and only if the epigraph

epiF = {(w, t) ∈ Rnw+1 | F (w) ≤ t}

is a convex set

w
F

(w
)

(w1; F (w1))

(w2; F (w2))

3F (w1) + (1! 3)F (w2)

F (3w1 + (1! 3)w2)
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Convex optimization problems

A convex optimization problem

min
w

F (w)

s.t. G(w) = 0

H(w) ≥ 0

An optimization problem is convex if the
objective function F is convex and the
feasible set Ω is convex.

I Every locally optimal solution is global

I First order conditions are necessary and sufficient (we come back to this)

I ”...in fact, the great watershed in optimization isn’t between linearity and nonlinearity, but
convexity and nonconvexity.” R. T. Rockafellar, SIAM Review, 1993
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Some classifications of optimization problems

Optimization problems can be:

I unconstrained (Ω = Rn) or constrained (Ω ⊂ Rn)

I convex or nonconvex

I linear or nonlinear

I differentiable or nonsmooth

I continuous or (mixed-)integer

I finite or infinite dimensional

”... the main fact, which should be known to any person dealing with optimization models, is
that in general, optimization problems are unsolvable.”
Yurii Nesterov, Lectures on Convex Optimization, 2018.

MPC and RL – Lecture 2: Nonlinear Optimization J. Boedecker and M. Diehl, University of Freiburg 9/47



Some classifications of optimization problems

Optimization problems can be:

I unconstrained (Ω = Rn) or constrained (Ω ⊂ Rn)

I convex or nonconvex

I linear or nonlinear

I differentiable or nonsmooth

I continuous or (mixed-)integer

I finite or infinite dimensional

”... the main fact, which should be known to any person dealing with optimization models, is
that in general, optimization problems are unsolvable.”
Yurii Nesterov, Lectures on Convex Optimization, 2018.

MPC and RL – Lecture 2: Nonlinear Optimization J. Boedecker and M. Diehl, University of Freiburg 9/47



Class 1: Linear Programming (LP)

Linear program

min
w

g>w

s.t. Aw − b = 0

Cw − d ≥ 0

I convex optimization problem

I 1947: simplex method by Dantzig, 1984: polynomial time interior-point method by
Karmarkar

I if not unbounded, the solution is always at edge or vertex of the feasible set

I today very mature and reliable
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Class 2: Quadratic Programming (QP)

Quadratic program

min
w

1

2
w>Qw + g>w

s.t. Aw − b = 0

Cw − d ≥ 0

I depending on Q, can be convex and nonconvex

I solved online in linear model predictive control

I many good solvers: Gurobi, OSQP, HPIPM, qpOASES, OOQP, ...

I subsproblems in nonlinear optimization
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Class 3: Nonlinear Program (NLP)

Nonlinear programming problem

min
w

F (w)

s.t. G(w) = 0

H(w) ≥ 0

I can be convex and nonconvex

I solved with iterative Newton-type algorithms

I solved in nonlinear model predictive control
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Class 4: Mathematical programs with Complementarity Constraints
(MPCC)

MPCC

min
w0,w1,w2

F (w)

s.t. G(w) = 0

H(w) ≥ 0

0 ≤ w1 ⊥ w2 ≥ 0

w = [w>0 , w
>
1 , w

>
2 ]>

I Special case of nonlinear programs treated extensively in this course

I Standard constraint qualifications fail to holds

I Very powerful modeling concept

I Requires specialized theory and algorithms (Lectures by C. Kirches)
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Class 5: Mixed-integer programming

Mixed-integer nonlinear program (MINLP)

min
w0∈Rp,w1∈Zq

F (w)

s.t. G(w) = 0

H(w) ≥ 0

w = [w>0 , w
>
1 ]>, n = p+ q

I Combinatorial problem, feasible set is finite

I Branch and bound, brunch and cut methods

I Requires solution of many relaxed continuous convex or nonconvex problems

I Optimization problems treated in this course can always be reformulate into MINLPs (but
not very efficient)
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Class 6: Continuous time optimal control problems

Continuous-time Optimal Control Problem

min
x(·),u(·)

∫ T
0
Lc(x(t), u(t)) dt+ E(x(T ))

s.t. x(0) = x̄0

ẋ(t) = fc(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

I Infinite dimensional problem, can be
convex or nonconvex

I Dynamic constraint can be replaced by
ẋ(t) = fc(x(t), u(t)):
I DAE
I PDE
I stoachstic ODE/PDE
I Nonsmooth ODE - this course

I All or some components of ui(t) may
take values in Z (mixed-integer OCP)
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Direct optimal control methods solve Nonlinear Programs (NLP)

Continuous time OCP

min
x(·),u(·)

∫ T
0
Lc(x(t), u(t)) dt+ E(x(T ))

s.t. x(0) = x̄0

ẋ(t) = fc(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

Direct methods like direct collocation,
multiple shooting first discretize, then
optimize.
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Discrete time OCP (an NLP)

min
x,u

∑N−1
k=0 `(xk, uk) + E(xN )

s.t. x0 = x̄0

xk+1 = f(xk, uk)

0 ≥ h(xk, uk), k = 0, . . . , N−1

0 ≥ r(xN )

Variables x = (x0, . . . , xN ) and
u = (u0, . . . , uN−1) can be summarized in
vector w = (x, u) ∈ Rn.
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Nonlinear MPC solves Nonlinear Programs (NLP)

Discrete time NMPC Problem (an NLP)

min
x,u

∑N−1
k=0 `(xk, uk) + E(xN )

s.t. x0 = x̄0

xk+1 = f(xk, uk)

0 ≥ h(xk, uk), k = 0, . . . , N−1

0 ≥ r(xN )

Variables x = (x0, . . . , xN ) and
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Algebraic characterization of unconstrained local optima

Consider the unconstrained problem: minw∈Rn F (w)

First-Order Necessary Condition of Optimality (FONC)

w∗ local optimum ⇒ ∇F (w∗) = 0, w∗ stationary point

Second-Order Necessary Condition of Optimality (SONC)

w∗ local optimum ⇒ ∇2F (w∗) � 0

Second-Order Sufficient Conditions of Optimality (SOSC)

∇F (w∗) = 0 and ∇2F (w∗) � 0 ⇒ x∗ strict local minimum

∇F (w∗) = 0 and ∇2F (w∗) ≺ 0 ⇒ x∗ strict local maximum

No conclusion can be drawn in the case ∇2F (w∗) is indefinite!
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Optimality conditions - unconstrained

I Necessary conditions: find a candidate
point (or to exclude points)

I Sufficient conditions: verify optimality
of a candidate point

I A minimizer must satisfy SONC, but
does not have to satisfy SOSC
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FONC for equality constraints

Nonlinear Program (NLP)

min
w∈Rn

F (w)

s.t. G(w) = 0

L(w, λ) = F (w)− λ>G(w) is the Lagrangian

Definition (LICQ)

A point w satisfies Linear Independence
Constraint Qualification LICQ if and only
if ∇G (w) is full column rank

First-order Necessary Conditions

Let F,G in C1. If w∗ is a (local) minimizer, and w∗ satisfies LICQ, then there is a unique
vector λ such that:

∇wL(w∗, λ∗) = ∇F (w∗)−∇G(w∗)λ = 0 Dual feasibility

∇λL(w∗, λ∗) = G(w∗) = 0 Primal feasibility
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The KKT conditions

Nonlinear Program (NLP)

min
w∈Rn

F (w)

s.t. G(w) = 0

H(w) ≥ 0

L(w, λ) = F (w)− λ>G(w)− µ>H(w)

Definition (LICQ)

A point w satisfies LICQ if and only if

[∇G (w) , ∇HA (w)]

is full column rank

Active set A = {i | Hi(w) = 0}

Theorem (KKT conditions)

Let F, G, H be C1. If w∗ is a (local) minimizer and satisfies LICQ, then there are unique
vectors λ∗ and µ∗ such that (w∗, λ∗, µ∗) satisfies:

∇wL (w∗, µ∗, λ∗ ) = 0, µ∗ ≥ 0, Dual feasibility

G (w∗) = 0, H (w∗) ≥ 0 Primal feasibility

µ∗iHi(w
∗) = 0, ∀ i Complementary slackness
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The complementary slackness condition

Active constraints:

I Hi(w
∗) > 0 then µ∗i = 0, and Hi is

inactive

I µ∗i > 0 and Hi(w) = 0 then Hi(w) is
strictly active

I µ∗i = 0 and Hi(w) = 0 then then Hi(w) is
weakly active

I We define the active set A∗ as the set of
indices i of the active constraints
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Some intuitions on the KKT conditions
Ball rolling down a valley blocked by a fence

min
w∈Rn

F (w)

s.t. H(w) ≥ 0

I −∇F is the gravity

I µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

I ∇H gives the direction of the force and µ
adjusts the magnitude.

I Weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed

I Inactive constraint H (w) > 0, µ = 0

H (w) > 0, µ = 0

I Complementary slackness µH = 0
describes a contact problem

!rF (w)

7rH(w)

7 =0.857
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Balance of the forces:

∇L(w, µ) = ∇F (w)− µ∇H(w) = 0
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Some intuitions on the KKT conditions
Ball rolling down a valley blocked by a fence

min
w∈Rn

F (w)

s.t. H(w) ≥ 0

I −∇F is the gravity

I µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

I ∇H gives the direction of the force and µ
adjusts the magnitude.

I Weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed

I Inactive constraint H (w) > 0, µ = 0

H (w) > 0, µ = 0

I Complementary slackness µH = 0
describes a contact problem
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Some intuitions on the KKT conditions
Ball rolling down a valley blocked by a fence

min
w∈Rn

F (w)

s.t. H(w) ≥ 0

I −∇F is the gravity

I µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

I ∇H gives the direction of the force and µ
adjusts the magnitude.

I Weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed

I Inactive constraint H (w) > 0, µ = 0

H (w) > 0, µ = 0

I Complementary slackness µH = 0
describes a contact problem
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Some intuitions on the KKT conditions
Ball rolling down a valley blocked by a fence

min
w∈Rn

F (w)

s.t. H(w) ≥ 0

I −∇F is the gravity

I µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

I ∇H gives the direction of the force and µ
adjusts the magnitude.

I Weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed

I Inactive constraint H (w) > 0, µ = 0

H (w) > 0, µ = 0

I Complementary slackness µH = 0
describes a contact problem
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Some intuitions on the KKT conditions
Ball rolling down a valley blocked by a fence

min
w∈Rn

F (w)

s.t. H(w) ≥ 0

I −∇F is the gravity

I µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

I ∇H gives the direction of the force and µ
adjusts the magnitude.

I Weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed

I Inactive constraint H (w) > 0, µ = 0

H (w) > 0, µ = 0

I Complementary slackness µH = 0
describes a contact problem
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Some intuitions on the KKT conditions
Ball rolling down a valley blocked by a fence

min
w∈Rn

F (w)

s.t. H(w) ≥ 0

I −∇F is the gravity

I µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

I ∇H gives the direction of the force and µ
adjusts the magnitude.

I Weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed

I Inactive constraint H (w) > 0, µ = 0

H (w) > 0, µ = 0

I Complementary slackness µH = 0
describes a contact problem
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Some intuitions on the KKT conditions
Ball rolling down a valley blocked by a fence

min
w∈Rn

F (w)

s.t. H(w) ≥ 0

I −∇F is the gravity

I µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

I ∇H gives the direction of the force and µ
adjusts the magnitude.

I Weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed

I Inactive constraint H (w) > 0, µ = 0

H (w) > 0, µ = 0

I Complementary slackness µH = 0
describes a contact problem

!rF (w) = 0

7 =0.000
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Some intuitions on the KKT conditions
Ball rolling down a valley blocked by a fence

min
w∈Rn

F (w)

s.t. H(w) ≥ 0

I −∇F is the gravity

I µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

I ∇H gives the direction of the force and µ
adjusts the magnitude.

I Weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed

I Inactive constraint H (w) > 0, µ = 0

H (w) > 0, µ = 0

I Complementary slackness µH = 0
describes a contact problem

!rF (w) = 0
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Balance of the forces:

∇L(w, µ) = ∇F (w)− µ∇H(w) = 0
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Summary of optimality conditions

Optimality conditions for NLP with equality and/or inequality constraints:

I First-Order Necessary Conditions: Under LICQ and differentiability, a local optimum of
the NLP satisfies the KKT conditions.

I Second-Order (Necessary or) Sufficient Conditions require positive-(semi)-definiteness
of the Hessian in so called critical directions (feasible and non-ascent directions)

Nonconvex problem ⇒ minimum is not necessarily global.
But some nonconvex problems have a unique minimum
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Summary of optimality conditions

Optimality conditions for NLP with equality and/or inequality constraints:

I First-Order Necessary Conditions: Under LICQ and differentiability, a local optimum of
the NLP satisfies the KKT conditions.

I Second-Order (Necessary or) Sufficient Conditions require positive-(semi)-definiteness
of the Hessian in so called critical directions (feasible and non-ascent directions)

Nonconvex problem ⇒ minimum is not necessarily global.
But some nonconvex problems have a unique minimum
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Outline of the lecture

1 Basic definitions

2 Some classifications of optimization problems

3 Optimality conditions

4 Nonlinear programming algorithms

5 Optimal control problems as nonlinear programs
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Newton’s method
To solve a nonlinear system, solve a sequence of linear systems

Linearization of F at linearization point w̄

equals

First order Taylor series at w̄

equals

FL(w; w̄) := F (w̄) +
∂F

∂w
(w̄) (w − w̄)

(for continuously differentiable F : Rn → Rn)
-1 -0.5 0 0.5 1 1.5 2 2.5 3

w

-1

0

1

2

3

4

5

6

F
(w

)

Iteration 0

y = F (w)
y = F (wk) + rF (wk)(w ! wk)
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Newton’s method
To solve a nonlinear system, solve a sequence of linear systems

Linearization of F at linearization point w̄

equals

First order Taylor series at w̄
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General Nonlinear Program (NLP)

In direct methods, we have to solve the discretized optimal control problem, which is a
Nonlinear Program (NLP)

General Nonlinear Program (NLP)

min
w
F (w) s.t.

{
G(w) = 0
H(w) ≥ 0

We first treat the case without inequalities

NLP only with equality constraints

min
w
F (w) s.t. G(w) = 0
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Lagrange function and optimality conditions

Lagrange function

L(w, λ) = F (w)− λTG(w)

Then for an optimal solution w∗ exist multipliers λ∗ such that

Nonlinear root-finding problem

∇wL(w∗, λ∗) = 0
G(w∗) = 0
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Newton’s Method on optimality conditions

How to solve nonlinear equations

∇wL(w∗, λ∗) = 0
G(w∗) = 0 ?

Linearize!
∇wL(wk, λk) +∇2

wL(wk, λk)∆w −∇wG(wk)∆λ = 0
G(wk) +∇wG(wk)T∆w = 0

This is equivalent, due to ∇L(wk, λk) = ∇F (wk)−∇G(wk)λk with the shorthand
λ+ = λk + ∆λ to

∇wF (wk) +∇2
wL(wk, λk)∆w −∇wG(wk)λ+ = 0

G(wk) +∇wG(wk)T∆w = 0
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Newton Step = Quadratic Program

Conditions
∇wF (wk) +∇2

wL(wk, λk)∆w −∇wG(wk)λ+ = 0
G(wk) +∇wG(wk)T∆w = 0

are optimality conditions of a quadratic program (QP), namely:

Quadratic program

min
∆w

∇F (wk)T∆w +
1

2
∆wTAk∆w

s.t. G(wk) +∇G(wk)T∆w = 0,

with
Ak = ∇2

wL(wk, λk)

MPC and RL – Lecture 2: Nonlinear Optimization J. Boedecker and M. Diehl, University of Freiburg 30/47



Newton’s method

The full step Newton’s Method iterates by solving in each iteration the Quadratic Progam

min
∆w

∇F (wk)T∆w +
1

2
∆wTAk∆w

s.t. G(wk) +∇G(wk)T∆w = 0,

with Ak = ∇2
wL(wk, λk). This obtains as solution the step ∆wk and the new multiplier

λ+
QP = λk + ∆λk

New iterate

wk+1 = wk + ∆wk

λk+1 = λk + ∆λk = λ+
QP

This Newton’s method is also called “Sequential Quadratic Programming (SQP) for equality
constrained optimization” (with “exact Hessian” and “full steps”)
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NLP with Inequalities

Regard again NLP with both, equalities and inequalities:

NLP with equality and inequality constraints

min
w
F (w) s.t.

{
G(w) = 0
H(w) ≥ 0

Lagrangian function for NLP with equality and inequality constraints

L(w, λ, µ) = F (w)− λTG(w)− µTH(w)
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Optimality conditions with inequalities

Theorem (Karush-Kuhn-Tucker (KKT) conditions)

Let F, G, H be C2. If w∗ is a (local) minimizer and satisfies LICQ, then there are unique
vectors λ∗ and µ∗ such that (w∗, λ∗, µ∗) satisfies:

∇wL (w∗, µ∗, λ∗ ) = 0

G (w∗) = 0

H(w∗) ≥ 0

µ∗ ≥ 0

H(w∗)>µ∗ = 0

I These contain nonsmooth conditions (the last three) which are called complementarity
conditions

I This system cannot be solved by Newton’s Method. But still with SQP...
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Sequential Quadratic Programming (SQP)

By Linearizing all functions within the KKT Conditions, and setting λ+ = λk + ∆λ and
µ+ = µk + ∆µ, we obtain the KKT conditions of a Quadratic Program (QP) (we omit these
conditions).

QP with inequality constraints

min
∆w

∇F (wk)T∆w +
1

2
∆wTAk∆w

s.t.

{
G(wk) +∇G(wk)T∆w = 0
H(wk) +∇H(wk)T∆w ≥ 0

with
Ak = ∇2

wL(wk, λk, µk)

and its solution delivers
∆wk, λ+

QP, µ+
QP
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Constrained Gauss-Newton Method

In special case of least squares objectives

Least squares objective function

F (w) =
1

2
‖R(w)‖22

can approximate Hessian ∇2
wL(wk, λk, µk) by much cheaper

Ak = ∇R(w)∇R(w)T .

Need no multipliers to compute Ak! QP= linear least squares:

Gauss-Newton QP

min
∆w

1

2
‖R(wk) +∇R(wk)T∆w‖22

s.t.
G(wk) +∇G(wk)T∆w = 0
H(wk) +∇H(wk)T∆w ≥ 0

Convergence: linear (better if ‖R(w∗)‖ small)
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Interior point methods

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

KKT conditions

∇F (w)−∇H(w)>µ = 0

0 ≤ µ ⊥ H(w) ≥ 0

Main difficulty: inequality conditions
introduce nonsmoothness in the KKT
conditions
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The barrier problem

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

Barrier problem

min
w

F (w)− τ
m∑
i=1

log(Hi(w)) =: Fτ (w)

Main idea: put inequality constraint into
objective
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@
(H

i(
w

))

= =5.000

@(Hi(w))
!= log(Hi(w))

approximate:

χ(Hi(w)) =

{
0 if Hi(w) ≥ 0

∞ if Hi(w) < 0
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The barrier problem

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

Barrier problem

min
w

F (w)− τ
m∑
i=1

log(Hi(w)) =: Fτ (w)

Main idea: put inequality constraint into
objective
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The barrier problem

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

Barrier problem

min
w

F (w)− τ
m∑
i=1

log(Hi(w)) =: Fτ (w)

Main idea: put inequality constraint into
objective
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The barrier problem

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

Barrier problem

min
w

F (w)− τ
m∑
i=1

log(Hi(w)) =: Fτ (w)

Main idea: put inequality constraint into
objective
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The barrier problem

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

Barrier problem

min
w

F (w)− τ
m∑
i=1

log(Hi(w)) =: Fτ (w)

Main idea: put inequality constraint into
objective
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The barrier problem

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

Barrier problem

min
w

F (w)− τ
m∑
i=1

log(Hi(w)) =: Fτ (w)

Main idea: put inequality constraint into
objective
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An example of the barrier problem

Example NLP

min
w

0.5w2 − 2w

s.t. − 1 ≤ w ≤ 1

Barrier problem

min
w

0.5w2 − 2− τ log(w + 1)− τ log(1− w) -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

w
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= =5.000
F (w)
F= (w)
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An example of the barrier problem

Example NLP
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An example of the barrier problem

Example NLP

min
w

0.5w2 − 2w

s.t. − 1 ≤ w ≤ 1

Barrier problem

min
w

0.5w2 − 2− τ log(w + 1)− τ log(1− w) -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

w

-1

-0.5

0

0.5

1

1.5

2

2.5

3

O
b
je

ct
iv

e

= =0.450
F (w)
F= (w)

MPC and RL – Lecture 2: Nonlinear Optimization J. Boedecker and M. Diehl, University of Freiburg 38/47



An example of the barrier problem

Example NLP
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An example of the barrier problem
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Primal-dual interior point methods
Alternative interpretation

Barrier problem

min
w

F (w)− τ
m∑
i=1

log(Hi(w)) =: Fτ (w)

KKT conditions

∇F (w)− τ
m∑
i−1

1

Hi(w)
∇Hi(w) = 0

Introduce variable µi = τ
Hi(w)

Smoothed KKT conditions

∇F (w)−∇H(w)>µ = 0

Hi(w)µi = τ

(Hi(w) > 0, µi > 0)

Solve nonsmooth system with Newtons’
method
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Primal-dual interior point method

Nonlinear programming problem

min
w

F (w)

s.t. G(w) = 0

H(w) ≥ 0

Smoothed KKT conditions

Rτ (w, s, λ, µ) =


∇wL(w, λ, µ)

G(w)
H(w)− s

diag(s)µ− τe

 = 0

(s, µ > 0)

e = (1, . . . , 1)

Solve approximately with Newton’s method
for fixed τ

Rτ (w, s, λ, µ) +∇Rτ (w, s, λ, µ)∆z = 0

with z = (w, s, λ, µ)

Line-serach

Find α ∈ (0, 1)

wk+1 = wk + α∆w

sk+1 = sk + α∆s

λk+1 = λk + α∆λ

µk+1 = µk + α∆µ

such that sk+1 > 0, µk+1 > 0

and reduce τ ...
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Summary Newton-type optimization

I Newton type optimization solves the necessary optimality conditions

I Newton’s method linearizes the nonlinear system in each iteration

I for constraints, need Lagrangian function, and KKT conditions

I for equalities KKT conditions are smooth, can apply Newton’s method

I for inequalities KKT conditions are non-smooth, can apply Sequential Quadratic
Programming (SQP)

I QPs with inequalities can be solved with interior point methods

I Also NLPs with inequalities can be solved with interior point methods (e.g. by the IPOPT
solver)
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Nonlinear MPC solves Nonlinear Programs (NLP)

Discrete time NMPC Problem (an NLP)

min
x,u

∑N−1
k=0 c(xk, uk) + E(xN )

s.t. x0 = x̄0

xk+1 = f(xk, uk)

0 ≥ h(xk, uk), k = 0, . . . , N−1

0 ≥ r(xN )

Variables x = (x0, . . . , xN ) and
u = (u0, . . . , uN−1) can be summarized in
vector w = (x, u) ∈ Rn.
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vector w = (x, u) ∈ Rn.

Nonlinear Program (NLP)

min
w∈Rn

F (w)

s.t. G(w) = 0

H(w) ≥ 0
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Nonlinear MPC solves Nonlinear Programs (NLP) in (s,a) Notation

Discrete time NMPC Problem (an NLP)

min
s,a

∑N−1
k=0 c(sk, ak) + E(sN )

s.t. s0 = x̄0

sk+1 = f(sk, ak)

0 ≥ h(sk, ak), k = 0, . . . , N−1

0 ≥ r(sN )

Variables s = (s0, . . . , sN ) and
a = (a0, . . . , aN−1) can be summarized in
vector x = (s, a) ∈ Rn.
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Discrete Time Optimal Control Problem
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Definition of Functions F , G, H
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