
Model Predictive Control and Reinforcement Learning

– Introduction –

Joschka Boedecker and Moritz Diehl

University Freiburg

July 26, 2021

Aim of this course

Understanding the main concepts of model predictive control (MPC) and
reinforcement learning (RL) and their similarities and differences.

Applying the methods to practical optimal control problems in hands-on
exercises and project work.

Agenda

Team

Moritz Diehl

(Lecturer MPC)

Andrea Ghezzi

(Tutor)

Sebastien Gros

(NTNU Trondheim)

Joschka Boedecker

(Lecturer RL)

Jasper Hoffmann

(Tutor)

Yuan Zhang

(Tutor)

Components of RL Systems

I Policy: defines the behaviour of the agent
I is a mapping from a state to an action
I can be stochastic: ⇡(a|s) = P[At = a|St = s]
I or deterministic: ⇡(s) = a

I Value-function: defines the expected value of a state or an action
I v⇡(s) = E[Gt|St = s] and q⇡(s, a) = E[Gt|St = s,At = a]
I can be used to evaluate states or to extract a good policy

I Model: defines the transitions between states in an environment
I p yields the next state and reward
I p(s0, r|s, a) = Pr{St+1 = s0, Rt+1 = r|St = s,At = a}

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 3

What do you know about Model Predictive Control?

Components of RL Systems

I Policy: defines the behaviour of the agent
I is a mapping from a state to an action
I can be stochastic: ⇡(a|s) = P[At = a|St = s]
I or deterministic: ⇡(s) = a

I Value-function: defines the expected value of a state or an action
I v⇡(s) = E[Gt|St = s] and q⇡(s, a) = E[Gt|St = s,At = a]
I can be used to evaluate states or to extract a good policy

I Model: defines the transitions between states in an environment
I p yields the next state and reward
I p(s0, r|s, a) = Pr{St+1 = s0, Rt+1 = r|St = s,At = a}

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 3

What are characteristics of Reinforcement Learning?

Components of RL Systems

I Policy: defines the behaviour of the agent
I is a mapping from a state to an action
I can be stochastic: ⇡(a|s) = P[At = a|St = s]
I or deterministic: ⇡(s) = a

I Value-function: defines the expected value of a state or an action
I v⇡(s) = E[Gt|St = s] and q⇡(s, a) = E[Gt|St = s,At = a]
I can be used to evaluate states or to extract a good policy

I Model: defines the transitions between states in an environment
I p yields the next state and reward
I p(s0, r|s, a) = Pr{St+1 = s0, Rt+1 = r|St = s,At = a}

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 3

What are differences to Supervised Learning?

Discussion

Components of RL Systems

I Policy: defines the behaviour of the agent
I is a mapping from a state to an action
I can be stochastic: ⇡(a|s) = P[At = a|St = s]
I or deterministic: ⇡(s) = a

I Value-function: defines the expected value of a state or an action
I v⇡(s) = E[Gt|St = s] and q⇡(s, a) = E[Gt|St = s,At = a]
I can be used to evaluate states or to extract a good policy

I Model: defines the transitions between states in an environment
I p yields the next state and reward
I p(s0, r|s, a) = Pr{St+1 = s0, Rt+1 = r|St = s,At = a}

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 3

Controller directly learned from data, trial-and-error,
exploration and exploitation trade off

Components of RL Systems

I Policy: defines the behaviour of the agent
I is a mapping from a state to an action
I can be stochastic: ⇡(a|s) = P[At = a|St = s]
I or deterministic: ⇡(s) = a

I Value-function: defines the expected value of a state or an action
I v⇡(s) = E[Gt|St = s] and q⇡(s, a) = E[Gt|St = s,At = a]
I can be used to evaluate states or to extract a good policy

I Model: defines the transitions between states in an environment
I p yields the next state and reward
I p(s0, r|s, a) = Pr{St+1 = s0, Rt+1 = r|St = s,At = a}

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 3

Both shaped/concave and 0-1/sparse rewards

Components of RL Systems

I Policy: defines the behaviour of the agent
I is a mapping from a state to an action
I can be stochastic: ⇡(a|s) = P[At = a|St = s]
I or deterministic: ⇡(s) = a

I Value-function: defines the expected value of a state or an action
I v⇡(s) = E[Gt|St = s] and q⇡(s, a) = E[Gt|St = s,At = a]
I can be used to evaluate states or to extract a good policy

I Model: defines the transitions between states in an environment
I p yields the next state and reward
I p(s0, r|s, a) = Pr{St+1 = s0, Rt+1 = r|St = s,At = a}

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 3

Constraints are imposed via penalties

Components of RL Systems

I Policy: defines the behaviour of the agent
I is a mapping from a state to an action
I can be stochastic: ⇡(a|s) = P[At = a|St = s]
I or deterministic: ⇡(s) = a

I Value-function: defines the expected value of a state or an action
I v⇡(s) = E[Gt|St = s] and q⇡(s, a) = E[Gt|St = s,At = a]
I can be used to evaluate states or to extract a good policy

I Model: defines the transitions between states in an environment
I p yields the next state and reward
I p(s0, r|s, a) = Pr{St+1 = s0, Rt+1 = r|St = s,At = a}

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 3

Typically parametrized controller, cheap online execution

Components of RL Systems

I Policy: defines the behaviour of the agent
I is a mapping from a state to an action
I can be stochastic: ⇡(a|s) = P[At = a|St = s]
I or deterministic: ⇡(s) = a

I Value-function: defines the expected value of a state or an action
I v⇡(s) = E[Gt|St = s] and q⇡(s, a) = E[Gt|St = s,At = a]
I can be used to evaluate states or to extract a good policy

I Model: defines the transitions between states in an environment
I p yields the next state and reward
I p(s0, r|s, a) = Pr{St+1 = s0, Rt+1 = r|St = s,At = a}

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 3

Usually, history included in definition of the state

Characteristics of MPC & Reinforcement Learning

Components of RL Systems

I Policy: defines the behaviour of the agent
I is a mapping from a state to an action
I can be stochastic: ⇡(a|s) = P[At = a|St = s]
I or deterministic: ⇡(s) = a

I Value-function: defines the expected value of a state or an action
I v⇡(s) = E[Gt|St = s] and q⇡(s, a) = E[Gt|St = s,At = a]
I can be used to evaluate states or to extract a good policy

I Model: defines the transitions between states in an environment
I p yields the next state and reward
I p(s0, r|s, a) = Pr{St+1 = s0, Rt+1 = r|St = s,At = a}

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 3

System identification precedes control implementation,
model fixed during execution

Components of RL Systems

I Policy: defines the behaviour of the agent
I is a mapping from a state to an action
I can be stochastic: ⇡(a|s) = P[At = a|St = s]
I or deterministic: ⇡(s) = a

I Value-function: defines the expected value of a state or an action
I v⇡(s) = E[Gt|St = s] and q⇡(s, a) = E[Gt|St = s,At = a]
I can be used to evaluate states or to extract a good policy

I Model: defines the transitions between states in an environment
I p yields the next state and reward
I p(s0, r|s, a) = Pr{St+1 = s0, Rt+1 = r|St = s,At = a}

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 3

Typically convex stage costs

Components of RL Systems

I Policy: defines the behaviour of the agent
I is a mapping from a state to an action
I can be stochastic: ⇡(a|s) = P[At = a|St = s]
I or deterministic: ⇡(s) = a

I Value-function: defines the expected value of a state or an action
I v⇡(s) = E[Gt|St = s] and q⇡(s, a) = E[Gt|St = s,At = a]
I can be used to evaluate states or to extract a good policy

I Model: defines the transitions between states in an environment
I p yields the next state and reward
I p(s0, r|s, a) = Pr{St+1 = s0, Rt+1 = r|St = s,At = a}

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 3

Constraints imposed explicitly

Components of RL Systems

I Policy: defines the behaviour of the agent
I is a mapping from a state to an action
I can be stochastic: ⇡(a|s) = P[At = a|St = s]
I or deterministic: ⇡(s) = a

I Value-function: defines the expected value of a state or an action
I v⇡(s) = E[Gt|St = s] and q⇡(s, a) = E[Gt|St = s,At = a]
I can be used to evaluate states or to extract a good policy

I Model: defines the transitions between states in an environment
I p yields the next state and reward
I p(s0, r|s, a) = Pr{St+1 = s0, Rt+1 = r|St = s,At = a}

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 3

Online optimization over prediction horizon, expensive

Components of RL Systems

I Policy: defines the behaviour of the agent
I is a mapping from a state to an action
I can be stochastic: ⇡(a|s) = P[At = a|St = s]
I or deterministic: ⇡(s) = a

I Value-function: defines the expected value of a state or an action
I v⇡(s) = E[Gt|St = s] and q⇡(s, a) = E[Gt|St = s,At = a]
I can be used to evaluate states or to extract a good policy

I Model: defines the transitions between states in an environment
I p yields the next state and reward
I p(s0, r|s, a) = Pr{St+1 = s0, Rt+1 = r|St = s,At = a}

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 3

Usually combined with state estimator

Components of RL Systems

I Policy: defines the behaviour of the agent
I is a mapping from a state to an action
I can be stochastic: ⇡(a|s) = P[At = a|St = s]
I or deterministic: ⇡(s) = a

I Value-function: defines the expected value of a state or an action
I v⇡(s) = E[Gt|St = s] and q⇡(s, a) = E[Gt|St = s,At = a]
I can be used to evaluate states or to extract a good policy

I Model: defines the transitions between states in an environment
I p yields the next state and reward
I p(s0, r|s, a) = Pr{St+1 = s0, Rt+1 = r|St = s,At = a}

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 3

Both are frameworks to solve sequential decision making problems

Components of RL Systems

I Policy: defines the behaviour of the agent
I is a mapping from a state to an action
I can be stochastic: ⇡(a|s) = P[At = a|St = s]
I or deterministic: ⇡(s) = a

I Value-function: defines the expected value of a state or an action
I v⇡(s) = E[Gt|St = s] and q⇡(s, a) = E[Gt|St = s,At = a]
I can be used to evaluate states or to extract a good policy

I Model: defines the transitions between states in an environment
I p yields the next state and reward
I p(s0, r|s, a) = Pr{St+1 = s0, Rt+1 = r|St = s,At = a}

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 3

Both automatically design controllers based on desired outcomes (reward / stage cost, constraints)

Components of RL Systems

I Policy: defines the behaviour of the agent
I is a mapping from a state to an action
I can be stochastic: ⇡(a|s) = P[At = a|St = s]
I or deterministic: ⇡(s) = a

I Value-function: defines the expected value of a state or an action
I v⇡(s) = E[Gt|St = s] and q⇡(s, a) = E[Gt|St = s,At = a]
I can be used to evaluate states or to extract a good policy

I Model: defines the transitions between states in an environment
I p yields the next state and reward
I p(s0, r|s, a) = Pr{St+1 = s0, Rt+1 = r|St = s,At = a}

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 3

Closed-loop system visits different regions of the state space than uncontrolled system

MPC RL

Components of RL Systems

I Policy: defines the behaviour of the agent
I is a mapping from a state to an action
I can be stochastic: ⇡(a|s) = P[At = a|St = s]
I or deterministic: ⇡(s) = a

I Value-function: defines the expected value of a state or an action
I v⇡(s) = E[Gt|St = s] and q⇡(s, a) = E[Gt|St = s,At = a]
I can be used to evaluate states or to extract a good policy

I Model: defines the transitions between states in an environment
I p yields the next state and reward
I p(s0, r|s, a) = Pr{St+1 = s0, Rt+1 = r|St = s,At = a}

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 3

Dynamic Programming developed by R. Bellman in 1950s

Components of RL Systems

I Policy: defines the behaviour of the agent
I is a mapping from a state to an action
I can be stochastic: ⇡(a|s) = P[At = a|St = s]
I or deterministic: ⇡(s) = a

I Value-function: defines the expected value of a state or an action
I v⇡(s) = E[Gt|St = s] and q⇡(s, a) = E[Gt|St = s,At = a]
I can be used to evaluate states or to extract a good policy

I Model: defines the transitions between states in an environment
I p yields the next state and reward
I p(s0, r|s, a) = Pr{St+1 = s0, Rt+1 = r|St = s,At = a}

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 3

was extended to approximate dynamic programming,
Monte Carlo Tree Search, Q-learning, policy search … in
field of machine learning

Components of RL Systems

I Policy: defines the behaviour of the agent
I is a mapping from a state to an action
I can be stochastic: ⇡(a|s) = P[At = a|St = s]
I or deterministic: ⇡(s) = a

I Value-function: defines the expected value of a state or an action
I v⇡(s) = E[Gt|St = s] and q⇡(s, a) = E[Gt|St = s,At = a]
I can be used to evaluate states or to extract a good policy

I Model: defines the transitions between states in an environment
I p yields the next state and reward
I p(s0, r|s, a) = Pr{St+1 = s0, Rt+1 = r|St = s,At = a}

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 3

Reinforcement Learning techniques are increasingly
applied to solve difficult planning and decision making
problems with impressive results e.g. in computer games
and robotics.

MPC & Reinforcement Learning have a long history

Components of RL Systems

I Policy: defines the behaviour of the agent
I is a mapping from a state to an action
I can be stochastic: ⇡(a|s) = P[At = a|St = s]
I or deterministic: ⇡(s) = a

I Value-function: defines the expected value of a state or an action
I v⇡(s) = E[Gt|St = s] and q⇡(s, a) = E[Gt|St = s,At = a]
I can be used to evaluate states or to extract a good policy

I Model: defines the transitions between states in an environment
I p yields the next state and reward
I p(s0, r|s, a) = Pr{St+1 = s0, Rt+1 = r|St = s,At = a}

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 3

Linear Programming (LP) developed by G. Dantzig in
1947

Components of RL Systems

I Policy: defines the behaviour of the agent
I is a mapping from a state to an action
I can be stochastic: ⇡(a|s) = P[At = a|St = s]
I or deterministic: ⇡(s) = a

I Value-function: defines the expected value of a state or an action
I v⇡(s) = E[Gt|St = s] and q⇡(s, a) = E[Gt|St = s,At = a]
I can be used to evaluate states or to extract a good policy

I Model: defines the transitions between states in an environment
I p yields the next state and reward
I p(s0, r|s, a) = Pr{St+1 = s0, Rt+1 = r|St = s,At = a}

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 3

was extended to Quadratic Programming (QP),
Nonlinear Programming (NLP), Integer Programming
(IP), … in field of mathematical optimisation

Components of RL Systems

I Policy: defines the behaviour of the agent
I is a mapping from a state to an action
I can be stochastic: ⇡(a|s) = P[At = a|St = s]
I or deterministic: ⇡(s) = a

I Value-function: defines the expected value of a state or an action
I v⇡(s) = E[Gt|St = s] and q⇡(s, a) = E[Gt|St = s,At = a]
I can be used to evaluate states or to extract a good policy

I Model: defines the transitions between states in an environment
I p yields the next state and reward
I p(s0, r|s, a) = Pr{St+1 = s0, Rt+1 = r|St = s,At = a}

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 3

Online solution of LP, QP, NLP, IP used for many
planning problems and increasingly for industrial
control problems in form of MPC

Linear Programming … MPC Dynamic Programming … RL

Some Applications of RL

[Mnih et al., 2015]

Learning to Play Atari Games from Pixel Input

Learning to Play the Game of Go Better Than Any Human

[Silver et al., 2016]

Learning Difficult Robot Manipulation Tasks from Scratch

[Riedmiller et al., 2018]

Learning to Swing Up and Balance a Pole on a Cart

[Boedecker et al., 2014]

Learning to Drive on a Highway from Human Demonstration

[Kalweit et al., 2020]

Some Applications of MPC

M. Diehl

Time-Optimal Point-To-Point Motions

15

Fast oscillating systems (cranes, plotters, wafer steppers, …)
Control aims:

• reach end point as fast as possible
• do not violate constraints
• no residual vibrations

Idea: formulate as embedded optimization problem
 in form of Model Predictive Control (MPC)

M. Diehl

Model Predictive Control (MPC)

16

Always look a bit into the future

Example: driver predicts and optimizes,
and therefore slows down before a curve

M. Diehl

Optimal Control Problem in MPC

17

For given system state x, which controls u lead to the best objective value
without violation of constraints ?

prediction horizon (length also unknown for time optimal MPC)

controls (unknowns / variables)

simulated state trajectory

M. Diehl

Optimal Control Problem in MPC

18

For given system state x, which controls u lead to the best objective value
without violation of constraints ?

prediction horizon (length also unknown for time optimal MPC)

controls (unknowns / variables)

simulated state trajectory

M. Diehl

Time Optimal MPC of a Crane

19
Hardware: xPC Target. Software: qpOASES [Ferreau, D., Bock, 2008]

SENSORS

•line angle
•cart position

ACTUATOR

•cart motor

MPC

M. Diehl

Time Optimal MPC of a Crane

20

Univ. Leuven [Vandenbrouck, Swevers, D.]

M. Diehl

Optimal Solutions in qpOASES Varying in Time

21

M. Diehl

Time Optimal MPC in Industry: 25cm step, 100nm accuracy

TOMPC at 250 Hz (+PID with 12 kHz)

Lieboud‘s results after 1 week at ETEL:
 - 25 cm step in 300 ms
 - 100 nm accuracy

 equivalent to: „fly 2,5 km with MACH15,
 stop with 1 mm position accuracy“

22

M. Diehl

Model Predictive Control of the Freiburg Race Cars

23

acados coupled into ROS, optimization every 10ms
[Kloeser et al., submitted]

M. Diehl

Safe Motion Planning at Bosch via the Convex Inner
Approximation Method [Schöls et al, 2020]

24

M. Diehl

Nonlinear Mixed-Integer Control of a Solar Adsorptive Cooling Machine

[Bürger et al., 2019]

25

“thesis” — 2020/1/8 — 17:09 — page 76 — #110

76 A SOLAR THERMAL TEST PLANT FOR MPC OF RENEWABLE ENERGY SYSTEMS

Figure 4.2: Depiction of (1) the Vacuum Tube Solar Collectors (VTSC) on the
roof of the building and (2) the temperature sensor at the array outlet.

A. Bürger. For this work, a reduced version which relies solely on the MQTT
communication protocol was implemented by A. Bürger, partially adopting
and/or adapting implementations from the scope of [96].

4.1 Description of system and components

The plant presented in this chapter is a solar-thermally driven climate system
installed in the building of the Faculty of Management Science and Engineering
at Karlsruhe University of Applied Sciences. During summer, the system is
used for covering cooling loads of the atrium of the faculty building, and during
winter for heating support.

A schematic depiction of the system setup and the involved components is given
in Figure 4.1. On the roof of the building, two arrays of solar thermal collectors

Figure 4.3: Depiction of (1) the Flat Plate Solar Collectors (FPSC) on the roof
of the building and (2) the temperature sensor at the array outlet.

-- Draft version, for internal use only --

“thesis” — 2020/1/8 — 17:09 — page 77 — #111

DESCRIPTION OF SYSTEM AND COMPONENTS 77

Figure 4.4: Depiction of components installed in the cellar: (1) control cabinet,
(2) Low Temperature Storage (LTS), (3) Adsorption Cooling Machine (ACM),
(4) High Temperature Storage (HTS), (5) pump Pssc, (6) pump Ppsc, (7) pump
Plc, (8) Solar Heat Exchanger (SHX).

are installed, see Figure 4.2 and Figure 4.3. The solar heat collected by these
arrays is transported into the cellar of the building and stored in a stratified
High Temperature Storage (HTS), see Figure 4.4. The Fan Coil Units (FCUs)
installed behind a plumbing wall in the atrium of the building, see Figure 4.5,
can be supported directly by the HTS for heating of the room air during winter.

During summer, the HTS can support an Adsorption Cooling Machine (ACM)
which utilizes the solar heat to generate cooling power. Cooling energy produced
this way is stored in a Low Temperature Storage (LTS) which can support the
FCUs for cooling of the room air during summer. At the roof of the building,
a Recooling Tower (RT) is installed for dissipation of heat, see Figure 4.6. In

Figure 4.5: Fan Coil Units installed in the atrium of the building: (1) plumbing
wall, (2) installation of FCUs behind the plumbing wall (picture taken during
installation of the components, now covered by wooden panels).

-- Draft version, for internal use only --

“thesis”
—

2020/1/8
—

17:09
—

page
101

—
#

135

C
O

N
T

R
O

L
-O

R
IE

N
T

E
D

M
O

D
E

L
IN

G
O

F
T

H
E

S
Y

S
T

E
M

101

Figure 5.1: Schematic depiction of the solar thermal climate system model.

-- D
ra

ft v
e
rs

io
n

, fo
r in

te
rn

a
l u

s
e
 o

n
ly

 --

After discretisation of PDE
components, obtain nonlinear ODE
with 39 states, 6 continuous and 2
binary inputs.
Predict 24 hours. Aim: minimise
electricity consumption.

M. Diehl

Model Overview

26

“thesis”
—

2020/1/8
—

17:09
—

page
101

—
#

135

C
O

N
T

R
O

L
-O

R
IE

N
T

E
D

M
O

D
E

L
IN

G
O

F
T

H
E

S
Y

S
T

E
M

1
01

Figure 5.1: Schematic depiction of the solar thermal climate system model.

-- D
ra

ft v
e
rs

io
n

, fo
r in

te
rn

a
l u

s
e
 o

n
ly

 --

M. Diehl

Experimental MPC Results from Sept 14-17, 2019

27

“thesis” — 2020/1/8 — 17:09 — page 143 — #177

CONTINUOUS OPERATION UNDER VARYING AMBIENT CONDITIONS 143

Se
p
14
, 1
3:
00

Se
p
14
, 2
1:
00

Se
p
15
, 0
5:
00

Se
p
15
, 1
3:
00

Se
p
15
, 2
1:
00

Se
p
16
, 0
5:
00

Se
p
16
, 1
3:
00

Se
p
16
, 2
1:
00

Se
p
17
, 0
5:
00

Time

21
22
23
24
25
26

T
em

p
.
(◦
C
)

Tt,r,a,1 Tt,r,a,3 Tt,r,c,1 Tt,r,c,3

0.00
0.25
0.50
0.75
1.00
1.25

S
ol
.
ir
ra
d
.
(k
W

/m
2
)Ifpsc Ivtsc

0.0
0.2
0.4
0.6
0.8
1.0

O
p
er
.
le
ve
l
([
0,
1]
)vppsc pmpsc

0.00
0.25
0.50
0.75
1.00

O
p
er
.
le
ve
l
([
0,
1]
)vpssc

ṁo,hts,b

ṁssc

ṁi,hts,b

ṁac,ht

0

1

A
C
M

st
at
u
s
({
0,
1}
)bacm bfc bec

0.00
0.25
0.50
0.75
1.00

O
p
er
.
le
ve
l
([
0,
1]
)vplc

9
13
17
21
25
29
33

T
em

p
.
(◦
C
)

Tamb

15
30
45
60
75
90
105

T
em

p
.
(◦
C
)

Tfpsc Tvtsc

40
50
60
70
80
90

T
em

p
.
(◦
C
)

Tht,1 Tht,2 Tht,3 Tht,4

10
12
14
16
18
20
22
24

T
em

p
.
(◦
C
)

Tlt,1 Tlt,2 Tfcu,w

Figure 6.5: Temperature measurements and control actions for the system
operated using mixed-integer nonlinear MPC from September 14, 2019, 06:00
to September 17, 2019, 06:00.

-- Draft version, for internal use only --

“thesis” — 2020/1/8 — 17:09 — page 143 — #177

CONTINUOUS OPERATION UNDER VARYING AMBIENT CONDITIONS 143

Se
p
14
, 1
3:
00

Se
p
14
, 2
1:
00

Se
p
15
, 0
5:
00

Se
p
15
, 1
3:
00

Se
p
15
, 2
1:
00

Se
p
16
, 0
5:
00

Se
p
16
, 1
3:
00

Se
p
16
, 2
1:
00

Se
p
17
, 0
5:
00

Time

21
22
23
24
25
26

T
em

p
.
(◦
C
)

Tt,r,a,1 Tt,r,a,3 Tt,r,c,1 Tt,r,c,3

0.00
0.25
0.50
0.75
1.00
1.25

S
ol
.
ir
ra
d
.
(k
W

/m
2
)Ifpsc Ivtsc

0.0
0.2
0.4
0.6
0.8
1.0

O
p
er
.
le
ve
l
([
0,
1]
)vppsc pmpsc

0.00
0.25
0.50
0.75
1.00

O
p
er
.
le
ve
l
([
0,
1]
)vpssc

ṁo,hts,b

ṁssc

ṁi,hts,b

ṁac,ht

0

1

A
C
M

st
at
u
s
({
0,
1}
)bacm bfc bec

0.00
0.25
0.50
0.75
1.00

O
p
er
.
le
ve
l
([
0,
1]
)vplc

9
13
17
21
25
29
33

T
em

p
.
(◦
C
)

Tamb

15
30
45
60
75
90
105

T
em

p
.
(◦
C
)

Tfpsc Tvtsc

40
50
60
70
80
90

T
em

p
.
(◦
C
)

Tht,1 Tht,2 Tht,3 Tht,4

10
12
14
16
18
20
22
24

T
em

p
.
(◦
C
)

Tlt,1 Tlt,2 Tfcu,w

Figure 6.5: Temperature measurements and control actions for the system
operated using mixed-integer nonlinear MPC from September 14, 2019, 06:00
to September 17, 2019, 06:00.

-- Draft version, for internal use only --

Every 2 minutes, a new optimization problem is solved, using a real-time
algorithm based on CasADi, IPOPT [Wächter and Biegler 2006], and
Pycombina [Bürger et al, 2019], an implementation of the combinatorial
integral approximation (CIA) method [Sager 2009].

M. Diehl

Human sized quadcopter control (Nonlinear MPC)
at Kitty Hawk, California, using acados

28

[Zanelli, Horn, Frison, D., 2018]

M. Diehl

Electrical Compressor Control at ABB (Norway)
- work of Dr. Joachim Ferreau and Dr. Thomas
Besselmann, ABB
- nonlinear MPC with qpOASES and ACADO, 1ms
sampling time
- first tests at 48 MW Drive
- currently, 15% of Norwegian Gas Exports are
controlled by Nonlinear MPC

29

Joachim Ferreau (email from 7.3.2016):

The NMPC installations in Norway (actually 5
compressors at two different sites) are
doing fine since last autumn – roughly 80
billion NMPC instances solved by now. In
addition, they have proven to work as
expected when handling external voltage
dips.

M. Diehl

eco4wind: MPC for wind turbine control

30

Industrial partners: IAV, SENVION
Nonlinear MPC with about 40 states based on ACADO code generation with QP solver
HPIPM running on industrial hardware at IAV

M. Diehl

Time Optimal “drawing” by crane

31

Univ. Leuven [Wannes Van Loock et al.,] (CasADi)

M. Diehl

Time-optimal “hand writing” by robot

32

Univ. Leuven [Debrouwere, Swevers] using [Verscheure et al, IEEE TAC 2009]

M. Diehl

Predictive control of flight carousel (in Freiburg)

33

M. Diehl

Flight carousel (in Leuven, by M. Vukov)

34

M. Diehl

Nonlinear MPC and Moving Horizon Estimation (MHE)

35

M. Diehl

4 kHz Nonlinear Model Predictive Control for RSM

36

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL -, NO. -, - 1

Continuous Control Set Nonlinear Model Predictive
Control of Reluctance Synchronous Machines

Andrea Zanelli, Julian Kullick, Hisham Eldeeb, Gianluca Frison, Christoph Hackl, Moritz Diehl

Abstract—In this paper we describe the design and imple-

mentation of a current controller for a reluctance synchronous

machine based on continuous set nonlinear model predictive

control. A computationally efficient grey box model of the flux

linkage map is employed in a tracking formulation which is

implemented using the high-performance framework for nonlin-

ear model predictive control acados. The resulting controller

is validated in simulation and deployed on a dSPACE real-

time system connected to a physical reluctance synchronous

machine. Experimental results are presented where the proposed

implementation can reach sampling times in the range typical

for electrical drives and can achieve large improvements in terms

of control performance with respect to state-of-the-art classical

control strategies.

Index Terms—predictive control, electric motors, nonlinear

systems.

I. INTRODUCTION

I
N recent years, reluctance synchronous machines (RSMs)
have emerged as a competitive alternative to classical syn-

chronous machines (SMs) with permanent magnet (PMSMs)
or direct current excitation. In addition to the favourable
properties of SMs in general, e.g., high efficiency, reliability
and compact design, RSMs are often easier to manufacture and
comparably cheap due to the absence of magnets. Moreover,
their anisotropic magnetic path in the rotor, makes them partic-
ularly suitable for saliency-based encoderless control [35, 36].
However, a major drawback of the RSM concerning control
is its characteristic nonlinearity of the flux linkage, caused by
magnetic saturation and cross-coupling effects in the rotor.
As a consequence, the machines’ inductances vary signifi-
cantly with the stator currents. Moreover, additional coupling

This research was supported by the German Federal Ministry for Eco-
nomic Affairs and Energy (BMWi) via eco4wind (0324125B) and DyConPV
(0324166B), by DFG via Research Unit FOR 2401 and by the EU via ITN-
AWESCO (642 682)

Andrea Zanelli is with the Systems Control and Optimization Laboratory,
Department of Microsystems Engineering, University of Freiburg, Freiburg,
Germany (email: andrea.zanelli@imtek.de).

Julian Kullick is with the Department of Electrical Engineering and Infor-
mation Technology at the Munich University of Applied Sciences, Munich,
Germany (email: julian.kullick@hm.edu).

Hisham Eldeeb is with IAV GmbH, Munich, Germany (email:
hisham.eldeeb@iav.de).

Gianluca Frison is with the Systems Control and Optimization Laboratory,
Department of Microsystems Engineering, University of Freiburg, Freiburg,
Germany (email: gianluca.frison@imtek.de).

Christoph M. Hackl is with the Department of Electrical Engineering
and Information Technology at the Munich University of Applied Sciences,
Munich, Germany (email: christoph.hackl@hm.edu).

Moritz Diehl is with the Systems Control and Optimization Laboratory,
Department of Microsystems Engineering and Department of Mathematics,
University of Freiburg, Freiburg, Germany (email: moritz.diehl@imtek.uni-
freiburg.de).

between the stator d- and q-currents is imposed by the
cross-coupling inductances and the coupling of the nonlinear
back electro-motive force in the synchronous reference frame,
which generally requires further measurements to be carried
out online.
Regarding the control of RSMs, two main concepts have been
pursued in the past: (i) Direct Torque Control (DTC) [4, 34]
and (ii) field-oriented control (FOC) [3, 37, 53]. While DTC
is known for its robustness and fast dynamics [5], it produces
a high current distortion leading to torque ripples [6]. In
contrast, vector control improves the torque response [48] and
the efficiency of the system [32], but good knowledge of the
system parameters is required for implementation. In [27], a
completely parameter-free adaptive PI controller is proposed
which guarantees tracking with prescribed transient accuracy.
The controller is applied to current control of (reluctance) syn-
chronous machines, but measurement results are not provided.
In [48] and [54], the inductances are tracked online in order to
adjust the current references thus achieving a higher control ac-
curacy. In [30], a FOC control scheme is proposed, where the
PI control parameters are continuously adapted to the actual
system state, which improves the overall current dynamics.

An alternative to classical control approaches is the use of
optimization-based control techniques such as model predic-
tive control (MPC). When using MPC, a parametric optimiza-
tion problem is formulated that exploits a model of the plant
to be controlled and enforces constraints while minimizing
a certain objective function. Although MPC can in principle
improve the control performance and ease the controller design
[24], meeting the required sampling times is in general a chal-
lenging task due to the high computational burden associated
with the solution of the underlying optimization problems.

In order to circumvent this difficulty, several algorithmic
strategies have been proposed over the past decade that use
different approaches and (potentially) different formulations of
the optimal control problems to be solved. Among the possible
classifications of methods present in the literature, in the
fields of electrical drives and power electronics, a fundamental
distinction can be made between what is sometimes referred
to as finite (FS-) and continuous control set (CS-) MPC [43],
[8].

In FS-MPC, the switch positions of the power converter are
regarded as optimization variables leading to mixed-integer
programs. In this way, the need for an external modulator
is eliminated and the switching sequences are directly deter-
mined by the solution to the optimal control problem (hence
the name “direct” MPC used in some of the literature on MPC
for electrical drives and power converters [23]).

ar
X

iv
:1

91
0.

10
68

1v
2

 [e
es

s.S
Y

]
28

 S
ep

 2
02

0

Aim:
• reliably control torque of reluctance synchronous machine (RSM) at all reachable speeds
• track flux setpoints corresponding to maximum-torque-per-ampere (MTPA)
• respect circular voltage constraints in (d,q)-frame (inscribing hexagon)

Model Predictive Control (MPC) setup:
• use two-stage voltage source inverter in order to convert from (d,q)-frame
• predict 3.2ms with nonlinear differential equation model
• penalise least squares tracking error
• use open-source software acados on dSPACE
• every 0.25ms, solve one MPC optimisation problem, i.e., sample at 4kHz

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL -, NO. -, - 3

In order to formulate an optimal control problem, the flux
dynamics can be described, based on (1), by the following
differential algebraic equation (DAE):

d
dt s = us �Rsis � !J s + v,

0 = s � s(is),
(3)

where s := (d
s ,

q
s)

> : R2
! R2 defines the algebraic con-

straints based on the identified flux maps and v := (vd, vq)>

are additive disturbances which will be used in an offset-free
NMPC setting (see Section II-F).

Based on the available flux maps computed through the
finite element method (FEM), we obtained a continuously
differentiable model by fitting a simple grey box model. Due
to their low number of parameters and simple structure, we
propose the following parametrization of the flux maps:

 d
s (i

d
s ,i

q
s , ✓d) =

c
d
0q

2⇡�
2
q

exp
�
��

�
i
q
s ,�q

��
atan(cd1 i

d
s) + c

d
2 i

d
s

(4)

and

 q
s (i

d
s , i

q
s , ✓q) =

c
q
0p

2⇡�
2
d

exp
⇣
��

⇣
i
d
s ,�d

⌘⌘
atan(cq1 i

q
s) + c

q
2 i

q
s ,

(5)

with

�(x, y) :=
1

2

✓
x

y

◆2

(6)

and where the unknown parameters involved are

✓d := (cd0 , c
d
1 , c

d
2 , �d) (7)

and
✓q := (cq0, c

q
1, c

q
2, �q). (8)

This parametrization of the flux maps is, to the authors’ best
knowledge, novel and it is able to capture the main features
of the flux maps with only 4 parameters per flux component.
The numerical values of the coefficients can be computed
by solving the following (decoupled) nonlinear least-squares
problems:

min
✓d

mX

j=1

nX

k=1

⇣
 d

s (̄i
d
s,j , ī

q
s,k, ✓d)� ̂

d
s (̄i

d
s,j , ī

q
s,k)

⌘2

min
✓q

mX

j=1

nX

k=1

⇣
 q

s (̄i
d
s,j , ī

q
s,k, ✓q)� ̂

q
s (̄i

d
s,j , ī

q
s,k)

⌘2
(9)

where ī
d
s,j and ī

q
s,k are the j-th and k-th current data points

associated with the flux values ̂d
s and ̂q

s obtained from
FEM analysis. The fitting problems have been solved with the
MATLAB Curve Fitting Toolbox and the resulting fitted model
is shown in Figure 1.

B. Model of the two-level VSI
The machine is supplied by a two-level voltage source

inverter (VSI), which – on average over one switching period
Ts – translates a given voltage reference

u
s
s,ref := (u↵

s,ref, u
�
s,ref) (10)

↵

�

� 1
3
udc

1
3
udc

2
3
udc

0� 2
3
udc

� 2
3
udc

� 1
3
udc

1
3
udc

2
3
udc

a

b

c

u
s
100

u
s
110u

s
010

u
s
011

u
s
001 u

s
101

u
s
000 = u

s
111

1
2
udc

1p
3
udc

u
s
ref

Figure 2: Voltage hexagon associated with the two-level VSI.

(in the stationary s = (↵,�)-reference frame) into the inverter
output voltage u

s
s, i.e.

u
s
s(k Ts) ⇡ u

s
s,ref((k � 1)Ts), k 2 N. (11)

Since a two-level voltage source inverter may produce a total
of eight unique switching vectors, i.e. sabcs := (sas , s

b
s , s

c
s)

>
2

{000, 001, 010, 100, 011, 101, 110, 111}, the typical voltage
hexagon in the ↵�-plane is obtained (see Figure 2), where

u
s
s = udc

 1
2 0 �

1
2

0
p
3
2 0

�2

4
1 �1 0
0 1 �1
�1 0 1

3

5 s
abc
s (12)

depends on the switching vector sabcs and the Clarke-factor  2

{2/3,
p
2/3} [28, Chap. 14]. Using space-vector modulation

(SVM) to generate the switching vector, any voltage reference
within the circle of radius udc/

p
3 can be realized, with udc

denoting the (assumed constant) DC-link voltage. Finally, the
inverter output voltage is transformed into the rotating (d, q)-
reference frame using the inverse Park transformation, i.e.

us =


u
d
s

u
q
s

�
=


cos(�) sin(�)
� sin(�) cos(�)

�

| {z }
=:Tp(�)

�1

u
s
s. (13)

From now on, since we will only refer to currents, fluxes
and voltages applied to the stator and in the (d-q)-frame, we
will simplify the notation by dropping the associated subscript
such that, for example, i = (ids , i

q
s) denotes the stator currents

in the (d-q)-frame.

C. Nonlinear model predictive control
NMPC is an optimization-based control strategy that allows

one to tackle control problems involving potentially nonlinear
dynamics, constraints and objectives by solving online a
series of parametric nonlinear programs (NLP). Due to the
computational challenge of solving NLPs within the required

M. Diehl

RSM: Control Oriented Differential Algebraic Equation Model

37

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL -, NO. -, - 2

(a) fitted grey box flux model - d-component

ids (in A)

≠40 ≠20 0 20 40
iqs

(in
A)

≠40
≠20

0
20

40

Â
d s

(in
W

)

≠0.4
≠0.2
0.0
0.2
0.4

(b) fitted grey box flux model - q-component

Figure 1: Nonlinear flux linkage of a real RSM obtained from FEM data ̂d
s (solid surface) and fitted grey box model d

s (dotted). The worst-case relative
error amounts to less than 10%.

When using CS-MPC instead, we delegate the determination
of switching sequences to an external modulator in order to
obtain a continuous optimization problem. For this reason,
CS-MPC is sometimes referred to as “indirect” MPC [23].
Although the computation times associated with this latter
approach scale favourably with prediction horizon length and
number of control variables (typically complexity O

�
N (̇nu +

nx)
3� can be achieved, where N , nu and nx represent horizon

length, number of inputs and states, respectively), for short
horizons, strategies based, e.g., on sphere decoding algorithms
applied to FS-MPC formulations can achieve sufficiently short
computation times. On the contrary, CS-MPC is generally
regarded as more computationally expensive and it is still,
arguably for this reason, largely unexplored [23].

Among the experimental results in the literature obtained
with CS-MPC, in [2] a DC-excited synchronous motor is
controlled using the real-time iteration method. In [16], a
fixed-point iteration scheme is used to control a permanent
magnet synchronous machine. Among applications leveraging
linear-quadratic CS-MPC we mention the work in [14] in
which permanent magnet synchronous machines and induction
machines are controlled using explicit model predictive con-
trol. Finally, in the recent work in [7], an active-set algorithm
is used to solve the convex QPs arising from a linear-quadratic
CS-MPC formulation to control a PMSM.

A. Contribution
In this paper, we describe the design and implementation

details together with simulation and experimental results of a
nonlinear CS-MPC controller (CS-NMPC) for an RSM. The
contributions of the present work are:

• We describe the design and implementation details of
a tracking CS-NMPC formulation that relies on the
software package acados, which is capable of achiev-
ing timings in the microsecond time scale necessary to
control the electrical drive.

• We propose the use of a simple grey box model for the
flux maps of RSMs with a small number of parameters
that can be used for online applications where computa-
tion times are of key importance.

• Finally, we present simulation and experimental results
that confirm the validity of the proposed control formula-
tion and its implementation and its superior performance
in comparison with state-of-the-art methods from the
field of classical control. This is, to the best of the
authors’ knowledge, one the of the earliest experimentally
validated applications of CS-NMPC to an RSM.

II. BACKGROUND ON RSMS AND NMPC
In order to facilitate the discussion of the design and

implementation of the proposed controller, in the following,
mathematical models of RSMs and voltage source inverters
(VSI) will be derived and numerical methods for NMPC will
be introduced. Note that the argument (t), used to denote
dependence on time, is sometimes dropped for the sake of
readability. Moreover, we use the notation kxkP =

p
x
>
Px,

for some positive definite matrix P , to denote the P -weighted
Euclidean norm of the vector x.

A. Generic model of the RSM
The machine model in the synchronously rotating (d, q)-

reference frame is given by [28, Chap. 14]

us = Rsis+!

=:Jz }| {
0 �1
1 0

�
 s

�
is

�
+ d

dt s

�
is

�
,

d
dt! =

np

⇥

h
mm(is)� ml

i
,

d
dt� = !,

(1)

where us := (ud
s , u

q
s)

> are the applied stator voltages, Rs

is the stator resistance, is := (ids , i
q
s)

> are the stator currents
and s := (d

s ,
q
s)

> are the stator flux linkages (functions of
is). The (d, q)-reference frame rotates with electrical angular
velocity ! = np !m of the rotor, where np is the number of
pole pairs and !m denotes the mechanical angular velocity of
the machine. Furthermore, ⇥ is the total moment of inertia,

mm(is) :=
3
2np (is)

>
J s

�
is

�
(2)

is the electro-magnetic machine torque, and ml represents an
external (time-varying) bounded load torque.

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL -, NO. -, - 3

In order to formulate an optimal control problem, the flux
dynamics can be described, based on (1), by the following
differential algebraic equation (DAE):

d
dt s = us �Rsis � !J s + v,

0 = s � s(is),
(3)

where s := (d
s ,

q
s)

> : R2
! R2 defines the algebraic con-

straints based on the identified flux maps and v := (vd, vq)>

are additive disturbances which will be used in an offset-free
NMPC setting (see Section II-F).

Based on the available flux maps computed through the
finite element method (FEM), we obtained a continuously
differentiable model by fitting a simple grey box model. Due
to their low number of parameters and simple structure, we
propose the following parametrization of the flux maps:

 d
s (i

d
s ,i

q
s , ✓d) =

c
d
0q

2⇡�
2
q

exp
�
��

�
i
q
s ,�q

��
atan(cd1 i

d
s) + c

d
2 i

d
s

(4)

and

 q
s (i

d
s , i

q
s , ✓q) =

c
q
0p

2⇡�
2
d

exp
⇣
��

⇣
i
d
s ,�d

⌘⌘
atan(cq1 i

q
s) + c

q
2 i

q
s ,

(5)

with

�(x, y) :=
1

2

✓
x

y

◆2

(6)

and where the unknown parameters involved are

✓d := (cd0 , c
d
1 , c

d
2 , �d) (7)

and
✓q := (cq0, c

q
1, c

q
2, �q). (8)

This parametrization of the flux maps is, to the authors’ best
knowledge, novel and it is able to capture the main features
of the flux maps with only 4 parameters per flux component.
The numerical values of the coefficients can be computed
by solving the following (decoupled) nonlinear least-squares
problems:

min
✓d

mX

j=1

nX

k=1

⇣
 d

s (̄i
d
s,j , ī

q
s,k, ✓d)� ̂

d
s (̄i

d
s,j , ī

q
s,k)

⌘2

min
✓q

mX

j=1

nX

k=1

⇣
 q

s (̄i
d
s,j , ī

q
s,k, ✓q)� ̂

q
s (̄i

d
s,j , ī

q
s,k)

⌘2
(9)

where ī
d
s,j and ī

q
s,k are the j-th and k-th current data points

associated with the flux values ̂d
s and ̂q

s obtained from
FEM analysis. The fitting problems have been solved with the
MATLAB Curve Fitting Toolbox and the resulting fitted model
is shown in Figure 1.

B. Model of the two-level VSI
The machine is supplied by a two-level voltage source

inverter (VSI), which – on average over one switching period
Ts – translates a given voltage reference

u
s
s,ref := (u↵

s,ref, u
�
s,ref) (10)

↵

�

� 1
3
udc

1
3
udc

2
3
udc

0� 2
3
udc

� 2
3
udc

� 1
3
udc

1
3
udc

2
3
udc

a

b

c

u
s
100

u
s
110u

s
010

u
s
011

u
s
001 u

s
101

u
s
000 = u

s
111

1
2
udc

1p
3
udc

u
s
ref

Figure 2: Voltage hexagon associated with the two-level VSI.

(in the stationary s = (↵,�)-reference frame) into the inverter
output voltage u

s
s, i.e.

u
s
s(k Ts) ⇡ u

s
s,ref((k � 1)Ts), k 2 N. (11)

Since a two-level voltage source inverter may produce a total
of eight unique switching vectors, i.e. sabcs := (sas , s

b
s , s

c
s)

>
2

{000, 001, 010, 100, 011, 101, 110, 111}, the typical voltage
hexagon in the ↵�-plane is obtained (see Figure 2), where

u
s
s = udc

 1
2 0 �

1
2

0
p
3
2 0

�2

4
1 �1 0
0 1 �1
�1 0 1

3

5 s
abc
s (12)

depends on the switching vector sabcs and the Clarke-factor  2

{2/3,
p
2/3} [28, Chap. 14]. Using space-vector modulation

(SVM) to generate the switching vector, any voltage reference
within the circle of radius udc/

p
3 can be realized, with udc

denoting the (assumed constant) DC-link voltage. Finally, the
inverter output voltage is transformed into the rotating (d, q)-
reference frame using the inverse Park transformation, i.e.

us =


u
d
s

u
q
s

�
=


cos(�) sin(�)
� sin(�) cos(�)

�

| {z }
=:Tp(�)

�1

u
s
s. (13)

From now on, since we will only refer to currents, fluxes
and voltages applied to the stator and in the (d-q)-frame, we
will simplify the notation by dropping the associated subscript
such that, for example, i = (ids , i

q
s) denotes the stator currents

in the (d-q)-frame.

C. Nonlinear model predictive control
NMPC is an optimization-based control strategy that allows

one to tackle control problems involving potentially nonlinear
dynamics, constraints and objectives by solving online a
series of parametric nonlinear programs (NLP). Due to the
computational challenge of solving NLPs within the required

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL -, NO. -, - 3

In order to formulate an optimal control problem, the flux
dynamics can be described, based on (1), by the following
differential algebraic equation (DAE):

d
dt s = us �Rsis � !J s + v,

0 = s � s(is),
(3)

where s := (d
s ,

q
s)

> : R2
! R2 defines the algebraic con-

straints based on the identified flux maps and v := (vd, vq)>

are additive disturbances which will be used in an offset-free
NMPC setting (see Section II-F).

Based on the available flux maps computed through the
finite element method (FEM), we obtained a continuously
differentiable model by fitting a simple grey box model. Due
to their low number of parameters and simple structure, we
propose the following parametrization of the flux maps:

 d
s (i

d
s ,i

q
s , ✓d) =

c
d
0q

2⇡�
2
q

exp
�
��

�
i
q
s ,�q

��
atan(cd1 i

d
s) + c

d
2 i

d
s

(4)

and

 q
s (i

d
s , i

q
s , ✓q) =

c
q
0p

2⇡�
2
d

exp
⇣
��

⇣
i
d
s ,�d

⌘⌘
atan(cq1 i

q
s) + c

q
2 i

q
s ,

(5)

with

�(x, y) :=
1

2

✓
x

y

◆2

(6)

and where the unknown parameters involved are

✓d := (cd0 , c
d
1 , c

d
2 , �d) (7)

and
✓q := (cq0, c

q
1, c

q
2, �q). (8)

This parametrization of the flux maps is, to the authors’ best
knowledge, novel and it is able to capture the main features
of the flux maps with only 4 parameters per flux component.
The numerical values of the coefficients can be computed
by solving the following (decoupled) nonlinear least-squares
problems:

min
✓d

mX

j=1

nX

k=1

⇣
 d

s (̄i
d
s,j , ī

q
s,k, ✓d)� ̂

d
s (̄i

d
s,j , ī

q
s,k)

⌘2

min
✓q

mX

j=1

nX

k=1

⇣
 q

s (̄i
d
s,j , ī

q
s,k, ✓q)� ̂

q
s (̄i

d
s,j , ī

q
s,k)

⌘2
(9)

where ī
d
s,j and ī

q
s,k are the j-th and k-th current data points

associated with the flux values ̂d
s and ̂q

s obtained from
FEM analysis. The fitting problems have been solved with the
MATLAB Curve Fitting Toolbox and the resulting fitted model
is shown in Figure 1.

B. Model of the two-level VSI
The machine is supplied by a two-level voltage source

inverter (VSI), which – on average over one switching period
Ts – translates a given voltage reference

u
s
s,ref := (u↵

s,ref, u
�
s,ref) (10)

↵

�

� 1
3
udc

1
3
udc

2
3
udc

0� 2
3
udc

� 2
3
udc

� 1
3
udc

1
3
udc

2
3
udc

a

b

c

u
s
100

u
s
110u

s
010

u
s
011

u
s
001 u

s
101

u
s
000 = u

s
111

1
2
udc

1p
3
udc

u
s
ref

Figure 2: Voltage hexagon associated with the two-level VSI.

(in the stationary s = (↵,�)-reference frame) into the inverter
output voltage u

s
s, i.e.

u
s
s(k Ts) ⇡ u

s
s,ref((k � 1)Ts), k 2 N. (11)

Since a two-level voltage source inverter may produce a total
of eight unique switching vectors, i.e. sabcs := (sas , s

b
s , s

c
s)

>
2

{000, 001, 010, 100, 011, 101, 110, 111}, the typical voltage
hexagon in the ↵�-plane is obtained (see Figure 2), where

u
s
s = udc

 1
2 0 �

1
2

0
p
3
2 0

�2

4
1 �1 0
0 1 �1
�1 0 1

3

5 s
abc
s (12)

depends on the switching vector sabcs and the Clarke-factor  2

{2/3,
p
2/3} [28, Chap. 14]. Using space-vector modulation

(SVM) to generate the switching vector, any voltage reference
within the circle of radius udc/

p
3 can be realized, with udc

denoting the (assumed constant) DC-link voltage. Finally, the
inverter output voltage is transformed into the rotating (d, q)-
reference frame using the inverse Park transformation, i.e.

us =


u
d
s

u
q
s

�
=


cos(�) sin(�)
� sin(�) cos(�)

�

| {z }
=:Tp(�)

�1

u
s
s. (13)

From now on, since we will only refer to currents, fluxes
and voltages applied to the stator and in the (d-q)-frame, we
will simplify the notation by dropping the associated subscript
such that, for example, i = (ids , i

q
s) denotes the stator currents

in the (d-q)-frame.

C. Nonlinear model predictive control
NMPC is an optimization-based control strategy that allows

one to tackle control problems involving potentially nonlinear
dynamics, constraints and objectives by solving online a
series of parametric nonlinear programs (NLP). Due to the
computational challenge of solving NLPs within the required

• differential algebraic equation (DAE)
• currents is as implicitly defined algebraic states
• analytical flux map approximations:

M. Diehl

Optimization Problem resulting from Direct Multiple Shooting:

38

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL -, NO. -, - 4

Figure 3: Laboratory setup with dSPACE real-time system, voltage-source
inverters connected back-to-back, RSM, PMSM and torque sensor.

sampling times, NMPC has initially found application in
the chemical industry and in the field of process control
in general [49], where relatively slow dynamics allow for
sufficiently long sampling times. In more recent times, due to
the development of increasingly efficient numerical methods
and software implementation and due to the growing computa-
tional power of embedded control units, NMPC has gradually
become a viable approach for applications with much shorter
computation times. Among other recent works that reported
on the successful application of MPC to control systems with
sampling times in the range of milli- and microsecond we
mention [1, 55].

In this paper, we will regard the following standard tracking
formulation with prediction horizon Th and N shooting nodes,
where the squared deviation of fluxes and voltages u from
properly defined steady-state references are penalized:

min
 0,..., N

u0,...,uN�1

Th

2N

N�1X

i=0

����
 i � ̄

ui � ū

����
2

W

+
1

2
k N � ̄k

2
WN

s.t. 0 � e = 0,

g(i, ui,!e, ve)� i+1= 0, i = 0, . . . , N � 1,

u
>
i ui 

✓
udc
p
3

◆2

, i = 0, . . . , N � 1,

Ĉui  ĉ, i = 0, . . . , N � 1,

(14)

where g describes the discretized dynamics obtained by inte-
grating the differential-algebraic model in (3) using the Gauss-
Legendre collocation method of order 2 assuming constant
(estimated) angular velocity !e and disturbances ve. The vari-
ables ̄ and ū denote the steady-state references computed for
a given desired torque using a maximum-torque-per-Ampere
(MTPA) criterion [15]. Given the flux maps obtained from
FEM data in Figure 1, it is possible to compute off-line lookup
tables (LUTs) that contain the MTPA reference fluxes and
voltages for a finite number of values of the target torque in
a specified range. The LUTs are then interpolated online in
order to compute approximate values of ̄ and ū associated
with the specified target torque m̄ (see Figure 4).

The convex quadratic constraint in (14) describes the cir-
cular input feasible set introduced in Section II-B. Finally, Ĉ
and ĉ define polytopic constraints (which we will later refer to
as “safety” constraints) that are meant to be always inactive at
any local solution of (14) (apart from a finite number of points

Figure 4: Control diagram: the MTPA LUTs provide the reference flux ̄ and
voltage ū associated with a given reference torque m̄. The NMPC
controller computes the optimal control action based on the current
state and disturbance estimate provided by an EKF.

where they are locally equivalent to the linearized spherical
constraint), but can mitigate constraint violation of intermedi-
ate SQP iterates. In particular, we define Ĉ and ĉ such that
the affine constraint defines an outer polytopic approximation
with 6 facets as depicted in Figure 5. Notice that due to this
formulation of the feasible set, linear independence constraint
qualification can fail at a finite number of points where the
linearization of the nonlinear constraint is equivalent to one
of the affine constraints in (14). Although, this would violate
a common assumption used in convergence theory for both
SQP and some numerical methods for the solution of convex
QPs, the active-set solver qpOASES that we employ for this
application can handle redundant constraints through a strategy
that determines which constraint needs to be removed from the
working set [18].

Remark 1. Notice that the actual dynamics of the system
involve a coupling of mechanical (!) and electrical states
(). It is however common, given the large difference between
associated time constants, to assume a constant angular
velocity ! when designing controllers. In our case, it allows
us to use much shorter prediction horizons since we do not
require the OCP in (14) to steer the speed of the motor to
the desired reference, but only fluxes which directly map to
currents and, for a given speed, to torques.

Problem (14) is used to define an implicit feedback policy
that requires the solution of an instance of the parametric NLP
at every sampling time, where the value of the parameter e

is given by the current estimate of the system’s state. The
resulting solutions are feasible with respect to the constraints
and minimize (at least locally) the cost function. Nominal and
inherently robust stability of the closed-loop system can be
guaranteed in a neighborhood of a steady-state by properly
choosing the terminal cost [49].

Remark 2. Notice that formulations more general than (14)
can in principle be used in the framework of NMPC. Among
others, economic costs and more general nonlinear constraints
and nonlinear cost terms, are features that can be included
in the problem in order to better capture control design
requirements. However, for the application discussed in this
paper, the nonlinear least-squares problem described in (14)
is general enough.

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL -, NO. -, - 3

In order to formulate an optimal control problem, the flux
dynamics can be described, based on (1), by the following
differential algebraic equation (DAE):

d
dt s = us �Rsis � !J s + v,

0 = s � s(is),
(3)

where s := (d
s ,

q
s)

> : R2
! R2 defines the algebraic con-

straints based on the identified flux maps and v := (vd, vq)>

are additive disturbances which will be used in an offset-free
NMPC setting (see Section II-F).

Based on the available flux maps computed through the
finite element method (FEM), we obtained a continuously
differentiable model by fitting a simple grey box model. Due
to their low number of parameters and simple structure, we
propose the following parametrization of the flux maps:

 d
s (i

d
s ,i

q
s , ✓d) =

c
d
0q

2⇡�
2
q

exp
�
��

�
i
q
s ,�q

��
atan(cd1 i

d
s) + c

d
2 i

d
s

(4)

and

 q
s (i

d
s , i

q
s , ✓q) =

c
q
0p

2⇡�
2
d

exp
⇣
��

⇣
i
d
s ,�d

⌘⌘
atan(cq1 i

q
s) + c

q
2 i

q
s ,

(5)

with

�(x, y) :=
1

2

✓
x

y

◆2

(6)

and where the unknown parameters involved are

✓d := (cd0 , c
d
1 , c

d
2 , �d) (7)

and
✓q := (cq0, c

q
1, c

q
2, �q). (8)

This parametrization of the flux maps is, to the authors’ best
knowledge, novel and it is able to capture the main features
of the flux maps with only 4 parameters per flux component.
The numerical values of the coefficients can be computed
by solving the following (decoupled) nonlinear least-squares
problems:

min
✓d

mX

j=1

nX

k=1

⇣
 d

s (̄i
d
s,j , ī

q
s,k, ✓d)� ̂

d
s (̄i

d
s,j , ī

q
s,k)

⌘2

min
✓q

mX

j=1

nX

k=1

⇣
 q

s (̄i
d
s,j , ī

q
s,k, ✓q)� ̂

q
s (̄i

d
s,j , ī

q
s,k)

⌘2
(9)

where ī
d
s,j and ī

q
s,k are the j-th and k-th current data points

associated with the flux values ̂d
s and ̂q

s obtained from
FEM analysis. The fitting problems have been solved with the
MATLAB Curve Fitting Toolbox and the resulting fitted model
is shown in Figure 1.

B. Model of the two-level VSI
The machine is supplied by a two-level voltage source

inverter (VSI), which – on average over one switching period
Ts – translates a given voltage reference

u
s
s,ref := (u↵

s,ref, u
�
s,ref) (10)

↵

�

� 1
3
udc

1
3
udc

2
3
udc

0� 2
3
udc

� 2
3
udc

� 1
3
udc

1
3
udc

2
3
udc

a

b

c

u
s
100

u
s
110u

s
010

u
s
011

u
s
001 u

s
101

u
s
000 = u

s
111

1
2
udc

1p
3
udc

u
s
ref

Figure 2: Voltage hexagon associated with the two-level VSI.

(in the stationary s = (↵,�)-reference frame) into the inverter
output voltage u

s
s, i.e.

u
s
s(k Ts) ⇡ u

s
s,ref((k � 1)Ts), k 2 N. (11)

Since a two-level voltage source inverter may produce a total
of eight unique switching vectors, i.e. sabcs := (sas , s

b
s , s

c
s)

>
2

{000, 001, 010, 100, 011, 101, 110, 111}, the typical voltage
hexagon in the ↵�-plane is obtained (see Figure 2), where

u
s
s = udc

 1
2 0 �

1
2

0
p
3
2 0

�2

4
1 �1 0
0 1 �1
�1 0 1

3

5 s
abc
s (12)

depends on the switching vector sabcs and the Clarke-factor  2

{2/3,
p
2/3} [28, Chap. 14]. Using space-vector modulation

(SVM) to generate the switching vector, any voltage reference
within the circle of radius udc/

p
3 can be realized, with udc

denoting the (assumed constant) DC-link voltage. Finally, the
inverter output voltage is transformed into the rotating (d, q)-
reference frame using the inverse Park transformation, i.e.

us =


u
d
s

u
q
s

�
=


cos(�) sin(�)
� sin(�) cos(�)

�

| {z }
=:Tp(�)

�1

u
s
s. (13)

From now on, since we will only refer to currents, fluxes
and voltages applied to the stator and in the (d-q)-frame, we
will simplify the notation by dropping the associated subscript
such that, for example, i = (ids , i

q
s) denotes the stator currents

in the (d-q)-frame.

C. Nonlinear model predictive control
NMPC is an optimization-based control strategy that allows

one to tackle control problems involving potentially nonlinear
dynamics, constraints and objectives by solving online a
series of parametric nonlinear programs (NLP). Due to the
computational challenge of solving NLPs within the required

M. Diehl

RSM: Video from NMPC Experiments at TU Munich

39

M. Diehl

CS-NMPC significantly better than PI Controller

40

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL -, NO. -, - 8

0.0 0.5 1.0 1.5 2.0
time (in sec)

�40

�20

0

20

40

cu
rr

en
ts

(in
A

)

CS-NMPC (exp.)

id

iq

0.0 0.5 1.0 1.5 2.0
time (in sec)

�40

�20

0

20

40

cu
rr

en
ts

(in
A

)

gain scheduled PI (exp.)

id

iq

Figure 8: Current steps at 157 rad
s (experiment): results obtained using the proposed CS-NMPC controller (left) and gain-scheduled PI controller (right). The

CS-NMPC controller outperforms the PI controller, especially when the input constraints become active (e.g., between t = 0.75 s and t = 1.00 s).
At the same time, as it can be seen especially between t = 1.25 s and t = 1.50 s, a faster transient can be achieved, even when the constraints are
active only for a short time.

Figure 9: Current steps at 157 rad
s (experiment): two-norm of measured voltage references uref commanded by the two controllers and udc over time. During

the third current step, the PI controller saturates and does not steer the system to the desired reference. Notice that the input commanded by the
PI controller remains saturated during the entire step. On the contrary, the CS-NMPC controller, after an initial saturation, steers the current to the
(feasible) reference values.

speed to a value that is close to the limit value !?
m computed

as follows:

!
?
m :=

1

2
argmax

!
!

s.t. kRsiref + !J refk2 

✓
udc
p
3

◆
.

(19)

Since the optimal value is achieved at the boundaries of the
feasible set, we can simply solve for ! the quadratic equation

kRsiref + !J refk
2
2 �

✓
udc
p
3

◆2

= 0, (20)

such that, for the values iref = (16.45, 31.99) A and ref =
(0.819, 0.417) Wb associated with the torque value 58Nm
and udc = 556V, we obtain !

?
m = 169.32 rad

s . Hence, we

set !m,ref = 157 rad
s ⇡ !m,nom for both the simulation and

experimental scenarios. Finally, the parameters used in the
simulations match the ones of the physical setup and are
reported in Table I. The current trajectories obtained with
the CS-NMPC and PI controller are reported in Figure 6
(similarly for input trajectories in Figure 7). It is clear from
the plots that the tracking performance achieved by the CS-
NMPC controller is largely superior to the one obtained by
the PI controller, especially when the input constraints become
active (e.g., between t = 0.75 s and t = 1.00 s). At the same
time, as it can be seen from the current trajectories in Figure
7 between t = 1.25 s and t = 1.50 s, a faster transient can be
achieved, even when the constraints are active only for a short
time. In Appendix A we report additional results obtained with

Agenda

