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Exercises for Lecture Course on Modeling and System Identification (MSI)
Albert-Ludwigs-Universität Freiburg – Winter Term 2017

Exercise 3: Linear Least Squares
Prof. Dr. Moritz Diehl, Robin Verschueren, Alexander Resch

In this exercise you deepen your knowledge of linear least squares and covariance matrices.
Please remember that each group slot in the presentation form can only be filled by students of the same
group (with the same code on the same computer).

Exercise Tasks

1. Given a sequence of i.i.d. scalar random variables x(1), . . . , x(N), each with mean µ and variance
σ2, what is the expected value and variance of their sample mean, i.e. of the random variable yN
defined by yN = 1

N

∑N
k=1 x(k).

2. In your lecture notes, the sample variance S2 is defined as

S2 =
1

N − 1

N∑
n=1

(Y (n)−M(Y (N)))2,

where M(Y (N)) is the sample mean. Explain, why the division by N − 1 is preferable over N .
(Hint: Formally calculate the expected value of the sample variance and compare it to the expected
value of the mean squared deviations estimator.)

3. Recall the experimental setup to estimate the value of a resistor from exercise 1. We assumed
that the measurements were perturbed by additive noise ni(k) and nu(k): i(k) = i0 + ni(k) and
u(k) = u0 + nu(k). Given these assumptions, derive why the estimator for the resistance given by

R̂LS(N) =

1

N

∑N
k=1 u(k)i(k)

1

N

∑n
k=1 i(k)2

is a least squares estimator. Please give the full derivation, pointing to the script is not sufficient.

4. Consider the diode model given in exercise 2. As you have already found out, polynomial fitting over
exponential relationships might not necessarily lead to satisfactory performance. Better performance
can be achieved by directly fitting an exponential function to the data. (Remember that for LLS to
work, the model must only be linear in the parameters (LIP), while the regressor functions can still
be nonlinear.) The corresponding dataset Data.mat can be found on the course homepage.
(Hint: Each of the m = 1000 measurement series consists of 8 voltage-current pairs (N = 8000).)

After first inspecting the data, you decide to estimate both the reverse leakage current Is = θ1 and
the measurement offset IOffset = θ2 for the model

Id(k) = θ1

e qU(k)

mkBT − 1

+ θ2 + ε(k),

where U(k) is the applied voltage, Id(k) is the measured forward current, m = 1.5 is the ideality
factor, q = 1.6022 · 10−19 C is the elementary charge, kB = 1.3806e · 10−23 J/K is the Boltzmann
constant and T = 293 K is the temperature. (5 points)
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(a) Before implementing the LLS estimator in your code, schematically write down the objective
function for the optimization problem (1 point)

minimize
θ1,θ2

‖Id − Φθ‖2
2.

How do Id , Φ and θ look?

Φ =



 , Id =



 , θ =

[ ]

(b) Estimate the reverse leakage current Is and the offset current IOffset by solving the above opti-
mization problem. (1 point)

(c) Use the backslash operator, don’t invert matrices and have a look at the coefficients. (1 point)

(d) In order to assess the performance of your parameter estimation, one can look at the covariance
cov(θ̂N) of the estimated parameters. It is given by

cov(θ̂N) = ΦT
Nσ

2
εN

ΦN ,

with σ2
ε being the variance of the noise εN = [ε1, ..., εN ]T , which in turn can be estimated by

its sample variance. (1 point)

(e) Calculate the covariance cov(θ̂N) of the estimated parameters forN = 4000 and forN = 8000
experiments and compare them. Do you notice any tendencies? Which implications can you
draw from that insight? (Hint: Remember you have to readjust your regression matrix ΦN for
different N .) (1 point)
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