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Exercise 2: Linear Least Squares Introduction
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In this exercise, you will discover basic properties of the linear least squares estimation method, as
well as the covariance operator.

Exercise Tasks

1. The covariance matrix of a vector-valued random variable X in Rn with mean E {X} = µX

is defined by

cov (X) := E
{

(X − µX) (X − µX)T
}
.

Prove that the covariance matrix of a vector-valued variable Y = AX + b with constant
A ∈ Rm×n and b ∈ Rm is given by

cov (Y ) = A cov (X)AT.

2. Suppose you are measuring a constant x ∈ R perturbed by Gaussian, zero-mean noise ε ∈ R
(ε ∼ N (0, σ2)). Prove that the LLS estimate for this constant is the sample mean.

3. A semiconductor diode is a crystalline piece of semiconductor material with a p-n junction
connected to two electrical terminals. In the most common form it consists of a p-n doped
silicon substrate. The Shockley equation

Id = Is

e qU

mkBT − 1

 ,

where U is the applied voltage in forward direction, m is the ideality factor, q is the elementary
charge, kB is the Boltzmann constant and T is the temperature, is used to describe the diode
current Id flowing through the diode in forward direction.
Let’s consider current-voltage data of a common silicon diode following the Shockley equation.
This data is available on the course page in a matlab data file called Data.mat. (5 points)

(a) Plot the diode current Id [mA] (second column) vs. the applied voltage U [mV] (first
column) data, with voltage along the x-axis and current along the y-axis. When looking
at the data for current as a function of voltage, what is the lowest order polynomial
relation that you would expect to give a meaningful linear least squares fit? What form
does this relation take? (Hint: remember that linear least squares does not necessarily
require a linear relationship between Id and U .) (1 point)

(b) Which properties should the data fulfil, for linear least squares to be an appropriate
estimation method? Make those assumptions for the following questions. (0.5 points)

(c) Choose y ∈ RN , φi ∈ R1×d and Φ ∈ RN×d, to correspond to the linear least squares
problem form. (1.5 points)

(d) Is ΦTΦ invertible? Why? What could lead to non-invertability? Does Matlab return a
warning, if you attempt to invert this matrix? Why would it? (1 point)
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(e) In general, it is not advised to use a linear system solve, using the pseudo-inverse, for
problems that have this (see 3d) behavior. Try it anyways. Plot the estimated currents
as a function of voltage in your data-plot, and consider the coefficients of the fitted
polynomial. Do these coefficients appear reasonable? (Hint: use the backslash operator
in the linear system solve.) (0.5 points)

(f) Reconsider your fitting problem, using units of [A] for Id and [V] for U . Apply a linear
system solve with the pseudo-inverse to this problem. Add this estimate to the data-plot,
and consider the coefficients of the fitted polynomial. Does scaling the measurements
improve the performance of linear least squares? Why? (0.5 points)
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