Modeling and System Identification – Microexam 2

Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg December 18, 2017, 08:15-09:45, Freiburg

Surname:	First Name:	Matriculation number:
Subject:	Programme: Bachelor Master Lehramt	others Signature:

Please fill in your name above and tick exactly ONE box for the right answer of each question below.

1. Give an approximation of the covariance $\Sigma_{\hat{\theta}}$ of a maximum likelihood (ML) estimate. The model is given as $y_N = \Phi_N \theta + \epsilon_N$ with $\epsilon_N \sim \mathcal{N}(0, \Sigma_{\epsilon}), Q_N = \Phi_N^\top \Phi_N$ and $L(\theta, y_N)$ is the negative log likelihood function. $\Sigma_{\hat{\theta}} \approx \ldots$

$(a) \bigsqcup \Phi_N^{\cdot} \Sigma_{\epsilon_N} \Phi_N^{\cdot} \qquad \qquad (b) \bigsqcup (\Phi_N^{\cdot} \Sigma_{\epsilon_N}^{\cdot} \Phi_N)^{-1} \qquad \qquad (c) \bigsqcup Q_N^{-1} \qquad \qquad (d) \bigsqcup \nabla_{\theta}^2 L(\theta, y_N)$
--

2. Given the probability density function $p_X(x) = \theta e^{-\theta x}$ for $x \ge 0$ (and 0 otherwise) with unknown θ and positive i.i.d. measurements $y_N = [y(1), y(2), \dots, y(N)]^T$ that are assumed to follow the above distribution, what is the minimisation problem you need to solve for a ML-estimate of θ ? The problem is: $\min_{n \in \mathbb{N}} \dots$?

(a) $\ \theta e^{-\theta y(k)}\ _2^2$	(b) $\square -N\log(\theta) + \theta \sum_{k=1}^{N} y(k)$
(c) $\ y(k) - \theta e^{-\theta}\ _2^2$	(d) $\Box - \log \sum_{k=1}^{N} \theta e^{-\theta y(k)}$

3. For the problem in the previous question, what is a lower bound on the covariance $\Sigma_{\hat{\theta}}$ for any unbiased estimator $\hat{\theta}(y_N)$, assuming that θ_0 is the true value? $\Sigma_{\hat{\theta}} \succeq \dots$

(a) $\square N/\theta^2$	(b) $\square \theta_0^2/N$
(c) $\left[\left(\int_{y_N} N \theta^{N-2} \exp[-\theta \sum_k y_k] dy_N \right)^{-1} \right]$	(d) $\prod \int_{y_N} N\theta_0^{N-2} \exp[-\theta \sum_k y_k] dy_N$

- 4. Suppose you are given the Fisher information matrix $M = \int_{y_N} \nabla_{\theta}^2 L(\theta_0, y_N) \cdot p(y_N | \theta_0) dy_N$ of the corresponding problem, what is the relation with the covariance matrix $\Sigma_{\hat{\theta}}$ of your estimate $\hat{\theta}$?
- 5. Give the name of the theorem that provides us with the above result.
- 6. Given a set of measurements $y_N = [y(1), y(2), \dots, y(N)]^T$ with i.i.d. Gaussian noise and the linear model $y_N = \Phi \theta$, where $\Phi = [\varphi(1), \varphi(2), \dots, \varphi(N)]^T$, which of the following minimisation problems is solved at each iteration step of the RLS algorithm to estimate the parameter $\hat{\theta}(N+1)$ after N+1 measurements? $\hat{\theta}(N+1) = \arg \min_{\alpha} \frac{1}{2} (\ldots)$

(a) $\ \theta - \hat{\theta}(N)\ _{2}^{2} + \ y(N+1) - \varphi(N+1)^{\top}\theta\ _{2}^{2}$	(b) $\ y_N - \Phi_N \cdot \theta \ _{Q_N}^2$
(c) $\ \ \theta - \hat{\theta}(N) \ _{Q_N}^2 + \ y(N) - \varphi(N)^\top \theta \ _2^2$	(d) $\qquad \ y_{N+1} - \Phi_{N+1} \cdot \theta\ _2^2$

7. In L_1 estimation the measurement errors are assumed to follow a ... distribution and it is generally speaking more ... to outliers compared to L_2 estimation.

(a) Laplace, robust	(b) Gaussian, robust	(c) Gaussian, sensitive	(d) Laplace, sensitive
---------------------	----------------------	-------------------------	------------------------

- 8. Write a general expression for an Auto Regressive model with Exogenous Inputs (ARX) with output errors:
- 9. The PDF of a random variable Y is given by $p(y) = \frac{1}{2\sqrt{2\pi}} \exp(-\frac{1}{2} \frac{\|y-\theta\|_2^2}{4})$, with unknown $\theta \in \mathbb{R}$. We obtained three measurements, y(1) = 2, y(2) = 4, and y(3) = 6. What is the minimizer θ^* of the negative log-likelihood function ?

	ments, $y(1) = 2$, $y(2) = 4$, and	y(3) = 6. What is the minimize	$r \theta^*$ of the negative log-likelihoo	a function ?
	(a) 6	(b) 3	(c) 5	(d) 4
10.	Which of the following statement	nts is NOT correct. Recursive L	east Squares (RLS):	
	(a) implicitly assumes that there is only i.i.d. and Gaus-		(b) computes an estimation with a computational cost	
	sian measurement noise		independent of the number of past measurements	
	(c) can be used as an altern	ative to Maximum Likelihood	(d) can use prior knowled	ge on the estimated parameter
	Estimation		θ	
11.	We want to estimate the resista is given by $5[\Omega]$ with standard measures the output voltage V $[V(1), \ldots, V(N)]$ obtained from (MAP) estimator in this context	nce R of a new metal and we f deviation 0.25Ω . Our own me which has Gaussian errors with n a set $[I(1), \ldots, I(N)][A]$, what ? To simplify notation we assum	Found in the only existing previous asurement apparatus sets a curra standard deviation of $0.1[V]$. At function is minimized by the Here that all variables are made united by the standard deviation of the material standard deviation of the standard d	bus article that an estimate of R rent I as a noise-free input, and Given a set of N measurements, Bayesian Maximum-A-Posteriori tless.
	(a) $\frac{(R-10)^2}{0.5} + \sum_{i=1}^{N} \frac{(V(i))^2}{(V(i))^2}$	$\frac{-I(i)R)^2}{0.1}$	(b) $\prod \frac{(R-5)^2}{0.0625} + \sum_{i=1}^N 10^{i}$	$0(V(i) - I(i)R)^2$
	(c) $\Box 0.5(R-10)^2 + \sum_{i=1}^{N}$	$0.1(V(i) - I(i)R)^2$	(d) $\prod \frac{(R-10)^2}{0.5} + \sum_{i=1}^{N} \frac{(V(i))^2}{(K-1)^2}$	$\frac{)/I(i)-R)^2}{0.1}$
12.	Which of the following models	with input $u(k)$ and output $y(k)$	is NOT linear-in-the-parameters	s w.r.t. $ heta \in \mathbb{R}^2$?
	(a) $y(k) = \theta_1 \sqrt{u(k)} + \theta_2 u(k)$		(b) $y(k) = y(k-1) \cdot (\theta_1 + \theta_2 u(k))$	
	(c) $y(k) = \theta_1 u(k)^4 + \theta_2 e^{-2k}$	$\exp(u(k))$	(d) $y(k) = \theta_1 \exp(\theta_2 u(k))$))
13. Which of the following models is time invariant?				
	(a) $\qquad \ddot{y}(t)^2 = u(t)^t + e^{u(t)}$	(b) $\Box t \cdot \ddot{y}(t) = u(t)^3$	(c) $\qquad \dot{y}(t) = 5u(t) + t$	(d) $\qquad \dot{y}(t) = \sqrt{u(t)}$
14.	By which of the following form	ulas is the joint distribution for h	N independent measurements y_N	$y \in \mathbb{R}^N$ given? $p(y_N \theta) = \dots$
	(a) $\sum_{i=0}^{N} p(y(i) \theta)$	(b) $\prod \int_{y_N} p(y \theta) dy$	(c) $\Box \sum_{i=0}^{N} p(y(i) \theta)^2$	(d) $\prod \prod_{i=0}^{N} p(y(i) \theta)$
15.	Which of the following statement	nts about Maximum A Posterior	i (MAP) estimation is not true	
	(a) $\hat{\theta}_{MAP} = \arg \min_{\theta \in \mathbb{R}} [-$	$-\log(p(y_N \theta)) - \log(p(\theta))]$	(b) MAP assumes a linear	r model
	(c) MAP is a generalization of ML		(d) \square MAP requires a-priori knowledge on θ	
16.	Assume a model $h_i(\theta)$ and mean be proportional to $\exp(- y_i - h)$	surements y_i , $i = 1,, N$. Th $a_i(\theta))$ and measurement noises	e PDF to obtain a measurement uncorrelated. What function of θ	y_i for a parameter θ is known to θ does the MLE minimize?
	(a) $\sum_{i=1}^{N} y_i - h_i(\theta) $		(b) $[] \sum_{i=1}^{N} y_i - \sum_{i=1}^{N} h_i(\overline{\theta}) $	
	(c) $\[\frac{1}{2} \ h(\theta) - y\ _2^2 \]$		(d) $\prod \sum_{i=1}^{N} (y_i - h_i(\theta))^2$	
17.	Regard the LLS estimate $\hat{\theta}$ mini the unknown true value, and ϵ_N Gaussian). What would be the c	mizing $f(\theta) = \ y_N - \Phi_N \theta\ _2^2$, = $(\epsilon(1), \dots, \epsilon(N))^{\top}$ the mease ovariance matrix $\Sigma_{\hat{\theta}}$ of $\hat{\theta}$?	where measurements are generat urement errors (i.i.d., zero mean,	ted by $y_N = \Phi_N \overline{\theta}_0 + \epsilon_N$ with $\overline{\theta}_0$, variance σ^2 , but not necessarily
	$1 \rightarrow 2 \rightarrow 1$			

(c) not computable	(d) $[(\Phi_N^{\top} \sigma^2 \Phi_N)^{-1}]$
(a) $\sigma^2 (\Phi_N^{\dagger} \Phi_N)^{-1}$	(b) $\square \sigma(\Phi_N^+)(\Phi_N^+)^\top$

Points on page (max. 10)