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Overview

1 Challenges and perspectives
m Three challenges of robust dynamic optimization

m Statement of the uncertain optimal control problem and three perspectives
= Perspective 1: Robust Optimization
n Perspective 2: OCP with set-valued trajectories
n Perspective 3: Robust dynamic programming

2 Some exact NLP formulations for robust constraints (some with feedback)
m Dual norm formulation for systems that are affine in disturbances

3 Tube Based Formulations
m Ellipsoidal tubes — equivalent to robust f5-norm formulation
m Affine Disturbance Feedback Parameterization
m Overapproximating ellipsoidal tubes for stagewise bounded uncertainty
m Tube approximation for robust nonlinear MPC
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The predicted trajectory cuts the corner tightly, in nominal MPC.
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Predicting an uncertainty set ("tube”), we see that the car would often crash.
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Due to uncertainty, the center of the tube needs to keep a distance (" backoff") from the corner.

This corresponds to open-loop robust MPC.
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But: we know that in the future we will apply feedback.
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Considering future feedback allows for a more realistic, less conservative prediction.

This corresponds to closed-loop robust MPC.
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Three challenges of robust dynamic optimization

When formulating and solving the robust dynamic optimization problems, one needs to address
three major challenges:

» Challenge 1: Robust constraint satisfaction. How can the state uncertainty be
approximated and propagated over the prediction horizon in order to guarantee robust
constraint satisfaction?

» Challenge 2: Feedback predictions. How can feedback control policies be approximated
and incorporated into the robust MPC optimization problem in order to reduce its
conservatism?

» Challenge 3: Dual control. How can we reduce uncertainty by systematically and
purposefully collecting information? (explore-exploit-tradeoff)

In this course, we only address Challenges 1 and 2.
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Uncertain optimal control problem statement

Uncertain optimal control problem in discrete time

N-1
Z (xg, ug) + Ve(zn)
’ k=0
S.t. Ty = Zo,
xk+1:f(xk,uk,uv) kIO,...,N—].,
0> h(zk,uk), k=0,...,N—1,
0> r(zy).

» The future disturbance trajectory w = (wy, . .

.,wy—_1) is unknown, such that the above
OCP is insufficiently specified.
» Otherwise, we could simply solve a standard OCP.

> Instead, we robustify the OCP against all possible w € W for a given set W C R™».
.. facing the three challenges of robust dynamic optimization.
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Three perspectives

We consider three perspectives in order to address the challenges. They are not mutually
exclusive and sometimes go hand-in-hand or yield the same answers.

> Perspective 1: Robust optimization. Bring OCP into high-level standard form and use
results from Robust Optimization lecture.

» Perspective 2: OCP with set-valued trajectories. Explicitly predict and compute sets
of values that the state trajectory may take.

> Perspective 3: Robust dynamic programming. Describe solution via DP recursion /
Bellman operator. Especially important as a conceptual tool.
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Perspective 1: Robust Optimization

Eliminate state trajectory — as in single shooting — via a recursion started at Zo(u,w) := Zo and
looping through the state transitions ‘ Zpg1(u,w) = f(Z(u, w), ug, w) ‘ fork=0,...,N—1:

Min-max robust optimal control problem (as in single shooting)

u

s.t.

N-1

min max Z (T (u, w),ur) + Ve(Zn(u,w))

W
WS o0

max h(Zg(u,w),ur) <0, k=0,...,N—1
weW

% <
max r(Zy(u,w)) <0

Identify the cost with Fy(u,w) and the constraints componentwise with F;(u, w):

Hhinglé%Fo(U,w) s.t. ma&/(Fi(u,w)SO, i=1,....,np

we

Thus, all methods from the Robust Optimization lecture apply. We will look at their specific

instantiation later.
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Perspective 2: OCP with set-valued trajectories

> Set dynamics: | F(Xi, () = {f(an, mi (), w) | 2 € Xi,wy € WY

» Feedback policy: m

» Assign costs L(Xy,u) to set Xy based on ¢(xy,u), e.g., worst-case or average.

Set-based robust OCP

N-1
min Z E(Xk,uk) -I—,Cf(XN)
X,7() =
s.t. Xo = {Zo},
Xit1 = F(Xp, mx(+)), k=0,....,N—1,
OZh(xk,ﬂ'k,(-)), Vo € Xg, k=0,...,N — 1,
0>r(zN), Vay € Xy,
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Perspective 2: OCP with set-valued trajectories

Set-based robust OCP

N—1
min Z L(Xg,ug) + Le(Xp)
X,ﬂ'(~) k=0
s.t. Xo = {Zo},
Xpr1 = F(Xg, m(+)), k=0,...,N—1,
0> h(zp, mr(+)), VapeXg, k=0,...,N—1,
0>r(zn), Vzy € Xy,

» Optimization over policy functions 7 (-) makes this an
infinite dimensional problem

> Parametrize feedback law to gain finite dimensional problem

» Constant i (z) = U yields open loop robust OCP. The n.on||.ne?r .transformatlon of
. . an ellipsoid is in general not
» Parametrize state sets Xy, e.g., by basic shapes such as ellipsoidal.

ellipsoids or polyhedra.

> Shape typically not preserved by nonlinear dynamics. Require
overapproximation instead: Xy41 2 F (X, 7k (+))
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Special case: scenario-tree OCP for finite disturbances

Also known as multistage robust OCP

> In each stage: m disturbance values {w?, ..., w™}

. . k
> Exact state set parameterization X, = {x},..., 27" }
> One control u}, for each state zj, parametrizes feedback

> “epigraph slack control” v} collects worst-case objective

Exact scenario tree formulation

0 1,1 1
min Uxg,u, +o
U, U ( 0> 0) 0

s.t. :z:(l] = Ty,

xlli/mk] ’ uLi/mk] ’ wi};")

) —
i1 = f( ) Assuming a discrete disturbance
[i/m"] i i i set, we gain an exactly
v > l(x u +v k=0,...,N—1 ) el
k = k‘fl’ . k"'l)‘ . Rl L ’ robustified closed-loop OCP
0> h(x,ll/m ]’UIEZ/m ]), i=1,...,mk (even for nonlinear dynamics).
j j j . v However, we need to deal with
02>r(zy), vy =2 Vilzy), Ji=1,...,m exponential scenario growth.

[-1: ceiling function, i]7" wraps i to {1,...,m}.
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Prelude of Perspective 3: Extended Cost Values

Assign infinite cost to infeasible points, using the extended reals R := R U {co, —co}

Constrained OCP Equivalent unconstrained formulation

N-1 N-1 B
min U(xg, ug) + Vi(sn) min Uxg, ug) + Ve(zn)
x,u k:O T, u k:O
s.t. xg = 2o st. 2o =1Zo
Try1 = f(2, uk, wi) Tr1 = f(xr, up, wr), k=0,...,N—1,
0> h(zp,ur), k=0,...,N—1
’ oo else

nd ity - { Vi) <0 )
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Prelude of Perspective 3: Extended Cost Values

Assign infinite cost to infeasible points, using the extended reals R := R U {co, —co}

Equivalent unconstrained formulation

Tp4+1 = f(xkaukawk)a k:()a"'aN_]-a

. { Ua,u) if h(z,u) <0 }

with £(z,u) = o clse

nd ity - { Vi) <0 )
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Prelude of Perspective 3: Extended Cost Values

Assign infinite cost to infeasible points, using the extended reals R := R U {co, —co}

Equivalent unconstrained formulation

N-1

s.t. xop = To
_f(xkauk:;wk:)7 kZO,...,N—]_,

8
B
4
=

|

with  £:R" x R™ — R

and  V;:R™ - R.
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Perspective 3: Robust Dynamic Programming (robust DP)

Assume uncertainty is restricted to set wy, € W in each time step.

Robust DP Recursion

Starting with the terminal cost, iterate backwards using the robust Bellman equation

In(zn) =Ve(xn),

Ji(xg) =min max £(zk,ur) + Jpr1 (f (Tg, uk, wr)), k=N-—1,...,0.
Uk  wreW

The corresponding optimal policy is

i (zxk) = argmin max f(zg, uk) + Jpr1 (f (g, wk, wi)).
Uk wpeW

» Robust DP exactly characterizes the solution of the closed-loop robust OCP without
needing to explicitly consider policy parametrizations nor sets in state space.

» Intractable in this general form, but important conceptual tool, e.g., for proofs.
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Monotonicity of Robust Dynamic Programming

The “cost-to-go” Jj is often also called the “value function”.

The robust dynamic programming operator T' mapping between value functions is defined by

T[J](x) := minmax £(z,u) + J(f(z,u,w))

U weW

Dynamic programming recursion now compactly written as J = T[Jg41].
We write J > J' if J(z) > J'(x) for all x € R"=.
One can prove that

J>J = T[J>T[J]

This is called “monotonicity” of dynamic programming. It holds also for deterministic or
stochastic dynamic programming. It can e.g. be used in existence proofs for solutions of the
stationary Bellman equation, or in stability proofs for MPC (Jy > Jy_1 = J1 > Jo).
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Convex Robust Dynamic Programming

Certain RDP operators T preserve convexity of the value function J : R — R:

Theorem [D.: Formulation of Closed-Loop Min—Max MPC as a QCQP. IEEE TAC 2007]

If

> system is affine | f(z,u,w) = A(w)x + B(w)u + c(w) | and

> stage cost {(xz,u) convex in (z,u)

then the robust DP operator 7' preserves convexity of J, i.e.

| J convex = T[J] convex |

Note: no assumptions on disturbance set W or on how w enters cost and dynamics.
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Proof of Convexity Preservation

The function
Uz, u) + J( A(w)z + B(w)u + c(w) )

is convex in (z,u) for any fixed w, as concatenation of an affine function inside a convex one.

Because the maximum over convex functions (indexed by w) preserves convexity, the function

Q(z,u) == max {(z,u) + J( A(w)z + B(w)u + c(w) )

weW

is also convex in (z,u).
Finally, the minimization of a convex function over one of its arguments preserves convexity,
i.e. the resulting value function T'[J] defined by
T[J)(z) = min Q(x, u)
u

is convex. O
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Why is convexity of the value function important?

» Value function J(x) can be represented (or approximated) as the maximum of affine
functions with vectors a; € R!*" with indices i in some (finite or infinite) set S

1
= T

() = es i [x}
» Computation of feedback law arg min, Q(z,u) is convex and can be solved reliably

» Convexity of value function allows us to conclude, in case of polytopic uncertainty, that
worst case is assumed on boundary of the polytope, making scenario-tree formulation
possible [D.: Formulation of Closed-Loop Min—Max MPC as a QCQP. IEEE TAC 2007]
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Assume
> polytopic uncertainty W = conv{w!,... w™} C R™v
» affine dynamics zy11 = A(wg)zy + B(wg)ug, + c(wy)
> affine dependendence of A(w), B(w), c¢(w) on w € R™
» convexity of functions ¢, h, Vi, r.
Then worst-case is taken in vertices of W and scenario-tree suffices

x
Exact Convex Scenario Tree for Polytopic Systems [D., IEEE TAC 2007] ’

Juin, Ao, u) + v
s.t. 1:5 = Xo,
thar =A@ e + BT +efw ),
UIEi/mk—l > U(Thyq, Upyy) +Vhpys k=0,...,N—1,
0> h(x,li/mk1,u,£i/mk]), i=1,...,mrF []: ceiling function, 7|7

0> r(ch), vy > Velah), j=1,...,m" wraps i o {1, m).

Robust Dynamic Optimization M. Diehl
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Overview

2 Some exact NLP formulations for robust constraints (some with feedback)
m Dual norm formulation for systems that are affine in disturbances
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Dual norm formulation for systems that are affine in disturbances

(Perspective 1)

Regard disturbance trajectories w = (o, - .., Wx_1) € RN™@ in norm ball

W = {w € R™ | ||w|| < 1} for any norm || - ||, with n,, = Nny.!

Define “single shooting” state trajectory Zj(u,w) at time k as function of (u,w) trajectories,
where u = (4o, ...,un—1) € R™, and n, = Nng.

For simplicity, omit terminal constraint and uncertainty in objective.

Open loop robust optimal control problem

min Fy(u)
s.t. max h;(Zp(u,w),ur) <0, k=0,....N—1,j=1,...,n,
weW —
=:Fy ; (u,w)

If functions Fy, ;(u, w) are affine in uncertainty w, the dual norm formulation is applicable (cf.
Robust Optimization lecture).

lAimixed Em—fp—norm covers the case of independent, stage-wise p-norm bounded uncertainties,
W =W x ... x W with £y-norm balls W = {w € R"@ | ||o||, < 1}.
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Dual norm formulation for systems that are affine in disturbances

For constraints affine in the uncertainty trajectory we obtain

max Fij(u,w) = hy(@(u,0),ur) -+ [ Va@x(u, 0)Vahy(@x(u, 0), ).
For uncertainty affine systems ‘ Tpt1 = alug) + A(ug)zr + T(ug)wg ‘

the derivative of state x; w.r.t. disturbance w,, is given by

oz
Greom (1) = awk (u,w) = A1) -+ - At )T (Upn)
so that we obtain Gro(u)T
max Fiej(u,w) = hy(Zx(u,0),ax) + Gra—1(w)" | Vohy(@5(u,0), @)
v 0
=:gk,j(u)
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Dual norm formulation for systems that are affine in disturbances

For constraints affine in the uncertainty trajectory we obtain

max Fij(u,w) = hy(@(u,0),ur) -+ [ Va@x(u, 0)Vahy(@x(u, 0), ).
For uncertainty affine systems ‘ Tpt1 = alug) + A(ug)zr + T(ug)wg ‘

the derivative of state x; w.r.t. disturbance w,, is given by

oz
Greom (1) = awk (u,w) = A1) -+ - At )T (Upn)
so that we obtain Gro(u)T
max Fiej(u,w) = hy(Zx(u,0),ax) + Gra—1(w)" | Vohy(@5(u,0), @)
v 0
=:gk,j(u)

In detail, this looks different for different norms...
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Infinity Norm — Exact Dual Norm Formulation

Dual of infinity norm is £1-norm.

Gk,o(u)—r
: k-1
Grr—1(w)" | grj(u) = G (w) " g, (|1
0 m=0
1

This formulation is very expensive, because one needs to compute all matrices Gy, ,,, (u) for
k=1,...,N—1land m=0,...,k— 1, resulting in O(N?n,ny) extra variables.
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Infinity Norm — Exact Dual Norm Formulation

Dual of infinity norm is £1-norm.

Exact robust problem for £,.-norm bounded disturbances

min  Fp(u)
u

k-
st hj(@k(u,w) Z 1Grm (1) T gr,5 (W)l <0,

=0,....,N—1,5=1,...,mp,

This formulation is very expensive, because one needs to compute all matrices Gy, ,,, (u) for
k=1,...,N—1and m=0,...,k— 1, resulting in O(N?n,ny) extra variables.
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Euclidean Norm — Exact Formulation

Euclidean ¢3-norm is self-dual, so its dual is also the £5-norm.

Gro(u)" ? Gro(u)" ! Gro(u)"
Grp—1(u)" | grj(u) = g | Grp_1(u)T Grp—1(u)" | grj(u)
0 0 0
2

= gr,(u (Zka )G (u) )gk,j(u)
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Euclidean Norm — Exact Formulation

Euclidean ¢3-norm is self-dual, so its dual is also the £3-norm.

Exact robust problem for ¢5-norm bounded disturbances

min  Fo(u)
u

st.  hy (g (u, w), ax) + gk,j <ZGk m(u)Gy m( ) ) 9k,j (w) < 0,

k=0,...,N—1,j=1,...,na,
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Euclidean Norm — Exact Formulation

Euclidean ¢3-norm is self-dual, so its dual is also the £3-norm.

Exact robust problem for ¢5-norm bounded disturbances

min  Fo(u)
u

IN
=

st.  hy (g (u, w), ax) + gk,j <ZGk m(u)Gy m( ) ) 9k,j (u)

k=0,...,.N—=1 j=1,...,ny,
The computations can be much more efficient if one computes the matrix sums differently:

ZGk-H m (W) Gry1m(u) = A(ug) ZGk m (W) G (1) )A(uk)T + Gk (W) G i ()

=D (ug)T(ur) "

=Pp41(u) =Py (u)
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Euclidean Norm — Exact Formulation

Euclidean ¢3-norm is self-dual, so its dual is also the £3-norm.

Exact robust problem for ¢5-norm bounded disturbances

min  Fo(u)
u

st.  hy (g (u, w), ax) + gk,j <ZGk m(u)Gy m( ) ) 9k,j (w) < 0,

k=0,...,.N—=1 j=1,...,ny,
The computations can be much more efficient if one computes the matrix sums differently:

ZGk-H m (W) Grg1,m (W) Alug) ZGk m(W)Grm(w) )A(uk)T + G p(0)Grgr p(u)

=D (ug)T(ur) "

=Pp41(u) =Py (u)

Start at Py(u) := 0 € R™ "= compute | Py 1(u) := A(ug)Pre(u)A(ug) " + T(up)T(ug) "
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Euclidean Norm — Exact Formulation with Lyapunov Matrix Equations

Make all dependencies explicit again, resulting in a sparse NLP in only O(N) variables:
u=(ug,...,un_1), = (20,...,2xn), P = (Py,..., Py), with P, € R"=*"= P = pPT

Exact open-loop robust OCP for ¢5-norm bounded disturbances (via Perspective 1)

N-1
Inin, ,;] Uzxg, up) + Ve(zN)

S.t. o = Ty, P() = 0,
Try1 = f(@r, ug,0)
Pii1 = A(zi,ur) Py A(wg,ug) T + T(wg, up)T(wg, ug) "
0> hy(ax, ux) + 1/ Vihy (ok, uk) T PeVoohy (g, ux),
k=0,....N—1,j=1,...,n

where we use A(zy, ug) = %(xk,uk,()) and I'(zg, ug) = %(wk,uk,O).

Robust Dynamic Optimization M. Diehl 22/48



Euclidean Norm — Exact Formulation with Lyapunov Matrix Equations |

Make all dependencies explicit again, resulting in a sparse NLP in only O(N) variables:
u=(ug,...,un_1), = (20,...,2n), P=(Py,..., Py), with P, € R"%=*"s P = PT,

Exact open-loop robust OCP for ¢5-norm bounded disturbances (via Perspective 1)

N-1
Inin, ,;] Uzxg, up) + Ve(zN)

S.t. Trog = .ffo, P() = 0,
Try1 = f(@r, ug,0)
Pii1 = A(zi,ur) Py A(wg,ug) T + T(wg, up)T(wg, ug) "
0> hy(ax, ux) + 1/ Vihy (ok, uk) T PeVoohy (g, ux),
k=0,....N—-1,j=1,...,n

where we use A(xzg,uy) = ;xfk (zk,u,0) and T'(zg, ug) = 8‘25 (zk, ug,0).

> Exact for f(x,u,w) = a(ug) + A(ug)zr + T'(ur)wy and h(zk, ui) affine in ay.
> Or: use as linearization-based approximation for any nonlinear system = = f(z, u,w).
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Overview

3 Tube Based Formulations
m Ellipsoidal tubes — equivalent to robust f5-norm formulation
m Affine Disturbance Feedback Parameterization
m Overapproximating ellipsoidal tubes for stagewise bounded uncertainty
m Tube approximation for robust nonlinear MPC
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Tube-based robust OCP

OCP with set-valued trajectory

N—1
min > L(Xg,m) + Ly (Xn)
> K
s.t. Xo = {Zo},
X1 = F(Xg, mx), k=0,...,N—1,
0> h(zg, mr(zk)) Vo € Xg, k=0,...,N —1,
0>r(zn), Ven € Xy,
» Tube-based OCP: parametrize X;, as continuous, compact,

and connected set, e.g.,:
> ellipsoids,
> various flavors of polyhedra.

> \We also need some (simple) parametrization of the policy 7.

» Nonlinearity in general leads to non-parametrizable sets —
overapproximate.
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Ellipsoidal tubes — dynamics

Consider the linear time-varying system, for k=0,..., N — 1,

o = Zo, Tps1 = ArrptBrupt+Trwyg,  with w = (wo,...,wy_1) € W= {w | |lw|]2 <1}.

What is the sequence of sets Xy, so that x;, € X, for all disturbance realizations (" tube”)?

» Variant 1, open-loop control trajectory: Q

7 (xg) = Ug.
This results in ellipsoidal state uncertainty sets
X = g(.’fk,P]c), with

Zo =To, Zip+1 = ArTi + Brix,
Py =0, Py = AP Al +T,T.
» Variant 2, with additional linear feedback:

g (zg) = U + Ki (g — ). Ellipsoids can be defined via center ¢ and
Only the ellipsoid dynamics are modified: shape matrix (“variance”) Q - 0.

Y Q{9 -9 <1)
Py = (Ak—BkKk)Pk(Ak—BkKk) + Fka.
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Ellipsoidal tubes — constraints

Robust Dynamic Optimization

Given ellipsoidal uncertainty set X, = £(Zy, Px), how to treat
constraints?

b+aT:1:k <0 Vz € g(fk,Pk)

Reformulate as

b+ max aTazk <0.
2k €E(Tk,Pr)

For affine constraints we can compute the maximum analytically as

max a'zp=a' T + Va Pea,

2k €E (T, Pr)

resulting in

b+c' Zp+Val Pea<0.
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Ellipsoidal tubes — resulting OCP

Ellipsoidal tube OCP for linear systems with linear state feedback (via Perspective 2)

)]
o+
I

o

Il
8l
S

Py =0,
f[H_l:Aki’k-‘erﬁk, k=0,...,N —1,
Piot1 = (Ax — BpKy) Po(Ar — BrKy) T +Thly,

OZbi—i—a;r:T:k—i—\/a;'—Pkai, t=1,...,n,
0>b;+a, i+ /&, KpPoKla;, j=1,...,n;.

» Same OCP as from dual norm derivation.

» Exact constraint satisfaction (Challenge 1), but suboptimal feedback (Challenge 2).
» Nonconvex due to optimization over state feedback gains Kj.

> If K fix, then also Py fix, resulting in standard OCP with backoff (convex).
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Alternative Feedback Parameterizations

Optimization over state feedback matrices K is nonconvex and can be challenging to solve
(though not impossible)
» Alternative 1: No feedback in prediction, K = 0, or precomputed feedback gain K.
> For a linear system, the ellipsoids can be precomputed offline, resulting in constant
constraint tightening (i.e., the structure of a nominal OCP).
> No feedback, K = 0, leads to unrealistically conservative uncertainty sets.
> Not necessarily obvious what would be a good choice of K.

» Alternative 2: Disturbance feedback instead of state feedback

k—1
U = U + E Mkvmwm

m=0
> For linear systems (some assumptions on the noise): equivalent to linear state feedback on
all past states and leads to convex optimization problems [Goulart2006].
»> Many feedback gains — large-dimensional, expensive optimization problems
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Affine disturbance feedback formulation for ¢5-norm

Robust OCP (¢5-norm bounded noise) with affine disturbance feedback (convex) (via
Perspective 1)

S.t. Ty = Zo,
Tpy1 = ATk + By, k=0,...,N—1,

Gry1,k = Ty,
Gryin = ApGrn + BpMy n=0,....k—1,

k—1
OZbi+a;rEk+ a;'— (ﬂZGk’mGer) a;, 1=1,...,n,
=0

k—1
ozl}j+a}ak+\a} ZMk,mM,Im>dj, j=1,...,nz
=0
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Overview

1 Challenges and perspectives

2 Some exact NLP formulations for robust constraints (some with feedback)

3 Tube Based Formulations

m Overapproximating ellipsoidal tubes for stagewise bounded uncertainty
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A closer look at the assumptions on w; — Case 1

‘:roz(), Tht1 =T +wg, k=0,...,N—1, w:(wg,...,wN_l)GW‘

. . 10
» Case 1: Full trajectory is £3-norm-bounded:
54
eI |
g
. —5
> Encodes dependence across time: wy cannot take
an extreme value for all k. —10 ; . . .
> Similar effect as i.i.d. assumption in stochastic 0 2 4 6 8 10
discrete time k

context.

M. Diehl
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A closer look at the assumptions on w; — Case 2

x90=0, zpp1=a+wg, k=0,...,N—1,

» Case 2: Each wy is £3-norm-bounded independently:

W=Wx-xW,
with W = {w € R™ | w'w < 1}

state x

> Encodes independence across time: wy, can take an
—-10 . . . :
2 4 6 8 10

extreme value for all k. N
> Corresponds to mixed £o.-f2-norm bound on full diserete time k

trajectory.

M. Diehl

Robust Dynamic Optimization



Extending ellipsoidal tubes to independent stage noise?

‘ To = To, Tkyl — Az + Brug + Trwyg. ‘

So far, we assumed w = (wo, ..., wy) € W = {w € RN | |w||y < 1}. This contains the
assumption that the noise is dependent across time.
Alternative assumption: noise is norm-bounded independently at each time

W=Wx--xW with W={wecR"™ |w'w<1}.
—_——

N —times

Can in principle be addressed using the affine case with mixed ¢..-f2-norm, combined with any
feedback parameterization — but this is expensive. Can we use ellipsoidal tubes instead?
Assume we have Xy, = £(Z, Pi). Then

Xy = ApXy + Brug + Ty W
= E(ArTy + Brug, AkPkAg) + 5(0, Fkl“;)

Problem: The sum of two ellipsoids is not an ellipsoid.
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Sum of ellipsoids (Minkowski sum)

— &(Qo)
— £(Qo) — &(Q1)
— &(@) — £(Q2)

— £(Qo) + £(Q1) £(Qo) + £(Q1) + £(Q2)

The sum of ellipsoids is not ellipsoidal.
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Overapproximating sum of ellipsoids by ellipsoid

> Aim: find Q such that £(Q) 2 £(Q1) + £(Q2)
» More general: Find @ such that £(Q) 2 Z,iv:l E(Qr)
» Construct family of outer approximations parametrized by o € RL

IS
B
I
] =
|
QO
=

N N
= £Qa)2) EQr) YaeRY, with Y ap=1
k=1

(07
k k=1

k=1

» Denote set of feasible a by A" (basically a simplex)
» Parametrized outer approximation is tight

) €@a) =) &@x)

aceAN k=1
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Overapproximating sum of ellipsoids by ellipsoid (cont.)

» In general: Choose « according to some criterion

> e.g., such that £(Q(a)) has minimal size, e.g., min,c 4~ tr(Q())
> or £(Q()) tight in a given direction g € R™ (approximation touches true sum)

min ( max g’z st. ze 5(Q(o¢))> = min 9TQ(a)g = min tr(gg9' Q(a))
ac AV \zeR ae AV aecAY

» Special case N =2
> Qa) = Ly +QL2Q2 with a1 +az =1

= —al

> Reparametrize: s =1 — oy, f = —— >0

1—aq
> QB)=(1+ 5)Q1+ (1+ Q2
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Overapproximations of sum of two ellipsoids

= minkowski sum
—— tight overapprox
— £(Qo) tight
— &(Q1) = tight overapprox

E(Qo) + E(Q1)

min trace overapprox
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Overapproximations of sum of three ellipsoids

= minkowski sum
£(Qo) ——— tight overapprox
£(Qu)
£(Q2)
E(Qo) + £(Q1) + £(Q2)

min trace overapprox

= tight overapprox
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Uncertain linear dynamical system

Trp1 = Apxr + Brug + Drwy,

» Reachable set
T € g(fk,Pk), wg € W
= Tp41 € Xk+]_ = 5(Aki‘k + Brug, AkPkAkT) + 5(FkaT)

> Xi1 not ellipsoidal
> Overapproximate by ellipsoid

» Overapproximation of reachable set
_ T 1 T
Pepr = (1+ Be) ApPrAy + (1+ 5)0ely

= Xpt1 C E(Prt1)
= Tg41 € S(PkJrl)
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Overapproximating tubes for stagewise ellipsoidal uncertainty

Robust optimal control for linear systems with linear state feedback

N-1
min Uy, ur) + V(T
50 g 2 Ho B Vi)
S.t. To = Zo, FPp=0,
Tpr1 = AgTy + Brag, k=0,...,N—1,

Pii1 = (1+ B)(Ax — BeKy) Po(Ag — BeKy) " + (1 + (1/8x))TTY,
Ozbi—l—a;rfk—ky/aIPkai, i=1,...,n,
0>b;+a; up+/a] KePoK a5, j=1,...,n;

» Conservative constraint satisfaction (Challenge 1) but suboptimal feedback. Non-convex.
» Not the same as - and cheaper than - dual norm formulation for £,,-f>-norm.

» Three types of "controls” with two different tasks

» nominal @ = (%o,...,un—1) influence Ty,
» gains K = (Ko, ..., Kn-1) and "Minkowski-multipliers” 8 = (Bo, ..., 8n-1) influence Py
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Affine disturbance feedback formulation for ¢..-¢5-norm

Robust OCP (£5.-¢3-norm bounded noise) with affine disturbance feedback (convex) (via
Perspective 1)

Tk+1 = ArTi + Brug, k=0,...,N—1,
Gr+1,k = T,
Gr+1n = AxGrn + B My n=0,...,k—1,
k—1
02bi+a;rrik+ ZHG;mang, 1=1,...,n
m=0
5 k—1
OZbJ‘Fa;rﬂk—FZ”M;malHQ, jzl,...,né
m=0
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Overview

1 Challenges and perspectives

2 Some exact NLP formulations for robust constraints (some with feedback)

3 Tube Based Formulations

m Tube approximation for robust nonlinear MPC
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Tube approximation for robust nonlinear MPC

» We switch to a nonlinear system
T = To, Try1 = fr(or, up, wr), k=0,...,N—1.

> w = (wp,...,wy_1) is drawn from fa-ball with radius o, i.e., w € £(0,021)

» Similar approach with ellipsoids as before, but we will only have “approximate robustness”
based on linearization at nominal trajectory

Ty = o, Try1 = fu(@r, g, 0)
_ 0 o _ O _ e . _ )
Ak = 8$k (xk,uk,O), Bk = auk (ask,uk,O), Fk = awk (ka,uk,O), k= O,...,N 1.
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Feedback to reduce the uncertainty

» Plan with linear feedback law to reduce uncertainty
’U,kZK,k(l‘k)Zﬁk—l-Kk(xk—ik), k=0,....N—1, Ky=0.
» Propagate ellipsoids according to linearized dynamics

Py=0, Pyy1 = (A + BrKy)Py(Ar + ByKy,) " + oIy Ty
=: Y(T, Uk, Pr, Ki)

» Left out here, but could also generalize to £..,-¢>-norms by including Minkowski-multipliers
B, or to affine disturbance feedback
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Closed-loop Robustified NMPC problem

N-1
min U (Zp, ug) + V(&
B K kzz(:) k(ZTk, Ur) + Vi(ZTN)
s.t. Tog = fo, Py = 0,

Tr+1 = fx(Tg, Ug, 0), k=0,...,N—1,
Pit1 = Yp(Zk, Uy, Pr, Ky),

0 > hi(Zg, ar) + bg(Tk, @k, Pr, Ki),

0> hn(ZN) +bn(ZN, PN).

bz(jk,ak,Pk,Kk) = \/Vh;c(l_fk,’ﬁk)—r [I K]I:IT Pk: [I K];r] Vh/]lg(jkvak)v

by (@, Px) = [ Vhiy(@x) T Py Vi (Z),
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Zero-Order Robust Optimization (ZORO) algorithm

[Zanelli et al.: Zero-order robust nonlinear model predictive control with ellipsoidal uncertainty sets, IFAC, 2021],
[Frey et al.: Efficient Zero-Order Robust Optimization with acados, ECC, 2024]

> fix gains K}, (e.g. set to zero)
> iterate between (A) nominal problem with fixed backoffs, and (B) matrix propagation
» converges to feasible but suboptimal solution of combined problem on previous slide

(A) Nominal problem with backoffs - standard NMPC problem

N-1
min i (Zg, 0 Vi(z
iy kzz;) k(Tr, Ur) + Vi (Zw)
St.  Tg=ZTp, Xpi1 = fk(i'k,ﬂk,()), k=0,...,N—1,

0> hy(ZTg,ax) +br, 02> hn(Zn)+ by

(B) Matrix propagation to compute backoffs

Py:=0, Pryr:=p(Tr, Uk, Pr, Ki),

b, = \/VhL @k @) [I K] Pe[I K7 Vhi(@em),  k=0,...,N—1
by == \/ Vhiy ()T Py Vhiy(2y)
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Conclusions

Robust optimal control needs to address two challenges: robust constraint satisfaction,
and feedback predictions

Robust Dynamic Programming (RDP) conceptually solves the robust OCP exactly

» Scenario-trees allow one to exactly solve the problem for finite uncertainties and polytopic

v

vvyyvyy

systems, but suffer from exponential growth

dual-norm based approaches can guarantee robust constraint satisfaction for systems
affine in the uncertainty

affine disturbance feedback is an elegant but expensive way to incorporate feedback
ellipsoidal tube based uncertainty propagations can lead to conservative approximations
robust nonlinear MPC problems can be addressed by linearization

zero-order robust optimization (ZORO) quickly computes feasible but suboptimal solutions
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