

# Nonlinear Optimization

Moritz Diehl

Systems Control and Optimization Laboratory, University of Freiburg, Germany

Course on Numerical Methods for Nonlinear Optimal Control  
NTNU Trondheim  
February 16-20, 2026

(slides jointly developed with **Armin Nurkanović**, Florian Messerer, Katrin Baumgärtner)

(slides marked by an \*asterisk will be jumped over but are kept in case questions arise)

universität freiburg

# Outline of the lecture



- 1 Basic definitions
- 2 Some classification of optimization problems
- 3 Optimality conditions
- 4 Nonlinear programming algorithms

# What is an optimization problem?



Optimization is used in all quantitative sciences and engineering. Its aim is to minimize (or maximize) an objective function  $F(w)$  depending on decision variables  $w = (w_1, \dots, w_n)$  subject to constraints.

# What is an optimization problem?



Optimization is used in all quantitative sciences and engineering. Its aim is to minimize (or maximize) an objective function  $F(w)$  depending on decision variables  $w = (w_1, \dots, w_n)$  subject to constraints.

## Optimization Problem

$$\min_{w \in \mathbb{R}^n} F(w) \quad (1a)$$

$$\text{s.t. } G(w) = 0 \quad (1b)$$

$$H(w) \geq 0 \quad (1c)$$

# What is an optimization problem?



Optimization is used in all quantitative sciences and engineering. Its aim is to minimize (or maximize) an objective function  $F(w)$  depending on decision variables  $w = (w_1, \dots, w_n)$  subject to constraints.

## Optimization Problem

$$\min_{w \in \mathbb{R}^n} F(w) \quad (1a)$$

$$\text{s.t. } G(w) = 0 \quad (1b)$$

$$H(w) \geq 0 \quad (1c)$$

## Terminology

- ▶  $w \in \mathbb{R}^n$  - vector of decision variables
- ▶  $F : \mathbb{R}^n \rightarrow \mathbb{R}$  - objective function
- ▶  $G : \mathbb{R}^n \rightarrow \mathbb{R}^{n_G}$  - equality constraints
- ▶  $H : \mathbb{R}^n \rightarrow \mathbb{R}^{n_H}$  - inequality constraints

# What is an optimization problem?



Optimization is used in all quantitative sciences and engineering. Its aim is to minimize (or maximize) an objective function  $F(w)$  depending on decision variables  $w = (w_1, \dots, w_n)$  subject to constraints.

## Optimization Problem

$$\min_{w \in \mathbb{R}^n} F(w) \quad (1a)$$

$$\text{s.t. } G(w) = 0 \quad (1b)$$

$$H(w) \geq 0 \quad (1c)$$

## Terminology

- ▶  $w \in \mathbb{R}^n$  - vector of decision variables
- ▶  $F : \mathbb{R}^n \rightarrow \mathbb{R}$  - objective function
- ▶  $G : \mathbb{R}^n \rightarrow \mathbb{R}^{n_G}$  - equality constraints
- ▶  $H : \mathbb{R}^n \rightarrow \mathbb{R}^{n_H}$  - inequality constraints

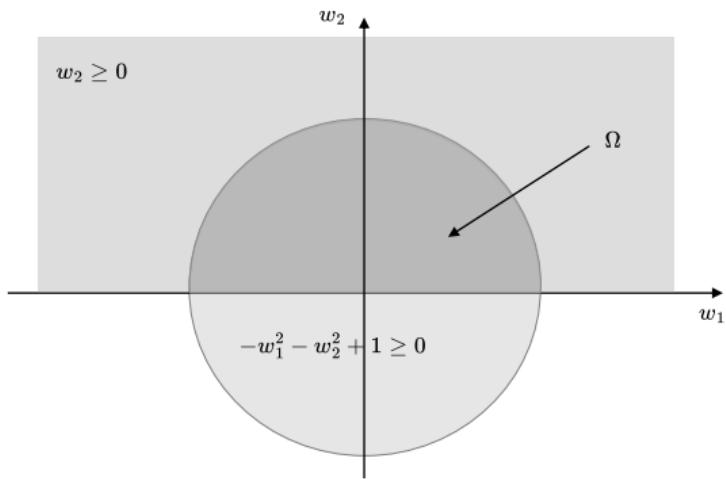
- ▶ only in a few special cases a closed form solution exists
- ▶ if  $F, G, H$  are nonlinear and smooth, we speak of a *nonlinear programming problem (NLP)*
- ▶ usually we need iterative algorithms to find an approximate solution
- ▶ in NMPC, the problem depends on parameters that change every sampling time



## Definition

The feasible set of the optimization problem (1) is defined as

$\Omega = \{w \in \mathbb{R}^n \mid G(w) = 0, H(w) \geq 0\}$ . A point  $w \in \Omega$  is called a feasible point.



In the example, the feasible set is the intersection of the two grey areas (halfspace and circle)

# \*Basic definitions: global and local minimizer



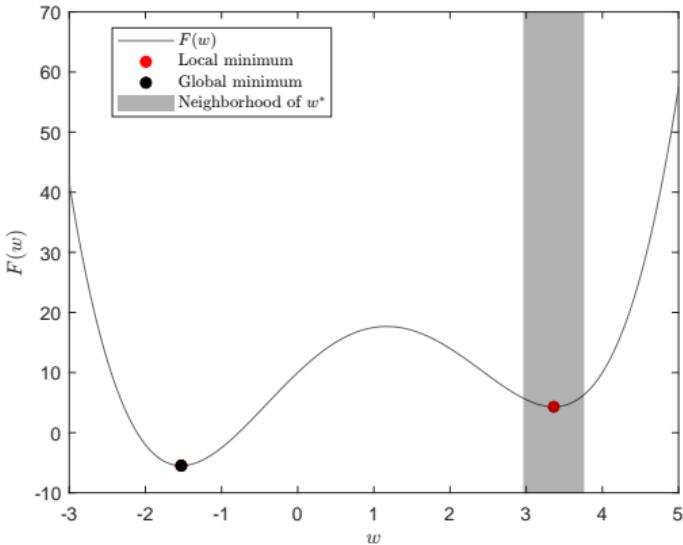
## Definition (Global Minimizer)

Point  $w^* \in \Omega$  is a **global minimizer** of the NLP (1) if for all  $w \in \Omega$  it holds that  $F(w) \geq F(w^*)$ .

## Definition (Local Minimizer)

Point  $w^* \in \Omega$  is a **local minimizer** of the NLP (1) if there exists a ball  $\mathcal{B}_\epsilon(w^*) = \{w \mid \|w - w^*\| \leq \epsilon\}$  with  $\epsilon > 0$ , such that for all  $w \in \mathcal{B}_\epsilon(w^*) \cap \Omega$  it holds that  $F(w) \geq F(w^*)$

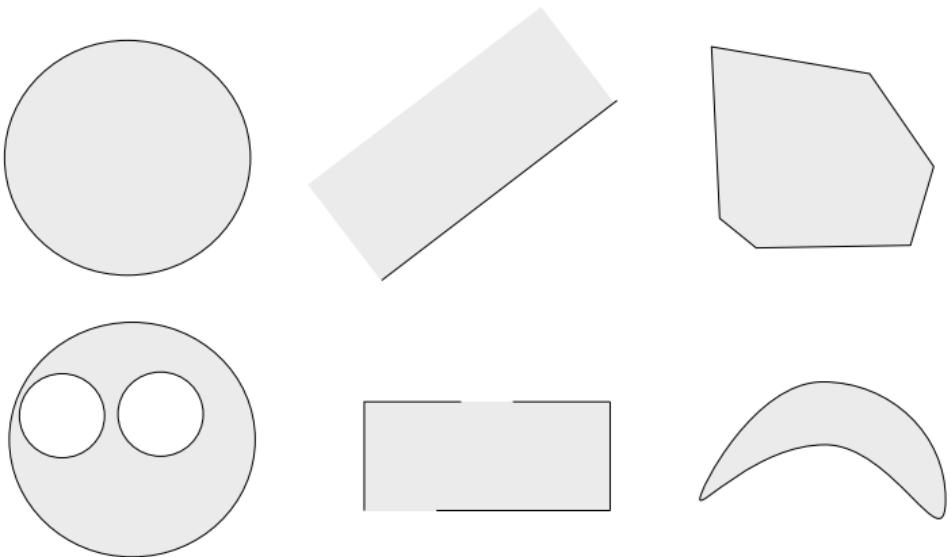
The value  $F(w^*)$  at a local/global minimizer  $w^*$  is called **local/global minimum, or minimum value**.



$$F(w) = \frac{1}{2}w^4 - 2w^3 - 3w^2 + 12w + 10$$

# Convex sets

a key concept in optimization



A set  $\Omega$  is said to be convex if for any  $w_1, w_2$  and any  $\theta \in [0, 1]$  it holds  $\theta w_1 + (1 - \theta)w_2 \in \Omega$

Figure inspired by Figure 2.2 in S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

# \*Convex functions



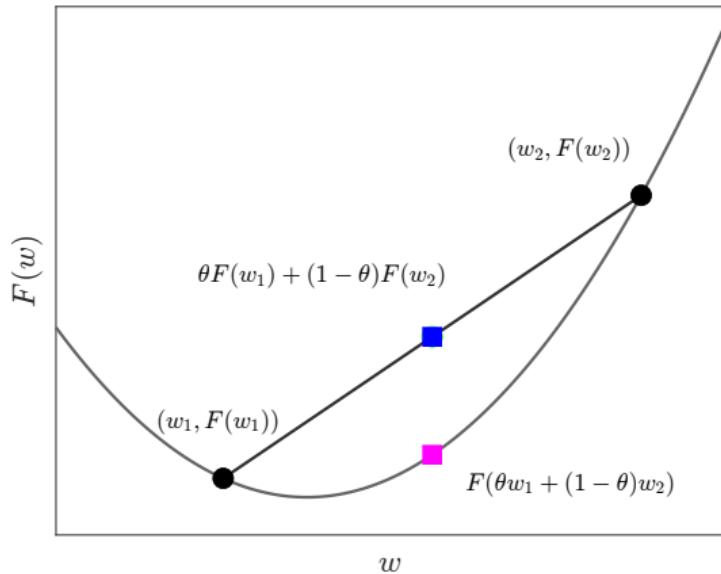
- ▶ A function  $F : \Omega \rightarrow \mathbb{R}$  is convex if for every  $w_1, w_2 \in \Omega \subset \mathbb{R}^n$  and  $\theta \in [0, 1]$  it holds that

$$F(\theta w_1 + (1-\theta)w_2) \leq \theta F(w_1) + (1-\theta)F(w_2)$$

- ▶  $F$  is concave if and only if  $-F$  is convex
- ▶  $F$  is convex if and only if the epigraph

$$\text{epi}F = \{(w, t) \in \mathbb{R}^{n_w+1} \mid w \in \Omega, F(w) \leq t\}$$

is a convex set





## A convex optimization problem

$$\begin{aligned} & \min_w F(w) \\ \text{s.t. } & G(w) = 0 \\ & H(w) \geq 0 \end{aligned}$$

An optimization problem is convex if the objective function  $F$  is convex and the feasible set  $\Omega$  is convex.

- ▶ For convex problems, **every locally optimal solution is globally optimal**
- ▶ First order conditions are necessary and sufficient
- ▶ *“...in fact, the great watershed in optimization isn’t between linearity and nonlinearity, but convexity and nonconvexity.”* R. T. Rockafellar, SIAM Review, 1993

# Outline of the lecture



1 Basic definitions

2 Some classification of optimization problems

3 Optimality conditions

4 Nonlinear programming algorithms



## Optimization problems can be:

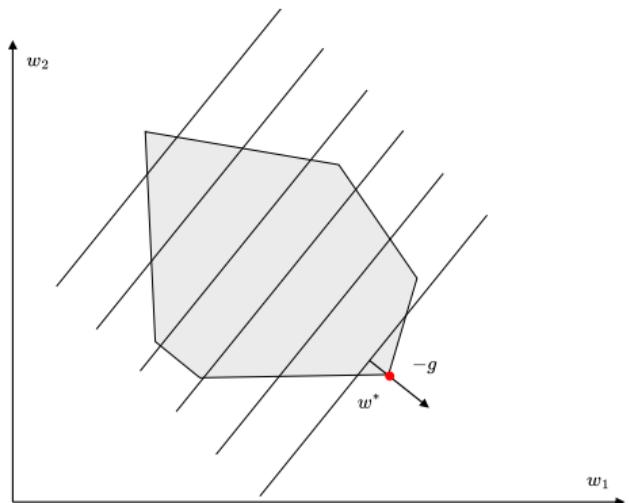
- ▶ unconstrained ( $\Omega = \mathbb{R}^n$ ) or constrained ( $\Omega \subset \mathbb{R}^n$ )
- ▶ convex or nonconvex
- ▶ linear or nonlinear
- ▶ differentiable or nonsmooth
- ▶ continuous or (mixed-)integer
- ▶ finite or infinite dimensional

# Class 1: Linear Programming (LP)



## Linear program

$$\begin{aligned} & \min_{w \in \mathbb{R}^n} g^\top w \\ \text{s.t. } & Aw - b = 0 \\ & Cw - d \geq 0 \end{aligned}$$



- ▶ convex optimization problem
- ▶ 1947: simplex method by G. Dantzig
- ▶ a solution is always at a vertex of the feasible set (possibly a whole facet if nonunique)
- ▶ very mature and reliable

# Class 1: Linear Programming (LP)

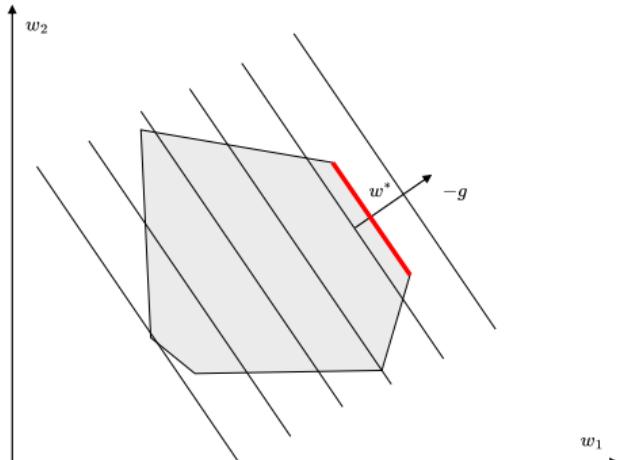


## Linear program

$$\min_{w \in \mathbb{R}^n} g^\top w$$

$$\text{s.t. } Aw - b = 0$$

$$Cw - d \geq 0$$

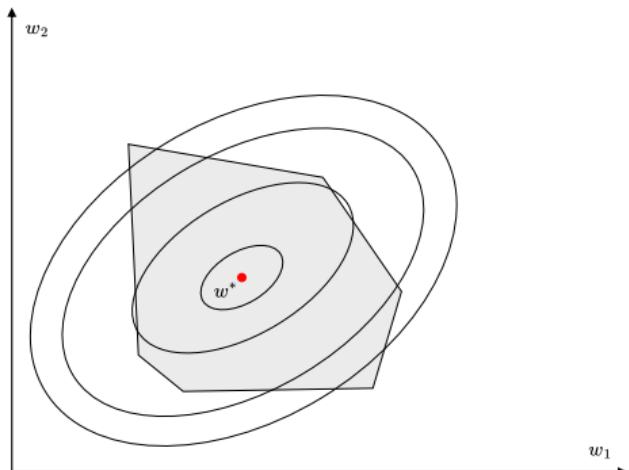


- ▶ convex optimization problem
- ▶ 1947: simplex method by G. Dantzig
- ▶ a solution is always at a vertex of the feasible set (possibly a whole facet if nonunique)
- ▶ very mature and reliable



## Quadratic Program (QP)

$$\begin{aligned} \min_{w \in \mathbb{R}^n} \quad & \frac{1}{2} w^\top Q w + g^\top w \\ \text{s.t.} \quad & Aw - b = 0 \\ & Cw - d \geq 0 \end{aligned}$$



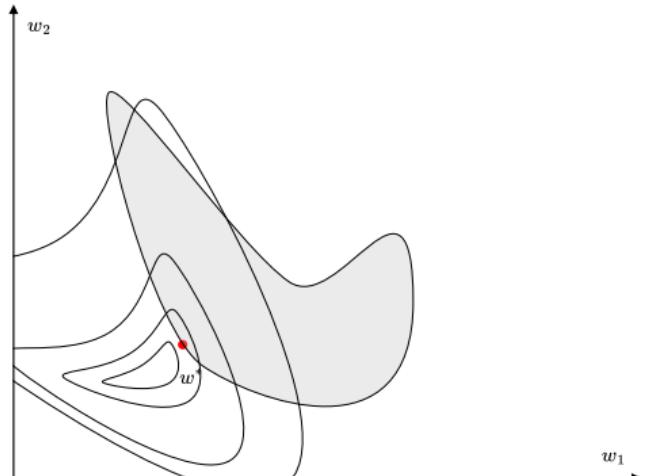
- ▶ depending on  $Q$ , can be convex and nonconvex
- ▶ solved online in linear model predictive control
- ▶ many good solvers: Gurobi, OSQP, HPIPM, qpOASES, OOQP, DAQP...
- ▶ subproblems in nonlinear optimization

# Class 3: Nonlinear Programming (NLP)



## Nonlinear Program (NLP)

$$\begin{aligned} & \min_{w \in \mathbb{R}^n} F(w) \\ \text{s.t. } & G(w) = 0 \\ & H(w) \geq 0 \end{aligned}$$



- ▶ can be convex and nonconvex
- ▶ solved with iterative Newton-type algorithms
- ▶ solved in nonlinear model predictive control



## MPCC

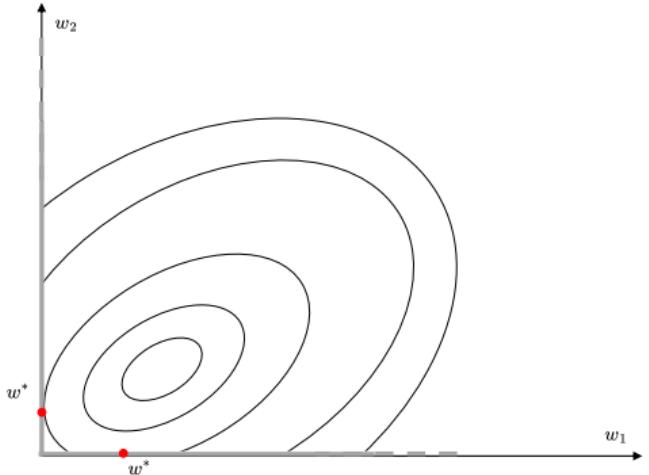
$$\min_{w_0, w_1, w_2} F(w)$$

$$\text{s.t. } G(w) = 0$$

$$H(w) \geq 0$$

$$0 \leq w_1 \perp w_2 \geq 0$$

$$w = [w_0^\top, w_1^\top, w_2^\top]^\top, w_1 \perp w_2 \Leftrightarrow w_1^\top w_2 = 0$$



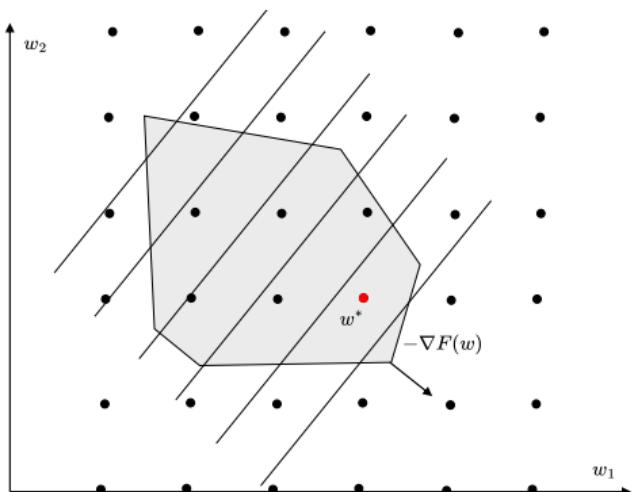
- ▶ more difficult than standard nonlinear programming
- ▶ feasible set is inherently nonsmooth and nonconvex
- ▶ powerful modeling concept
- ▶ requires specialized theory and algorithms



## Mixed-Integer Nonlinear Program (MINLP)

$$\begin{aligned} \min_{w_0 \in \mathbb{R}^p, w_1 \in \mathbb{Z}^q} \quad & F(w) \\ \text{s.t.} \quad & G(w) = 0 \\ & H(w) \geq 0 \end{aligned}$$

$$w = [w_0^\top, w_1^\top]^\top, n = p + q$$



- ▶ inherently nonconvex feasible set
- ▶ due to combinatorial nature, NP-hard even for linear  $F, G, H$
- ▶ branch and bound, branch and cut algorithms based on iterative solution of relaxed continuous problems



## Optimal Control Problem (OCP)

$$\min_{x(\cdot), u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$$

$$\text{s.t. } x(0) = \bar{x}_0$$

$$\dot{x}(t) = f_c(x(t), u(t))$$

$$0 \geq h(x(t), u(t)), t \in [0, T]$$

$$0 \geq r(x(T))$$

- ▶ decision variables  $x(\cdot), u(\cdot)$  in infinite dimensional function space
- ▶ infinitely many constraints ( $t \in [0, T]$ )
- ▶ smooth ordinary differential equation (ODE)  $\dot{x}(t) = f_c(x(t), u(t))$
- ▶ more generally, dynamic model can be based on
  - ▶ differential algebraic equations (DAE)
  - ▶ partial differential equations (PDE)
  - ▶ nonsmooth ODE
  - ▶ stochastic ODE
- ▶ OCP can be convex or nonconvex
- ▶ all or some components of  $u(t)$  may take integer values (mixed-integer OCP)



## Continuous-time OCP

$$\min_{x(\cdot), u(\cdot)} \int_0^T L_c(x(t), u(t)) \, dt + E(x(T))$$

$$\text{s.t. } x(0) = \bar{x}_0$$

$$\dot{x}(t) = f_c(x(t), u(t))$$

$$0 \geq h(x(t), u(t)), \quad t \in [0, T]$$

$$0 \geq r(x(T))$$

Direct methods like direct collocation, multiple shooting first discretize, then optimize.

# Direct optimal control methods formulate Nonlinear Programs (NLP)

(applicable to smooth deterministic systems)



## Continuous-time OCP

$$\min_{x(\cdot), u(\cdot)} \int_0^T L_c(x(t), u(t)) \, dt + E(x(T))$$

$$\text{s.t. } x(0) = \bar{x}_0$$

$$\dot{x}(t) = f_c(x(t), u(t))$$

$$0 \geq h(x(t), u(t)), \quad t \in [0, T]$$

$$0 \geq r(x(T))$$

Direct methods like direct collocation, multiple shooting first discretize, then optimize.

## Discrete-time OCP (an NLP)

$$\min_{x, u} \sum_{k=0}^{N-1} \ell(x_k, u_k) + E(x_N)$$

$$\text{s.t. } x_0 = \bar{x}_0$$

$$x_{k+1} = f(x_k, u_k)$$

$$0 \geq h(x_k, u_k), \quad k = 0, \dots, N-1$$

$$0 \geq r(x_N)$$

Variables  $x = (x_0, \dots, x_N)$  and  $u = (u_0, \dots, u_{N-1})$  can be summarized in vector  $w = (x, u) \in \mathbb{R}^n$ .



## Discrete-time OCP (an NLP)

$$\min_{x,u} \sum_{k=0}^{N-1} \ell(x_k, u_k) + E(x_N)$$

$$\text{s.t. } x_0 = \bar{x}_0$$

$$x_{k+1} = f(x_k, u_k)$$

$$0 \geq h(x_k, u_k), \quad k = 0, \dots, N-1$$

$$0 \geq r(x_N)$$

Variables  $x = (x_0, \dots, x_N)$  and  $u = (u_0, \dots, u_{N-1})$  can be summarized in vector  $w = (x, u) \in \mathbb{R}^n$ .

# Nonlinear MPC solves Nonlinear Programs (NLP)



## Discrete time NMPC Problem (an NLP)

$$\min_{x,u} \sum_{k=0}^{N-1} \ell(x_k, u_k) + E(x_N)$$

$$\text{s.t. } x_0 = \bar{x}_0$$

$$x_{k+1} = f(x_k, u_k)$$

$$0 \geq h(x_k, u_k), \quad k = 0, \dots, N-1$$

$$0 \geq r(x_N)$$

**Variables**  $x = (x_0, \dots, x_N)$  and  
 $u = (u_0, \dots, u_{N-1})$  can be summarized in  
**vector**  $w = (x, u) \in \mathbb{R}^n$ .

# Nonlinear MPC solves Nonlinear Programs (NLP)



## Discrete time NMPC Problem (an NLP)

$$\begin{aligned} \min_{x,u} \quad & \sum_{k=0}^{N-1} \ell(x_k, u_k) + E(x_N) \\ \text{s.t.} \quad & x_0 = \bar{x}_0 \\ & x_{k+1} = f(x_k, u_k) \\ & 0 \geq h(x_k, u_k), \quad k = 0, \dots, N-1 \\ & 0 \geq r(x_N) \end{aligned}$$

## Nonlinear Program (NLP)

$$\begin{aligned} \min_{w \in \mathbb{R}^n} \quad & F(w) \\ \text{s.t.} \quad & G(w) = 0 \\ & H(w) \geq 0 \end{aligned}$$

Variables  $x = (x_0, \dots, x_N)$  and  
 $u = (u_0, \dots, u_{N-1})$  can be summarized in  
vector  $w = (x, u) \in \mathbb{R}^n$ .

# Outline of the lecture



- 1 Basic definitions
- 2 Some classification of optimization problems
- 3 Optimality conditions
- 4 Nonlinear programming algorithms

# \*Algebraic characterization of unconstrained local minimizers



Consider the unconstrained problem:  $\min_{w \in \mathbb{R}^n} F(w)$

First-Order Necessary Condition of Optimality (FONC) (in convex case also sufficient)

$$w^* \text{ local optimizer} \Rightarrow \nabla F(w^*) = 0, \text{ } w^* \text{ stationary point}$$

Second-Order Necessary Condition of Optimality (SONC)

$$w^* \text{ local minimizer} \Rightarrow \nabla^2 F(w^*) \succeq 0$$

# \*Algebraic characterization of unconstrained local minimizers



Consider the unconstrained problem:  $\min_{w \in \mathbb{R}^n} F(w)$

First-Order Necessary Condition of Optimality (FONC) (in convex case also sufficient)

$$w^* \text{ local optimizer} \Rightarrow \nabla F(w^*) = 0, w^* \text{ stationary point}$$

Second-Order Necessary Condition of Optimality (SONC)

$$w^* \text{ local minimizer} \Rightarrow \nabla^2 F(w^*) \succeq 0$$

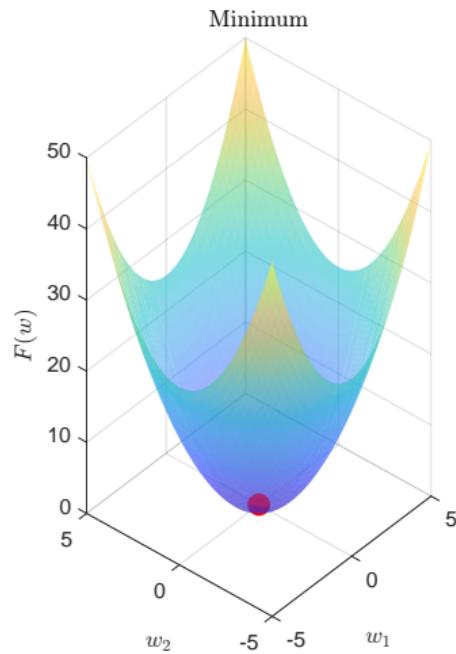
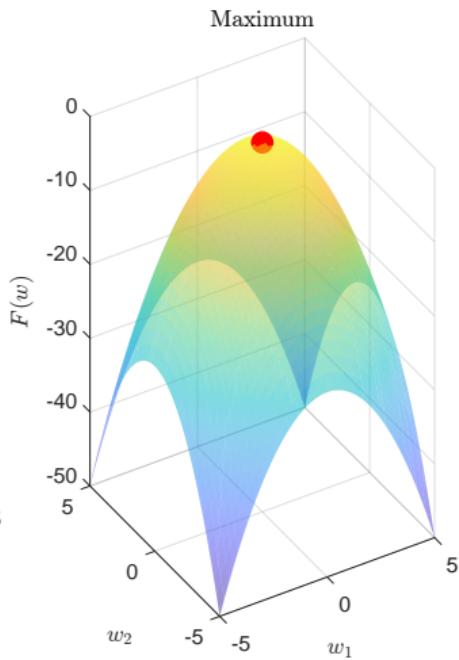
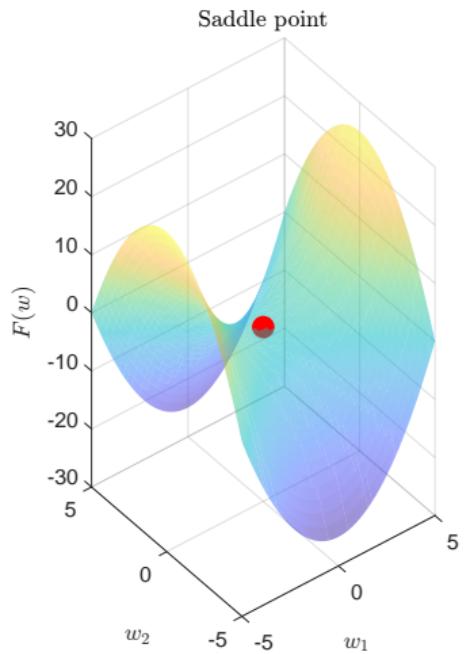
Second-Order Sufficient Conditions of Optimality (SOSC)

$$\nabla F(w^*) = 0 \text{ and } \nabla^2 F(w^*) \succ 0 \Rightarrow x^* \text{ strict local minimizer}$$

$$\nabla F(w^*) = 0 \text{ and } \nabla^2 F(w^*) \prec 0 \Rightarrow x^* \text{ strict local maximizer}$$

no conclusion can be drawn in the case  $\nabla^2 F(w^*)$  is indefinite

## \*Types of stationary points

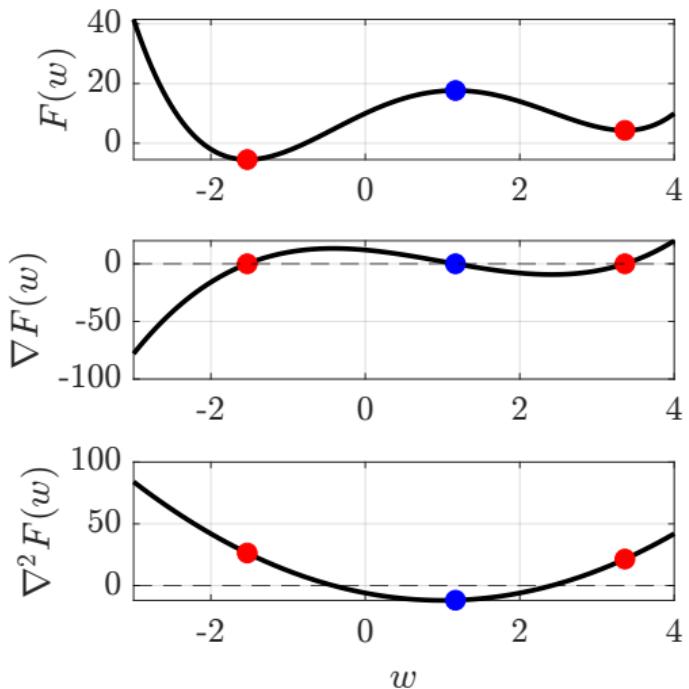


a stationary point  $w$  with  $\nabla F(w) = 0$  can be a minimizer, a maximizer, or a saddle point

# \*Optimality conditions - unconstrained



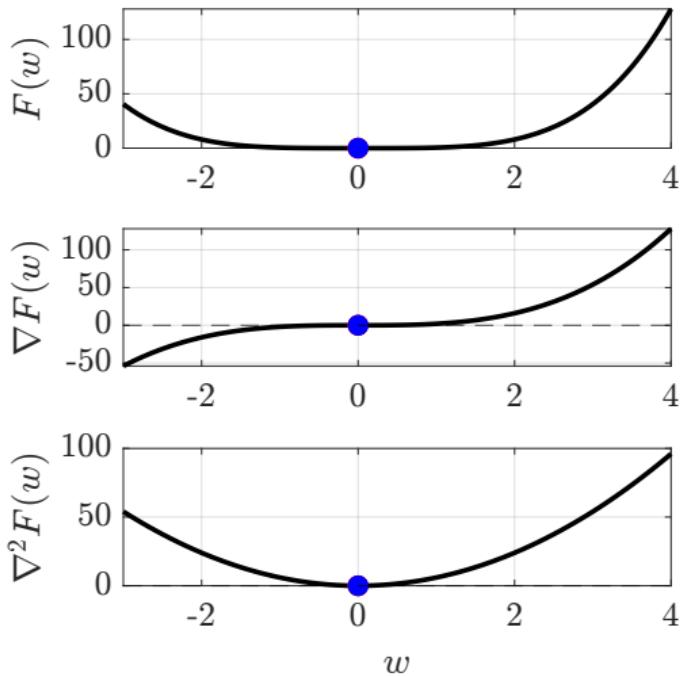
- ▶ necessary conditions: find a candidate point (or to exclude points)
- ▶ sufficient conditions: verify optimality of a candidate point



# \*Optimality conditions - unconstrained



- ▶ necessary conditions: find a candidate point (or to exclude points)
- ▶ sufficient conditions: verify optimality of a candidate point
- ▶ a minimizer must satisfy SONC, but does not have to satisfy SOSC





## Nonlinear Program (NLP)

$$\begin{aligned} & \min_{w \in \mathbb{R}^n} F(w) \\ & \text{s.t. } G(w) = 0 \end{aligned}$$

Lagrangian function  $\mathcal{L}(w, \lambda) := F(w) - \lambda^\top G(w)$



## Nonlinear Program (NLP)

$$\begin{aligned} & \min_{w \in \mathbb{R}^n} F(w) \\ & \text{s.t. } G(w) = 0 \end{aligned}$$

Lagrangian function  $\mathcal{L}(w, \lambda) := F(w) - \lambda^\top G(w)$

## Definition (LICQ)

A point  $w$  satisfies *Linear Independence Constraint Qualification (LICQ)* if and only if  $\nabla G(w) := \frac{\partial G}{\partial w}(w)^\top$  is full column rank



## Nonlinear Program (NLP)

$$\begin{aligned} \min_{w \in \mathbb{R}^n} \quad & F(w) \\ \text{s.t. } & G(w) = 0 \end{aligned}$$

Lagrangian function  $\mathcal{L}(w, \lambda) := F(w) - \lambda^\top G(w)$

## Definition (LICQ)

A point  $w$  satisfies *Linear Independence Constraint Qualification (LICQ)* if and only if  $\nabla G(w) := \frac{\partial G}{\partial w}(w)^\top$  is full column rank

## First-Order Necessary Conditions (in convex case also sufficient)

Let  $F, G$  in  $\mathcal{C}^1$ . If  $w^*$  is a (local) minimizer, and  $w^*$  satisfies LICQ, then there is a unique vector  $\lambda$  such that:

$$\begin{aligned} \nabla_w \mathcal{L}(w^*, \lambda^*) &= \nabla F(w^*) - \nabla G(w^*)\lambda = 0 && \text{dual feasibility} \\ \nabla_\lambda \mathcal{L}(w^*, \lambda^*) &= G(w^*) = 0 && \text{primal feasibility} \end{aligned}$$

# Duality in a nutshell

for equality constrained optimization



## Primal Problem

$$p^* = \min_{w \in \mathbb{R}^n} F(w) \text{ s.t. } G(w) = 0$$

with Lagrangian  $\mathcal{L}(w, \lambda) := F(w) - \lambda^\top G(w)$ .

Lagrange dual function  $\mathcal{Q}(\lambda) := \inf_{w \in \mathbb{R}^n} \mathcal{L}(w, \lambda)$

- ▶  $\mathcal{Q}(\lambda)$  - concave in  $\lambda$  by construction
- ▶  $\mathcal{Q}(\lambda) \leq p^*$  for all  $\lambda \in \mathbb{R}^{n_G}$

# Duality in a nutshell

for equality constrained optimization



## Primal Problem

$$p^* = \min_{w \in \mathbb{R}^n} F(w) \text{ s.t. } G(w) = 0$$

with Lagrangian  $\mathcal{L}(w, \lambda) := F(w) - \lambda^\top G(w)$ .

Lagrange dual function  $\mathcal{Q}(\lambda) := \inf_{w \in \mathbb{R}^n} \mathcal{L}(w, \lambda)$

## Dual Problem

$$d^* = \max_{\lambda \in \mathbb{R}^{n_G}} \mathcal{Q}(\lambda)$$

- ▶ weak duality:  $d^* \leq p^*$ , always holds
- ▶ strong duality:  $d^* = p^*$ , only holds for some problems (e.g. convex ones)

# Duality in a nutshell

for equality constrained optimization



## Primal Problem

$$p^* = \min_{w \in \mathbb{R}^n} F(w) \text{ s.t. } G(w) = 0$$

with Lagrangian  $\mathcal{L}(w, \lambda) := F(w) - \lambda^\top G(w)$ .

Lagrange dual function  $\mathcal{Q}(\lambda) := \inf_{w \in \mathbb{R}^n} \mathcal{L}(w, \lambda)$

- ▶  $\mathcal{Q}(\lambda)$  - concave in  $\lambda$  by construction
- ▶  $\mathcal{Q}(\lambda) \leq p^*$  for all  $\lambda \in \mathbb{R}^{n_G}$

## Dual Problem

$$d^* = \max_{\lambda \in \mathbb{R}^{n_G}} \mathcal{Q}(\lambda)$$

- ▶ weak duality:  $d^* \leq p^*$ , always holds
- ▶ strong duality:  $d^* = p^*$ , only holds for some problems (e.g. convex ones)

## Wolfe Dual (in convex case)

$$\begin{aligned} d^* = \max_{w \in \mathbb{R}^n, \lambda \in \mathbb{R}^{n_G}} \mathcal{L}(w, \lambda) \\ \text{s.t. } \nabla_w \mathcal{L}(w, \lambda) = 0 \end{aligned}$$

( $w$  constrained by lower level optimality)

# The Karush-Kuhn-Tucker (KKT) conditions



## Nonlinear Program (NLP)

$$\begin{aligned} & \min_{w \in \mathbb{R}^n} F(w) \\ \text{s.t. } & G(w) = 0 \\ & H(w) \geq 0 \end{aligned}$$

$$\mathcal{L}(w, \lambda) = F(w) - \lambda^\top G(w) - \mu^\top H(w)$$

# The Karush-Kuhn-Tucker (KKT) conditions



## Nonlinear Program (NLP)

$$\begin{aligned} & \min_{w \in \mathbb{R}^n} F(w) \\ \text{s.t. } & G(w) = 0 \\ & H(w) \geq 0 \end{aligned}$$

$$\mathcal{L}(w, \lambda) = F(w) - \lambda^\top G(w) - \mu^\top H(w)$$

## Definition (LICQ)

A point  $w$  satisfies LICQ if and only if

$$[\nabla G(w), \quad \nabla H_{\mathbb{A}}(w)]$$

is full column rank

$$\text{Active set } \mathbb{A} = \{i \mid H_i(w) = 0\}$$

# The Karush-Kuhn-Tucker (KKT) conditions



## Nonlinear Program (NLP)

$$\begin{aligned} \min_{w \in \mathbb{R}^n} \quad & F(w) \\ \text{s.t. } & G(w) = 0 \\ & H(w) \geq 0 \end{aligned}$$

$$\mathcal{L}(w, \lambda) = F(w) - \lambda^\top G(w) - \mu^\top H(w)$$

## Definition (LICQ)

A point  $w$  satisfies LICQ if and only if

$$[\nabla G(w), \quad \nabla H_{\mathbb{A}}(w)]$$

is full column rank

$$\text{Active set } \mathbb{A} = \{i \mid H_i(w) = 0\}$$

## Theorem (KKT conditions - FONC for constrained optimization)

Let  $F, G, H$  be  $\mathcal{C}^1$ . If  $w^*$  is a (local) minimizer and satisfies LICQ, then there are unique vectors  $\lambda^*$  and  $\mu^*$  such that  $(w^*, \lambda^*, \mu^*)$  satisfies:

$$\begin{aligned} \nabla_w \mathcal{L}(w^*, \mu^*, \lambda^*) &= 0, \quad \mu^* \geq 0, && \text{dual feasibility} \\ G(w^*) &= 0, \quad H(w^*) \geq 0 && \text{primal feasibility} \\ \mu_i^* H_i(w^*) &= 0, \quad \forall i && \text{complementary slackness} \end{aligned}$$

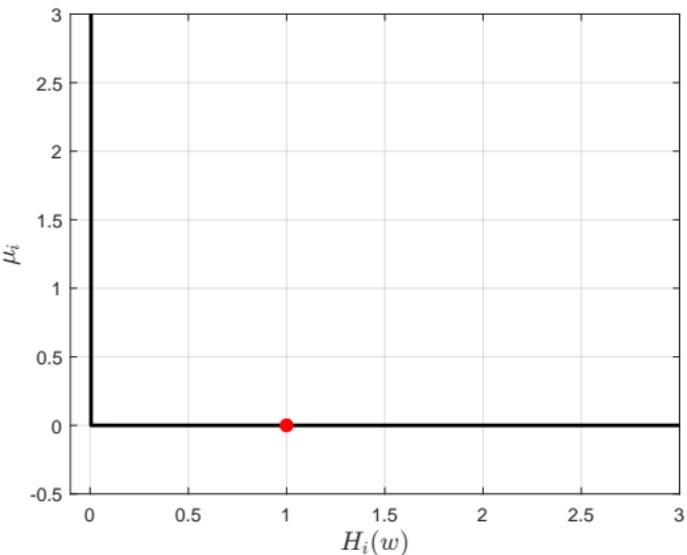
# \*Complementarity Conditions



Complementarity conditions

$0 \geq \mu \perp H(w) \geq 0$  form an L-shaped, nonsmooth manifold.

- $H_i(w^*) > 0$  then  $\mu_i^* = 0$ , and  $H_i$  is inactive



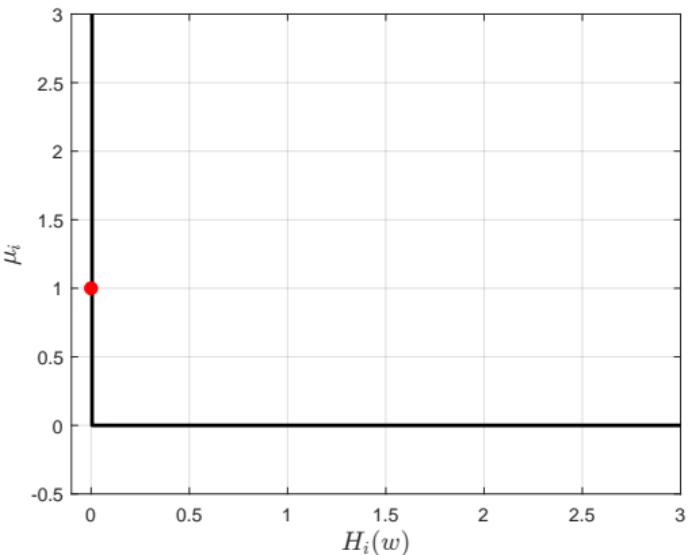
# \*Complementarity Conditions



Complementarity conditions

$0 \geq \mu \perp H(w) \geq 0$  form an L-shaped, nonsmooth manifold.

- ▶  $H_i(w^*) > 0$  then  $\mu_i^* = 0$ , and  $H_i$  is **inactive**
- ▶  $\mu_i^* > 0$  and  $H_i(w) = 0$  then  $H_i(w)$  is **strictly active**



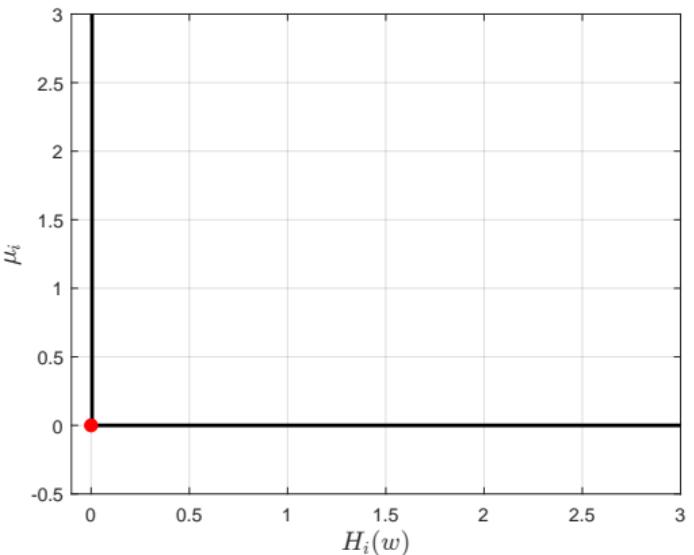
# \*Complementarity Conditions



Complementarity conditions

$0 \geq \mu \perp H(w) \geq 0$  form an L-shaped, nonsmooth manifold.

- ▶  $H_i(w^*) > 0$  then  $\mu_i^* = 0$ , and  $H_i$  is **inactive**
- ▶  $\mu_i^* > 0$  and  $H_i(w) = 0$  then  $H_i(w)$  is **strictly active**
- ▶  $\mu_i^* = 0$  and  $H_i(w) = 0$  then  $H_i(w)$  is **weakly active**



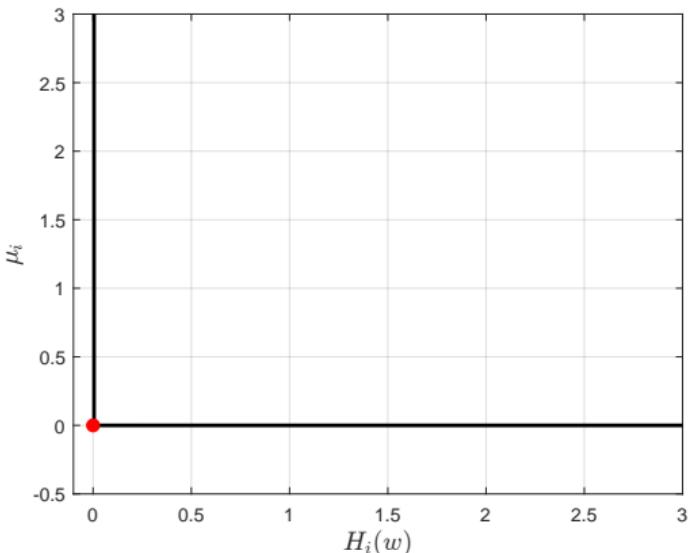
# \*Complementarity Conditions



Complementarity conditions

$0 \geq \mu \perp H(w) \geq 0$  form an L-shaped, nonsmooth manifold.

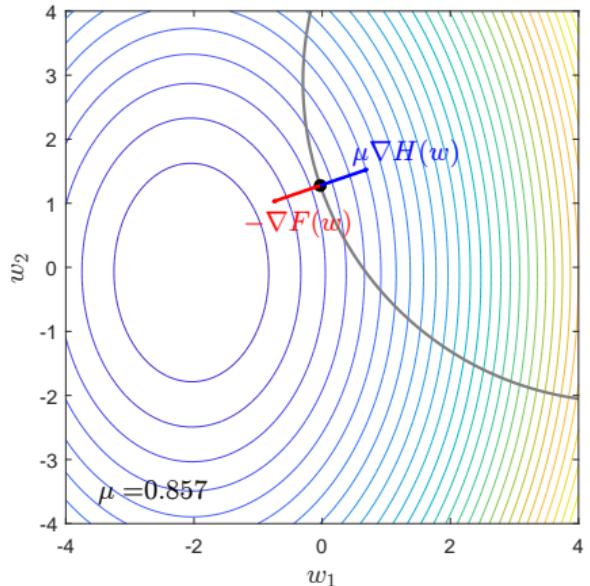
- ▶  $H_i(w^*) > 0$  then  $\mu_i^* = 0$ , and  $H_i$  is **inactive**
- ▶  $\mu_i^* > 0$  and  $H_i(w) = 0$  then  $H_i(w)$  is **strictly active**
- ▶  $\mu_i^* = 0$  and  $H_i(w) = 0$  then  $H_i(w)$  is **weakly active**
- ▶ We define the **active set**  $\mathbb{A}$  as the set of indices  $i$  of the active constraints



# Some intuition on the KKT conditions

Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

$$\begin{aligned} \min_{w \in \mathbb{R}^2} \quad & F(w) \\ \text{s.t.} \quad & H(w) \geq 0 \end{aligned}$$



Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.

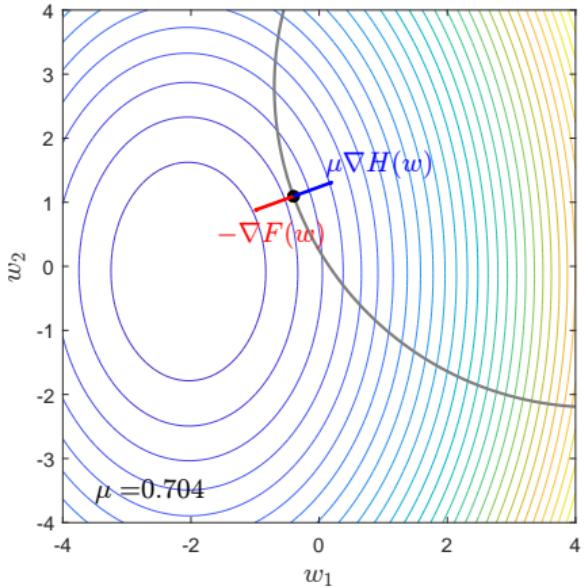
# Some intuition on the KKT conditions

Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint



$$\begin{aligned} \min_{w \in \mathbb{R}^2} \quad & F(w) \\ \text{s.t.} \quad & H(w) \geq 0 \end{aligned}$$

- $-\nabla F$  is the gravity



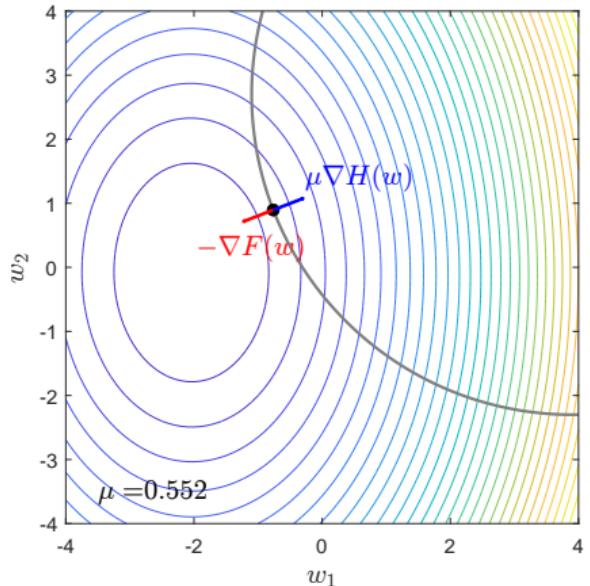
Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.

# Some intuition on the KKT conditions

Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

$$\begin{aligned} \min_{w \in \mathbb{R}^2} \quad & F(w) \\ \text{s.t.} \quad & H(w) \geq 0 \end{aligned}$$

- $-\nabla F$  is the gravity



Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.

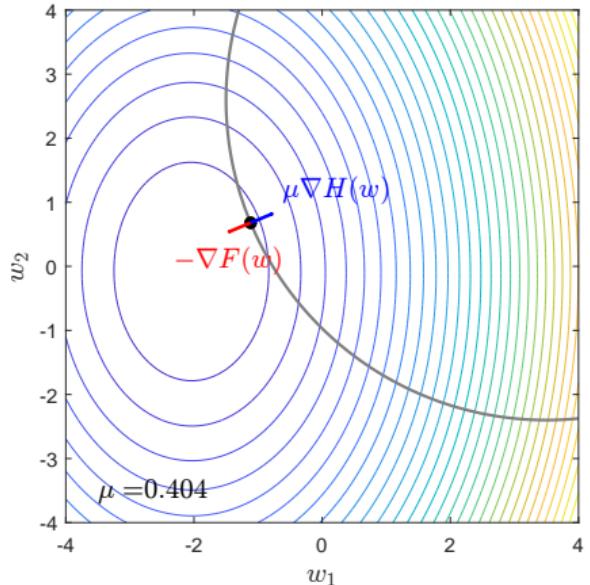
# Some intuition on the KKT conditions

Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint



$$\begin{aligned} \min_{w \in \mathbb{R}^2} \quad & F(w) \\ \text{s.t. } & H(w) \geq 0 \end{aligned}$$

- ▶  $-\nabla F$  is the gravity
- ▶  $\mu \nabla H$  is the force of the fence. Sign  $\mu \geq 0$  means the fence can only "push" the ball



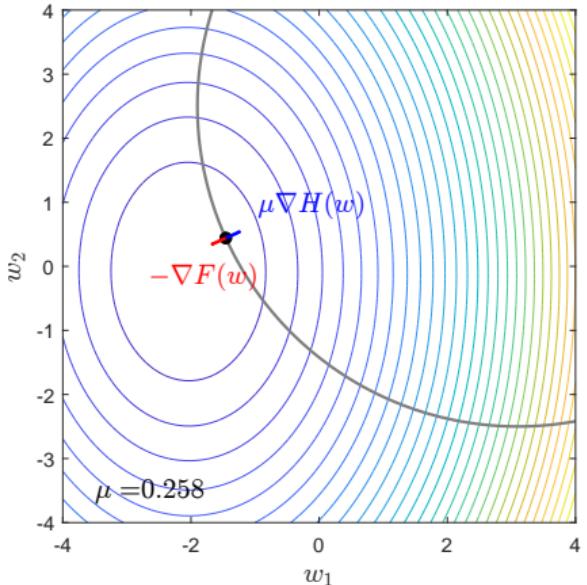
Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.

# Some intuition on the KKT conditions

Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

$$\begin{aligned} \min_{w \in \mathbb{R}^2} \quad & F(w) \\ \text{s.t.} \quad & H(w) \geq 0 \end{aligned}$$

- ▶  $-\nabla F$  is the gravity
- ▶  $\mu \nabla H$  is the force of the fence. Sign  $\mu \geq 0$  means the fence can only "push" the ball
- ▶  $\nabla H$  gives the direction of the force and  $\mu$  adjusts the magnitude



Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.

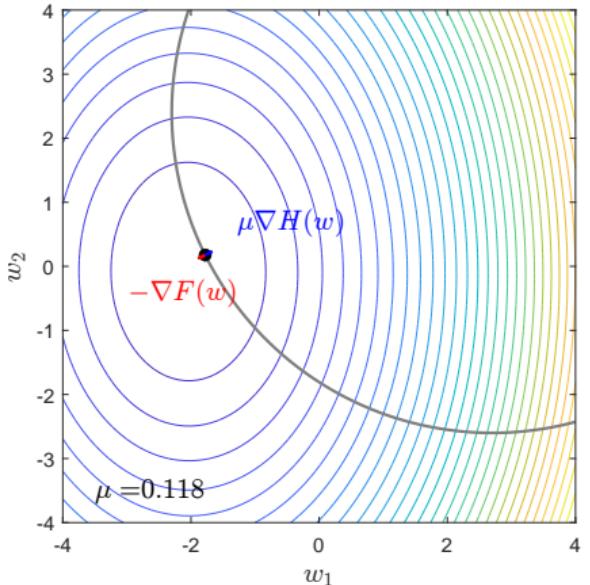
# Some intuition on the KKT conditions

Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint



$$\begin{aligned} \min_{w \in \mathbb{R}^2} \quad & F(w) \\ \text{s.t.} \quad & H(w) \geq 0 \end{aligned}$$

- ▶  $-\nabla F$  is the gravity
- ▶  $\mu \nabla H$  is the force of the fence. Sign  $\mu \geq 0$  means the fence can only "push" the ball
- ▶  $\nabla H$  gives the direction of the force and  $\mu$  adjusts the magnitude



Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.

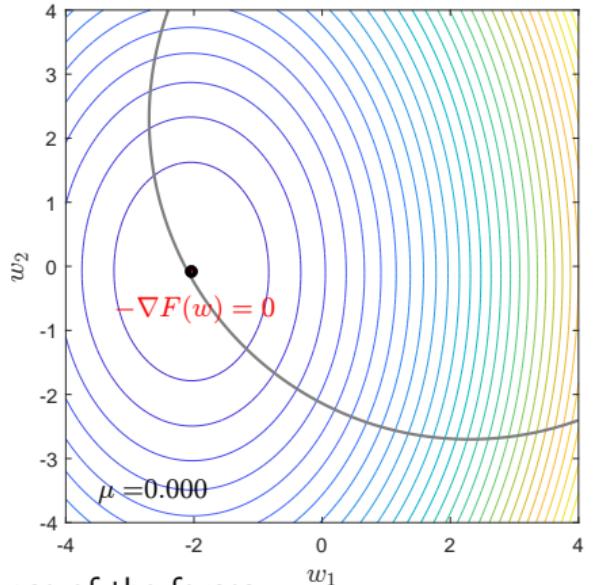
# Some intuition on the KKT conditions

Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint



$$\begin{aligned} \min_{w \in \mathbb{R}^2} \quad & F(w) \\ \text{s.t.} \quad & H(w) \geq 0 \end{aligned}$$

- ▶  $-\nabla F$  is the gravity
- ▶  $\mu \nabla H$  is the force of the fence. Sign  $\mu \geq 0$  means the fence can only "push" the ball
- ▶  $\nabla H$  gives the direction of the force and  $\mu$  adjusts the magnitude
- ▶ weakly active constraint:  
 $H(w) = 0, \mu = 0$  the ball touches the fence but no force is needed



$$\nabla \mathcal{L}(w, \mu) = \nabla F(w) - \mu \nabla H(w) = 0$$

Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.

# Some intuition on the KKT conditions

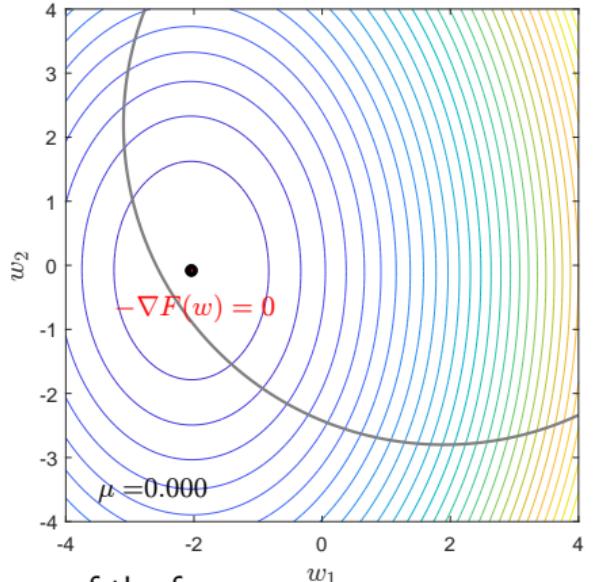
Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint



$$\begin{aligned} \min_{w \in \mathbb{R}^2} \quad & F(w) \\ \text{s.t.} \quad & H(w) \geq 0 \end{aligned}$$

- ▶  $-\nabla F$  is the gravity
- ▶  $\mu \nabla H$  is the force of the fence. Sign  $\mu \geq 0$  means the fence can only "push" the ball
- ▶  $\nabla H$  gives the direction of the force and  $\mu$  adjusts the magnitude
- ▶ weakly active constraint:  
 $H(w) = 0, \mu = 0$  the ball touches the fence but no force is needed
- ▶ inactive constraint  $H(w) > 0, \mu = 0$

$$H(w) > 0, \quad \mu = 0$$



Balance of the forces:

$$\nabla \mathcal{L}(w, \mu) = \nabla F(w) - \mu \nabla H(w) = 0$$

Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.

# Outline of the lecture



- 1 Basic definitions
- 2 Some classification of optimization problems
- 3 Optimality conditions
- 4 Nonlinear programming algorithms

# Newton's method

To solve a nonlinear system, solve a sequence of linear systems



**Linearization** of  $F$  at linearization point  $\bar{w}$

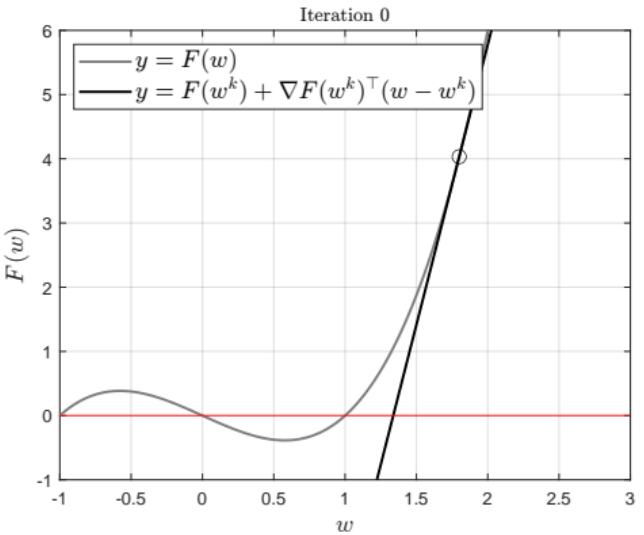
equals

First order Taylor series at  $\bar{w}$

equals

$$F_L(w; \bar{w}) := F(\bar{w}) + \frac{\partial F}{\partial w}(\bar{w})(w - \bar{w})$$

(for continuously differentiable  $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$ )



# Newton's method

To solve a nonlinear system, solve a sequence of linear systems



**Linearization** of  $F$  at linearization point  $\bar{w}$

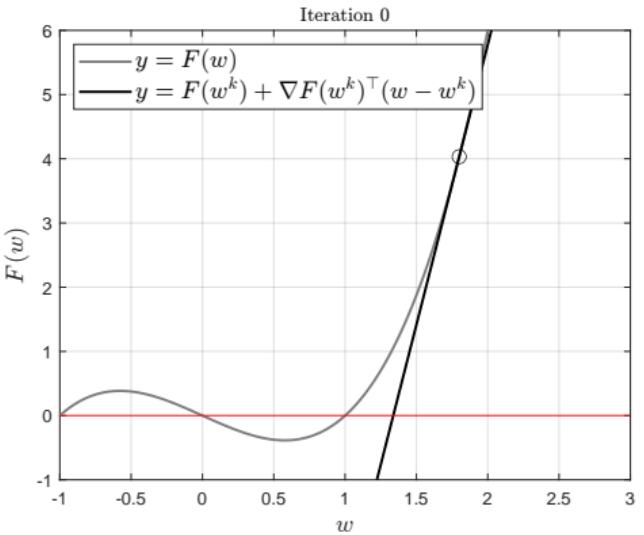
equals

First order Taylor series at  $\bar{w}$

equals

$$F_L(w; \bar{w}) := F(\bar{w}) + \nabla_w F(\bar{w})^\top (w - \bar{w})$$

(for continuously differentiable  $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$ )



# Newton's method

To solve a nonlinear system, solve a sequence of linear systems



**Linearization** of  $F$  at linearization point  $\bar{w}$

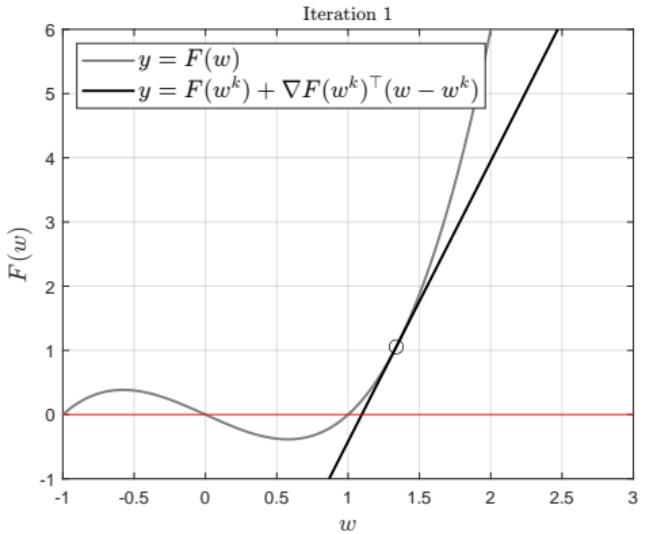
equals

First order Taylor series at  $\bar{w}$

equals

$$F_L(w; \bar{w}) := F(\bar{w}) + \nabla_w F(\bar{w})^\top (w - \bar{w})$$

(for continuously differentiable  $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$ )



# Newton's method

To solve a nonlinear system, solve a sequence of linear systems



**Linearization** of  $F$  at linearization point  $\bar{w}$

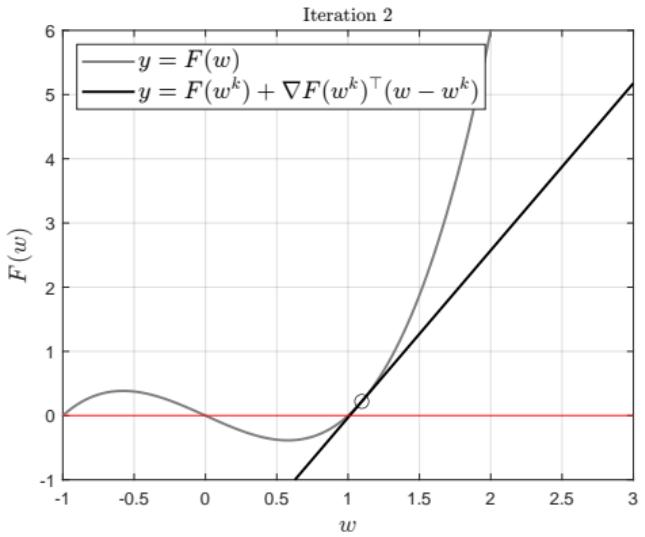
equals

First order Taylor series at  $\bar{w}$

equals

$$F_L(w; \bar{w}) := F(\bar{w}) + \nabla_w F(\bar{w})^\top (w - \bar{w})$$

(for continuously differentiable  $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$ )



# Newton's method

To solve a nonlinear system, solve a sequence of linear systems



**Linearization** of  $F$  at linearization point  $\bar{w}$

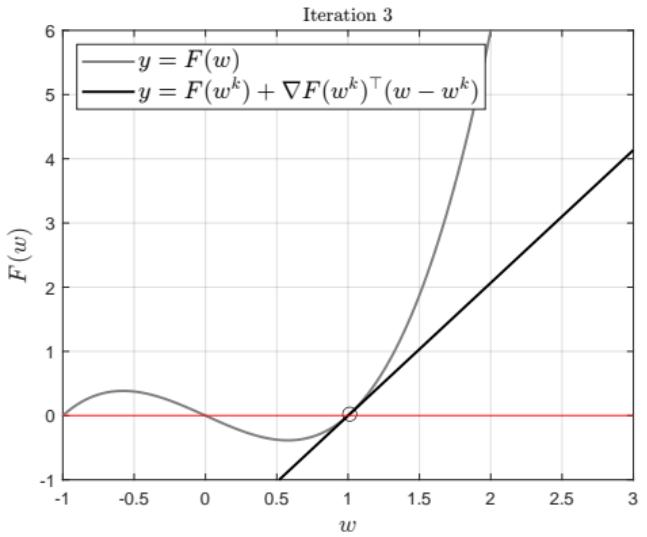
equals

First order Taylor series at  $\bar{w}$

equals

$$F_L(w; \bar{w}) := F(\bar{w}) + \nabla_w F(\bar{w})^\top (w - \bar{w})$$

(for continuously differentiable  $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$ )



# General Nonlinear Program (NLP)



In direct methods, we have to solve the discretized optimal control problem, which is a Nonlinear Program (NLP)

## General Nonlinear Program (NLP)

$$\min_w F(w) \text{ s.t. } \begin{cases} G(w) = 0 \\ H(w) \geq 0 \end{cases}$$

We first treat the case without inequalities

## NLP only with equality constraints

$$\min_w F(w) \text{ s.t. } G(w) = 0$$



## Lagrange function

$$\mathcal{L}(w, \lambda) = F(w) - \lambda^T G(w)$$

Then for an optimal solution  $w^*$  exist multipliers  $\lambda^*$  such that

## Nonlinear root-finding problem

$$\begin{aligned}\nabla_w \mathcal{L}(w^*, \lambda^*) &= 0 \\ G(w^*) &= 0\end{aligned}$$

# \*Newton's Method on optimality conditions



Newton's method to solve

$$\begin{aligned}\nabla_w \mathcal{L}(w^*, \lambda^*) &= 0 \\ G(w^*) &= 0 \quad ?\end{aligned}$$

results, at iterate  $(w^k, \lambda^k)$ , in the following linear system:

$$\begin{aligned}\nabla_w \mathcal{L}(w^k, \lambda^k) + \nabla_w^2 \mathcal{L}(w^k, \lambda^k) \Delta w - \nabla_w G(w^k) \Delta \lambda &= 0 \\ G(w^k) + \nabla_w G(w^k)^T \Delta w &= 0\end{aligned}$$

Due to  $\nabla \mathcal{L}(w^k, \lambda^k) = \nabla F(w^k) - \nabla G(w^k) \lambda^k$  this is equivalent to

$$\begin{aligned}\nabla_w F(w^k) + \nabla_w^2 \mathcal{L}(w^k, \lambda^k) \Delta w - \nabla_w G(w^k) \lambda^+ &= 0 \\ G(w^k) + \nabla_w G(w^k)^T \Delta w &= 0\end{aligned}$$

with the shorthand  $\lambda^+ = \lambda^k + \Delta \lambda$

# \*Newton Step = Quadratic Program



Conditions

$$\begin{array}{lclclcl} \nabla_w F(w^k) & + \nabla_w^2 \mathcal{L}(w^k, \lambda^k) \Delta w & - \nabla_w G(w^k) \lambda^+ & = & 0 \\ G(w^k) & + \nabla_w G(w^k)^T \Delta w & & = & 0 \end{array}$$

are optimality conditions of a quadratic program (QP), namely:

Quadratic program

$$\begin{array}{ll} \min_{\Delta w} & \nabla F(w^k)^T \Delta w + \frac{1}{2} \Delta w^T A^k \Delta w \\ \text{s.t.} & G(w^k) + \nabla G(w^k)^T \Delta w = 0, \end{array}$$

with  $A^k = \nabla_w^2 \mathcal{L}(w^k, \lambda^k)$



The full step Newton's Method iterates by solving in each iteration the Quadratic Program

## Quadratic Program in Sequential Quadratic Programming (SQP)

$$\begin{aligned} \min_{\Delta w} \quad & \nabla F(w^k)^T \Delta w + \frac{1}{2} \Delta w^T A^k \Delta w \\ \text{s.t.} \quad & G(w^k) + \nabla G(w^k)^T \Delta w = 0, \end{aligned}$$

with  $A^k = \nabla_w^2 \mathcal{L}(w^k, \lambda^k)$ .

This obtains as solution the step  $\Delta w^k$  and the new multiplier  $\lambda_{\text{QP}}^+ = \lambda^k + \Delta \lambda^k$

## New iterate

$$\begin{aligned} w^{k+1} &= w^k + \Delta w^k \\ \lambda^{k+1} &= \lambda^k + \Delta \lambda^k = \lambda_{\text{QP}}^+ \end{aligned}$$

This is the "full step, exact Hessian SQP method for equality constrained optimization".



Regard again NLP with both, equalities and inequalities:

## NLP with equality and inequality constraints

$$\min_w F(w) \quad \text{s.t.} \quad \begin{cases} G(w) = 0 \\ H(w) \geq 0 \end{cases}$$

## Lagrangian function for NLP with equality and inequality constraints

$$\mathcal{L}(w, \lambda, \mu) = F(w) - \lambda^T G(w) - \mu^T H(w)$$

# Recall necessary optimality conditions with inequalities



## Theorem (Karush-Kuhn-Tucker (KKT) conditions)

Let  $F, G, H$  be  $\mathcal{C}^2$ . If  $w^*$  is a (local) minimizer and satisfies LICQ, then there are unique vectors  $\lambda^*$  and  $\mu^*$  such that  $(w^*, \lambda^*, \mu^*)$  satisfies:

$$\nabla_w \mathcal{L}(w^*, \mu^*, \lambda^*) = 0$$

$$G(w^*) = 0$$

$$H(w^*) \geq 0$$

$$\mu^* \geq 0$$

$$H(w^*)^\top \mu^* = 0$$

- ▶ Last three "complementarity conditions" are nonsmooth
- ▶ Thus, this system cannot be solved by Newton's Method. But still with SQP...

# Sequential Quadratic Programming (SQP) with Inequalities



By linearizing all functions and setting  $\lambda^+ = \lambda^k + \Delta\lambda$ ,  $\mu^+ = \mu^k + \Delta\mu$ , we obtain the KKT conditions of the following Quadratic Program (QP)

## Inequality Constrained Quadratic Program within SQP method

$$\begin{aligned} \min_{\Delta w} \quad & \nabla F(w^k)^T \Delta w + \frac{1}{2} \Delta w^T A^k \Delta w \\ \text{s.t.} \quad & \begin{cases} G(w^k) + \nabla G(w^k)^T \Delta w = 0 \\ H(w^k) + \nabla H(w^k)^T \Delta w \geq 0 \end{cases} \end{aligned}$$

with

$$A^k = \nabla_w^2 \mathcal{L}(w^k, \lambda^k, \mu^k)$$

Its solution delivers the next SQP iterate

$$\Delta w^k, \quad \lambda_{\text{QP}}^+, \quad \mu_{\text{QP}}^+$$

# Constrained Gauss-Newton Method



In special case of least squares objectives

Least squares objective function

$$F(w) = \frac{1}{2} \|R(w)\|_2^2$$

can approximate Hessian  $\nabla_w^2 \mathcal{L}(w^k, \lambda^k, \mu^k)$  by much cheaper

$$A^k = \nabla R(w) \nabla R(w)^\top.$$

Need no multipliers to compute  $A^k$ .

Gauss-Newton QP = Constrained Linear Least Squares Problem

$$\begin{aligned} \min_{\Delta w} \quad & \frac{1}{2} \|R(w^k) + \nabla R(w^k)^T \Delta w\|_2^2 \\ \text{s.t.} \quad & G(w^k) + \nabla G(w^k)^T \Delta w = 0 \\ & H(w^k) + \nabla H(w^k)^T \Delta w \geq 0 \end{aligned}$$

Linear convergence. Fast, if objective value  $\|R(w^*)\|$  small or nonlinearity of  $R, G, H$  small

# Interior Point Methods

(without equalities for simplicity of exposition)

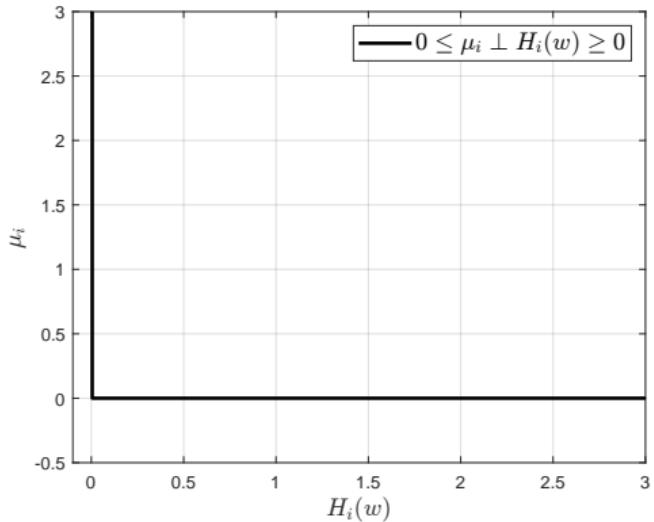


## NLP with inequalities

$$\begin{aligned} \min_w \quad & F(w) \\ \text{s.t.} \quad & H(w) \geq 0 \end{aligned}$$

## KKT conditions

$$\begin{aligned} \nabla F(w) - \nabla H(w)^\top \mu &= 0 \\ 0 \leq \mu \perp H(w) &\geq 0 \end{aligned}$$



Main difficulty: nonsmoothness of complementarity conditions



## NLP with inequalities

$$\begin{aligned} & \min_w F(w) \\ \text{s.t. } & H(w) \geq 0 \end{aligned}$$

Idea: put inequality constraint into objective

# Barrier Problem in Interior Point Method



## NLP with inequalities

$$\begin{aligned} & \min_w F(w) \\ \text{s.t. } & H(w) \geq 0 \end{aligned}$$

Idea: put inequality constraint into objective

## Barrier Problem

$$\min_w F(w) - \tau \sum_{i=1}^m \log(H_i(w)) =: F_\tau(w)$$

# Barrier Problem in Interior Point Method



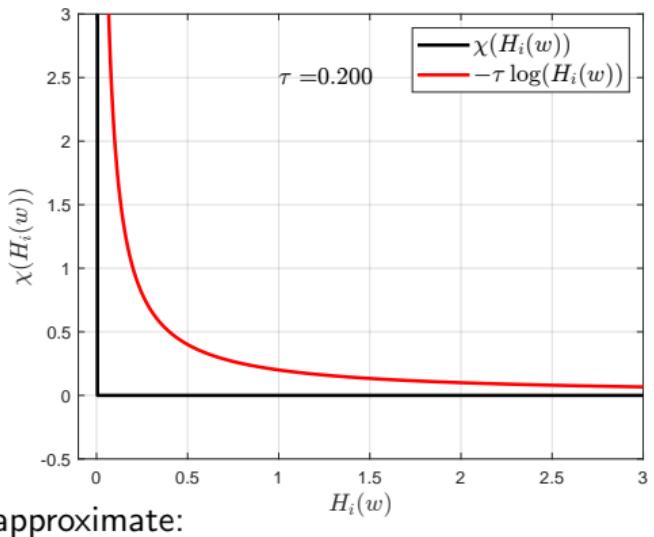
## NLP with inequalities

$$\begin{aligned} \min_w \quad & F(w) \\ \text{s.t.} \quad & H(w) \geq 0 \end{aligned}$$

Idea: put inequality constraint into objective

## Barrier Problem

$$\min_w F(w) - \tau \sum_{i=1}^m \log(H_i(w)) =: F_\tau(w)$$



$$\chi(H_i(w)) = \begin{cases} 0 & \text{if } H_i(w) \geq 0 \\ \infty & \text{if } H_i(w) < 0 \end{cases}$$

# Barrier Problem in Interior Point Method



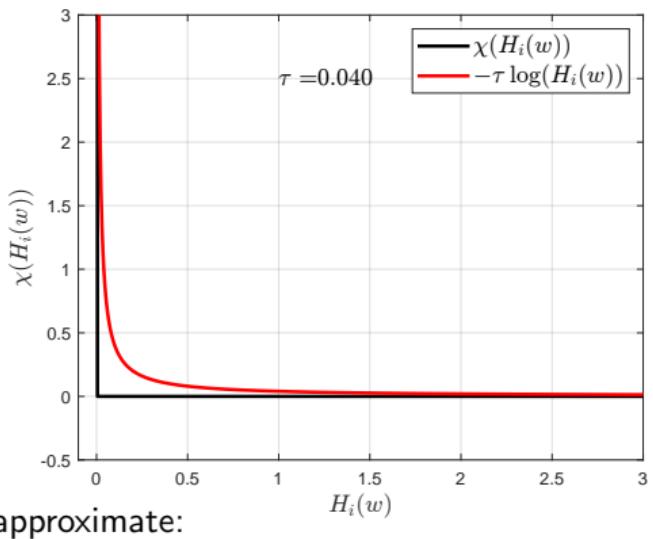
## NLP with inequalities

$$\begin{aligned} & \min_w F(w) \\ \text{s.t.} \quad & H(w) \geq 0 \end{aligned}$$

Idea: put inequality constraint into objective

## Barrier Problem

$$\min_w F(w) - \tau \sum_{i=1}^m \log(H_i(w)) =: F_\tau(w)$$



approximate:

$$\chi(H_i(w)) = \begin{cases} 0 & \text{if } H_i(w) \geq 0 \\ \infty & \text{if } H_i(w) < 0 \end{cases}$$

# Barrier Problem in Interior Point Method



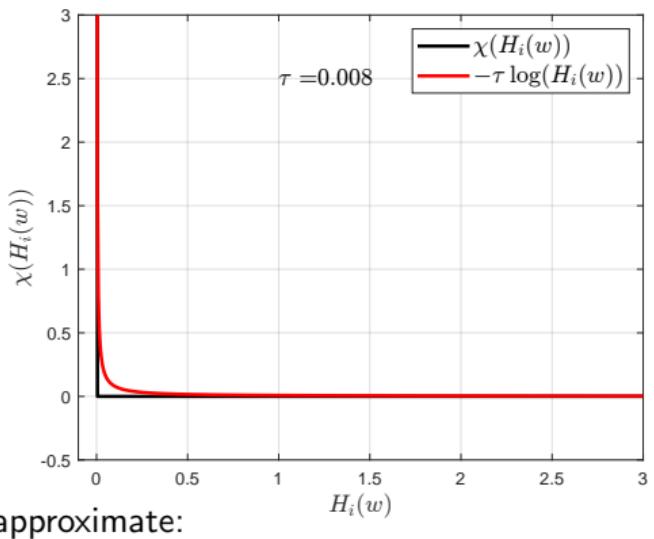
## NLP with inequalities

$$\begin{aligned} & \min_w F(w) \\ & \text{s.t. } H(w) \geq 0 \end{aligned}$$

Idea: put inequality constraint into objective

## Barrier Problem

$$\min_w F(w) - \tau \sum_{i=1}^m \log(H_i(w)) =: F_\tau(w)$$



$$\chi(H_i(w)) = \begin{cases} 0 & \text{if } H_i(w) \geq 0 \\ \infty & \text{if } H_i(w) < 0 \end{cases}$$

# Barrier Problem in Interior Point Method



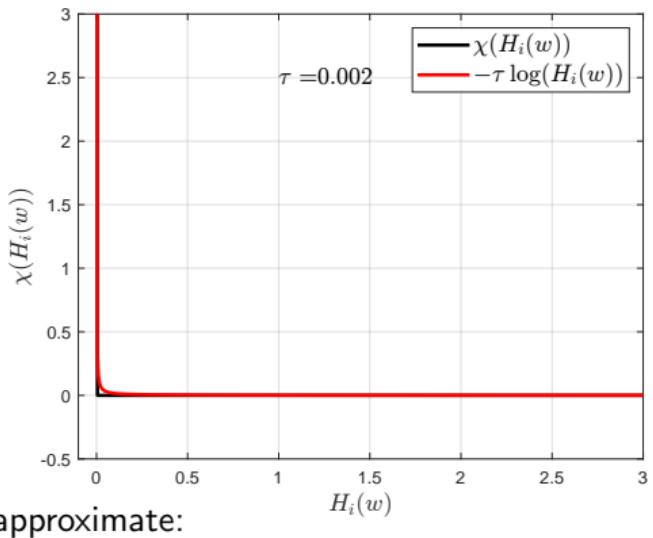
## NLP with inequalities

$$\begin{aligned} & \min_w F(w) \\ & \text{s.t. } H(w) \geq 0 \end{aligned}$$

Idea: put inequality constraint into objective

## Barrier Problem

$$\min_w F(w) - \tau \sum_{i=1}^m \log(H_i(w)) =: F_\tau(w)$$



$$\chi(H_i(w)) = \begin{cases} 0 & \text{if } H_i(w) \geq 0 \\ \infty & \text{if } H_i(w) < 0 \end{cases}$$

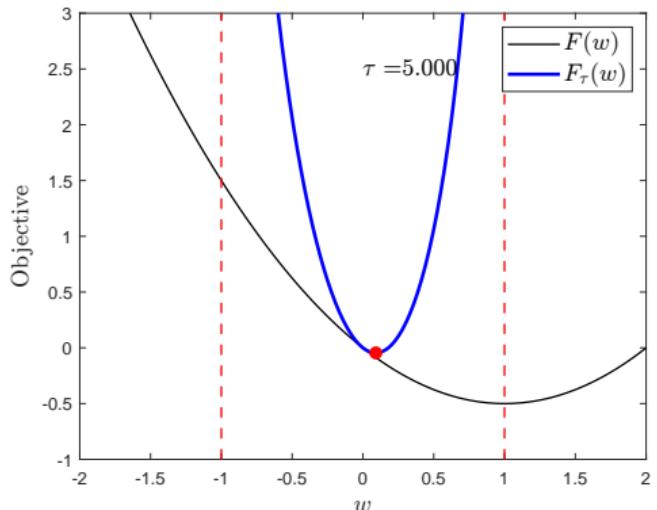
# Example Barrier Problem

## Example NLP

$$\begin{aligned} \min_w \quad & 0.5w^2 - 2w \\ \text{s.t.} \quad & -1 \leq w \leq 1 \end{aligned}$$

## Barrier problem

$$\min_w 0.5w^2 - 2 - \tau \log(w + 1) - \tau \log(1 - w)$$



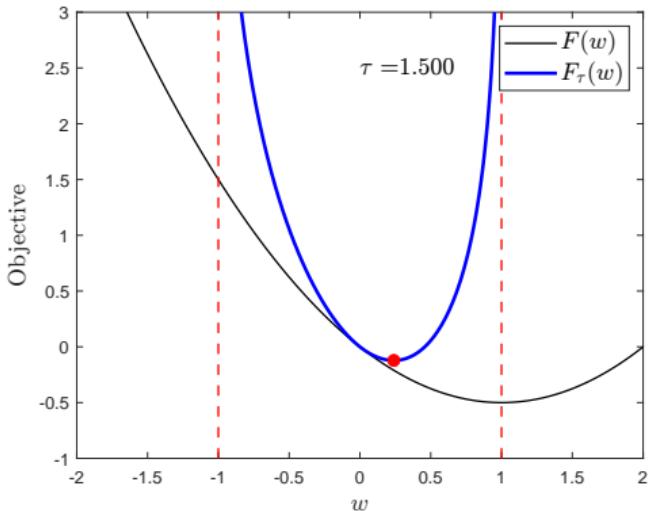
# Example Barrier Problem

## Example NLP

$$\begin{aligned} \min_w \quad & 0.5w^2 - 2w \\ \text{s.t.} \quad & -1 \leq w \leq 1 \end{aligned}$$

## Barrier problem

$$\min_w 0.5w^2 - 2 - \tau \log(w + 1) - \tau \log(1 - w)$$



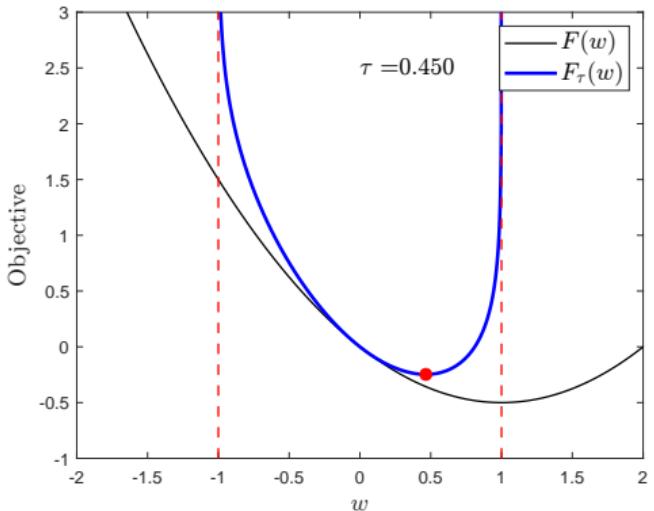
# Example Barrier Problem

## Example NLP

$$\begin{aligned} & \min_w 0.5w^2 - 2w \\ & \text{s.t. } -1 \leq w \leq 1 \end{aligned}$$

## Barrier problem

$$\min_w 0.5w^2 - 2 - \tau \log(w + 1) - \tau \log(1 - w)$$



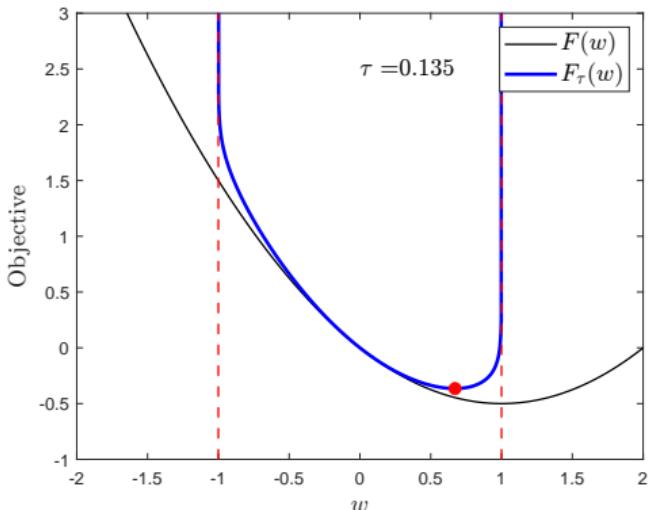
# Example Barrier Problem

## Example NLP

$$\begin{aligned} & \min_w 0.5w^2 - 2w \\ & \text{s.t. } -1 \leq w \leq 1 \end{aligned}$$

## Barrier problem

$$\min_w 0.5w^2 - 2 - \tau \log(w + 1) - \tau \log(1 - w)$$



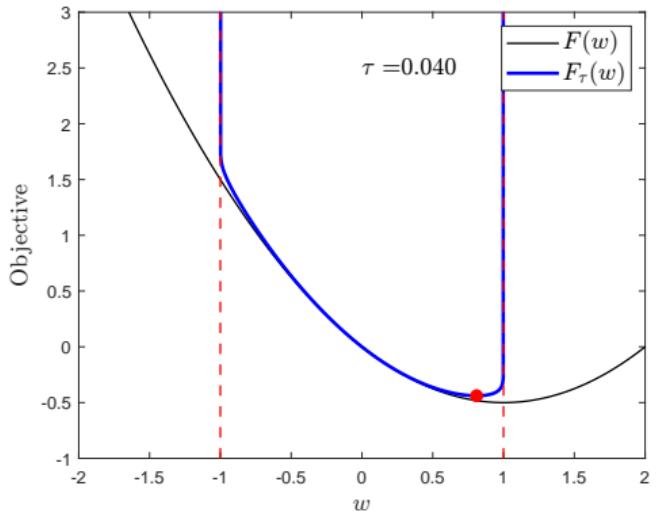
# Example Barrier Problem

## Example NLP

$$\begin{aligned} & \min_w 0.5w^2 - 2w \\ & \text{s.t. } -1 \leq w \leq 1 \end{aligned}$$

## Barrier problem

$$\min_w 0.5w^2 - 2 - \tau \log(w + 1) - \tau \log(1 - w)$$



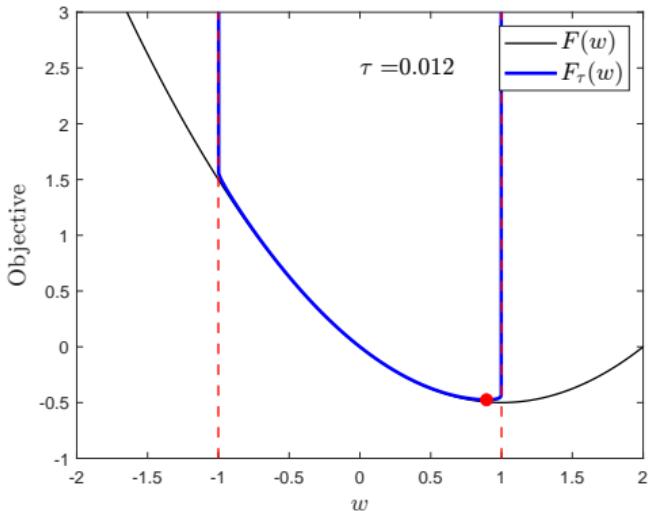
# Example Barrier Problem

## Example NLP

$$\begin{aligned} \min_w \quad & 0.5w^2 - 2w \\ \text{s.t.} \quad & -1 \leq w \leq 1 \end{aligned}$$

## Barrier problem

$$\min_w 0.5w^2 - 2 - \tau \log(w + 1) - \tau \log(1 - w)$$



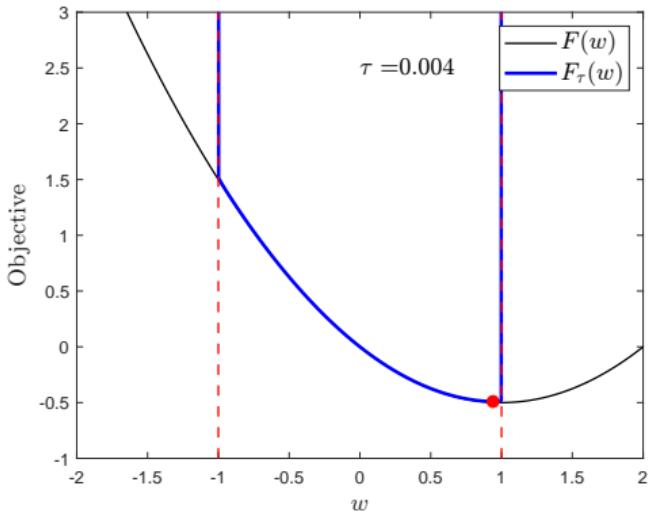
# Example Barrier Problem

## Example NLP

$$\begin{aligned} \min_w \quad & 0.5w^2 - 2w \\ \text{s.t.} \quad & -1 \leq w \leq 1 \end{aligned}$$

## Barrier problem

$$\min_w 0.5w^2 - 2 - \tau \log(w + 1) - \tau \log(1 - w)$$



# \*Primal-dual interior point methods

Alternative interpretation



## Barrier problem

$$\min_w F(w) - \tau \sum_{i=1}^m \log(H_i(w)) =: F_\tau(w)$$

## KKT conditions

$$\nabla F(w) - \tau \sum_{i=1}^m \frac{1}{H_i(w)} \nabla H_i(w) = 0$$

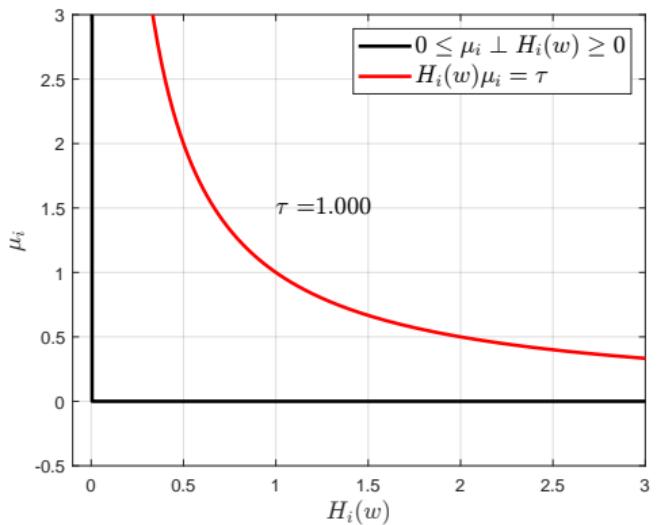
Introduce variable  $\mu_i = \frac{\tau}{H_i(w)}$

## Smoothed KKT conditions

$$\nabla F(w) - \nabla H(w)^\top \mu = 0$$

$$H_i(w)\mu_i = \tau$$

$$(H_i(w) > 0, \mu_i > 0)$$



# \*Primal-dual interior point methods

Alternative interpretation



## Barrier problem

$$\min_w F(w) - \tau \sum_{i=1}^m \log(H_i(w)) =: F_\tau(w)$$

## KKT conditions

$$\nabla F(w) - \tau \sum_{i=1}^m \frac{1}{H_i(w)} \nabla H_i(w) = 0$$

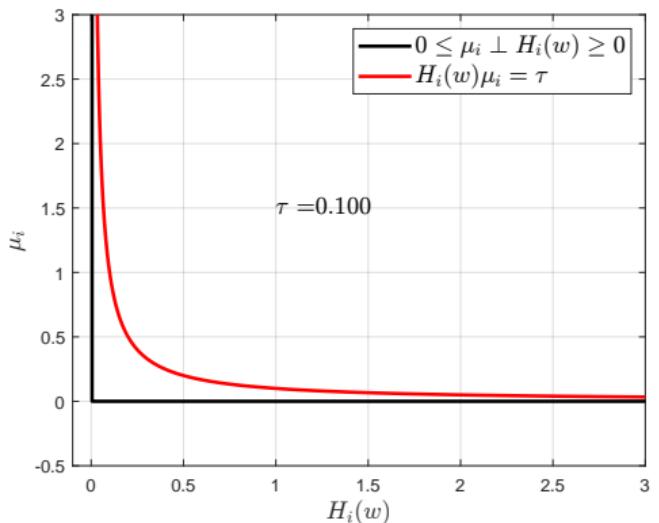
Introduce variable  $\mu_i = \frac{\tau}{H_i(w)}$

## Smoothed KKT conditions

$$\nabla F(w) - \nabla H(w)^\top \mu = 0$$

$$H_i(w)\mu_i = \tau$$

$$(H_i(w) > 0, \mu_i > 0)$$



# \*Primal-dual interior point methods

Alternative interpretation



## Barrier problem

$$\min_w F(w) - \tau \sum_{i=1}^m \log(H_i(w)) =: F_\tau(w)$$

## KKT conditions

$$\nabla F(w) - \tau \sum_{i=1}^m \frac{1}{H_i(w)} \nabla H_i(w) = 0$$

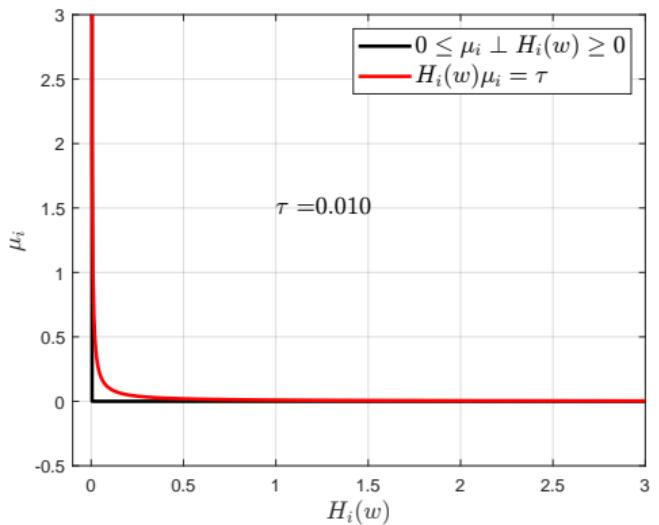
Introduce variable  $\mu_i = \frac{\tau}{H_i(w)}$

## Smoothed KKT conditions

$$\nabla F(w) - \nabla H(w)^\top \mu = 0$$

$$H_i(w)\mu_i = \tau$$

$$(H_i(w) > 0, \mu_i > 0)$$



# \*Primal-dual interior point methods

Alternative interpretation



## Barrier problem

$$\min_w F(w) - \tau \sum_{i=1}^m \log(H_i(w)) =: F_\tau(w)$$

## KKT conditions

$$\nabla F(w) - \tau \sum_{i=1}^m \frac{1}{H_i(w)} \nabla H_i(w) = 0$$

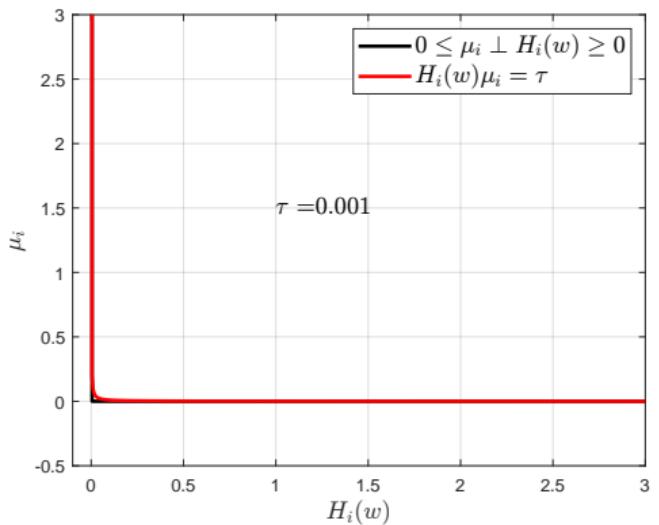
Introduce variable  $\mu_i = \frac{\tau}{H_i(w)}$

## Smoothed KKT conditions

$$\nabla F(w) - \nabla H(w)^\top \mu = 0$$

$$H_i(w)\mu_i = \tau$$

$$(H_i(w) > 0, \mu_i > 0)$$



# \*Primal-dual interior point method



## Nonlinear programming problem

$$\begin{aligned} \min_{w,s} \quad & F(w) \\ \text{s.t.} \quad & G(w) = 0 \\ & H(w) - s = 0 \\ & s \geq 0 \end{aligned}$$

## Smoothed KKT conditions

$$R_\tau(w, s, \lambda, \mu) = \begin{bmatrix} \nabla_w \mathcal{L}(w, \lambda, \mu) \\ G(w) \\ H(w) - s \\ \text{diag}(s)\mu - \tau e \end{bmatrix} = 0$$
$$(s, \mu > 0)$$

$$e = (1, \dots, 1)$$

Fix  $\tau$ , perform Newton iterations

$$R_\tau(w, s, \lambda, \mu) + \nabla R_\tau(w, s, \lambda, \mu)^\top \Delta z = 0$$

with  $z = (w, s, \lambda, \mu)$

## Line-search

Find  $\alpha \in (0, 1)$

$$\begin{aligned} w^{k+1} &= w^k + \alpha \Delta w \\ s^{k+1} &= s^k + \alpha \Delta s \\ \lambda^{k+1} &= \lambda^k + \alpha \Delta \lambda \\ \mu^{k+1} &= \mu^k + \alpha \Delta \mu \end{aligned}$$

such that  $s^{k+1} > 0, \mu^{k+1} > 0$

Reduce  $\tau$ , and perform next Newton iterations solve, etc



- ▶ optimization problem come in many variants (LP, QP, NLP, MPCC, MINLP, OCP, ....)
- ▶ each problem class be addressed with suitable software
- ▶ nonlinear MPC needs to solve nonlinear programs (NLP)
- ▶ Lagrangian function, duality, and KKT conditions are important concepts
- ▶ for convex problems holds strong duality, KKT conditions sufficient for global optimality
- ▶ Newton-type optimization for NLP solves the nonsmooth KKT conditions via Sequential Quadratic Programming (SQP, e.g. acados) or via Interior Point Method (e.g. ipopt)
- ▶ NLP solvers need to evaluate first and second order derivatives (e.g. via CasADi)

# Where is the great watershed in optimization ?



# Where is the great watershed in optimization ?



My personal opinion:

The great watershed in optimization isn't between convexity and nonconvexity, but between computer functions that do - or do not - provide derivatives.



- ▶ J. Nocedal, S.J. Wright, Numerical optimization. Springer, 2006
- ▶ L.T. Biegler, Nonlinear programming: concepts, algorithms, and applications to chemical processes. SIAM, 2010
- ▶ M. Diehl Lecture Notes on Numerical Optimization (draft), 2024
- ▶ S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004
- ▶ D. Bertsekas. Convex optimization algorithms. Athena Scientific, 2015.
- ▶ S.J. Wright and B. Recht. Optimization for data analysis. Cambridge University Press, 2022
- ▶ A. Wächter and L.T. Biegler. "On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming." Mathematical programming 106.1 (2006): 25-57.
- ▶ M. Diehl, S. Gros, Numerical Optimal Control (draft), Chapters 2-5, 2024