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What is an optimization problem?

Optimization is used in all quantitative sciences and engineering. Its aim is to minimize (or
maximize) an objective function F'(w) depending on decision variables w = (wy, ..., w;)
subject to constraints.
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What is an optimization problem?

Optimization is used in all quantitative sciences and engineering. Its aim is to minimize (or
maximize) an objective function F'(w) depending on decision variables w = (wy, ..., w;)
subject to constraints.

Optimization Problem

wngRgL F(w) (1a)
st. G(w)=0 (1b)
H(w) >0 (1c)
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What is an optimization problem?

Optimization is used in all quantitative sciences and engineering. Its aim is to minimize (or
maximize) an objective function F'(w) depending on decision variables w = (wy, ..., w;)
subject to constraints.

Optimization Problem Terminology

min F(w) (1a) » w € R"™ - vector of decision variables

t weclfn . b > F:R™ — R - objective function
S.t. (w) = (1b) > G :R"™ — R" - equality constraints
H(w) >0 (1c)

> H :R"™ — R"H - inequality constraints
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What is an optimization problem?

Optimization is used in all quantitative sciences and engineering. Its aim is to minimize (or
maximize) an objective function F'(w) depending on decision variables w = (wy, ..., w;)
subject to constraints.

Optimization Problem Terminology

min F(w) (1a) » w € R"™ - vector of decision variables

. weclfn 0 " » F:R™ — R - objective function
st G(w) = (1b) > G :R"™ — R"¢ - equality constraints
H(w) > 0 (1c)

> H :R"™ — R"H - inequality constraints

only in a few special cases a closed form solution exists
if F,G, H are nonlinear and smooth, we speak of a nonlinear programming problem (NLP)

usually we need iterative algorithms to find an approximate solution

vvyyy

in NMPC, the problem depends on parameters that change every sampling time
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*Basic definitions: the feasible set

Definition
The feasible set of the optimization problem (1) is defined as
Q={weR"|G(w)=0,H(w) >0}. A point w € Qis is called a feasible point.

In the example, the feasible set is the intersection of the two grey areas (halfspace and circle)
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*Basic definitions: global and local minimizer

70

F(w)

Definition (Global Minimizer) Pl Sggﬁiéﬂffﬂff’u»
Point w* € Q is a global minimizer of the NLP (1) *l
if for all w € Q it holds that F(w) > F(w*). of
§ 30 \

Definition (Local Minimizer) ol |

0 . /
Point w* € Q is a local minimizer of the NLP (1) if ol \ yd /
there exists a ball Be(w*) = {w]|||w — w*|| < €} with / e
e > 0, such that for all w € B.(w*) N it holds that TN
F(w) > F(w*) 0 ‘

-3 2 1 0 1 2 3 4
The value F(w*) at a local/global minimizer w* is ’

- . . - 1

called local/global minimum, or minimum value. F(w) = Lt — 203 — 3w 4 12w + 10
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Convex sets

a key concept in optimization

A set  is said to be convex if for any wy, w9 and any 6 € [0, 1] it holds fw; + (1 — O)ws € Q
Figure inspired by Figure 2.2 in S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.
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*Convex functions

» A function F' : Q — R is convex if for
every wi,wy € Q CR™ and 6 € [0,1] it
holds that

F(9w1+(1—9)w2) < 9F(w1)+(1—0)F(w2)
OF (wy) + (1 = 0)F(w2)

F(w)

» F'is concave if and only if —F is convex

» F'is convex if and only if the epigraph

epiF = {(w,t) € R™ ! | w € Q, F(w) <t}
F(0w; + (1 — 0)ws)

is a convex set
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Convex optimization problems

A convex optimization problem

min F'(w) objective function F is convex and the

An optimization problem is convex if the

w
feasible set € is convex.

» For convex problems, every locally optimal solution is globally optimal
» First order conditions are necessary and sufficient

> "_.in fact, the great watershed in optimization isn't between linearity and nonlinearity, but
convexity and nonconvexity.” R. T. Rockafellar, SIAM Review, 1993
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2 Some classification of optimization problems
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Some classification of optimization problems

Optimization problems can be:
> unconstrained (€ = R™) or constrained (2 C R™)
convex or nonconvex
linear or nonlinear

>

>

» differentiable or nonsmooth
> continuous or (mixed-)integer
>

finite or infinite dimensional
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Class 1: Linear Programming (LP)

Linear program

s T
e
st. Aw—-0b=0
Cw—d>0

» convex optimization problem
> 1947: simplex method by G. Dantzig
> a solution is always at a vertex of the feasible set (possibly a whole facet if nonunique)

» very mature and reliable
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Class 1: Linear Programming (LP)

Linear program

s T
i o
st. Aw—-0b=0
Cw—-d>0

» convex optimization problem
» 1947: simplex method by G. Dantzig
> a solution is always at a vertex of the feasible set (possibly a whole facet if nonunique)

» very mature and reliable
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Class 2: Quadratic Programming (QP)

Quadratic Program (QP)

14 T
R v Qu o'
st. Aw—-0b=0

Cw—-—d>0

» depending on @, can be convex and nonconvex
» solved online in linear model predictive control
» many good solvers: Gurobi, 0SQP, HPIPM, qpOASES, 00QP, DAQP...

» subsproblems in nonlinear optimization
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Class 3: Nonlinear Programming (NLP)

Nonlinear Rrogram (NLP)

» can be convex and nonconvex
» solved with iterative Newton-type algorithms

» solved in nonlinear model predictive control
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st. G(w)=0
H(w) >0
OS'le_U)Q>0

w=[wg,w] ,wg]T, wy Lw < wfwy=0

» more difficult than standard nonlinear programming

» feasible set is inherently nonsmooth and nonconvex

» powerful modeling concept
> requires specialized theory and algorithms

M. Diehl
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Class 5: Mixed-Integer Nonlinear Programming (MINLP)

Mixed-Integer Nonlinear Program (MINLP)

min _ F(w)
wo ERP wy €724

st. G(w) =

w=[wg,w]]T,n=p+q

» inherently nonconvex feasible set
» due to combinatorial nature, NP-hard even for linear F, G, H
» branch and bound, branch and cut algorithms based on iterative solution of relaxed

continuous problems

M. Diehl
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Class 6: Continuous-Time Optimal Control

» decision variables z(-), u(-) in infinite

Opitine] Genirel [Prefblom (9C) dimensional function space

» infinitely many constraints (¢ € [0,7])

min _ [i Lo (x(t), u(t)) dt + E(z(T))

o(-),u(-) » smooth ordinary differential equation
s.t. 2(0) = Fp (ODE) () = fe(x(t), u(t))
i(t) = fel(z(t),u(t)) » more generally, dynamic model can be
0> h(a(t), u(t)), t € [0,T] based on
- ’ ’ ’ > differential algebraic equations (DAE)
0> r(z(T)) > partial differential equations (PDE)

» nonsmooth ODE
» stochastic ODE

» OCP can be convex or nonconvex

» all or some components of u(t) may take
integer values (mixed-integer OCP)
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Direct optimal control methods formulate Nonlinear Programs (NLP)

(applicable to smooth deterministic systems)

Continuous-time OCP

Jin g Le((t), u(t)) dt + B(a(T))

s.t. z(0) =T

Direct methods like direct collocation,
multiple shooting first discretize, then
optimize.

Nonlinear Optimization M. Diehl



Direct optimal control methods formulate Nonlinear Programs (NLP)

(applicable to smooth deterministic systems)

Continuous-time OCP

Jin g Le(a(t), u(t)) dt + B(a(T))

s.t. z(0) =T

Direct methods like direct collocation,
multiple shooting first discretize, then
optimize.

Discrete-time OCP (an NLP)

min 3350 arw) + B(y)
s.t. xg=12o
Try1 = f(2r, ug)
0> h(zk,uk), k=0,...,N—1
0>r(zy)

Variables z = (xq,...,2y) and
u = (ug,...,un—1) can be summarized in
vector w = (x,u) € R™,
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Direct optimal control methods formulate Nonlinear Programs (NLP)

(applicable to smooth deterministic systems)

Discrete-time OCP (an NLP)

f;?i? ZkN:_Ol Uzg,ur) + E(zN)

s.t. xg=12o

$k+1 = f(or, ug)
> h(zg,uk), k=0,...,N—1
(xN)
Variables z = (xq,...,2y) and
u = (ug,...,un—1) can be summarized in

vector w = (x,u) € R™,
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Nonlinear MPC solves Nonlinear Programs (NLP)

Discrete time NMPC Problem (an NLP)

min 00" Uzk, ur) + E(zy)

T,u
s.t. xg =g
Tr1 = f(Tk, ur)
0> h(zk,ur), k=0,...,N—1
0>r(zy)
Variables z = (zq,...,zy) and
u = (ug,...,un—1) can be summarized in

vector w = (x,u) € R™.
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Nonlinear MPC solves Nonlinear Programs (NLP)

Discrete time NMPC Problem (an NLP) Nonlinear Program (NLP)

min 337 U(ak, ui) + Ezn) min F(w)
st. xp =g S.t. G(U)) =0
Tr1 = f(Tk, ur) H(w) 20
0> h(zk,uk), k=0, ,N—1
0>r(zy)
Variables z = (zq,...,zy) and
u = (ug,...,un—1) can be summarized in

vector w = (x,u) € R™.
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Outline of the lecture

3 Optimality conditions
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*Algebraic characterization of unconstrained local minimizers

Consider the unconstrained problem: mingere  F(w)

First-Order Necessary Condition of Optimality (FONC) (in convex case also sufficient)

w”* local optimizer = VF(w*) =0, w" stationary point

Second-Order Necessary Condition of Optimality (SONC)

w* local minimizer = V2*F(w*) =0
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*Algebraic characterization of unconstrained local minimizers

Consider the unconstrained problem: mingere  F(w)

First-Order Necessary Condition of Optimality (FONC) (in convex case also sufficient)

w* local optimizer = VF(w*) =0, w* stationary point

Second-Order Necessary Condition of Optimality (SONC)

w* local minimizer = V?F(w*) =0

Second-Order Sufficient Conditions of Optimality (SOSC)

VF(w*) =0and V2F(w*) =0 = z* strict local minimizer

VF(w*) =0and V2F(w*) <0 = z* strict local maximizer

no conclusion can be drawn in the case V2F(w*) is indefinite
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*Types of stationary points

Minimum Maximum Saddle point
0
30
50 ®
-10 20
40
220 10
30 B 5
€ = 30 Y E
= 20 /
-40
10
0 5
5
0 0
ws 5 5 wy W2 5 5 wy

a stationary point w with VF(w) = 0 can be a minimizer, a maximizer, or a saddle point
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*Optimality conditions - unconstrained

40
220t
K ol ‘
-2 0 2 4
» necessary conditions: find a candidate 3 0F-———-——= N S— 1
point (or to exclude points) = 50|
» sufficient conditions: verify optimality > 100 I I |
of a candidate point -2 0 2 4
100 . , ,
S
C["Ll 50 r p|
B 0 S — — —
-2 0 2 4
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*Optimality conditions - unconstrained

» necessary conditions: find a candidate
point (or to exclude points)

» sufficient conditions: verify optimality
of a candidate point

» a minimizer must satisfy SONC, but
does not have to satisfy SOSC

M. Diehl
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First order necessary conditions for equality constrained optimization

Nonlinear Program (NLP)

s )

s.t. G(w) =0

Lagrangian function L(w, ) := F(w) — AT G(w)
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First order necessary conditions for equality constrained optimization

Nonlinear Program (NLP)
Definition (LICQ)

min F(w)

weR™ A point w satisfies Linear Independence
s.t. Gw) =0 Constraint Qualification (LICQ) if and only
if VG (w) := 9% (w) T is full column rank

Lagrangian function L(w, ) := F(w) — AT G(w)
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First order necessary conditions for equality constrained optimization

Nonlinear Program (NLP)
Definition (LICQ)
ur;IgR%l ) A point w satisfies Linear Independence
s.t. Gw) =0 Constraint Qualification (LICQ) if and only
if VG (w) := 9% (w) T is full column rank

Lagrangian function L(w, ) := F(w) — AT G(w)

First-Order Necessary Conditions (in convex case also sufficient)
Let £,G inCL. If w* isa (local) minimizer, and w* satisfies LICQ, then there is a unique

vector A\ such that:
Vo Ll(w*, X*) dual feasibility
VaL(w*, \¥)

primal feasibility

I
«Q

g*
I

o

M. Diehl
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Duality in a nutshell

for equality constrained optimization

Primal Problem

p* = min F(w)s.t. G(w) =0

weR™
with Lagrangian L(w, \) := F(w) — AT G(w).
Lagrange dual function Q(A) := inf,crn L(w, \)

(M) - concave in A by construction

> Q
> Q()) < p* forall A € R"6
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Duality in a nutshell

for equality constrained optimization

Dual Problem
Primal Problem e = Aréln?f%(c ()

p= J}é%ln F(w) st Gw) =0 » weak duality: d* < p*, always holds

. _ - » strong duality: d* = p*, only holds for
with Lagrangian L(w, A) := F(w) = A" G(w). some problems (e.g. convex ones)

Lagrange dual function Q(A) := inf,crn L(w, \)

(M) - concave in A by construction

> Q
> Q()) < p* forall A € R"6
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Duality in a nutshell

for equality constrained optimization

Dual Problem
Primal Problem e = Aréln?f%(c ()

p* = min F(w)s.t. G(w) =0

WER™ » weak duality: d* < p*, always holds
. _ - » strong duality: d* = p*, only holds for
with Lagrangian L(w, A) := F(w) = A" G(w). some problems (e.g. convex ones)
Lagrange dual function Q(A) := infern L(w, \) Wolfe Dual (in convex case)
> Q(\) - concave in \ by construction 4" = weRr A RnG L(w, A)
> Q(A) < p* for all A € R"e s.t. Vo L(w,\) =0

(w constrained by lower level optimality)
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The Karush-Kuhn-Tucker (KKT) conditions

Nonlinear Program (NLP)

s )

s.t. G(w)
H(w)

0
0

Y

Lw,\) = F(w) — A\TG(w) — " H(w)
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The Karush-Kuhn-Tucker (KKT) conditions

Nonlinear Program (NLP) Definition (LICQ)
fé%ln F(w) A point w satisfies LICQ if and only if
s.t. G(w) =0 [VG (w), VHa(w)]
H(w) >0 is full column rank

L(w,\) = F(w) = ATG(w) — p" H(w) Active set A = {i | H;(w) = 0}
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The Karush-Kuhn-Tucker (KKT) conditions

Nonlinear Program (NLP) Definition (LICQ)

min F(w) A point w satisfies LICQ if and only if
weR?
s.t. G(w) =0 [VG (w), VHa(w)]
H(w) 20 is full column rank
L(w,\) = F(w) = ATG(w) — p" H(w) Active set A = {i | H;(w) = 0}

Theorem (KKT conditions - FONC for constrained optimization)

Let F, G, H be C'. If w* is a (local) minimizer and satisfies LICQ, then there are unique
vectors \* and p* such that (w*, \*, u*) satisfies:

Vol (w*, u*, \*) =0, up* >0, dual feasibility
G(w*)=0, H(w")>0 primal feasibility

wi Hy(w*) =0, Vi complementary slackness
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*Complementarity Conditions

Complementarity conditions
0> p L H(w) > 0 form an L-shaped,
nonsmooth manifold.
> H;(w*) >0 then uf =0, and H; is
inactive

Nonlinear Optimization
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*Complementarity Conditions

Complementarity conditions
0> p L H(w) > 0 form an L-shaped,
nonsmooth manifold.
> H;(w*) >0 then uf =0, and H; is
inactive
> ¥ >0and H;(w) =0 then H;(w)
strictly active

Nonlinear Optimization
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*Complementarity Conditions

Complementarity conditions
0> p L H(w) > 0 form an L-shaped,

25

nonsmooth manifold. 2F

> H;(w*) >0 then uf =0, and H; is il
inactive 3

» uf >0 and H;(w) =0 then H;(w) is H

strictly active

» uf =0 and H;(w) = 0 then then H;(w) is
weakly active

05

-05

H;(w)
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*Complementarity Conditions

Complementarity conditions
0> p L H(w) > 0 form an L-shaped,

25

nonsmooth manifold. 2F

> H;(w*) >0 then uf =0, and H; is il
inactive 3

» uf >0 and H;(w) =0 then H;(w) is H

strictly active
» uf =0 and H;(w) = 0 then then H;(w) is
weakly active

» We define the active set A as the set of 0.5
indices 7 of the active constraints ' H;(w)

05
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Some intuition on the KKT conditions

Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

4
in F

s ) : |
s.t. H(w) >0 ) |

w2
o

Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with
Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.
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Some intuition on the KKT conditions

Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

4
in F
s ) : |
s.t. H(w) >0 ) |

» —VF is the gravity

J i

w2
o

Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with
Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.

Nonlinear Opti M. Diehl

S



Some intuition on the KKT conditions

Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

4
in F

s ) : |
sit. Hw) >0 ]

» —VF is the gravity

w2
o

Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with
Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.
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Some intuition on the KKT conditions

Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

in F
s )

sit. Hw) >0
» —VF is the gravity
» uV H is the force of the fence. Sign 1 >0
means the fence can only " push” the ball

Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with
Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.
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Some intuition on the KKT conditions

Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

4
in F

s ) y
s.t. H(w) >0 )

» —VF is the gravity

» uV H is the force of the fence. Sign 1 >0
means the fence can only " push” the ball

\\\\
VY

)

w2
o

» V H gives the direction of the force and p at
adjusts the magnitude

Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with
Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.
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Some intuition on the KKT conditions

Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

4
in F

s ) y
s.t. H(w) >0 )

» —VF is the gravity

» uV H is the force of the fence. Sign 1 >0
means the fence can only " push” the ball

Vi
\\H\‘\\“‘

il

w2
o

» V H gives the direction of the force and p at
adjusts the magnitude

Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with
Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.
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Some intuition on the KKT conditions

Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

in F
s )

sit. Hw) >0
» —VF is the gravity
» 1V H is the force of the fence. Sign u >0
means the fence can only " push” the ball
» VH gives the direction of the force and p
adjusts the magnitude

» weakly active constraint:
H (w) =0, p =0 the ball touches the
fence but no force is needed

T 2 0 2 4
Balance of the forces:
VL(w,pu) =VF(w)—puVH(w)=0

Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with
Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.
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Some intuition on the KKT conditions

Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

in F
s )

sit. Hw) >0
» —VF is the gravity
» 1V H is the force of the fence. Sign u >0
means the fence can only " push” the ball
» VH gives the direction of the force and p
adjusts the magnitude

» weakly active constraint:
H (w) =0, p =0 the ball touches the
fence but no force is needed

> inactive constraint H (w) >0, =0 * N : ’ )
Balance of the forces:

H(w)>0, p=0
VL(w,pu) =VF(w)—puVH(w)=0
Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with

Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.
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Outline of the lecture

4 Nonlinear programming algorithms
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Newton's method

To solve a nonlinear system, solve a sequence of linear systems

Tteration 0

Linearization of F' at linearization point @ —y = F(w)
51 |——y = F(uw*) + VF(w*) " (w — wF)

equals

First order Taylor series at w

equals z
qu <l
F i
Fi(w;w) == F(w) + g—w(u‘)) (w—w) :
(for continuously differentiable F' : R™ — R") s o e 1 /1_5 PE—
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Newton's method

To solve a nonlinear system, solve a sequence of linear systems

Tteration 0

Linearization of F' at linearization point @ —y = F(w)
51 |——y = F(uw*) + VF(w*) " (w — wF)

equals
First order Taylor series at w

equals

F(w)

Fy,(w; ) := F(0) + Vo F(0) T (w — @)

(for continuously differentiable F' : R™ — R") €
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Newton's method

To solve a nonlinear system, solve a sequence of linear systems

Tteration 1

Linearization of F' at linearization point @ —y = F(w)
51 |——y = F(uw*) + VF(w*) " (w — wF)

equals
First order Taylor series at w

equals

F(w)

Fy,(w; ) := F(0) + Vo F(0) T (w — @)

(for continuously differentiable F' : R™ — R") €
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Newton's method

To solve a nonlinear system, solve a sequence of linear systems

Tteration 2

Linearization of F' at linearization point @ —y = F(w)
51 |——y = F(uw*) + VF(w*) " (w — wF)

equals

First order Taylor series at w

B
equals =
Fi(w; @) :== F(0) + Vo F(@) " (w — o) gl
0
(for continuously differentiable F' : R™ — R") 1 s
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Newton's method

To solve a nonlinear system, solve a sequence of linear systems

Tteration 3

Linearization of F' at linearization point @ —y = F(w)
51 |——y = F(uw*) + VF(w*) " (w — wF)

equals

First order Taylor series at w

B
equals =
Fi(w; @) :== F(0) + Vo F(@) " (w — o) gl
0
(for continuously differentiable F' : R™ — R") 1
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General Nonlinear Program (NLP)

In direct methods, we have to solve the discretized optimal control problem, which is a
Nonlinear Program (NLP)

General Nonlinear Program (NLP)

G(w)
H(w)

IV Il
o

w

min F(w) s.t. {

We first treat the case without inequalities

NLP only with equality constraints

min F(w) st. Gw) = 0

w
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Lagrange function and optimality conditions

L(w,\) = F(w) — \T'G(w)

Then for an optimal solution w* exist multipliers A* such that

Nonlinear root-finding problem

Vo l(w* \) = 0
Gw*) = 0

Nonlinear Optimization M. Diehl



*Newton's Method on optimality conditions

Newton's method to solve
VoLl(w"\) = 0
Gw*) = 0 7
results, at iterate (w®, A¥), in the following linear system:

Vi L(wk X)) 4+V2 L(wF \)Aw -V, G(wF)AN = 0
Gw*)  +V,Gw"TAw =0

Due to VL(w", \F) = VF(w¥) — VG (w*)\* this is equivalent to

VoF () +V2L(wF \)Aw  —V,GwF)At = 0
Gwk)  +V,Gw*)TAw =0

with the shorthand AT = \* + AX
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*Newton Step = Quadratic Program

Conditions

o

Vo F(wk) +V2Lwk X)Aw —V,Gw*)A\T =
G(w*)  +V,Gwh)TAw =0

are optimality conditions of a quadratic program (QP), namely:

Quadratic program

min  VF(w*)TAw + %AwTAkAw

Aw

s.t. Gw*) + VG(w*)TAw = 0,

with A% = V2 L(wk, \F)
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Newton's method for equality constrained optimization

The full step Newton's Method iterates by solving in each iteration the Quadratic Progam

Quadratic Program in Sequential Quadratic Programming (SQP)

1
min  VF(w®)TAw + - AwT A*Aw
Aw 2
st.  Gw*)+VGwH)TAw = 0,
with A% = V2 £(wk, 3F).
This obtains as solution the step Aw" and the new multiplier AGp = A" + AN

whtl = Wk 4+ AwF
AL = 3k ANk = AE

This is the "full step, exact Hessian SQP method for equality constrained optimization”.

Nonlinear Optimization M. Diehl



NLP with Inequalities

Regard again NLP with both, equalities and inequalities:

NLP with equality and inequality constraints

min F(w) s.t. {

w

=Q
£
Vvl
=

Lagrangian function for NLP with equality and inequality constraints

L(w, X, p) = F(w) = \TG(w) — p" H(w)
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Recall necessary optimality conditions with inequalities

Theorem (Karush-Kuhn-Tucker (KKT) conditions)

Let F, G, H be C2. If w* is a (local) minimizer and satisfies LICQ, then there are unique
vectors \* and p* such that (w*, \*, u*) satisfies:

Vol (w*, ", X*) =0
Gw*) =0

H(w*) >0

pr >0

H(w")Tp* =0

» Last three "complementarity conditions” are nonsmooth
» Thus, this system cannot be solved by Newton's Method. But still with SQP...
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Sequential Quadratic Programming (SQP) with Inequalities

By linearizing all functions and setting At = A\* + A\, ut = p* + Ay, we obtain the KKT
conditions of the following Quadratic Program (QP)

Inequality Constrained Quadratic Program within SQP method

%in VF(w*)T Aw + %AwTAkAw
ot { G(w*) + VG ()T Aw

IV I
o

H(wk) + VH(w*)T Aw
with

AP = V2 L(wF, NF, k)
Its solution delivers the next SQP iterate

Awkv )\Jépv ,UJ(SP
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Constrained Gauss-Newton Method

In special case of least squares objectives

Least squares objective function

F(w) = 3| R(w))3

can approximate Hessian V2 L(w* \¥ 1/F) by much cheaper

A* = VR(w)VR(w)".

Need no multipliers to compute A*.

Gauss-Newton QP = Constrained Linear Least Squares Problem

1
min §||R(wk)+VR(wk)TAw||§

ot Gw*) + VG(w*)TAw = 0
" Hw*) + VHw*)TAw > 0

Linear convergence. Fast, if objective value ||R(w*)|| small or nonlinearity of R, G, H small

Nonlinear Optimization

M. Diehl




Interior Point Methods

(without equalities for simplicity of exposition)

NLP with inequalites

—0 < L Hi(w) >0

min F(w) 25t
w
st. H(w) >0 2/

15

KKT conditions tr

Hi

05
VF(w)—VHw) 'p=0 of
0<pl H(w)>0 o5l ‘
0 0.5 1 15 2 25 3
Hi(w)

Main difficulty: nonsmoothness of
complementarity conditions
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Barrier Problem in Interior Point Method

NLP with inequalites

min F(w)

st. H(w)>0

Idea: put inequality constraint into objective

Nonlinear Optimization M. Diehl



Barrier Problem in Interior Point Method

NLP with inequalites

min F(w)

st. H(w)>0

Idea: put inequality constraint into objective
Barrier Problem

m

min F(w) -7 Z log(H;(w)) =: Fy(w)

Nonlinear Optimization M. Diehl



Barrier Problem in Interior Point Method

3 T T T T T
—(H;
NLP with inequalites 25 7 =0.200 )f(flo(glﬁgf(w)) ]
5|
n}ii)n F(w) 2 16
st. H(w)>0 g
0.5
Idea: put inequality constraint into objective
ol
Barrier Problem | ‘ | | ‘ ‘
R 05 1 15 2 25 3
. H;(w)
m approximate:
min F(w) — 73 _log(H;(w)) = Fr(w)
v i=1
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Barrier Problem in Interior Point Method

3 T T T T T
—(H;
NLP with inequalites 25 7 =0.040 )f(flo(glﬁgf(w)) ]
5|
n}ii)n F(w) 2 16
st. H(w)>0 g
0.5
Idea: put inequality constraint into objective
ol
Barrier Problem | ‘ | | ‘ ‘
R 05 1 15 2 25 3
. H;(w)
m approximate:
min F(w) — 73 _log(H;(w)) = Fr(w)
v i=1
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Barrier Problem in Interior Point Method

3 T T T T T
—(H;
NLP with inequalites 25 ~=0.008 )f(flo(glﬁgf(w)) ]
5|
n}ii)n F(w) 2 16
st. H(w)>0 g
0.5
Idea: put inequality constraint into objective L
ol
Barrier Problem | | ‘ | | ‘
R 05 1 15 2 25 3
. H;(w)
m approximate:
min F(w) — 73 _log(H;(w)) = Fr(w)
v =1
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Barrier Problem in Interior Point Method

3 T T T T T
—(H;
NLP with inequalites 25 7 =0.002 )f(flo(glﬁgf(w)) ]
5|
n}ii)n F(w) 2 16
st. H(w)>0 g
0.5
Idea: put inequality constraint into objective |
ol
Barrier Problem | | ‘ | | ‘
R 05 1 15 2 25 3
. H;(w)
m approximate:
min F(w) — 73 _log(H;(w)) = Fr(w)
v =1
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Example Barrier Problem

Example NLP

min 0.5w? — 2w

st. —1<w<l1

Barrier problem

min 0.5w? — 2 — 7log(w + 1) — 7log(1 — w)

Nonlinear Optimization M. Diehl
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Example Barrier Problem

Example NLP

min 0.5w? — 2w

st. —1<w<l1

Barrier problem

min 0.5w? — 2 — 7log(w + 1) — 7log(1 — w)
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Example Barrier Problem

Example NLP

min 0.5w? — 2w

st. —1<w<l1

Barrier problem

min 0.5w? — 2 — 7log(w + 1) — 7log(1 — w)
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Example Barrier Problem

Example NLP

min 0.5w? — 2w

st. —1<w<l1

Barrier problem

min 0.5w? — 2 — 7log(w + 1) — 7log(1 — w)
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Objective
<) o [
o o o - w

- - -

kN

N
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Example Barrier Problem

Example NLP ’

min 0.5w? — 2w

=
o
T

st. —1<w<l1

Objective
I

o
o
T

b e e e e

Barrier problem °or
-0.5 T
min 0.5w? — 2 — 7log(w + 1) — 7log(1 — w) ERET 05 o 05 1 15 2
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Example Barrier Problem

Example NLP ’

—F )|

min 0.5w? — 2w

=
o
T

st. —1<w<l1

Objective
I

o
o
T

b e e e e

Barrier problem °or
05 _/
min 0.5w? — 2 — 7log(w + 1) — 7log(1 — w) ERET 05 o o5 1 15 o
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Example Barrier Problem

Example NLP ’

—F )|

min 0.5w? — 2w

=
o

st. —1<w<l1

Objective
o
(5 =

o
T

Barrier problem

©
&

b e e e e

kN

L
-1.5

N

min 0.5w? — 2 — 7log(w + 1) — 7log(1 — w)
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*Primal-dual interior point methods

Alternative interpretation

Barrier problem

min F(w) — 7 Z log(H;(w)) = Fy(w)

w

Introduce variable u; = T (w)

VF(w) = VH(w) =0
Hi(w)p; =7
(H;(w) >0, p; > 0)

Nonlinear Optimization M. Diehl
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*Primal-dual interior point methods

Alternative interpretation

Barrier problem

min F(w) — 7Y log(H;(w)) = F,(w)
@ - 3 T T - . :
i=1 —0<pu L H(w)>0
251 —Hi(w)p; =7
KKT conditions
N
|
VF(w)—T VH;(w)=0 151 7 =0.100
() =73 gy V)
N
Introduce variable p; = H:(w) o5k
Smoothed KKT conditions or
T _ ‘ ‘
VF(w) - VH(’LU) M= 0 08 0 05 1 15 2 25 3
Hi(w)pi =7 )

(H;(w) >0, p; > 0)
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*Primal-dual interior point methods

Alternative interpretation

Barrier problem

min F(w) — 7Y log(H;(w)) = F,(w)
@ - 3 T T - - :
i=1 —0<pu L H(w)>0
25k —H(w)pu; =7
KKT conditions
N
|
VF(w)—T VH;(w)=0 151 T =0.010
N
Introduce variable p; = AT(w) o5k
Smoothed KKT conditions or
T _ ‘ ‘
VF(w) - VH(’LU) M= 0 08 0 05 1 15 2 25 3
Hi(w)pi =7 )

(H;(w) >0, p; > 0)
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*Primal-dual interior point methods

Alternative interpretation

Barrier problem

min F(w) — 7Y log(H;(w)) = F,(w)
@ - 3 T T - . :
i=1 —0<pu L H(w)>0
251 —Hi(w)p; =7
KKT conditions
N
|
VF(w)—T VH;(w)=0 15} T =0.001
() =73 gy V)
N
Introduce variable p; = H:(w) o5k
Smoothed KKT conditions or
T _ ‘ ‘
VF(w) - VH(’LU) M= 0 08 0 05 1 15 2 25 3
Hi(w)pi =7 )

(H;(w) >0, p; > 0)
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*Primal-dual interior point method

Fix 7, perform Newton iterations

Nonlinear programming problem

Ry(w,s,\, pt) + VR (w,s,\,pn) " Az =0
min F(w)

ith 2 = ) a)‘v
st. Gw)=0 with 2 = (w, 5,4, )

H(w) -5 =0

s>0 Find a € (0,1)

Wt = wf + aAw

Smoothed KKT conditions sPHL = F 1 oAs

R AR Z AR 4 QAN
Bl 800 18) = iy =0 k+1 _  k
T\W, Sy Ay H(w) — S 1 = uF+ OtAlu
diag(s)u — e
(s, ;> 0) such that s*+1 > 0, pk+1 > 0

Reduce 7, and perform next Newton
e=(1,...,1) iterations solve, etc
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Summary Nonlinear Optimization

optimization problem come in many variants (LP, QP, NLP, MPCC, MINLP, OCP, ....)
each problem class be addressed with suitable software

nonlinear MPC needs to solve nonlinear programs (NLP)

Lagrangian function, duality, and KKT conditions are important concepts

for convex problems holds strong duality, KKT conditions sufficient for global optimality

vvyVvyVvVvyyYyy

Newton-type optimization for NLP solves the nonsmooth KKT conditions via Sequential
Quadratic Programming (SQP, e.g. acados) or via Interior Point Method (e.g. ipopt)

v

NLP solvers need to evaluate first and second order derivatives (e.g. via CasADi)
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Where is the great watershed in optimization ?
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Where is the great watershed in optimization ?

My personal opinion:

The great watershed in optimization isn't between convexity and nonconvexity, but between
computer functions that do - or do not - provide derivatives.

Nonlinear Optimization M. Diehl



Some References

» J. Nocedal, S.J. Wright, Numerical optimization. Springer, 2006

> L.T. Biegler, Nonlinear programming: concepts, algorithms, and applications to chemical
processes. SIAM, 2010

» M. Diehl Lecture Notes on Numerical Optimization (draft), 2024

> S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004
» D. Bertsekas. Convex optimization algorithms. Athena Scientific, 2015.

>

S.J. Wright and B. Recht. Optimization for data analysis. Cambridge University Press,
2022

» A. Wachter and L.T. Biegler. "On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming.” Mathematical programming
106.1 (2006): 25-57.

» M. Diehl, S. Gros, Numerical Optimal Control (draft), Chapters 2-5, 2024

Nonlinear Optimization M. Diehl



	Basic definitions
	Some classification of optimization problems
	Optimality conditions
	Nonlinear programming algorithms

