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Continuous-Time Optimal Control Problems (OCP)

Continuous-Time OCP with Ordinary Differential Equation (ODE) Constraints

Jin - fy Le((), u(®) dt + B(x(T))

s.t. x(0) = Zo

Can in most applications assume convexity of all "outer” problem functions: L., E, h,r.
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(More general optimal control problems)

Many features left out here for simplicity of presentation:
» multiple dynamic stages
> differential algebraic equations (DAE) instead of ODE
» explicit time dependence
» constant design parameters

>

multipoint constraints r(x(to), x(t1), ..., (tend)) = 0
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Three Levels of Difficulty in Continuous-Time OCP

Three levels of difficulty:

(a) Linear ODE: f(z,u) = Ax+ Bu (—
. T convex optimization
z(I-I)l,Ln(-) Jo Le(a(®), u®) dt + (D)) (b) Nonlinear smooth O)DE: fect (=
st. x(0) =z nonlinear optimization)
i(t) = fz(t), u(t)) (c) Nonsmooth and Mixed-Integer Dynamics
0 > h(z(t),u(t)), t € [0,T] In the first days of this school, we focus on
0> r(a(T)) cases (a) and (b).
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Numerical Optimal Control

24

ZTo,0 = Zo, At =
vk, = f(@k,j, uk)
Tk = Tho + ALY 02 Ainlkon
Th41,0 = Thyo + ALY 2 byUgn
j=1,...,ns, k=0,....N—1

For fixed controls and initial value: square system with
ng + N(2ns + 1)n, unknowns, implicitly defined via
ng + N(2ns + 1)n, equations.

(trivial eliminations in case of explicit RK methods)
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Direct Methods Transform OCP into Nonlinear Program (NLP)

Continuous time OCP

Jin - fy Le((), u(®) dé + B(a(T))

s.t. z(0) = o

0> h(z(t),u(t)), t € [0,T]
0= r(z(T))

» Direct methods "first discretize,
then optimize”
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Direct Methods Transform OCP into Nonlinear Program (NLP)

. y 1. Parameterize trols, e.g.
Continuous time OCP rameterize contro &
u(t) = up,t € [tn, tni1]-

min [ Lo(2(t), u(t)) dt + B(x(T))

z()u()
s.t. x(0) = Zo
#(t) = f(2(t), u(t))
0> A(z(t),ut)), t € [0,T]
0> r(2(T))

» Direct methods "first discretize,
then optimize”
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Continuous time OCP

min [ Lo(2(t), u(t)) dt + B(x(T))

z()u()
s.t. x(0) = Zo
#(t) = f(2(t), u(t))
0> A(z(t),ut)), t € [0,T]
0> r(2(T))

» Direct methods "first discretize,
then optimize”

Numerical Optimal Control
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. Parameterize controls, e.g.

u(t) = un,t € [tn, tni1]-

. Discretize cost and dynamics

tnt1
La(@m, 2y ) ~ / Le(x(t), u(t)) dt
2%

Replace & = f(z,u) by
Tn+1 = (bf ($n, Zny un)

0= Qbint(xn: Zny un)



Continuous time OCP

min [ Lo(2(t), u(t)) dt + B(x(T))

o(-),u(:)

s.t. x(0) = Zo
#(t) = f(2(t), u(t))
0 > h(z(t),u(t)), t € [0,T]
0> r(2(T))

» Direct methods "first discretize,
then optimize”
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. Parameterize controls, e.g.

u(t) = un,t € [tn, tni1]-

. Discretize cost and dynamics

tnt1
La(@m, 2y ) ~ / Le(x(t), u(t)) dt
2%

Replace & = f(z,u) by
Tn+1 = (bf ($n, Zny un)

0= Qbint(xn: Zny un)

. Also discretize path constraints

02¢h($n,2n,un), n:O,N—l



Direct Methods Transform OCP into Nonlinear Program (NLP)

Discrete time OCP (an NLP)

Continuous time OCP

min Zk . Ld(ﬂck,zhuk)—i-E(ﬂcN)

min fo c(z(t),u(t))dt + E(x(T)) x,z,u
z(:),u() s.t. xTog = X
s.t. x(0) = Zo Tnt1 = Of(Tn, 2, Up)
&(t) = (x(t),u(t)) 0 = Gint (T, 21, Up,)

0> h(z(t),u(t)), t € [0,T] 0> on(Tn, 2n,un), n=0,..., N—1
0> r(z(T)) 0>r(zy)

» Direct methods "first discretize, Variables x = (zg,...,2n), 2= (20, .., 2N)

then optimize” and u = (ug,...,un_1)-

Here, z are the intermediate variables of the
integrator (e.g. Runge-Kutta)
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Simplest Direct Transcription: Single Step Explicit Euler

(not recommended in practice, other Runge-Kutta methods are much more efficient)

Continuous time OCP Single Step Explicit Euler NLP, with At = &

mln fo c(z(t),u(t))dt + E(x(T))

z(-),u(:)
s.t. z(0) =Zo
2(t) = f(2(t), u(t))
0 = h(z(t),u(t)), t €[0,T]
0> r(z(T))

» Direct methods: first discretize,

then optimize

Numerical Optimal Control
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min YN Lo(2g, up) At + E(zy)
s.t. xog =g
Tpt1 = Tp + f(Tn, un) At

0> h(zn,up), n=0,..., N—1
0>r(zn)

Variables x = (z¢,...,2zn) and

u = (uo, cen ,uN_l).

(single step explicit Euler has no internal
integrator variables z)



2nd Simplest Direct Transcription: Midpoint Rule

Continuous time OCP Midpoint Rule NLP, with At = L
T

min ZkN:_Ol Lc(zk,ur) At + E(xy)

X,Z,u
s.t. xog = o
Tnt1 = Tn + f(2n,un) At

xn+xn+1
0=z, — il
- 2
0> h(zn,upn), n=0,...,N—1
0>r(zn)
Variables x = (xq,...,2n), 2 = (20,-..,2N-1),
and u = (ug,...,un—1)-
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Sparse NLP resulting from direct transcription

Discrete time OCP (an NLP)

min S0 0" La(@y, 20, ur) + E(ay)

x,zu
s.t. xg =X
Bl = O (@0 Ziny W)
0 = Gint (T, 2, Un)
0> dn(Tny 2n,un), n=0,...,N—1
0>r(zn)

Variables w = (x,z,u)
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Sparse NLP resulting from direct transcription

Discrete time OCP (an NLP)

min S0 0" La(@y, 20, ur) + E(ay)

oin min F(w)
t. 20== e
s.t. o= To s.t. G(w) =0
Tn+1 = ¢f(xn7 Zny Un) H(w) >0
0 = Ping (Ina Zny un) -
0> ny #Any Un )y =0,...,N-1
> On(Ln; Zn, tn), N Large and sparse NLP
0>r(zn)

Variables w = (x,z,u)
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Sparse NLP resulting from direct transcription

Vi £(w, A, 11)

Nonlinear Program (NLP)
20
VG (w)
vy 10
“'"n;, 60 min F(w)
b2y, wER"=

50 .h"n 80
"o 50 100 100 s.t. G(w) =0
nz =196 H(’U]) Z 0

120

0 50 100

nz =611

Variables w = (x,z,u) Large and sparse NLP
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Simplified Optimal Control Problem in ODE

path constraints h(xz, u) > 0

states = (t) Bl terminal

initial value T
& constraint r(xz(T)) > 0

zQ

controls u(t)

0 t T

Continuous Time Optimal Control Problem

T
minimize /0 L(z(t),u(t)) dt + E(x(T))

2(+),u()
subject to
x(0) — z9 = 0, (fixed initial value)
z(t)—f(x(t),u(t)) =0, tel0,7T], (ODE model)
h(z(t),u(t)) >0, te[0,T], (path constraints)
r(z(T)) >0 (terminal constraints)
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Direct Methods

» “first discretize, then optimize”
> transcribe infinite problem into finite Nonlinear Programming Problem (NLP)

» Pros and Cons:

+ can use state-of-the-art methods for NLP solution
+ can treat inequality constraints and multipoint constraints much easier
- obtains only suboptimal / approximate solution

» nowadays most commonly used methods due to their easy applicability and robustness
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Classification of Direct Optimal Control Methods

Direct methods transform continuous time problem into a nonlinear program (NLP):

» Direct Transcription: all internal integrator variables are kept exposed as NLP variables.
Special cases: direct collocation and pseudospectral methods. (called ”simultaneous
approach”, as simulation and optimization are tackled simultaneously by NLP solver)

» Direct Multiple Shooting: for every control interval, all internal integration steps are
hidden to the NLP. Integration routine is complicated but differentiable function (usually
still called "simultaneous”, or "hybrid approach”)

» Direct Single Shooting: all state variables are eliminated by forward simulation, only the
control parameters are kept as NLP variables. NLP objective and constraints are very long
functions. (called "sequential approach”, as simulation and optimization proceed
sequentially)

» Flatness-based optimal control: in "flat” systems, the states and control inputs can be
obtained from derivatives of a "flat output”. One can then parameterize the flat output as
superposition of smooth basis functions, and formulate an NLP in the space of the basis
coefficients. Similar in performance to simultaneous approaches but limited to flat systems.

Numerical Optimal Control M. Diehl
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Direct Methods: Comparison of Sequential and Simultaneous Approach

We compare two direct methods:
» Direct Single Shooting (sequential simulation and optimization)
» Direct Multiple Shooting (simultaneous simulation and optimization)
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Direct Single Shooting [Hicks1971,Sargent1978]

Discretize controls u(t) on fixed grid 0 =t < ¢1 < ... <ty =T, regard states x(t) on [0, T
as dependent variables.

t o T

Use numerical integration to obtain state as function z(t; ¢) of finitely many control
parameters ¢ = (qo,q1,.-.,qn_1) € RN
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NLP in Direct Single Shooting

After control discretization and numerical ODE solution, obtain NLP:

NLP resulting from Direct Single Shooting

T
minimize / L(z(t; q), u(t; q)) dt + E (z(T; q))
0

qERN 1w
subject to
. . >
h(¢(t” ), u(ti;q)) =0, (discretized path constraints)
1=0,...,N,
r(z(T;q)) > 0. (terminal constraints)

Solve with nonlinear programming solver, e.g. Sequential Quadratic Programming (SQP)
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Solution by Standard SQP

Summarize problem as‘ ming F(q) st. H(g) >0 ‘

Solve e.g. by Sequential Quadratic Programming (SQP), starting with guess ¢° for controls.
k:=0

1. Evaluate F(q*), H(q") by ODE solution, and derivatives
2. Compute correction Ag”* by solution of QP:

minag VF(qr)TAq + %AqTAkAq st. H(¢") +VH(")TAqg>0

3. Perform step ¢"*! = ¢ + A" with step length oy, € (0, 1] determined by line search

Numerical Optimal Control M. Diehl 15/47



ODE Sensitivities

How to compute the sensitivity of a numerical ODE solution z(t; ¢) with respect

dx(t; q)
dq
to the controls ¢g?

many ways, for example:
» External Numerical Differentiation (END)
» Variational Differential Equations
» Automatic Differentiation (AD) of integration code
» Internal Numerical Differentiation (IND)

cf. [Rien Quirynen, Numerical simulation methods for embedded optimization, PhD thesis, KU Leuven
and Freiburg University, 2017]
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Numerical Test Problem

3
minimize / x(t)? + u(t)? dt
0

z(-),u(:)
subject to
z(0) = xo, (initial value)
t=01+z)zr+u, te€]0,3], (ODE model)

1—xz(¢) 0

1+ z(¢) 0

1 —uy| = o] t €1[0,3], (bounds)

14 u(t) 0
x(3) =0. (zero terminal constraint)

Remark: Uncontrollable growth for (1 + xg)zg — 1 > 0 < zy > 0.618.
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Single Shooting Optimization for xy = 0.05

» choose N = 30 equal control intervals

v

initialize with steady state controls u(t) =0

» initial value g = 0.05 is the maximum possible for the problem to be solved by single
shooting, because the initial trajectory explodes otherwise
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Single Shooting: Initialization

u X
o ] 1
O b 4 4
0o ] | ]
S OF 1 1 = °fF
% f ] < 0 ]
S o[ ] <o [ ]
Sr ] Sr ]
"HH\HH\HH’ "HH\HH\HH’
o} 1 2 3 0 1 2 3

t t
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Single Shooting: First Iteration

u X
of ; ol ;
ol ] oL j

N ] oo e ]

o O e T | P i e T e e e A

! ] <ot ]

° o[ i <[ i
S ] S ]
"HH\HH\HH’ "HH\HH\HH’

0 1 2 3 0 1 2 3
t t
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Single Shooting: 2nd Iteration

u X
o o [ ]
IS o f ]

L‘ [ | [ o ]

:}O:—-—i-—‘—”‘—‘ ”””' ]

! <ot ]

° o[ <[ i
S S ]
"HH\HH\HH’ "HH\HH\HH’

0 1 2 3 0 1 2 3
t t
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Single Shooting: 3rd Iteration

u X
o o [ ]
o L O L 4
I T o ]
o O s *‘*‘”%' ]
S0 S0 ]
Z ol o[ ]
S S ]
! Ly ! Ly
0 1 2 3 0 1 2 3

t t
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Single Shooting: 4th lteration

u X
of ; ol ;
ol 1 oL j

A, [ ] | [ ]

Qo___,_‘_d_ﬁ}——"""'r_ﬂ_#—\_ P e e R e e

< T ] <0 1

2 o[ ] o[ ]
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Single Shooting: 5th lteration

u X
ol ; of ]
ol 1 oL 5

A, [ ] | [ ]
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Single Shooting: 6th Iteration

0.5

up(t [-]

=

Numerical Optimal Control

o

M. Diehl

xo() [-]

-0.5

0.5
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Single Shooting: 7th lteration and Solution

u X
0w N w N
o b (@]
— [ —
Lot .
o O [ : o © $6904090PoPSEoE
< N
o r j=}
S ol i
o r — o r —
[ [
[ (.
1 L L 1 1
0 1 2 5 0 1 2 3
t t
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Direct Single Shooting: Pros and Cons

» sequential simulation and optimization.

-+ can use state-of-the-art ODE/DAE solvers

+ few degrees of freedom even for large ODE/DAE systems

+ active set changes easily treated

+ need only initial guess for controls g

- cannot use knowledge of x in initialization (e.g. in tracking problems)
- ODE solution x(t; ¢) can depend very nonlinearly on ¢

- unstable systems difficult to treat

» often used in self-made optimal control codes in engineering applications
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Direct Multiple Shooting [Bock 1984]

» Discretize controls piecewise on a coarse grid
U(t) = q; for te [tiyti+1]
» Solve ODE on each interval [t;, t;+1] numerically, starting with artificial initial value s;:

&i(t; si, i) = f(xi(t;86,¢5),q3), T € [ti,tiga],

xi(ti; 56, qi) = Si-

Obtain trajectory pieces x;(t; S;, qi)-
» Also numerically compute integrals

tita1
li(si, qi) = / L(xi(ts; 8i,q:), qi)dt
¢

i
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Sketch of Direct Multiple Shooting

xi(tig1; 8, 4i) 7 Siv1

s¢” S1 :
To@ | e q :
et 1
e e + !
q0 L E
4ot
to 11 t; tit1 Yt tN
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NLP in Direct Multiple Shooting

N-1
minsir;ﬂze Zli(sia(h) + E(sn)
’ i=0

subject to
so —xo =0, (initial value)
Sit1 — i(tiy1;8i,49i) =0,i=0,...,N =1, (continuity)
h(si,q;) >0,i=0,...,N, (discretized path constraints)
(

r(sn)>0. terminal constraints)
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Multiple Shooting NLP = Discrete Time Optimal Control Problem

Discrete Time Optimal Control Problem Nonlinear Program

iy 3 o)+ ) i (0
st. G(w)=0
s.t. g = Tog H(w) >0
Trr1 = f(Tr, ug)
h(:rk,uk)ZO, k:O,...,N—].
r(zy) >0
summarize all variables as w := (so, qo, S1,¢1,- -, SN)
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Structured Block-Sparse NLP

Nonlinear Program

n}li)n F(w)
st. Gw)=0
H(w) >0

» Jacobian VG(w) T contains linearized dynamic model equations

v

Jacobians and Hessian of NLP are block sparse, can be exploited in numerical solution

> NLPs of single and direct multiple shooting are equivalent (same solutions in control
space)

» but "lifting” of the state variables of multiple shooting reduces the nonlinearity, as

observed by many practitioners and investigated theoretically by [Albersmeyer and Diehl,
The Lifted Newton Method and Its Application to Optimization, SIAM J. Opt., 2010]
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Test Example: Initialization with u(t) =

u X
o ] 1
O b 4 4
0o ] | ]
S OF 1 1 = °fF
% f ] < 0 ]
S o[ ] <o [ ]
Sr ] Sr ]
"HH\HH\HH’ "HH\HH\HH’
o} 1 2 3 0 1 2 3

t t
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Multiple Shooting: First lteration

0.5
e

up(t [-]

-0.5
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xo() [-]
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Multiple Shooting: 2nd lteration

u X
oL ] 0L ]
o L 4 O b 4
— 1 — 1
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Multiple Shooting: 3rd Iteration and Solution

u X
0 N o N
o o

— [ —

Lo L

o O [ : o © $0P0$09080P0P0d G

N <

o r j=}

S ol i
o B o B
| |
| [

! L ‘ ! !
0 1 2 5 0 1 2 3
t t
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Direct Multiple Shooting: Pros and Cons

simultaneous simulation and optimization.
uses adaptive ODE/DAE solvers
but NLP has fixed dimensions

>
+
+
+ can use knowledge of z in initialization (important in online context)
-+ can treat unstable systems well

+ robust handling of path and terminal constraints

+ easy to parallelize

- not as sparse as collocation

» used for practical optimal control in many codes e.g MUSCOD (Bock), HQP
(Franke), MUSCOD-II (Leineweber et al.), ACADO Toolkit (Houska, Ferreau et
al.), acados (Verschueren, Frey, Frison, Kouzoupis, Quirynen et al.), ...
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Dynamic Programming adresses Direct Multiple Shooting Problem

Discrete Time Optimal Control Problem

N—1
1;1151 Z L(zg,ur) + E(znN)
k=0
s.t. xop = o
Tpy1 = f(ar, up)
h(mk,uk)ZO, k:O,...,N—l
r(zy) >0
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Principle of Optimality

Any subarc of an optimal trajectory is also optimal.

intermediate
value T

T

states z(t)

initial
value x

optimal
controls u(t)

0 t T

Subarc on [t, T is optimal solution for initial value Z.
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Dynamic Programming Cost-to-go (discrete time, unconstrained)

IDEA:
» Introduce optimal-cost-to-go function on [k, V]

N-1
Ji(x) = . urilin . Z L(si,u;) + E(sy) st sp==x,...
R ok

» Use principle of optimality on intervals [k, k + 1]:

Ji(xp) = min  L(sg,ar) + Jer1(Sk+1)
SksUk;Sk+1

st. s, =k, Skp1 = f(sk, up)

kE k+1 N
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Dynamic Programming Step

Can simplify
Jk(:l}k) = min L(sk,uk) + Jk+1(8k+1)
Sk sUkSk+1
st. sk =Tk, Skp1 = f(5k, up)

by trivial elimination of sg, siy1 to

Ju(wr) = min L(wg, ur) + Je1 (f (@, ur))

kE k+1 N
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Dynamic Programming Recursion

Iterate backwards, starting from Jy(z) := E(z) for all x € R"=
fork=N-1,N-2,...

Ji(2) = min L(z, u) + Jpia (f (2, u))
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Dynamic Programming Recursion

Iterate backwards, starting from Jy(z) := E(z) for all x € R"=
fork=N-1,N-2,...

Ji(2) = min L(z, u) + Jpia (f (2, u))

In ()

IN
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Dynamic Programming Recursion

Iterate backwards, starting from Jy(z) := E(z) for all x € R"=
fork=N-1,N-2,...

Ji(2) = min L(z, u) + Jpia (f (2, u))

In-1(+) In ()

ITN-1 TN

Numerical Optimal Control M. Diehl 42/47



Dynamic Programming Recursion

Iterate backwards, starting from Jy(z) := E(z) for all x € R"=
fork=N-1,N-2,...

Ji(2) = min L(z, u) + Jpia (f (2, u))

Jo(*) In-1(+) In ()

Zo ITN-1 TN
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The optimal feedback control policy

The optimal feedback control law 7} at time k is defined by
ni() = argmin L(z,u) + Jeor (f(z,u))

These feedback laws together define the optimal feedback control policy (7j,..., 75 _;)
which tells us for any state z at any time index k£ what would be the optimal control action.
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How to obtain optimal trajectories ?

M M * *
The optlma! pollcy (7.1'0, ..., Th_y) allows us to Dt Conal Pean
solve the original optimal control problem.
Starting with z{ := Z(, we simulate the closed
loop system for k =0,1,...,N — 1:

UZ = ﬂ'lt(xlt) s.t. Ty = X (2)
Tipr = [(ag,up) Tr1 = f(Tk, ur),
yielding the optimal trajectories z* = (zf), ..., z%) k=0,...,N-1

and u* = (ug, ..., ul) that solve problem (2).
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How to obtain optimal trajectories ?

M M * *
The opt|ma! pollcy (7.1'0, ..., Th_y) allows us to Dt Conal Pean
solve the original optimal control problem.
Starting with z{ := Z(, we simulate the closed
loop system for k =0,1,...,N — 1:

UZ = ﬂ'lt(xlt) s.t. Ty = X (2)
Tipr = [(ag,up) Trr1 = [Tk, ur),
yielding the optimal trajectories z* = (zf), ..., z%) H= Uy oo =1
and u* = (ug, ..., ul) that solve problem (2).

Note: MPC applies only 75 (3p). The MPC law can be generated in one of three ways:
(a) via dynamic programming,
(b) via online solution of (2) in classical MPC, or
(c) via offline solution of (2) based on parametric programming in explicit MPC.
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Robust Dynamic Programming

Dynamic Programming can straightforwardly be extended to games like chess, or to closed loop
robust min-max optimal control problems, which are not easily treatable with other robust
optimization methods.

Here, in each time step, we first choose the controls uy, but then an adverse player choses
disturbances wy, and both influence the system dynamics xp+1 = f(zk, ug, wi).

Robust DP Recursion
Iterate backwards, from kK = N — 1 down to & = 0, using the robust Bellman equation

Ji(z) = min max ( L(z,w) + Je+1(f(z, v, w)) )

u weW

starting with terminal cost

The only additional effort are the evaluations of the worst-cases in each DP step.
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Optimal Control Family Tree

Dynamic Programming
/ Hamilton-Jacobi-
Bellman Equation:

Tabulation in
State Space

Indirect Methods,
Pontryagin:
Solve Boundary Value
Problem

Direct Methods:
Transform into

Nonlinear Program
(NLP)

)

Direct Single Shooting:
Only discretized
controls in NLP

(sequential)

Direct Collocation:
Discretized controls
and states in NLP
(fully simultaneous)

Direct Multiple Shooting:

Controls and node start
values in NLP
(simultaneous)
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