
Numerical Optimal Control

Moritz Diehl

Systems Control and Optimization Laboratory, University of Freiburg, Germany

Course on Numerical Methods for Nonlinear Optimal Control
NTNU Trondheim

February 16-20, 2026

(slides jointly developed with Armin Nurkanović)

Continuous-Time Optimal Control Problems (OCP)

Continuous-Time OCP with Ordinary Differential Equation (ODE) Constraints

min
x(·),u(·)

∫ T

0
Lc(x(t), u(t)) dt+ E(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T]

0 ≥ r(x(T))

Can in most applications assume convexity of all ”outer” problem functions: Lc, E, h, r.

Numerical Optimal Control M. Diehl 1/47

(More general optimal control problems)

Many features left out here for simplicity of presentation:

I multiple dynamic stages

I differential algebraic equations (DAE) instead of ODE

I explicit time dependence

I constant design parameters

I multipoint constraints r(x(t0), x(t1), . . . , x(tend)) = 0

Numerical Optimal Control M. Diehl 2/47

Three Levels of Difficulty in Continuous-Time OCP

Continuous-Time OCP

min
x(·),u(·)

∫ T

0
Lc(x(t), u(t)) dt+ E(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T]

0 ≥ r(x(T))

Three levels of difficulty:

(a) Linear ODE: f(x, u) = Ax+Bu (→
convex optimization)

(b) Nonlinear smooth ODE: f ∈ C1 (→
nonlinear optimization)

(c) Nonsmooth and Mixed-Integer Dynamics

In the first days of this school, we focus on
cases (a) and (b).

Numerical Optimal Control M. Diehl 3/47

Recall: Runge-Kutta Discretization for Ordinary Differential Equations

Ordinary Differential Equation (ODE)

ẋ(t) = f(x(t), u(t))︸ ︷︷ ︸
=:v(t)

Initial Value Problem (IVP)

x(0) = x̄0

v(t) = f(x(t), u(t))

ẋ(t) = v(t)

t ∈ [0, T]

Discretization: N Runge-Kutta steps of each ns stages

x0,0 = x̄0, ∆t = T
N

vk,j = f(xk,j , uk)

xk,j = xk,0 + ∆t
∑ns

n=1 ajnvk,n

xk+1,0 = xk,0 + ∆t
∑ns

n=1 bnvk,n

j = 1, . . . , ns, k = 0, . . . , N − 1

For fixed controls and initial value: square system with
nx +N(2ns + 1)nx unknowns, implicitly defined via
nx +N(2ns + 1)nx equations.
(trivial eliminations in case of explicit RK methods)

Numerical Optimal Control M. Diehl 4/47

Direct Methods Transform OCP into Nonlinear Program (NLP)

Continuous time OCP

min
x(·),u(·)

∫ T

0
Lc(x(t), u(t)) dt+ E(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T]

0 ≥ r(x(T))

I Direct methods ”first discretize,
then optimize”

1. Parameterize controls, e.g.
u(t) = un, t ∈ [tn, tn+1].

2. Discretize cost and dynamics

Ld(xn, zk, un) ≈
∫ tn+1

tn

Lc(x(t), u(t)) dt

Replace ẋ = f(x, u) by

xn+1 = φf (xn, zn, un)

0 = φint(xn, zn, un)
3. Also discretize path constraints

0 ≥ φh(xn, zn, un), n = 0, . . . N − 1.

Numerical Optimal Control M. Diehl 5/47

Direct Methods Transform OCP into Nonlinear Program (NLP)

Continuous time OCP

min
x(·),u(·)

∫ T

0
Lc(x(t), u(t)) dt+ E(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T]

0 ≥ r(x(T))

I Direct methods ”first discretize,
then optimize”

1. Parameterize controls, e.g.
u(t) = un, t ∈ [tn, tn+1].

2. Discretize cost and dynamics

Ld(xn, zk, un) ≈
∫ tn+1

tn

Lc(x(t), u(t)) dt

Replace ẋ = f(x, u) by

xn+1 = φf (xn, zn, un)

0 = φint(xn, zn, un)
3. Also discretize path constraints

0 ≥ φh(xn, zn, un), n = 0, . . . N − 1.

Numerical Optimal Control M. Diehl 5/47

Direct Methods Transform OCP into Nonlinear Program (NLP)

Continuous time OCP

min
x(·),u(·)

∫ T

0
Lc(x(t), u(t)) dt+ E(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T]

0 ≥ r(x(T))

I Direct methods ”first discretize,
then optimize”

1. Parameterize controls, e.g.
u(t) = un, t ∈ [tn, tn+1].

2. Discretize cost and dynamics

Ld(xn, zk, un) ≈
∫ tn+1

tn

Lc(x(t), u(t)) dt

Replace ẋ = f(x, u) by

xn+1 = φf (xn, zn, un)

0 = φint(xn, zn, un)

3. Also discretize path constraints

0 ≥ φh(xn, zn, un), n = 0, . . . N − 1.

Numerical Optimal Control M. Diehl 5/47

Direct Methods Transform OCP into Nonlinear Program (NLP)

Continuous time OCP

min
x(·),u(·)

∫ T

0
Lc(x(t), u(t)) dt+ E(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T]

0 ≥ r(x(T))

I Direct methods ”first discretize,
then optimize”

1. Parameterize controls, e.g.
u(t) = un, t ∈ [tn, tn+1].

2. Discretize cost and dynamics

Ld(xn, zk, un) ≈
∫ tn+1

tn

Lc(x(t), u(t)) dt

Replace ẋ = f(x, u) by

xn+1 = φf (xn, zn, un)

0 = φint(xn, zn, un)
3. Also discretize path constraints

0 ≥ φh(xn, zn, un), n = 0, . . . N − 1.

Numerical Optimal Control M. Diehl 5/47

Direct Methods Transform OCP into Nonlinear Program (NLP)

Continuous time OCP

min
x(·),u(·)

∫ T

0
Lc(x(t), u(t)) dt+ E(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T]

0 ≥ r(x(T))

I Direct methods ”first discretize,
then optimize”

1. Parameterize controls, e.g.
u(t) = un, t ∈ [tn, tn+1].

2. Discretize cost and dynamics

Ld(xn, zk, un) ≈
∫ tn+1

tn

Lc(x(t), u(t)) dt

Replace ẋ = f(x, u) by

xn+1 = φf (xn, zn, un)

0 = φint(xn, zn, un)
3. Also discretize path constraints

0 ≥ φh(xn, zn, un), n = 0, . . . N − 1.

Discrete time OCP (an NLP)

min
x,z,u

∑N−1
k=0 Ld(xk, zk, uk) + E(xN)

s.t. x0 = x̄0

xn+1 = φf (xn, zn, un)

0 = φint(xn, zn, un)

0 ≥ φh(xn, zn, un), n = 0, . . . , N−1

0 ≥ r(xN)

Variables x = (x0, . . . , xN), z = (z0, . . . , zN)
and u = (u0, . . . , uN−1).
Here, z are the intermediate variables of the
integrator (e.g. Runge-Kutta)

Numerical Optimal Control M. Diehl 5/47

Simplest Direct Transcription: Single Step Explicit Euler
(not recommended in practice, other Runge-Kutta methods are much more efficient)

Continuous time OCP

min
x(·),u(·)

∫ T

0
Lc(x(t), u(t)) dt+ E(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T]

0 ≥ r(x(T))

I Direct methods: first discretize,
then optimize

Single Step Explicit Euler NLP, with ∆t = T
N

min
x,u

∑N−1
k=0 Lc(xk, uk)∆t+ E(xN)

s.t. x0 = x̄0

xn+1 = xn + f(xn, un)∆t

0 ≥ h(xn, un), n = 0, . . . , N−1

0 ≥ r(xN)

Variables x = (x0, . . . , xN) and
u = (u0, . . . , uN−1).
(single step explicit Euler has no internal
integrator variables z)

Numerical Optimal Control M. Diehl 6/47

2nd Simplest Direct Transcription: Midpoint Rule

Continuous time OCP

min
x(·),u(·)

∫ T

0
Lc(x(t), u(t)) dt+ E(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T]

0 ≥ r(x(T))

Midpoint Rule NLP, with ∆t = T
N

min
x,z,u

∑N−1
k=0 Lc(zk, uk)∆t+ E(xN)

s.t. x0 = x̄0

xn+1 = xn + f(zn, un)∆t

0 = zn −
xn + xn+1

2
0 ≥ h(zn, un), n = 0, . . . , N−1

0 ≥ r(xN)

Variables x = (x0, . . . , xN), z = (z0, . . . , zN−1),
and u = (u0, . . . , uN−1).

Numerical Optimal Control M. Diehl 7/47

Sparse NLP resulting from direct transcription

Discrete time OCP (an NLP)

min
x,z,u

∑N−1
k=0 Ld(xk, zn, uk) + E(xN)

s.t. x0 = x̄0

xn+1 = φf (xn, zn, un)

0 = φint(xn, zn, un)

0 ≥ φh(xn, zn, un), n = 0, . . . , N−1

0 ≥ r(xN)

Variables w = (x, z,u)

Numerical Optimal Control M. Diehl 8/47

Sparse NLP resulting from direct transcription

Discrete time OCP (an NLP)

min
x,z,u

∑N−1
k=0 Ld(xk, zn, uk) + E(xN)

s.t. x0 = x̄0

xn+1 = φf (xn, zn, un)

0 = φint(xn, zn, un)

0 ≥ φh(xn, zn, un), n = 0, . . . , N−1

0 ≥ r(xN)

Variables w = (x, z,u)

Nonlinear Program (NLP)

min
w∈Rnx

F (w)

s.t. G(w) = 0

H(w) ≥ 0

Large and sparse NLP

Numerical Optimal Control M. Diehl 8/47

Sparse NLP resulting from direct transcription

0 50 100

nz = 611

0

20

40

60

80

100

120

r2
wwL(w;6;7)

0 50 100

nz = 196

0

50

rwG(w)

Variables w = (x, z,u)

Nonlinear Program (NLP)

min
w∈Rnx

F (w)

s.t. G(w) = 0

H(w) ≥ 0

Large and sparse NLP

Numerical Optimal Control M. Diehl 8/47

Simplified Optimal Control Problem in ODE

terminal

constraint r(x(T)) ≥ 0

6
path constraints h(x, u) ≥ 0

initial value
x0 r states x(t)

controls u(t)

-p
0 t

p
T

Continuous Time Optimal Control Problem

minimize
x(·),u(·)

∫ T

0

L(x(t), u(t)) dt + E (x(T))

subject to

x(0)− x0 = 0, (fixed initial value)

ẋ(t)−f(x(t), u(t)) = 0, t ∈ [0, T], (ODE model)

h(x(t), u(t)) ≥ 0, t ∈ [0, T], (path constraints)

r (x(T)) ≥ 0 (terminal constraints)

Numerical Optimal Control M. Diehl 9/47

Direct Methods

I “first discretize, then optimize”

I transcribe infinite problem into finite Nonlinear Programming Problem (NLP)
I Pros and Cons:

+ can use state-of-the-art methods for NLP solution
+ can treat inequality constraints and multipoint constraints much easier
- obtains only suboptimal / approximate solution

I nowadays most commonly used methods due to their easy applicability and robustness

Numerical Optimal Control M. Diehl 10/47

Classification of Direct Optimal Control Methods

Direct methods transform continuous time problem into a nonlinear program (NLP):

I Direct Transcription: all internal integrator variables are kept exposed as NLP variables.
Special cases: direct collocation and pseudospectral methods. (called ”simultaneous
approach”, as simulation and optimization are tackled simultaneously by NLP solver)

I Direct Multiple Shooting: for every control interval, all internal integration steps are
hidden to the NLP. Integration routine is complicated but differentiable function (usually
still called ”simultaneous”, or ”hybrid approach”)

I Direct Single Shooting: all state variables are eliminated by forward simulation, only the
control parameters are kept as NLP variables. NLP objective and constraints are very long
functions. (called ”sequential approach”, as simulation and optimization proceed
sequentially)

I Flatness-based optimal control: in ”flat” systems, the states and control inputs can be
obtained from derivatives of a ”flat output”. One can then parameterize the flat output as
superposition of smooth basis functions, and formulate an NLP in the space of the basis
coefficients. Similar in performance to simultaneous approaches but limited to flat systems.

Numerical Optimal Control M. Diehl 11/47

Direct Methods: Comparison of Sequential and Simultaneous Approach

We compare two direct methods:

I Direct Single Shooting (sequential simulation and optimization)

I Direct Multiple Shooting (simultaneous simulation and optimization)

Numerical Optimal Control M. Diehl 12/47

Direct Single Shooting [Hicks1971,Sargent1978]

Discretize controls u(t) on fixed grid 0 = t0 < t1 < . . . < tN = T, regard states x(t) on [0, T]
as dependent variables.

6

x0 r states x(t; q)

discretized controls u(t; q)

q0

q1

qN−1 -p
0 t

p
T

Use numerical integration to obtain state as function x(t; q) of finitely many control
parameters q = (q0, q1, . . . , qN−1) ∈ RN ·nu

Numerical Optimal Control M. Diehl 13/47

NLP in Direct Single Shooting

After control discretization and numerical ODE solution, obtain NLP:

NLP resulting from Direct Single Shooting

minimize
q∈RN·nu

∫ T

0

L(x(t; q), u(t; q)) dt+ E (x(T ; q))

subject to

h(x(ti; q), u(ti; q)) ≥ 0,
i = 0, . . . , N,

(discretized path constraints)

r (x(T ; q)) ≥ 0. (terminal constraints)

Solve with nonlinear programming solver, e.g. Sequential Quadratic Programming (SQP)

Numerical Optimal Control M. Diehl 14/47

Solution by Standard SQP

Summarize problem as minq F (q) s.t. H(q) ≥ 0

Solve e.g. by Sequential Quadratic Programming (SQP), starting with guess q0 for controls.
k := 0

1. Evaluate F (qk), H(qk) by ODE solution, and derivatives

2. Compute correction ∆qk by solution of QP:

min∆q∇F (qk)T ∆q + 1
2∆qTAk∆q s.t. H(qk) +∇H(qk)T ∆q ≥ 0

3. Perform step qk+1 = qk + αk∆qk with step length αk ∈ (0, 1] determined by line search

Numerical Optimal Control M. Diehl 15/47

ODE Sensitivities

How to compute the sensitivity
∂x(t; q)

∂q
of a numerical ODE solution x(t; q) with respect

to the controls q?

many ways, for example:

I External Numerical Differentiation (END)

I Variational Differential Equations

I Automatic Differentiation (AD) of integration code

I Internal Numerical Differentiation (IND)

cf. [Rien Quirynen, Numerical simulation methods for embedded optimization, PhD thesis, KU Leuven

and Freiburg University, 2017]

Numerical Optimal Control M. Diehl 16/47

Numerical Test Problem

minimize
x(·),u(·)

∫ 3

0

x(t)2 + u(t)2 dt

subject to

x(0) = x0, (initial value)

ẋ =(1 + x)x+ u, t ∈ [0, 3], (ODE model)
1− x(t)
1 + x(t)
1− u(t)
1 + u(t)

 ≥


0
0
0
0

 , t ∈ [0, 3], (bounds)

x(3) = 0. (zero terminal constraint)

Remark: Uncontrollable growth for (1 + x0)x0 − 1 ≥ 0⇔ x0 ≥ 0.618.

Numerical Optimal Control M. Diehl 17/47

Single Shooting Optimization for x0 = 0.05

I choose N = 30 equal control intervals

I initialize with steady state controls u(t) ≡ 0

I initial value x0 = 0.05 is the maximum possible for the problem to be solved by single
shooting, because the initial trajectory explodes otherwise

Numerical Optimal Control M. Diehl 18/47

Single Shooting: Initialization

Numerical Optimal Control M. Diehl 19/47

Single Shooting: First Iteration

Numerical Optimal Control M. Diehl 20/47

Single Shooting: 2nd Iteration

Numerical Optimal Control M. Diehl 21/47

Single Shooting: 3rd Iteration

Numerical Optimal Control M. Diehl 22/47

Single Shooting: 4th Iteration

Numerical Optimal Control M. Diehl 23/47

Single Shooting: 5th Iteration

Numerical Optimal Control M. Diehl 24/47

Single Shooting: 6th Iteration

Numerical Optimal Control M. Diehl 25/47

Single Shooting: 7th Iteration and Solution

Numerical Optimal Control M. Diehl 26/47

Direct Single Shooting: Pros and Cons

I sequential simulation and optimization.

+ can use state-of-the-art ODE/DAE solvers

+ few degrees of freedom even for large ODE/DAE systems

+ active set changes easily treated

+ need only initial guess for controls q

- cannot use knowledge of x in initialization (e.g. in tracking problems)

- ODE solution x(t; q) can depend very nonlinearly on q

- unstable systems difficult to treat

I often used in self-made optimal control codes in engineering applications

Numerical Optimal Control M. Diehl 27/47

Direct Multiple Shooting [Bock 1984]

I Discretize controls piecewise on a coarse grid

u(t) = qi for t ∈ [ti, ti+1]

I Solve ODE on each interval [ti, ti+1] numerically, starting with artificial initial value si:

ẋi(t; si, qi) = f(xi(t; si, qi), qi), t ∈ [ti, ti+1],

xi(ti; si, qi) = si.

Obtain trajectory pieces xi(t; si, qi).

I Also numerically compute integrals

li(si, qi) :=

∫ ti+1

ti

L(xi(ti; si, qi), qi)dt

Numerical Optimal Control M. Diehl 28/47

Sketch of Direct Multiple Shooting

r r r r r
6

s0 s1

si si+1

xi(ti+1; si, qi) 6= si+1

@
@R r r r r r

6

qix0 fr
-q

t0

q0 q
t1

q q
ti

q
ti+1

q q
tN−1

r sN−1

q
tN

r sN

Numerical Optimal Control M. Diehl 29/47

NLP in Direct Multiple Shooting

q q q q q q q q q q6

bq
-p p p p p p p

q
p
q

minimize
s,q

N−1∑
i=0

li(si, qi) + E (sN)

subject to

s0 − x0 = 0, (initial value)

si+1 − xi(ti+1; si, qi) = 0, i = 0, . . . , N − 1, (continuity)

h(si, qi) ≥ 0, i = 0, . . . , N, (discretized path constraints)

r (sN) ≥ 0. (terminal constraints)

Numerical Optimal Control M. Diehl 30/47

Multiple Shooting NLP = Discrete Time Optimal Control Problem

Discrete Time Optimal Control Problem

min
x,u

N−1∑
k=0

L(xk, uk) + E(xN)

s.t. x0 = x̄0

xk+1 = f(xk, uk)

h(xk, uk) ≥ 0, k = 0, . . . , N−1

r (xN) ≥ 0

summarize all variables as w := (s0, q0, s1, q1, . . . , sN)

Nonlinear Program

min
w

F (w)

s.t. G(w) = 0

H(w) ≥ 0

Numerical Optimal Control M. Diehl 31/47

Structured Block-Sparse NLP

Nonlinear Program

min
w

F (w)

s.t. G(w) = 0

H(w) ≥ 0

I Jacobian ∇G(w)> contains linearized dynamic model equations

I Jacobians and Hessian of NLP are block sparse, can be exploited in numerical solution

I NLPs of single and direct multiple shooting are equivalent (same solutions in control
space)

I but ”lifting” of the state variables of multiple shooting reduces the nonlinearity, as
observed by many practitioners and investigated theoretically by [Albersmeyer and Diehl,
The Lifted Newton Method and Its Application to Optimization, SIAM J. Opt., 2010]

Numerical Optimal Control M. Diehl 32/47

Test Example: Initialization with u(t) ≡ 0

Numerical Optimal Control M. Diehl 33/47

Multiple Shooting: First Iteration

Numerical Optimal Control M. Diehl 34/47

Multiple Shooting: 2nd Iteration

Numerical Optimal Control M. Diehl 35/47

Multiple Shooting: 3rd Iteration and Solution

Numerical Optimal Control M. Diehl 36/47

Direct Multiple Shooting: Pros and Cons

I simultaneous simulation and optimization.

+ uses adaptive ODE/DAE solvers

+ but NLP has fixed dimensions

+ can use knowledge of x in initialization (important in online context)

+ can treat unstable systems well

+ robust handling of path and terminal constraints

+ easy to parallelize

- not as sparse as collocation

I used for practical optimal control in many codes e.g MUSCOD (Bock), HQP
(Franke), MUSCOD-II (Leineweber et al.), ACADO Toolkit (Houska, Ferreau et
al.), acados (Verschueren, Frey, Frison, Kouzoupis, Quirynen et al.), ...

Numerical Optimal Control M. Diehl 37/47

Dynamic Programming adresses Direct Multiple Shooting Problem

Discrete Time Optimal Control Problem

min
x,u

N−1∑
k=0

L(xk, uk) + E(xN)

s.t. x0 = x̄0

xk+1 = f(xk, uk)

h(xk, uk) ≥ 0, k = 0, . . . , N−1

r (xN) ≥ 0

Numerical Optimal Control M. Diehl 38/47

Principle of Optimality

Any subarc of an optimal trajectory is also optimal.

6

intermediate
value x̄s

initial
value x0

s
states x(t)

optimal
controls u(t)

-p
0 t̄

p
T

Subarc on [t̄, T] is optimal solution for initial value x̄.

Numerical Optimal Control M. Diehl 39/47

Dynamic Programming Cost-to-go (discrete time, unconstrained)

IDEA:

I Introduce optimal-cost-to-go function on [k,N]

Jk(x) := min
sk,uk,...,sN

N−1∑
i=k

L(si, ui) + E (sN) s.t. sk = x, . . .

I Use principle of optimality on intervals [k, k + 1]:

Jk(xk) = min
sk,uk,sk+1

L(sk, ak) + Jk+1(sk+1)

s.t. sk = xk, sk+1 = f(sk, uk)

xkr xk+1r
-

k+1k
p
N

Numerical Optimal Control M. Diehl 40/47

Dynamic Programming Step

Can simplify

Jk(xk) = min
sk,uk,sk+1

L(sk, uk) + Jk+1(sk+1)

s.t. sk = xk, sk+1 = f(sk, uk)

by trivial elimination of sk, sk+1 to

Jk(xk) = min
uk

L(xk, uk) + Jk+1(f(xk, uk))

xkr xk+1r
-

k+1k
p
N

Numerical Optimal Control M. Diehl 41/47

Dynamic Programming Recursion

Iterate backwards, starting from JN (x) := E(x) for all x ∈ Rnx

for k = N − 1, N − 2, . . .

Jk(x) = min
u
L(x, u) + Jk+1(f(x, u))

@
@@R

6

JN (·)

xN

@
@@R

6

JN−1(·)

xN−1

· · ·

@
@@R

6

J0(·)

x0

Numerical Optimal Control M. Diehl 42/47

Dynamic Programming Recursion

Iterate backwards, starting from JN (x) := E(x) for all x ∈ Rnx

for k = N − 1, N − 2, . . .

Jk(x) = min
u
L(x, u) + Jk+1(f(x, u))

@
@@R

6

JN (·)

xN

@
@@R

6

JN−1(·)

xN−1

· · ·

@
@@R

6

J0(·)

x0

Numerical Optimal Control M. Diehl 42/47

Dynamic Programming Recursion

Iterate backwards, starting from JN (x) := E(x) for all x ∈ Rnx

for k = N − 1, N − 2, . . .

Jk(x) = min
u
L(x, u) + Jk+1(f(x, u))

@
@@R

6

JN (·)

xN

@
@@R

6

JN−1(·)

xN−1

· · ·

@
@@R

6

J0(·)

x0

Numerical Optimal Control M. Diehl 42/47

Dynamic Programming Recursion

Iterate backwards, starting from JN (x) := E(x) for all x ∈ Rnx

for k = N − 1, N − 2, . . .

Jk(x) = min
u
L(x, u) + Jk+1(f(x, u))

@
@@R

6

JN (·)

xN

@
@@R

6

JN−1(·)

xN−1

· · ·

@
@@R

6

J0(·)

x0

Numerical Optimal Control M. Diehl 42/47

The optimal feedback control policy

The optimal feedback control law π∗k at time k is defined by

π∗k(x) := arg min
u

L(x, u) + Jk+1(f(x, u))

These feedback laws together define the optimal feedback control policy (π∗0 , . . . , π
∗
N−1)

which tells us for any state x at any time index k what would be the optimal control action.

Numerical Optimal Control M. Diehl 43/47

How to obtain optimal trajectories ?

The optimal policy (π∗0 , . . . , π
∗
N−1) allows us to

solve the original optimal control problem.

Starting with x∗0 := x̄0, we simulate the closed
loop system for k = 0, 1, . . . , N − 1:

u∗k := π∗k(x∗k)

x∗k+1 := f(x∗k, u
∗
k)

yielding the optimal trajectories x∗ = (x∗0, . . . , x
∗
N)

and u∗ = (u∗0, . . . , u
∗
N) that solve problem (2).

Optimal Control Problem

min
x,u

N−1∑
k=0

L(xk, uk) + E(xN)

s.t. x0 = x̄0

xk+1 = f(xk, uk),

k = 0, . . . , N−1

(2)

Note: MPC applies only π∗0(s̄0). The MPC law can be generated in one of three ways:
(a) via dynamic programming,
(b) via online solution of (2) in classical MPC, or
(c) via offline solution of (2) based on parametric programming in explicit MPC.

Numerical Optimal Control M. Diehl 44/47

How to obtain optimal trajectories ?

The optimal policy (π∗0 , . . . , π
∗
N−1) allows us to

solve the original optimal control problem.

Starting with x∗0 := x̄0, we simulate the closed
loop system for k = 0, 1, . . . , N − 1:

u∗k := π∗k(x∗k)

x∗k+1 := f(x∗k, u
∗
k)

yielding the optimal trajectories x∗ = (x∗0, . . . , x
∗
N)

and u∗ = (u∗0, . . . , u
∗
N) that solve problem (2).

Optimal Control Problem

min
x,u

N−1∑
k=0

L(xk, uk) + E(xN)

s.t. x0 = x̄0

xk+1 = f(xk, uk),

k = 0, . . . , N−1

(2)

Note: MPC applies only π∗0(s̄0). The MPC law can be generated in one of three ways:
(a) via dynamic programming,
(b) via online solution of (2) in classical MPC, or
(c) via offline solution of (2) based on parametric programming in explicit MPC.

Numerical Optimal Control M. Diehl 44/47

Robust Dynamic Programming

Dynamic Programming can straightforwardly be extended to games like chess, or to closed loop
robust min-max optimal control problems, which are not easily treatable with other robust
optimization methods.

Here, in each time step, we first choose the controls uk, but then an adverse player choses
disturbances wk, and both influence the system dynamics xk+1 = f(xk, uk, wk).

Robust DP Recursion

Iterate backwards, from k = N − 1 down to k = 0, using the robust Bellman equation

Jk(x) = min
u

max
w∈W

(L(x, u) + Jk+1(f(x, u, w)))

starting with terminal cost
JN (x) = E(x)

The only additional effort are the evaluations of the worst-cases in each DP step.

Numerical Optimal Control M. Diehl 45/47

Optimal Control Family Tree

(((((((((((((((((((((

�����������

�
�
�
�

Dynamic Programming
/ Hamilton-Jacobi-
Bellman Equation:

Tabulation in
State Space

Indirect Methods,
Pontryagin:

Solve Boundary Value
Problem

Direct Methods:
Transform into

Nonlinear Program
(NLP)

((((((((((((((((((((((

�����������

�
�
�
�

Direct Single Shooting:
Only discretized
controls in NLP
(sequential)

Direct Collocation:
Discretized controls
and states in NLP
(fully simultaneous)

Direct Multiple Shooting:
Controls and node start

values in NLP
(simultaneous)

Numerical Optimal Control M. Diehl 46/47

Literature

I J.B. Rawlings, D.Q. Mayne & M. Diehl. Model predictive control: theory, computation, and
design (2nd Edition). Nob Hill Publishing, 2024

I L.T. Biegler, Nonlinear programming: concepts, algorithms, and applications to chemical
processes. SIAM, 2010

I Diehl, M., Ferreau, H. J., & Haverbeke, N. (2009). Efficient numerical methods for nonlinear
MPC and moving horizon estimation. In Nonlinear model predictive control: towards new
challenging applications (pp. 391-417), Springer, 2009

I M. Diehl, S. Gros, Numerical Optimal Control (draft), 2025

I J. T. Betts: Practical Methods for Optimal Control Using Nonlinear Programming. SIAM,
Philadelphia, 2001. ISBN 0-89871-488-5

I A. E. Bryson and Y. C. Ho: Applied Optimal Control, Hemisphere/Wiley, 1975.

I Dimitri P. Bertsekas: Dynamic Programming and Optimal Control. Athena Scientific (2001)

I Dimitri P. Bertsekas: Lessons from AlphaZero for Optimal, Model Predictive, and Adaptive
Control. Athena Scientific (2022).

I J. Björnberg and M. Diehl: Approximate robust dynamic programming and robustly stable MPC.
Automatica (2006)

I R. Verschueren, et al. ”acados—a modular open-source framework for fast embedded optimal
control.” Mathematical Programming Computation 14.1 (2022): 147-183.

Numerical Optimal Control M. Diehl 47/47

