Exercise 3: Zero-order robust NMPC with acados
Florian Messerer, Jonathan Frey, Moritz Diehl

In this exercise, we implement and ellipsoidal tube OCP as well as a multistage OCP for a simple robot
model. The aim is to drive a robot from its starting position psart to a goal position piarget While robustly
avoiding an obstacle.

The state of the robot is given by = = (p«, py, 0, v,w), where py, py parametrize the 2D-position of the
center of the robot, 6 is the heading angle, v the forward velocity and w the angular velocity. The controls
u = (a,a) are the forward acceleration a and angular acceleration ov. We assume that both the forward
acceleration as well as the angular acceleration are subject to additive disturbances w = (wg,, w,) yielding
the ODE

Py = vcosb, (1a)
Dy = vsinb, (1b)
0 = w, (1c)
V= a -+ 0qWg, (1d)
(le)

W=« -+ o,W,q

with o4, 0, determining the scaling of the disturbances. This allows us to consider the unit sphere for
the values of wy, wy € £(0,I). We discretize the continuous-time system using one step of an explicit
Runge-Kutta integrator of order 4 on an integration interval of length h = 0.35, with piecewise constant
controls and disturbances to obtain the discrete-time dynamics

Tpt1 = f(@k, ug, w). (2)

As stage and terminal cost we use
l(l‘, u) = 'YZHuber (p - ptarget) + UTRU7 (33)
lN(x) = 'VNlHuber(p - ptarget) + 7—'027 (?’b)

with p = (px, py), weights R, 7, yn, 7, and where the pseudohuber loss lgyber(p) = v/p'p + 1 behaves like
a quadratic function near the origin and like the unsquared 2-norm for larger values. This yields a smooth
tracking behavior near the target position while proportionally penalizing larger distances.

The constraints include upper and lower bounds on the controls, bounds on the position, as well as an
obstacle avoidance constraints,

Umin < U < Umax, (4&)
Pmin S D (4b)
Tobs < HC - pobSHZv (4C)

where rg,s denotes the radius of the obstacle and pg its center.



The nominal OCP, which we obtain by setting wy = 0 for Kk =0,..., N — 1, takes the form

N-1
min Z Ue(Zr, ug) + In(ZN) (ba)

T, U =0
s.t. To = To, (5b)
jk+1 :fk(£k7ﬁk70)7 k‘:O,...,N—l, (5C)
Oth(Ekﬂk): k=0,...,N—1, (5d)
0> hn(Zn), (5¢)

with u = (’ao,...,ﬂN_l), T = ({f‘o,...,i’N).

Recall that the nonlinear ellipsoidal tube OCP is given as

N—-1
;gf%i,np kz_o I (Zr, g) + Iy (ZN) (6a)
s.t. To = Zo, (Gb)
Py =0, (6¢)
ZTrp+1 = [r(ZTk, Uk, 0), k=0,...,N—1, (6d)
Py :wk(fk,ﬂk,Pk), k=0,...,N—1, (66)
0> hk(fk,ﬁk)—i-bk(@k,ﬂk,Pk), k=0,...,N—1, (6f)
0> hn(TN)+bn(ZN, PN)- (6g)

The main idea of the zero-order robust NMPC algorithm!® (zoRO) is to fix the disturbance ellipsoids within
one optimization iteration and only update the trajectory of disturbance ellipsoids outside the OCP.

In this exercise we only consider a very simple MPC problem, with a fixed reference point.
For a more elaborate implementation, with time-varying reference tracking, including the gener-
ation of a reference trajectory alongside a given path, see https://github.com/acados/acados/
blob/main/examples/acados_python/zoR0O_example/diff_drive, which corresponds to the folder
acados/examples/acados_python/zoR0_example/diff drive in your local acados clone. The details of
this implementation are described in Gao20232.

A side remark on the Generalized Gauss Newton (GGN) Hessian approzimation (not necessary to read to
solve the exercise, but helps to understand how the stage cost is set in acados): Recall that the stage and
terminal cost functions are given as

l(x7 u) = 'YZHuber (P - ptarget) + UTRU, (73)
IN () = YN luber(P — Prarget) + 707 (7h)

Both have a “convex-over-nonlinear” structure, 1)(F(z)), where we call ¥ (-) the “outer convexity” and F'(+)
the “inner nonlinearity”. The stage cost can be written in this form by considering z = (x,u), F(z) = Sz,
with S € R**(me+nu) g selector matrix which selects the entries py, Dy, U1, uz from z (i.e., the entries which
actually enter the stage cost). Note that in this case, F' is not actually nonlinear, but it could be in general.
The outer convexity is then given as ¢(y) = Ylruber (1, Y2) — Drarget) + (U3, ¥a) T R (y3,y4), with y = F(2).
For problems with this “convex-over-nonlinear” structure, we can use, e.g., the Generalized Gauss Newton

(GGN) Hessian approximation. For more details, see3.
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Tasks

1. First consider the file main_ocp.py. Here, solve the initial OCP with both IPOPT and zoRO, in
order to compare the two solutions. Complete the zoRO solver found in solver_zoro_acados.py
such that you are able to run main_ocp.py. Note that we split the inequality constraints into box
constraints on the states and controls as well as nonlinear constraints. Take a moment to compare
the two resulting trajectories.

2. Now consider main mpc.py. Take a moment to familiarize yourself with the code, and run it. How
does the resulting trajectory compare to the initial OCP prediction?

3. In the previous simulation, all disturbance values were set to 0. Look for the TODO in main mpc.py
and play around with the disturbance scaling.

4. The above MPC setting was fairly simple. If you are interested, take a look at the more elaborate
path following zoRO mentioned above.



