

Exercise 2: Numerical Optimal Control and NMPC with CasADi + IPOPT and acados

Jonathan Frey, Jingtao Xiong, Moritz Diehl

In this exercise, we again consider the nonlinear continuous stirred-tank reactor (CSTR).¹

An irreversible, first-order reaction $A \rightarrow B$ occurs in the liquid phase and the reactor temperature is regulated with external cooling. Mass and energy balances lead to the following nonlinear model:

$$\begin{aligned}\dot{c} &= \frac{F_0(c_0 - c)}{\pi r^2 h} - k_0 \exp\left(-\frac{E}{RT}\right) c \\ \dot{T} &= \frac{F_0(T_0 - T)}{\pi r^2 h} - \frac{\Delta H}{\rho C_p} k_0 \exp\left(-\frac{E}{RT}\right) c + \frac{2U}{r \rho C_p} (T_c - T) \\ \dot{h} &= \frac{F_0 - F}{\pi r^2}\end{aligned}$$

with states $x = (c, T, h)$ where c is the concentration of substance A , T is the reactor temperature and h is the height. The controls $u = (T_c, F)$ are the coolant liquid temperature T_c and the outlet flowrate F .

Description of closed-loop simulation environment

- The `main.py` file is prepared to simulate the closed-loop system with `acados` and plot the trajectories.
- The file `cstr_model.py` defines the model equations stated above with values for all the parameter values.
- The file `setup_acados_integrator.py` uses this model to generate an `AcadosSimSolver` instance which we use as our plant model.

¹The example as well as the figure have been adopted from Example 1.11 in J. B. Rawlings, D. Q. Mayne, and M. M. Diehl. *Model Predictive Control: Theory, Computation, and Design*. Nob Hill, 2nd edition, 2017.

Exercises

Uncontrolled simulation:

- Simulate the system with a constant reference control input.

Exact NMPC with acados

- Set `with_nmpc = True` in `main.py` to create an `AcadosOcpSolver` and run it in a closed loop simulation.

Note: check how the OCP is formulated using the `acados` interface using the `AcadosOcp` object. In comparison to the plain `CasADI` formulation from exercise 1, the multiple shooting discretization is done by the framework and does not need to be done by the user.

Exact NMPC with CasADI and IPOPT using the `AcadosCasadiOcpSolver`

IPOPT is a very reliable solver for nonlinear programming (NLP) formulations. It is the most widely used solver in `CasADI`, and known to be very robust. IPOPT tackles general sparse formulations. In contrast `acados` exploits the structure of optimal control problems.

The `AcadosCasadiOcpSolver` class allows one to formulate OCPs with the `acados` interface and use solvers interfaced with `CasADI`. Through the `AcadosCasadiOcpSolver`, one can interact with those solver, similar to the `AcadosOcpSolver`. This is very useful for prototyping, comparisons etc. See also Bonus exercise 2.

- Set `with_nmpc_ipopt = True` in `main.py` to also create an `AcadosCasadiOcpSolver`.
- Set `with_timevar_ref_nmpc = True` and `with_timevar_ref_nmpc_ipopt = True` to enable time varying references in a closed loop simulation. How is this done?
- Compare the trajectories without time-varying references to the one from the previous exercise, and also compare both trajectories (with and without time-varying references) along with the solvers' computation times.

Approximate and fast MPC

- Set `with_linear_mpc = True` in `main.py` to create an `AcadosOcpSolver` with a model linearized at the steady state.
- Set `with_nmpc_rti = True` in `main.py` to create an `AcadosOcpSolver` that uses the real-time iteration (RTI) algorithm. This algorithm performs one SQP iteration at each sampling time.
- Compare the resulting closed loop trajectories and the runtime of their controllers.

Bonus exercise 1: NMPC with model plant mismatch

- Note that the model parameter F_0 is implemented as a parameter in the `AcadosModel`.
- Task: Introduce a mismatch between the OCP model and the plant, by increasing F_0 in the OCP model by 5%. How well are the references tracked?

Bonus exercise 2: Differences between NLP solvers and warm starting

For this exercise the template `bonus_warm_start.py` is provided.

- Regard the first OCP of the closed-loop simulation. Solve it with the `AcadosCasadiOcpSolver` and `AcadosOcpSolver`.
- Compare the solutions. Can they be different if the problem is the same?

- Initialize the solver with the solution of the other. Is the IPOPT solution a solution for the `acados` solver?
- And vice versa?