Industrial Practice of Wind Turbine Control

Prof. Dr.-Ing. Jens Geisler June 23, 2020

Agenda

- Setting the Scope and a bit of History
- Requirements for Modern Wind Turbines
- Control System Hardware
- Control System Software Architecture
- Development Process
- Future Developments

Setting the Scope and a bit of History

The Predominant Commercial Turbine Type

- Horizontal axis wind turbine (HAWT)
- Three blades
- Upwind
- With and without gearbox
- Electric generator
 - Permanent magnet, synchronous
 - Doubly-fed induction
 - Asynchronous
- Active Converter

(Source: © 2000 Nordex)

The Ancestor of modern HAWTs

- Wind powered machinery known for millennia
- 1887 first turbine to produce electricity
- The Gedser turbine: prototype for the "Danish Model"
 - 1957 by Johannes Juul
 - 200kW
- Mixed developments followed
- Smaller, mass-produced turbines prevailed
- Evolution in small increments led to today's very uniform turbine design

(Source: Elektrizitätsmuseum, Bjerringbro)

No Controller Necessary

- Size and technology evolved together
- Control was mostly mechanical or inherent
 - Stall regulated rotor power
 - Implicit torque-speed curve of asynchronous generator
 - Electro-mechanical yaw alignment
 - Aerodynamic tip breaks
- Simplicity and a fail-safe design were drivers of the economic success

(Source: Jahobr / CC0 2015)

Requirements for Modern Wind Turbines

Harvesting Wind

Hochschule Flensburg University of Applied Sciences

- Partial load (generator control)
 - Minimum wind necessary to startup
 - Variable speed for optimal harvesting
 - Maximum speed for economic design
- Full load (blade angle control)
 - Too much wind must not be harvested
 - Extreme wind shutdown
- Transition region critical
- Alignment of rotor perpendicular to wind
- Every 0.1% of annual energy production (AEP) counts
- Wind is unknown
- Turbulence is not always the same

(Source: Burton, Wind Energy Handbook)

(Source: Hau, Windkraftanlagen)

Load Reduction

Hochschule Flensburg University of Applied Sciences

- Wind is the reference and the main disturbance
- Torque always goes along with thrust
- All components are affected
- Fatigue loads
 - Eigenoscillations
 - Stochastic excitation
 - Rotational sampling
 - Adversarial control action
- Extreme loads
 - Hard to predict but fatal
 - Rare, thus conservative avoidance uneconomical
 - Component faults

(Source:S. Fischer, CC-BY-SA)

Grid Support

- Voltage support
 - Large reactive power capability is
 - standard requirement
 - in conflict with active power production
- Frequency stability
 - Over-frequency requires power reduction
 - Under-frequency requires power increase
- Resilience
 - Frequency deviations
 - Voltage drops (Fault Ride Through)

(Source: Stefan Riepl / Vector: Mrmw / CC0)

Environmental Aspects

Outbound

- Sound and noise immissions
- Bat protection
- Radar interference
- Aircraft warning vs. light emission

Inbound

- Temperature variations
- Icing of the blades
- Sand, dust and rain
- Terrain, wind-direction and turbine wake
- General interaction within a wind farm

(Source:DOI: 10.1016/j.rser.2016.06.080)

(Source: Mora, 2017: A Transition from ...)

Added Values

Hochschule Flensburg University of Applied Sciences

- HMI, remote access, user roles
- Standardized communication and control interfaces
- Parameter / variant management
- Current and history of events
- Fault and prefault detection and identification
- Condition monitoring
- Data collection
- Data and statistics visualization
- Data aggregation

(Source: sielcosistemi.wordpress.com)

(Source: seebo.com)

Control System Hardware

Actuators

Hochschule Flensburg University of Applied Sciences

- Individual blade pitch drives
 - DC motors
 - Hydraulic
- Machine-side and grid-side inverter
- Breaks, breaking chopper
- Yaw drives
- Cooling fans and pumps
- Blade heating
 - Hot air
 - Heating foil
- (Semi-) active tower dampers
- Noise canceling speakers
- House load and UPS

(Source: Hau, Windkraftanlagen)

Sensors

Wind and air

- Anemometer
- Wind vane
- Temperature
- Rain, mist, icing, lightning

Drive train

- Speed, several, redundant
- Blade, rotor and yaw position
- Electrical torque
- Tower acceleration
- Blade bending

(Source: Getty Images)

Sensors

Grid

- Voltage
- Frequency
- Active and reactive power
- Harmonics

Components

- Temperatures
- Vibrations
- Voltage
- Currents
- Activation, end-stops

(Source: wolfspeed.com)

16

Processors

Main PLC

- Main control loop(s) up to ~10Hz
- SCADA
- Component control (fans, pumps, etc.)
- HMI, Parameters, Events
- Communication

Inverter controller

- Machine-side, grid-side
- High-level control
- Independent HMI
- Pulse-generation

(Source: Hau, Windkraftanlagen)

Processors

Hochschule Flensburg University of Applied Sciences

- Hub controller
 - Blade position control
 - Battery management
 - Independent safety-functions
- Safety Logic Controller (SLC)
 - (Partial) replacement of safety-chain
 - Tamper-proofing
- Semi-active components, e.g. UPS
- Additional instrumentation, e.g. LIDAR
- Wind farm controller

(Source: Hau, Windkraftanlagen)

(Source: Bachmann)

Additional Equipment

Hochschule Flensburg University of Applied Sciences

- Safety-chain
- Mechanical vibration switches
- Communication Equipment
 - Switches, WiFi
 - Fiber connectors
 - 4G
 - Special purpose grid operator protocols
- Circuit breakers
- Power meters
- Physical access control
- Cameras
- Local HMI, operating panels

(Source: nordseeone.com)

(Source: betonbau.com)

Control System Software Architecture

Main PLC

Communication interfaces

Measurements

Operations control

Set-points and limits

Operation state machine

Components control

Supervision

Parameter management

Logging

Interfaces

Component

Set-points and limits

Measurements

Control loop(s)

Feedback control

Power and loads

Self-sufficient

Torque and blade pitch control

Closed Loop Control

Hochschule Flensburg University of Applied Sciences

- Drive train over actuated
- Pitch and torque limited to mutually exclusive regions

Many Added Functions for Loads

- Power and speed reductions according to reference
- Drive train damping via torque
- Tower damping
 - Longitudinal (fore-aft)
 - Lateral (side-side)
 - Via pitch and/or torque
- Individual Pitch control (IPC)
 - Reduce excitation from inhomogeneous wind field
 - Support yawing
- Gust mitigation
- Blade tip clearance
- Avoid resonances at certain speeds

(Source: Hau, Windkraftanlagen)

... for the Grid and the Environment

Grid

- Low voltage ride through (LVRT)
- Additional power boost for short duration
 - Partial load: power from kinetic energy of rotor
 - Full load: power from wind via pitching in
- Fast active power regulation into and out of curtailments
- Keep active power steady or follow linear ramps
- High wind ride through

Environment

- Noise reduction: special speed profile
- Avoidance of gear box resonance

Development Process

Closed Loop Engineering

- New turbine types
- New functions / features
- Parameter tuning / adaption
- Pre-studies
- Internal consulting
- Planning
- Field support
- Model improvements
- Research projects

Closed Loop Engineering

- Requirements analysis and shaping
- Function specifications
- Development in Simulink
- Co-simulation with special model
- Validation
- Hand coding + auto-code, integration
- Parameter definition
- Documentation, internal and external
- Testing
- Certification
- Series maintenance

"Loads and Controls"

Operations control

- Cross functional communication
- Specification of functions
- Testing
- Prototype commissioning
- Automation (software coding)
- Sensor specialists
- Wind farm controller

Load analysis and certification

- Massive time domain simulations
- Design Load Cases (DLC)
- Comparison against component limits
- Approx. 10,000 time series à 10 Min.
- Approx. 200GB data
- Aerodynamics, blade design
- Grid operator models

Messzeitraum (MEZ):	26.10.2006 (17:00) - 30.03.2007 (10:30)		
		Messgenauigkeit	
Ausgewerteter Windrichtungssektor:	189° - 251° und 343° - 18°	bzgl. Leistungsmessung:	18.25 kW
Windmessung / Nabenhöhe:	97.5 m	bzgl. Anemometerkalibration: Thies 1 st Class 4.3350.10.000	0.1 m/s
Referenz-Luftdichte:	1.225 kg/m³	bzgl, Luftdichtebestimmung:	0.4 %

Abweichungen gegenüber der Richtlinie Keine Abweichungen von der Richtlinie.

Leistungskurve entsprechend "Technischer Richtlinie"

Gemessene Leistungskurve bei Referenzluftdichte 1.225 kg/m³; dargestellt sind nur vollständige Bins (mindestens drei Werte).

Dieser Auszug aus dem Prüfbericht enthält 2 Seiten.

(Source: Hau, Windkraftanlagen)

Future Developments

Standardization vs. Diversification

- Trend towards commercial owners
 - Bigger wind farms, esp. off-shore
 - More money for economics of scale
- Highly competitive market
 - Pressure for cost-saving
 - Consolidation of manufacturers
 - vs.
 - Continuously evolving technology
 - Highly specialized project configuration
- Wind is a very locally diverse and volatile resource
- Adaptive and self-learning technologies to the rescue?

(Source: Hau, Windkraftanlagen)

Smarter is better

- Adaption to use every power reserve
 - Turbulence
 - Temperature
 - Grid condition
 - Life time loads
- Learning from others
 - Big (fleet) Data
 - Automatic tuning and calibration
- Improved health
 - Predictive maintenance
 - Digital twin

(Source: windpowerengineering.com)

(Source: GE)

From Power Source to Power Plant

- 100% renewable energy is not possible
- (Without storage)
- The simplest form of storage is over-capacity
- No individual turbines, only power plants
- Or virtual power plants
- Coordination of capacities and possibly also consumers
- Paradigm change from "all you can harvest" to "what the market needs"
- More flexible distribution of life time vs energy

(Source: lifeboat.com)

(Source: nawindpower.com)

Thanks for listening

Prof. Dr.-Ing. Jens

Flensburg University of Applied Sciences https://hs-flensburg.de/hochschule/personen/geisler