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Overview Constrained Optimization

! Necessary Optimality Conditions (KKT-conditions) 

! Newton-type methods for equality constrained optimisation 

! How to treat inequalites? (example: Interior Point Methods)



Nonlinear Programming

f  objective function / cost function 
g  equality constraints 
h  inequality constraints 

f,g,h shall be smooth (twice differentiable) functions

!General problem formulation:

General Nonlinear Program (NLP)

Nonlinear Program (NLP)

min

x

f(x) s.t.

⇢
g(x) = 0

h(x) � 0

First treat case without inequalities:

min

x

f(x) s.t.

g(x) = 0
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contour lines of f(x)

gradient vector

unconstrained minimum: 

Recall: ball on a spring without constraints
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Now: ball on a spring with constraints

constrained minimum: 

Lagrange multiplier

inactive constraint h2

03:)(
01:)(

)(min

212

211

≥+−=

≥++=

xxxh
xxxh
xf

)()( *
11

* xhxf ∇=∇ µ

gradient  ∇h1 of active constraint



Ball on a spring with two active constraints

„equilibrium of forces“

„constraint forces“
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Multipliers as „shadow prices“

What happens if we relax a constraint? 
Feasible set becomes bigger, 
so new minimum f(xε*) becomes smaller. 
How much would we gain? 

old constraint:  h(x) ≥ 0 
new constraint: h(x) + ε  ≥ 0 

Multipliers show the hidden cost 
of constraints.
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The Lagrangian Function

! equality multipliers λi may have both signs in a solution 
! inequality multipliers µi cannot be negative (cf. shadow prices) 
! for inactive constraints, multipliers µi  are zero 

“Equilibrium of forces” can now be written as: 

For constrained problems, introduce modification of objective function:
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Karush-Kuhn-Tucker (KKT) conditions: 

If x* a local minimum, then 

!   x* feasible, i.e.,                            and  

!   there exist λ*, µ* such that 

!                      

!  and  
 
(i.e.,  µi*= 0  or  hi (x*)= 0  for each i )

Necessary optimality conditions
Optimality Conditions with Inequalities

THEOREM(Karush-Kuhn-Tucker (KKT) conditions) For an optimal
solution x

⇤ exist multipliers �⇤ and µ

⇤ such that

r
x

L(x⇤
,�

⇤
, µ

⇤
) = 0

g(x

⇤
) = 0

h(x

⇤
)  0

µ

⇤ � 0

h(x

⇤
)

>
µ

⇤
= 0

Last three conditions are called “complementarity conditions”. System is
non-smooth and cannot be directly be solved by Newton’s Method.
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Overview Constrained Optimization

! Necessary Optimality Conditions (KKT-conditions) 

! Newton-type methods for equality constrained optimisation 

! How to treat inequalites? (example: Interior Point Methods)
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IPOPT: an Interior Point Optimization Algorithm
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Abstract. We present a primal-dual interior-point algorithm with a filter line-search method for nonlinear
programming. Local and global convergence properties of this method were analyzed in previous work. Here
we provide a comprehensive description of the algorithm, including the feasibility restoration phase for the fil-
ter method, second-order corrections, and inertia correction of the KKT matrix. Heuristics are also considered
that allow faster performance. This method has been implemented in the IPOPT code, which we demonstrate
in a detailed numerical study based on 954 problems from the CUTEr test set. An evaluation is made of several
line-search options, and a comparison is provided with two state-of-the-art interior-point codes for nonlinear
programming.

Key words. Nonlinear programming – Nonconvex constrained optimization – Filter method – Line search –
Interior-point method – Barrier method

1. Introduction

Growing interest in efficient optimization methods has led to the development of
interior-point or barrier methods for large-scale nonlinear programming. In particu-
lar, these methods provide an attractive alternative to active set strategies in handling
problems with large numbers of inequality constraints. Over the past 15 years, there has
also been a better understanding of the convergence properties of interior-point meth-
ods [16] and efficient algorithms have been developed with desirable global and local
convergence properties.

To allow convergence from poor starting points, interior-point methods, in both
trust region and line-search frameworks, have been developed that use exact penalty
merit functions to enforce progress toward the solution [2, 21, 29]. On the other hand,
Fletcher and Leyffer [14] recently proposed filter methods, offering an alternative to
merit functions, as a tool to guarantee global convergence in algorithms for nonlinear
programming. The underlying concept is that trial points are accepted if they improve
the objective function or improve the constraint violation instead of a combination of
those two measures defined by a merit function.

More recently, this filter approach has been adapted to barrier methods in a number
of ways. M. Ulbrich, S. Ulbrich, and Vicente [22] consider a trust region filter method
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CasADi optimisation environment
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Abstract We present CasADi, an open-source software framework for numerical
optimization. CasADi is a general-purpose tool that can be used model and solve op-
timization problems with a large degree of flexibility, larger than what is associated
with traditional algebraic modeling languages such as AMPL or GAMS. Of spe-
cial interest are problems constrained by differential equations, i.e. optimal control
problems. CasADi is written in self-contained C++, but is most conveniently used
via full-featured interfaces to Python or MATLAB/Octave. Since its inception in late
2009, it has been used successfully for academic teaching as well as in applications
from multiple fields, including process control, robotics and aerospace. This presen-
tation intends to give an up-to-date accessible introduction to the framework, which
has undergone numerous design iterations over the years.
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CasADi: A Symbolic Package for Automatic
Differentiation and Optimal Control

Joel Andersson, Johan Åkesson, and Moritz Diehl

Abstract We present CasADi, a free, open-source software tool for fast, yet
efficient solution of nonlinear optimization problems in general and dynamic
optimization problems in particular. To the developer of algorithms for numerical
optimization and to the advanced user of such algorithms, it offers a level of
abstraction which is notably lower, and hence more flexible, than that of algebraic
modeling languages such as AMPL or GAMS, but higher than working with a
conventional automatic differentiation (AD) tool.
CasADi is best described as a minimalistic computer algebra system (CAS) imple-
menting automatic differentiation in eight different flavors. Similar to algebraic
modeling languages, it includes high-level interfaces to state-of-the-art numeri-
cal codes for nonlinear programming, quadratic programming and integration of
differential-algebraic equations. CasADi is implemented in self-contained C++ code
and contains full-featured front-ends to Python and Octave for rapid prototyping. In
this paper, we present the AD framework of CasADi and benchmark the tool against
AMPL for a set of nonlinear programming problems from the CUTEr test suite.

Keywords Automatic differentiation • Dynamic optimization • Optimal control •
Nonlinear programming • Source code transformation • Operator overloading •
C++ • Python • Octave
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Summary 

! Lagrangian function plays important role in constrained optimization 

! KKT conditions are necessary optimality conditions 

! Newton-type methods try to find a KKT point by successive linearizations 

! Inequality constraints can be addressed by Interior Point (IP) methods, 
e.g. in IPOPT code 

! Derivatives of problem functions can be automatically provided e.g. by 
CasADi optimisation environment


