

Introduction to Unconstrained Newton-Type Optimization

Angelika Altmann-Dieses

Faculty of Management Science and Engineering Karlsruhe University of Applied Sciences

Moritz Diehl

Department of Microsystems Engineering (IMTEK) and Department of Mathematics University of Freiburg

(some slide material was provided by W. Bangerth and K. Mombaur)

Aim of Newton type optimization algorithms

$\min f(x) \quad (x \in \mathbb{R}^n)$

• Find a local minimizer x^* of f(x), i.e. a point satisfying

$$\nabla f(x^*)=0$$

Derivative based algorithms

• Fundamental underlying structure of most algorithms:

• Optimization algorithms differ in the choice of p und α

Basic algorithm:

Search direction:

choose descent direction (f should be decreased)

Step length:

solve1-d minimization approximately, satisfy Armijo condition

Computation of step length

- Dream:
 - exact line search: $\alpha^{k} = \arg\min_{\alpha} f(x^{k} + \alpha p^{k})$
- In practice:
 - inexact line search: $\alpha^k \approx \arg \min f(x^k + \alpha p^k)$
 - ensure sufficient decrease, e.g. Armijo condition

How to compute search direction?

• We discuss three algorithms:

- Steepest descent method
- Newton's method
- general Newton-type methods

Algorithm 1: Steepest descent method

• Based on first order Taylor series approximation of objective function

$$f(x_k + p_k) = f(x_k) + \nabla f(x_k)^T p_k + \dots$$

• maximum descent, if

$$\frac{\nabla f(x_k)^T p_k}{||p_k||} \rightarrow \min!$$

$$\Rightarrow p_k = -\nabla f(x_k)$$

Steepest descent method

Choose steepest descent search direction, perform (exact) line search:

$$p^{k} = -\nabla f(x^{k}) \qquad x^{k+1} = x^{k} - \alpha^{k} \nabla f(x^{k})$$

search direction is perpendicular to level sets of f(x)

Convergence of steepest descent method

steepest descent method has linear convergence

i.e.
$$||x^k - x^*|| \le C ||x^{k-1} - x^*||$$

- gain is a fixed factor C<1</p>
- convergence can be very slow if C close to 1

If $f(x) = x^T A x$, A positive definite, λ denotes eigenvalues of A, one can show that

$$\Rightarrow C \approx \frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}}$$

Example - steepest descent method

$$f(x, y) = \sqrt[4]{(x - y^2)^2 + \frac{1}{100}} + \frac{1}{100}y^2$$

banana valley function, global minimum at x=y=0

Example - steepest descent method

Convergence of steepest descent method:

- needs almost 35.000 iterations to come closer than 0.1 to the solution
- mean value of convergence constant C: 0.99995
- at (x=4,y=2), there holds

$$\lambda_1 = 0.1, \lambda_2 = 268 \implies C \approx \frac{268 - 0.1}{268 + 0.1} \approx 0.9993$$

Algorithm 2: Newton's method

• Based on **second order** Taylor series approximation of f(x)

$$f(x_{k} + p_{k}) = f(x_{k}) + \nabla f(x_{k})^{T} p_{k} + \frac{1}{2} p_{k}^{T} \nabla^{2} f(x_{k}) p_{k} + \dots$$
$$\nabla f(x_{k})^{T} p_{k} + \frac{1}{2} p_{k}^{T} \nabla^{2} f(x_{k}) p_{k} \to \min!$$

$$\Leftrightarrow \quad \nabla^2 f(x_k) \ p_k = -\nabla f(x_k)$$

"Newton-Direction" $p_k = -(\nabla^2 f(x_k))^{-1} \nabla f(x_k)$

Visualization of Newton's method

p_k minimizes quadratic approximation of the objective

$$Q(p^{k}) = f(x^{k}) + \nabla f(x^{k})p^{k} + \frac{1}{2}p^{k^{T}}\nabla^{2}f(x^{k})p^{k}$$

if quadratic model is good, then take full step with $\alpha^k = 1$

Convergence of Newton's method

Newton's method has quadratic convergence

$$\|\mathbf{e}. \| \| x^{k} - x^{*} \| \leq C \| x^{k-1} - x^{*} \|^{2}$$

This is *very fast* close to a solution:

Correct digits double in each iteration!

Example - Newton's method

Example - Newton's method

Convergence of Newton's method:

- Iess than 25 iterations for an accuracy of better than 10⁻⁷!
- convergence roughly *linear* for first 15-20 iterations since step length $\alpha_k \neq 1$
- convergence roughly *quadratic* for last iterations with step length

 $\alpha_k = 1$

Comparison of steepest descent and Newton

For banana valley example:

- Newton's method much faster than steepest descent method (factor 1000)
- Newton's method superior due to higher order of convergence
- steepest descent method converges too slowly for practical applications

Generalization to Newton-type methods

In practice, evaluation of second derivatives for the Hessian can be difficult

- → approximate Hessian matrix $\nabla^2 f(x^k)$
- → often methods ensure that the approximation B_k is positive definite

 $x^{k+1} = x^k - B_k^{-1} \nabla f(x^k)$ $B_k \approx \nabla^2 f(x^k)$

All these methods (including the previous ones) are collectively known as *Newton-type methods*

Newton-type variants

• Steepest Descent:

$$B_k = I$$

Convergence rate: linear

Newton's Method:

$$B_k = \nabla^2 f(x^k)$$

Convergence rate: quadratic

Newton-type variants (continued)

• **BFGS** quasi-Newton update formula (Broyden, Fletcher, Goldfarb, Shanno)

$$B_{k+1} = B_k - \frac{B_k s s^T B_k}{s^T B_k s} + \frac{y y^T}{s^T y}$$

with $s = x_{k+1} - x_k$, and $y = \nabla f(x_{k+1}) - \nabla f(x_k)$ convergence rate: super-linear

• For Least-Squares Problems: Gauss-Newton Method $f(x) = \frac{1}{2} ||F(x)||^2 \quad J(x) = \frac{\partial F(x)^T}{\partial x}$ $B_k = J(x^k)^T J(x^k)$

convergence rate: linear

Summary of Newton-type optimization (unconstrained)

- Aim: find **local minima** of smooth nonlinear problems: $\nabla f(x^*)=0$
- Derivative based methods iterate $x_{i+1} = x_i + \alpha_i p_i$ with
 - search direction \textbf{p}_{i} and step length α_{i} .
 - start at initial guess x₀,
- Four examples of Newton-type methods:
 - steepest descent: intuitive, but slow linear convergence
 - exact Newton's method: very fast quadratic convergence
 - BFGS: fast superlinear convergence
 - Gauss-Newton (only for least-squares): fast linear convergence