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Aim of Newton type optimization algorithms

! Find a local minimizer x* of  f(x), i.e. a point satisfying 

    ∇f(x*)=0 
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! Fundamental underlying structure of most algorithms: 

• choose start value x0 

• for i=1, ......: 

• determine direction of search (descent) p 

• determine step length α  

• new iterate x i+1 = xi + α p 

• check convergence 

! Optimization algorithms differ in the choice of p und α

Derivative based algorithms



Basic algorithm: 

Search direction: 
choose descent direction 
(f should be decreased)

Step length:  
solve1-d minimization approximately, 
satisfy Armijo condition



Computation of step length

! Dream:  
• exact line search: 

! In practice:  
• inexact line search:  
• ensure sufficient decrease, e.g. Armijo condition
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How to compute search direction?

! We discuss three algorithms: 
• Steepest descent method 
• Newton‘s method 
• general Newton-type methods



Algorithm 1: Steepest descent method

! Based on first order Taylor series approximation of objective function 

• maximum descent, if 

 



Choose steepest descent search direction, perform (exact) line search: 

search direction is perpendicular to level sets of f(x) 
 

 

Steepest descent method
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Gradient direction



Convergence of steepest descent method

steepest descent method has linear convergence
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! gain is a fixed factor C<1 
! convergence can be very slow 

if C close to 1

If f(x) = xTAx, A positive definite, λ denotes 
eigenvalues of A, one can show that
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Example - steepest descent method
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banana valley function, 
global minimum at x=y=0



Example - steepest descent method

Convergence of steepest descent method: 
! needs almost 35.000 iterations to come closer than 0.1 to the solution 
! mean value of convergence constant C: 0.99995 
! at (x=4,y=2), there holds
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Algorithm 2: Newton‘s method

! Based on second order Taylor series approximation of f(x) 

 „Newton-Direction“



pk minimizes quadratic approximation of the objective

Visualization of Newton‘s method
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Gradient direction

Newton direction

if quadratic model is 
good, then take full  
step with αk

 =1 



Convergence of Newton‘s method

Newton‘s method has quadratic convergence 

This is very fast close to a solution:  

   Correct digits double in each iteration!

i.e. 2*1* xxCxx kk −≤− − 



Example - Newton‘s method

banana valley function, 
global minimum at x=y=0
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Example - Newton‘s method

Convergence of Newton‘s method: 
! less than 25 iterations for an accuracy of better than 10-7! 
! convergence roughly linear for first 15-20 iterations since step 

length 
! convergence roughly quadratic for last iterations with step length
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Comparison of steepest descent and Newton

For banana valley example: 
! Newton‘s method much faster than steepest descent method (factor 

1000) 
! Newton‘s method superior due to higher order of convergence 
! steepest descent method converges too slowly for practical applications
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Generalization to Newton-type methods

In practice, evaluation of second derivatives 
for the Hessian can be difficult
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All these methods (including the previous ones) are 
collectively known as Newton-type methods

➔ approximate Hessian matrix ∇2f(xk)  
➔ often methods ensure that the approximation  Bk is positive 

definite



   

! Steepest Descent: 

Convergence rate: linear 

! Newton’s Method: 

Convergence rate: quadratic

Newton-type variants



Newton-type variants (continued)

! BFGS quasi-Newton update formula (Broyden, Fletcher, Goldfarb, Shanno) 

with                                    and      
convergence rate: super-linear 

! For Least-Squares Problems:   Gauss-Newton Method 

convergence rate: linear
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d) Quasi-Newton methods: Approximate Hessian B
k+1

from knowledge of B
k

and rf(x
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the so called “secant condition”.
As an example, consider the BFGS-formula:
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with s and y defined as:
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We easily check that B
k+1

s = y. The BFGS method is a very successful method, and it can
be shown that B

k

! r2f(x⇤).

e) Inexact Newton: Solve the linear system
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inexactly, e.g. by iterative linear algebra. This approach is good for large scale problems.
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Summary of Newton-type optimization (unconstrained)

! Aim: find local minima of smooth nonlinear problems: ∇f(x*)=0   

! Derivative based methods iterate x i+1 = xi + αi pi with  
• search direction pi and step length αi . 
• start at initial guess x0 ,  

! Four examples of Newton-type methods: 
• steepest descent: intuitive, but slow linear convergence 
• exact Newton‘s method: very fast quadratic convergence 
• BFGS: fast superlinear convergence 
• Gauss-Newton (only for least-squares): fast linear convergence


