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A Sequential Convex Programming Approach to
Solving Quadratic Programs and Optimal
Control Problems With Linear
Complementarity Constraints

Jonas Hall™', Armin Nurkanovi¢

Abstract—Mathematical programs with complementarity
constraints are notoriously difficult to solve due to their
nonconvexity and lack of constraint qualifications in
every feasible point. This letter focuses on the sub-
class of quadratic programs with linear complementarity
constraints. A novel approach to solving a penalty reformu-
lation using sequential convex programming and a homo-
topy on the penalty parameter is introduced. Linearizing
the necessarily nonconvex penalty function yields convex
quadratic subproblems, which have a constant Hessian
matrix throughout all iterates. This allows solution compu-
tation with a single KKT matrix factorization. Furthermore, a
globalization scheme is introduced in which the underlying
merit function is minimized analytically, and guarantee of
descent is provided at each iterate. The algorithmic features
and possible computational speedups are illustrated in a
numerical experiment.

Index Terms—Mathematical programming, quadratic pro-
gramming, algorithm design and analysis, optimal control.

|. INTRODUCTION

INEAR Complementarity Quadratic Programs (LCQP)
are quadratic programs with additional complementarity
constraints. The complementarity conditions consist of
inequality constraints, imposing nonnegativity of the
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complementary pairs, and a bi-linear equality constraint
imposing orthogonality. In order to formalize this, consider
an n-dimensional input space with n¢ complementarity con-
straints. Let L, R € R"¢*" be the linear input transformations
selecting the complementarity pairs. Then a general LCQP
can be written as

1

LCQP: minimize —x Qx+g'x (1a)
xeRn 2

subject to 0 < Ax — b, (1b)

0<Lx 1L Rx=0, (lc)

where 0 < Q e R™", g e R", A € R"™*" and b € R"™. The
complementarity constraint (Ic¢) is a compact notation for

0<Lx
0<Rx
0=x"L"Rx.

An illustrative example is depicted in Figure 1. These prob-
lems are particularly difficult to solve due to their nonconvex-
ity and nonsmoothness of the feasible set. Moreover, standard
constraint qualifications such as the Linear Independence
Constraint Qualification (LICQ) or the weaker Mangasarian-
Fromovitz constraint qualification are violated at every fea-
sible point [1, Proposition 1.1]. Thus, it is very difficulty
to numerically solve (1) directly, as the multipliers are
unbounded and the constraint Jacobian matrices are degener-
ate. Generalizations of (1) with nonlinear functions are known
as Mathematical Programs with Complementarity Constraints
(MPCC). These problems have received a lot of attention and
many solution strategies have been proposed, many of which
are included in the survey [2].

One popular approach to reformulate an MPCC into a
less degenerate Non-Linear Program (NLP) is to remove the
bi-linear term from the constraint and penalize its violation
in the objective. Convergence and solution equivalence of
the two approaches have been studied for example in [4].
This approach is further adapted to an interior point strategy
in [5]. Similar penalty reformulations can be found in [6],
and a more generic form in [7]. Instead of penalizing the
bi-linear term, authors have suggested to replace (lc) with
nonlinear complementarity functions, which vanish exactly on
the complementarity set. A popular example is the Fisher-
Burmeister function [8] and adaptations of it [9]. MPCCs

OSLrLR\‘20<:>| (2)
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An illustrative LCQP with Q =
L = (1,0),and R = (0,1), as originally presented in [3]. The feasible set
is depicted by the solid black line. This example contains two strongly
stationary points located at (0, 1) and (1, 0) (which are local minima),
and one weaker (Clarke-)stationary point at the origin (which is a local
maximum).

2lp, g =

have also been solved as nonlinear programs by replacing the
complementarity product with an inequality constraint [10],
or with (in)equality regularization schemes [4]. All these
approaches lead to solving NLPs where constraint qualifi-
cations are satisfied. Usually a sequence of relaxed prob-
lems must be solved to recover a solution of the initial
MPCC [4], [5]. Their limits in applications to direct optimal
control have been shown in [11].

MPCCs appear in a wide range of applications in engineer-
ing, economics and science. An extensive list of applications
is presented in [12]. Typical applications in mechanics appear
in the context of friction problems or with impacts of rigid
bodies [13]. Many of the MPCC examples appear as LCQPs,
e.g.,in [14] or [15].

Other authors have focused on this subclass before. An
analysis of C-stationary points using homotopy approaches is
provided in [16]. They also appear in the form of subproblems,
when nonlinear programs with linear complementarity con-
straints are solved with a sequential quadratic programming
approach [17]. LCQPs are also addressed as Mixed-Integer
Quadratic Programs (MIQP), for example in a combination
with the Benders scheme in [18] or using branch-and-bound
techniques [19]. Similar to the approach presented here, the
latter exploits linear algebra structures by reusing a factorized
matrix. MIQP methods can be advantageous in some cases,
in particular due to their ability of finding global solutions.
However, their relaxations are weak which might result in
large search trees and they are thus limited to formulations
without too many integer variables [20].

The contribution of this letter is the introduction of a novel
algorithm for solving LCQPs. The solution strategy is based
on an existing penalty reformulation, which is solved with a
Sequential Convex Programming (SCP) approach. Each iterate
within the convex programming loop is shown to reduce the

merit function. The according step length is controlled by an
analytical globalization scheme, which minimizes the merit
function in every step.

This letter is structured as follows: Section II provides the
required concepts, including the exactness of the underlying
penalty approach. In Section III, the novel approach to solving
LCQPs using an SCP technique is presented. Further, a glob-
alization scheme is demonstrated by analytically minimizing
an exact merit function. A comparison to three state-of-the-art
solution variants is provided in Section IV by solving an illus-
trative Optimal Control Problem (OCP). Section V concludes
this letter and highlights further algorithmic improvements.

Il. PENALTY REFORMULATION

This section briefly addresses the theory of stationarity
for MPCCs and the underlying penalty reformulation with
its convergence properties. Consider the general LCQP (1).
Denote by £(x) and R(x) the sets of active constraints among
those of Lx = 0 and Rx > 0, respectively. Further, let
W(x) = L(x) NR(x) denote the set of weakly active comple-
mentarity pairs. In contrast, let £ =L\ W and R = R\ W
refer to the strongly active complementarity pairs, respectively.

Definition 1: A feasible point x of LCQP (1) is called
strongly stationary, if there exist dual variables y =
(vA, YL, YR) € R™ x R" x R"C satisfying

Ox+g— AT_VA — LT_VL — RT)-'R =0, (3a)
min(Ax — b, y4) = 0, (3b)

v, =0, i€Rx, (Ge)

VR = 0, i€ Z(~Y)~ (3d)

VL VR = 0, i€ W), (Ge)

For more details on stationarity of MPCCs, including other
stationarity types, refer to [21, Section 2].

A popular approach to solving LCQPs are penalty refor-
mulations, and the here presented algorithm is based on a
technique as discussed for example in [4, Section 1]. Consider
the penalty function

1 1
px) = xTLTRx = EXT(LTR +RTL)X = EXTCX. (4)

where C € R"*" is the symmetrization of the complementarity
product.

Remark 1: The matrix C is usually indefinite. This is neces-
sarily the case if L and R consist of pairwise orthogonal rows,
e.g., if each row selects a distinct optimization variable. For
example, the curvature of the complementarity product .\’IT.Q
at the origin towards (1, 1) is positive, whereas it is negative
towards (—1, 1).

The penalty reformulation is obtained by replacing the bi-
linear complementarity constraint from (lc) with the penalty
function (4) in the objective. The resulting QP reads as

1
pLCQP: minigﬁze ExTQx + ng +p k) (5a)
xeRn
subject to 0 < Ax — b, (5b)
0 < Lx, (5¢)
0 < Rx, (5d)

where p > 0 is the respective penalty parameter. Throughout
this letter all solutions of pLCQP are assumed to satisfy LICQ.
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Under this assumption a convergence property of the penal-
ized approach is captured in the following theorem, which
represents a special case of the theorem proven by Ralph and
Wright in [4, Section 5].
Theorem 1: Let pLCQP (5) satisfy LICQ at x* € R", then
the following statements hold:
(1) If x* is a strongly stationary point of the LCQP (1), then
there exists a finite p, such that x* is a KKT point of (5)
for all p > p.
(ii) If x* is a KKT point of (5) and ¢(x*) = 0, then x* is a
strongly stationary point of the LCQP.

I1l. ALGORITHMIC DEVELOPMENT

The above motivates finding stationary points of the LCQP
by solving (5) for a penalty large enough to ensure satis-
faction of the complementarity constraints. In this section an
approach to finding solutions via a penalty homotopy together
with a sequential convex programming approach is introduced.
Finally, an analytical globalization scheme with a guarantee of
descent is provided.

A. Penalty Homotopy

For a given penalty parameter p; > 0 the respective penalty
reformulation (5) is solved. Subsequently, the penalty parame-
ter px+1 = Bpk is updated for a fixed B > 1. This procedure is
repeated until complementarity is satisfied. Theorem 1 ensures
that if the LCQP has a strongly stationary point, then this point
must also be a KKT point of the penalized reformulation with
respect to a finite penalty parameter 4. One could consider
simply solving (5) for a very large penalty in the hope of
instantly satisfying complementarity. However, these penalty
reformulations often become ill-conditioned for large penalty
parameters as the nonconvex part becomes dominant. Due to
this nonconvexity, the original LCQP may contain many local
solutions. Solving the penalized subproblem for a very small
penalty parameter leads to a solution close to the global min-
imum of (1) without the bi-linear complementarity constraint,
whereas a solution with respect to a large penalty parameter
favors complementarity satisfaction. This motivates a homo-
topy on the penalty parameter with the aim of finding a good
local solution [5]. Yet, this is only a heuristic and there is
no guarantee of finding the global minimizer as the origi-
nal NLP (1) is nonconvex. Further, a homotopy often avoids
convergence to spurious solutions, as for example shown for
OCPs with discontinuous systems [11]. The sequence of these
penalized subproblems (5) is denoted as the outer loop.

B. The Sequential Convex Programming Approach

Each outer loop problem is solved using sequential convex
programming, resulting in an inner loop. Let k and j denote
the outer and inner loop indices, respectively. The very first
inner loop is initialized with the initial guess, whereas all con-
secutive inner loops are initialized with the previous iterate.
The penalty function is approximated at each iterate x;; using
its first-order Taylor expansion

() ~ @) + (x — x1) " Vo ()
= ((p(xkj) — x,ijxkj) +XTka,'.

Now let dij = Cxij, and note that dekj is the only term
dependent on x. The penalty function is replaced by d;jx
resulting in the convex inner loop subproblem

1
minimize —x' Qx + (g + pdyj) x

(6a)

xeRn 2
subject to 0 < Ax — b, (6b)
0 < Lx, (6¢)
0 < Rx. (6d)

Denote the unique minimizer of the inner loop subproblem
by x,’:j and the according step by pyj = xifj — xj. Given this
inner solution an optimal step length ay; is obtained from the
globalization scheme described in Section III-C. Finally, the
step update xi 41 = x3j + agpg; is performed. The inner loop
is terminated once a KKT point of the respective outer loop
problem (5) is found. The following lemma relates the min-
imizers of the inner loop problems with the KKT points of
the outer loop. A proof for a more general case can be found
in [22, Lemma 4.1].

Lemma 1: Let (xij, pr) be a feasible iterate of (6). Then the
respective inner loop minimizer x}; agrees with x; iff x;; is a
KKT point of the outer loop prob{em (5) with respect to py.

The algorithm is terminated once a complementarity satis-
fying KKT point of (5) is found. Theorem 1 indicates that
the solution must be a strongly stationary point of the orig-
inal LCQP, under the assumption of exact complementarity
satisfaction.

There are two reasons why it can be attractive to replace
the full penalty function by its linear approximation. First,
convex subproblems are obtained at the cost of the addi-
tional inner loop. While the original formulation becomes
more and more indefinite as the penalty parameter grows, con-
vexity of the inner loop subproblem is always ensured, as the
Hessian matrix remains to be Q in every subproblem. This
also induces the second advantage: the Hessian and constraint
matrices remain constant over all (inner and outer) iterates.
Consequently, the KKT matrix factorization can be reused,
and each inner loop problem can be solved efficiently, e.g., by
making use of the hot-starting technique employed in active-
set solvers such as qpOASES [23]. With the computation of
factorizations being a significant expense, this advantage can
outweigh the cost of inner loop iterations, as demonstrated in
Section IV.

C. Optimal Step Length Globalization

Consider the merit function

I+ T
Vix, p) = 7% Q@+ pO)x+g x, (7
which coincides with the outer loop objective function. On

the other hand, the inner loop objective function provides the
strictly convex quadratic model

I 7 T
Dgj(x) = 2% Ox + (g + prdyj)  x. (8)
An analytical globalization scheme by is introduced by solving

minimize . s p). 9
linimis V(g + axg;, p) 9)
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Fig. 2. The left plot shows the level lines of the NLP objective (5a),
and the right plot depicts the level lines of the convex QP subproblem
objective (6a). Both plots include a total of three vectors. Out of the
parallel vectors, the dashed one shows py; = x;j — Xj, and the solid
one is X; +ak;pyj. The dotted vector indicates the stationary point of the
outer loop problem (5). Note that the chosen step length minimizes (5a)
on the path xi; + apy;.

This concept is visualized in Figure 2. Evaluating the objective
function in (9) yields the quadratic polynomial in «

1
¥ (i + apyj, p) = Eaztnq +aly + Y, ), (10)

where
Vi = PR QP (11a)
8 = Py PkCPij, (11b)
qikj = Vij + Okjs (11c)
b = x50 + pC)pig + & P (11d)

There are two different cases to be considered for solv-
ing (9), both related to the sign of §;. Both cases are handled
individually and their geometric meanings are discussed.

First consider the sign of the linear component. Observe that
£y; represents the directional derivative of the merit function
along pyj, i.e.,

VY (g, o) pij = ((Q + pkC)xi + 8) 'pij = g (12)

This provides descent along py; at ¥ (xy, pr) given £ < 0.
The following guarantee of descent is supplied:

Lemma 2 (Direction of Descent): Given a feasible point xy;
of (5) and inner loop iterate py; = x,‘:J. — Xkj, the merit function
at xz; is nonincreasing towards py;, i.e.,

VY (i, o) " (4 — x) < 0. (13)

Further, if x;; is not a stationary point of (5) with respect
to py, then

VY (g, o) (0 — x) < 0. (14)

Proof: Since xj; is the global minimum of the inner loop
optimization problem, the following relation holds

i () < (%), (15)

where x is any feasible point of (5). Since ; is convex and
differentiable it holds for any a, b € R" that

Vihi(@)" (b — a) < D(b) — Di(a). (16)

Fig. 3. lllustration of the merit function (10) for §; > 0 (dashed), é4; < 0
(dotted), and the quadratic model é4; = 0 (solid) along the path X;+apy;
for « € [0, 1]. Note that all functions must have equal descent at xy;, as
the linearization of the merit function and quadratic model agree at this
point (dotted line). Further, note that the quadratic model is minimized
for « = 1, as it coincides with the unique minimizer of the inner loop
subproblem.

This property provides descent for the quadratic model
Vihj () " prg < Dk () — D) =< 0, (17)

Note that this inequality is strict if xy; # xj;. Recall that Cxy; =
dyj, then the equation

(18a)
(18b)

VY (g, o) i = (Qxij + peCoxig + 8) ' i
= V(i) " pij

shows that the directional derivatives of the merit function
and quadratic model at xj; towards py; agree. Inequality (13)
follows immediately.

Assume that xi; is not outer loop stationary. Then
Lemma 1 yields x,’:j # xij. As captured before, the inequal-
ity (17) becomes strict, and again Equation (18) shows the
statement. |

Now consider the sign of &, which determines whether
the curvature of the merit function along py; is more or less
positive than the curvature of the quadratic model. The positive
case d; > 0 indicates that the merit function along py; has a
stronger positive curvature, and thus is minimized before the
full step. The optimal step length in this case is given by

Qg = ﬁ

qkj

Note that gz > & > 0. Assuming that xj; is not already
a stationary point, a strictly positive step length is obtained.
The nonpositive case §; < 0 leads to ay; = 1, as the curva-
ture of the merit function is less positive than the quadratic
model. Both scenarios are visualized in Figure 3. Though this
strategy provides the best available step length at each iterate,
there does not yet exist a statement for sufficient decrease,
which would ensure convergence of the inner loop. However,
in practice this has not caused any complications.

(19)

D. Pseudo Code

This section provides a pseudo code description of the
presented approach, which summarizes all features described
before. For simplicity, the inner loop index j is dropped. The
algorithm requires the input of an initial guess x0 € R"
and initial penalty parameter rho > 0, as well as a penalty
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Algorithm 1: Pseudo Code of the Approach

Input: x0, rho, beta

Output: Stationary point (xk, yk) of LCQP (1)
1 # Create QP solver and factorize KKT matrix
2gp(Q, g, A, 1b, ub, 1bA, ubA);

3 # Initialize solver with zero penalty QP
4 (xk, vk) = agp.solvel();

s # Outer loop (penalty update loop)
6 while true do

7 # Inner loop (approximate penalty function)

8 while stat (xk, vk, rho) > tol do

9 # Update objective’s linear component

10 agp.update_g(g + rhoxdk):

11 # Step computation (solve (6))

12 (xn, vk) = gp.solve();

13 # Get optimal step length according to (III-C)
14 alpha = StepLength(xk, xn, rho);
15 # Perform step

16 xk = xk + alphax(xn - xk);

17 # Terminate or increase penalty parameter

18 if Phi(xk) < tol then

19 |_ return (xk, vk):

20 rho = betax*rho;

update factor beta > 1. The output of this pseudo code is a
stationary point of the LCQP (1). The objective’s Hessian is
denoted by Q and its linear term by g. The matrix A contains
all linear constraints, i.e., it includes the rows of A, L and R.
During the initialization of the QP solver, the KKT matrix
is assumed to be factorized. Line 6 begins the outer loop,
where termination is checked and the penalty value is updated.
The inner loop begins in Line 8, in which the subproblem (6)
is solved and step updates are performed. The variable xn
represents the inner loop minimizer v,:’j The inner loop is ter-
minated if the outer loop stationarity, denoted by Stat (xk,
vk, rho), drops below a certain threshold tol. Similarly,
the outer loop is terminated once the complementarity value,
denoted by Phi (xk), falls below this tolerance.

IV. A NUMERICAL EXAMPLE

This section briefly discusses a numerical benchmark by
solving the illustrative OCP [15, Section 2]

2
minimize / x(0)dt + (x(2) — 5/3)° (20a)
.\'()ER,.\'(~ ) 0
subject to x(0) = xo, (20b)
i) €2 —sgn(x(n), r€[0,2]. (20c)

The effective degree of freedom in this optimization problem
is the initial value xo. Though the constraint (20c) is a discon-
tinuous ODE, it has a unique solution given by a piecewise
linear function with slope 3 for x(f) < 0 and slope 1 for
x(t) > 0. The ODE describes a Filippov differential inclusion,

TABLE |
AVERAGE VALUES OVER ALL EXPERIMENTS

complementarity  distance to analytical solution

LCQP 6.8e—17 0.018
LCQP Schur 2.3e—16 0.018
IPOPT Penalty 1.4e—04 0.072
IPOPT Smoothed 1.6e+04 0.078
IPOPT Relaxed 6.0e+03 0.61

which can be reformulated into a dynamic complementarity
system [11]. This method introduces three algebraic variables
v(-), A=(-), A*(-), which describe the switch in the ODE, the
negative part of x and the positive part of x, respectively.
However, A" = x + A~ can be eliminated. This OCP is
discretized using implicit Euler in order to obtain the LCQP

N-1
minimize Z Eir(xp) + Exn(xy)
X(s-- LANER
¥0,....¥N—-1ER k=0
Ay enhy_ €R
subject to xi_; +h(3 —2y) =x, 1<k<N,
O<=xx+2, L1-w=0, 1=<k<N,
0=<i Ly=0, I=<k<N,

where E} for 0 < k < N represents the quadrature formula
of the implicit Euler discretization, and Ey the terminal cost.
The discretized problem represents an LCQP (after a small
regularization on the algebraic variables).

In the following, five different solution variants are com-
pared, two of which are based on a MATLAB implementation
of the presented algorithm. These two methods differ only
in the used linear solver within the QP subproblem solver
qpOASES [24]: one uses the default dense solver, whereas
the other utilizes the Schur complement method for which
the sparse solver MAS57 [25] is required. These methods
are denoted by LCQP and LCQP Schur, respectively. The
remaining three methods are all solved with IPOPT [26]
through the CasADi interface [27]: one method, denoted by
IPOPT Pen, solves the exact same outer loop problems as
the LCQP methods, and the other two strategies solve a
homotopy of (in)equality regularization schemes. The regu-
larization schemes replace the complementarity 1product with
x"LTRx < o for the relaxed method, and x L'Ry = o
for the smoothed method, both for some o > 0 (see [11]
for details). These methods are denoted by IPOPT Smoothed
and IPOPT Relaxed. The source code of this benchmark is
available at https:/github.com/hallfjonas/IVOCP.

Table I provides the average complementarity satisfaction
together with the average absolute distance to the analytical
solution, showing that the proposed algorithm has the highest
quality in both aspects. In fact, complementarity is satisfied up
to machine precision, which is favoured by having an active-
set solver on the subproblem level. Solutions computed with
the IPOPT penalty method achieve significantly less precision
(due to its conflicting barrier penalty), and the regulariza-
tion schemes only achieve a low complementarity satisfaction
naturally. Figure 4 shows the average CPU times of this experi-
ment. The introduced method outperforms all other approaches
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Fig. 4. Plotting the average CPU time required for each method and
discretization size to solve 100 differently initialized LCQPs.

in the first few discretizations. This originates from the fact
that the factorization of the KKT matrix is reused, whereas
IPOPT is required to recompute it after each penalty update.
As the experiments gain size, IPOPT performs better in terms
of CPU time than the introduced algorithm, which is due to
its exploitation of sparsity structures. However, if a solver
like MAS7 is available, the LCQP Schur method is able to
outperform IPOPT in all experiments. Both regularized meth-
ods are unable to compete against the penalty approaches for
moderately sized formulations.

V. CONCLUSION AND FUTURE WORK

This letter presented a novel SCP approach to solv-
ing LCQPs. A computationally cheap globalization strategy
with the guarantee of merit function descent at each iterate
was introduced. Its applicability and promising performance
was demonstrated by solving an initial value optimal con-
trol problem. A comparison against state-of-the-art solution
variants solved by a high performance NLP-solver showed
that the algorithm is able to compete in all of the three
categories: solution CPU time, complementarity satisfac-
tion, and solution quality. Future work aims at providing
an open-source software package to reliably solve LCQPs.
The presented algorithm will be implemented with multiple
QP solvers on the subsolver level (e.g., qpOASES [24]
and OSQP [28]). Further, the option to solely solve the
outer loop homotopy with an adequate solver could be
provided. On the theoretical side, future work consists of
providing a proof of global convergence regarding both
inner and outer loops. Additionally, the presented algorithm
could be utilized on a subsolver level for solving nonlin-
ear MPCCs opening up applicability to a wider range of
problems.
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