

Numerical Optimal Control: Smooth, Nonsmooth, and Robust

Moritz Diehl¹

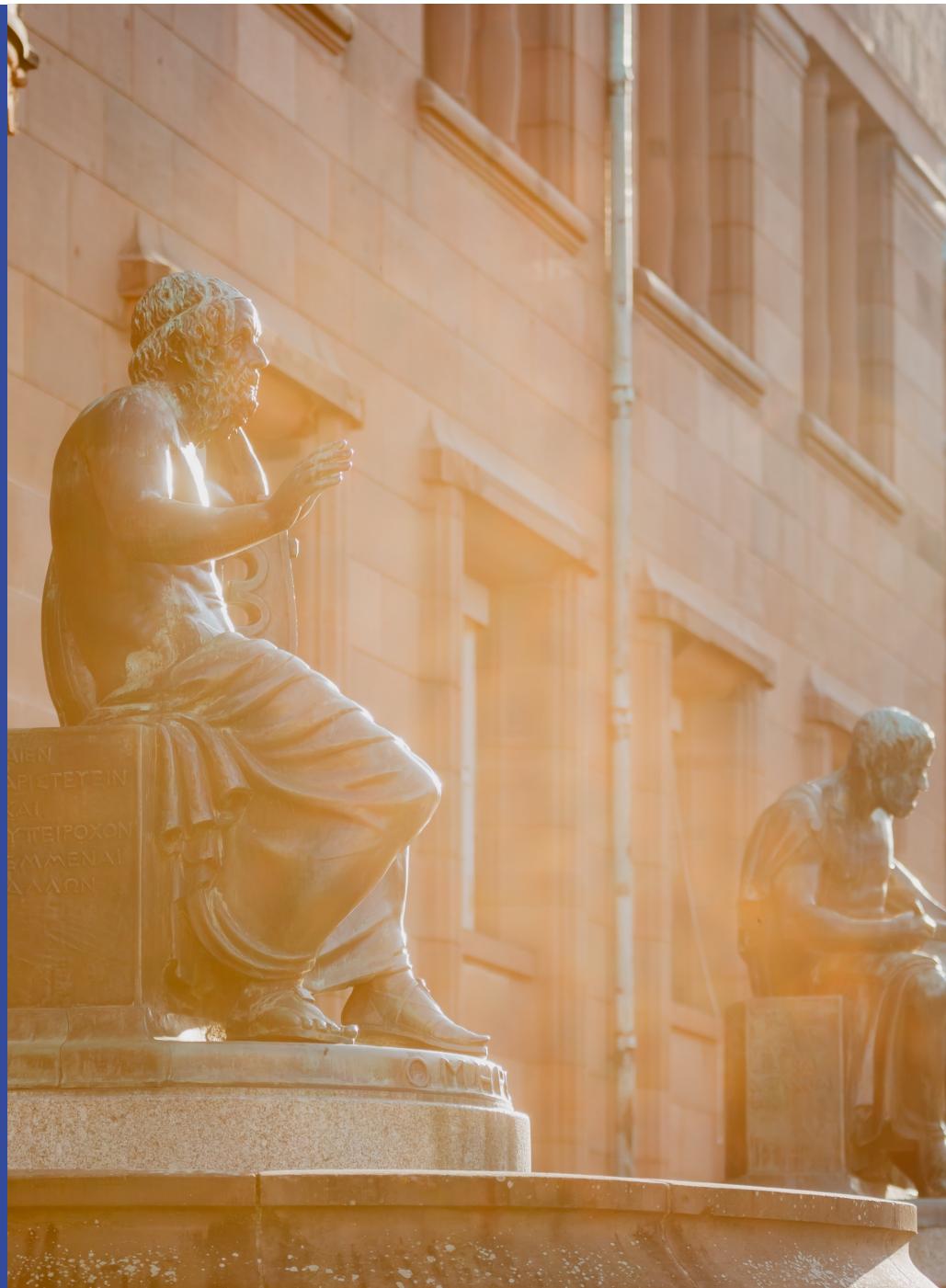
joint work with Armin Nurkanovic¹, Christian Dietz^{1,2}, Anton Pozharskiy¹, Gianluca Frison^{1,3} Sebastian Albrecht²

¹ Department of Microsystems Engineering and Department of Mathematics, University of Freiburg, Germany

² Siemens Foundational Technology, Munich, Germany

³ MOSEK ApS, Denmark

NTNU Trondheim, February 16, 2026



Continuous-Time Optimal Control Problems (OCP)

Continuous-Time OCP with Ordinary Differential Equation (ODE) Constraints

$$\min_{x(\cdot), u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$$

$$\text{s.t.} \quad x(0) = \bar{x}_0$$

$$\dot{x}(t) = f(x(t), u(t))$$

$$0 \geq h(x(t), u(t)), \quad t \in [0, T]$$

$$0 \geq r(x(T))$$

Continuous-Time Optimal Control Problems (OCP)

Continuous-Time OCP with Ordinary Differential Equation (ODE) Constraints

$$\begin{aligned} & \min_{x(\cdot), u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T)) \\ \text{s.t.} \quad & x(0) = \bar{x}_0 \\ & \dot{x}(t) = f(x(t), u(t)) \\ & 0 \geq h(x(t), u(t)), \quad t \in [0, T] \\ & 0 \geq r(x(T)) \end{aligned}$$

Can in most applications assume convexity of all "outer" problem functions: L_c, E, h, r .

Three Levels of Difficulty in Continuous-Time OCP

Continuous-Time OCP

$$\min_{x(\cdot), u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$$

$$\text{s.t. } x(0) = \bar{x}_0$$

$$\dot{x}(t) = f(x(t), u(t))$$

$$0 \geq h(x(t), u(t)), \quad t \in [0, T]$$

$$0 \geq r(x(T))$$

Three levels of difficulty:

Three Levels of Difficulty in Continuous-Time OCP

Continuous-Time OCP

$$\min_{x(\cdot), u(\cdot)} \int_0^T L_c(x(t), u(t)) \, dt + E(x(T))$$

$$\text{s.t. } x(0) = \bar{x}_0$$

$$\dot{x}(t) = f(x(t), u(t))$$

$$0 \geq h(x(t), u(t)), \quad t \in [0, T]$$

$$0 \geq r(x(T))$$

Three levels of difficulty:

(a) Linear ODE: $f(x, u) = Ax + Bu$

Three Levels of Difficulty in Continuous-Time OCP

Continuous-Time OCP

$$\min_{x(\cdot), u(\cdot)} \int_0^T L_c(x(t), u(t)) \, dt + E(x(T))$$

$$\text{s.t. } x(0) = \bar{x}_0$$

$$\dot{x}(t) = f(x(t), u(t))$$

$$0 \geq h(x(t), u(t)), \quad t \in [0, T]$$

$$0 \geq r(x(T))$$

Three levels of difficulty:

- (a) Linear ODE: $f(x, u) = Ax + Bu$
- (b) Nonlinear smooth ODE: $f \in \mathcal{C}^1$

Three Levels of Difficulty in Continuous-Time OCP

Continuous-Time OCP

$$\min_{x(\cdot), u(\cdot)} \int_0^T L_c(x(t), u(t)) \, dt + E(x(T))$$

$$\text{s.t. } x(0) = \bar{x}_0$$

$$\dot{x}(t) = f(x(t), u(t))$$

$$0 \geq h(x(t), u(t)), \quad t \in [0, T]$$

$$0 \geq r(x(T))$$

Three levels of difficulty:

- (a) Linear ODE: $f(x, u) = Ax + Bu$
- (b) Nonlinear smooth ODE: $f \in \mathcal{C}^1$
- (c) **Nonsmooth Dynamics (NSD):**
 - ▶ f not differentiable (NSD1),
 - ▶ f not continuous (NSD2), or even
 - ▶ f not finite valued, discontinuous state $x(t)$ (NSD3)

Three Levels of Difficulty in Continuous-Time OCP

Continuous-Time OCP

$$\min_{x(\cdot), u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$$

$$\text{s.t. } x(0) = \bar{x}_0$$

$$\dot{x}(t) = f(x(t), u(t))$$

$$0 \geq h(x(t), u(t)), t \in [0, T]$$

$$0 \geq r(x(T))$$

Three levels of difficulty:

- (a) Linear ODE: $f(x, u) = Ax + Bu$
- (b) Nonlinear smooth ODE: $f \in \mathcal{C}^1$
- (c) **Nonsmooth Dynamics (NSD):**
 - ▶ f not differentiable (NSD1),
 - ▶ f not continuous (NSD2), or even
 - ▶ f not finite valued, discontinuous state $x(t)$ (NSD3)

First focus on smooth cases (a) and (b).

Three Levels of Difficulty in Continuous-Time OCP

Continuous-Time OCP

$$\min_{x(\cdot), u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$$

$$\text{s.t. } x(0) = \bar{x}_0$$

$$\dot{x}(t) = f(x(t), u(t))$$

$$0 \geq h(x(t), u(t)), \quad t \in [0, T]$$

$$0 \geq r(x(T))$$

Three levels of difficulty:

- (a) Linear ODE: $f(x, u) = Ax + Bu$
- (b) Nonlinear smooth ODE: $f \in \mathcal{C}^1$

First focus on smooth cases (a) and (b).

Recall: Runge-Kutta Discretization for Smooth Systems

Ordinary Differential Equation (ODE)

$$\dot{x}(t) = \underbrace{f(x(t), u(t))}_{=:v(t)}$$

Initial Value Problem (IVP)

$$x(0) = \bar{x}_0$$

$$v(t) = f(x(t), u(t))$$

$$\dot{x}(t) = v(t)$$

$$t \in [0, T]$$

Discretization: N Runge-Kutta steps of each n_s stages

$$x_{0,0} = \bar{x}_0, \quad \Delta t = \frac{T}{N}$$

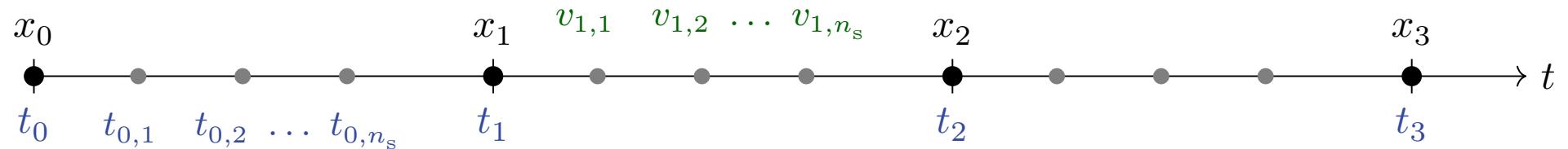
$$v_{k,j} = f(x_{k,j}, u_k)$$

$$x_{k,j} = x_{k,0} + \Delta t \sum_{n=1}^{n_s} a_{jn} v_{k,n}$$

$$x_{k+1,0} = x_{k,0} + \Delta t \sum_{n=1}^{n_s} b_n v_{k,n}$$

$$j = 1, \dots, n_s, \quad k = 0, \dots, N - 1$$

For fixed controls and initial value: square system with $n_x + N(2n_s + 1)n_x$ unknowns, implicitly defined via $n_x + N(2n_s + 1)n_x$ equations.
(trivial eliminations in case of explicit RK methods)



Direct Methods Transform OCP into Nonlinear Program (NLP)

Continuous time OCP

$$\min_{x(\cdot), u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$$

$$\text{s.t. } x(0) = \bar{x}_0$$

$$\dot{x}(t) = f(x(t), u(t))$$

$$0 \geq h(x(t), u(t)), \quad t \in [0, T]$$

$$0 \geq r(x(T))$$

- ▶ Direct methods "first discretize, then optimize"

Direct Methods Transform OCP into Nonlinear Program (NLP)

Continuous time OCP

$$\min_{x(\cdot), u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$$

$$\text{s.t. } x(0) = \bar{x}_0$$

$$\dot{x}(t) = f(x(t), u(t))$$

$$0 \geq h(x(t), u(t)), t \in [0, T]$$

$$0 \geq r(x(T))$$

1. Parameterize controls, e.g.
 $u(t) = u_n, t \in [t_n, t_{n+1}]$.

- ▶ Direct methods "first discretize, then optimize"

Direct Methods Transform OCP into Nonlinear Program (NLP)

Continuous time OCP

$$\min_{x(\cdot), u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$$

$$\text{s.t. } x(0) = \bar{x}_0$$

$$\dot{x}(t) = f(x(t), u(t))$$

$$0 \geq h(x(t), u(t)), t \in [0, T]$$

$$0 \geq r(x(T))$$

- Direct methods "first discretize, then optimize"

1. Parameterize controls, e.g.

$$u(t) = u_n, t \in [t_n, t_{n+1}].$$

2. Discretize cost and dynamics

$$L_d(x_n, z_k, u_n) \approx \int_{t_n}^{t_{n+1}} L_c(x(t), u(t)) dt$$

Replace $\dot{x} = f(x, u)$ by

$$x_{n+1} = \phi_f(x_n, z_n, u_n)$$

$$0 = \phi_{\text{int}}(x_n, z_n, u_n)$$

Direct Methods Transform OCP into Nonlinear Program (NLP)

Continuous time OCP

$$\min_{x(\cdot), u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$$

$$\text{s.t. } x(0) = \bar{x}_0$$

$$\dot{x}(t) = f(x(t), u(t))$$

$$0 \geq h(x(t), u(t)), t \in [0, T]$$

$$0 \geq r(x(T))$$

- Direct methods "first discretize, then optimize"

1. Parameterize controls, e.g.

$$u(t) = u_n, t \in [t_n, t_{n+1}].$$

2. Discretize cost and dynamics

$$L_d(x_n, z_k, u_n) \approx \int_{t_n}^{t_{n+1}} L_c(x(t), u(t)) dt$$

Replace $\dot{x} = f(x, u)$ by

$$x_{n+1} = \phi_f(x_n, z_n, u_n)$$

$$0 = \phi_{\text{int}}(x_n, z_n, u_n)$$

3. Also discretize path constraints

$$0 \geq \phi_h(x_n, z_n, u_n), n = 0, \dots, N-1.$$

Direct Methods Transform OCP into Nonlinear Program (NLP)

Continuous time OCP

$$\min_{x(\cdot), u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$$

$$\text{s.t. } x(0) = \bar{x}_0$$

$$\dot{x}(t) = f(x(t), u(t))$$

$$0 \geq h(x(t), u(t)), t \in [0, T]$$

$$0 \geq r(x(T))$$

Discrete time OCP (an NLP)

$$\min_{\mathbf{x}, \mathbf{z}, \mathbf{u}} \sum_{k=0}^{N-1} L_d(x_k, z_k, u_k) + E(x_N)$$

$$\text{s.t. } x_0 = \bar{x}_0$$

$$x_{n+1} = \phi_f(x_n, z_n, u_n)$$

$$0 = \phi_{\text{int}}(x_n, z_n, u_n)$$

$$0 \geq \phi_h(x_n, z_n, u_n), n = 0, \dots, N-1$$

$$0 \geq r(x_N)$$

- Direct methods "first discretize, then optimize"

Variables $\mathbf{x} = (x_0, \dots, x_N)$, $\mathbf{z} = (z_0, \dots, z_N)$ and $\mathbf{u} = (u_0, \dots, u_{N-1})$.

Here, \mathbf{z} are the intermediate variables of the integrator (e.g. Runge-Kutta)

Simplest Direct Transcription: Single Step Explicit Euler

(not recommended in practice, other Runge-Kutta methods are much more efficient)

Continuous time OCP

$$\min_{x(\cdot), u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$$

$$\text{s.t. } x(0) = \bar{x}_0$$

$$\dot{x}(t) = f(x(t), u(t))$$

$$0 \geq h(x(t), u(t)), t \in [0, T]$$

$$0 \geq r(x(T))$$

Single Step Explicit Euler NLP, with $\Delta t = \frac{T}{N}$

$$\min_{\mathbf{x}, \mathbf{u}} \sum_{k=0}^{N-1} L_c(x_k, u_k) \Delta t + E(x_N)$$

$$\text{s.t. } x_0 = \bar{x}_0$$

$$x_{n+1} = x_n + f(x_n, u_n) \Delta t$$

$$0 \geq h(x_n, u_n), n = 0, \dots, N-1$$

$$0 \geq r(x_N)$$

- Direct methods: first discretize, then optimize

Variables $\mathbf{x} = (x_0, \dots, x_N)$ and $\mathbf{u} = (u_0, \dots, u_{N-1})$.
(single step explicit Euler has no internal integrator variables \mathbf{z})

2nd Simplest Direct Transcription: Midpoint Rule

Continuous time OCP

$$\min_{x(\cdot), u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$$

$$\text{s.t. } x(0) = \bar{x}_0$$

$$\dot{x}(t) = f(x(t), u(t))$$

$$0 \geq h(x(t), u(t)), \quad t \in [0, T]$$

$$0 \geq r(x(T))$$

Midpoint Rule NLP, with $\Delta t = \frac{T}{N}$

$$\min_{\mathbf{x}, \mathbf{z}, \mathbf{u}} \sum_{k=0}^{N-1} L_c(z_k, u_k) \Delta t + E(x_N)$$

$$\text{s.t. } x_0 = \bar{x}_0$$

$$x_{n+1} = x_n + f(z_n, u_n) \Delta t$$

$$0 = z_n - \frac{x_n + x_{n+1}}{2}$$

$$0 \geq h(z_n, u_n), \quad n = 0, \dots, N-1$$

$$0 \geq r(x_N)$$

Variables $\mathbf{x} = (x_0, \dots, x_N)$, $\mathbf{z} = (z_0, \dots, z_{N-1})$,
and $\mathbf{u} = (u_0, \dots, u_{N-1})$.

Sparse NLP resulting from direct transcription

Discrete time OCP (an NLP)

$$\begin{aligned} \min_{\mathbf{x}, \mathbf{z}, \mathbf{u}} \quad & \sum_{k=0}^{N-1} L_d(x_k, z_n, u_k) + E(x_N) \\ \text{s.t.} \quad & x_0 = \bar{x}_0 \\ & x_{n+1} = \phi_f(x_n, z_n, u_n) \\ & 0 = \phi_{\text{int}}(x_n, z_n, u_n) \\ & 0 \geq \phi_h(x_n, z_n, u_n), \quad n = 0, \dots, N-1 \\ & 0 \geq r(x_N) \end{aligned}$$

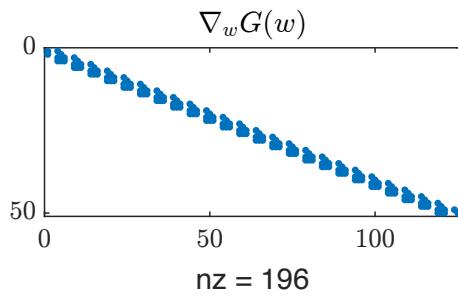
Variables $w = (\mathbf{x}, \mathbf{z}, \mathbf{u})$

Nonlinear Program (NLP)

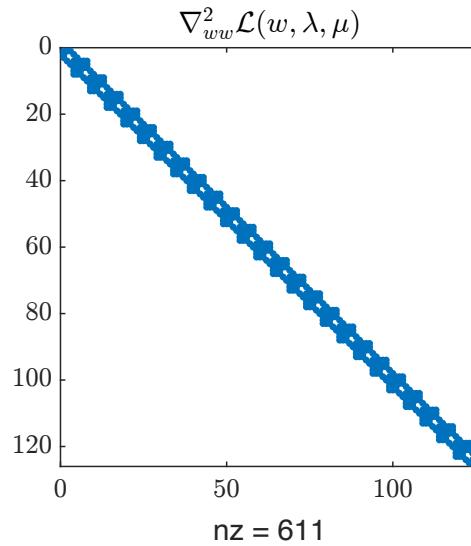
$$\begin{aligned} \min_{w \in \mathbb{R}^{n_x}} \quad & F(w) \\ \text{s.t.} \quad & G(w) = 0 \\ & H(w) \geq 0 \end{aligned}$$

Large and sparse NLP

Sparse NLP resulting from direct transcription



Variables $w = (\mathbf{x}, \mathbf{z}, \mathbf{u})$



Nonlinear Program (NLP)

$$\begin{aligned} & \min_{w \in \mathbb{R}^{n_x}} F(w) \\ \text{s.t. } & G(w) = 0 \\ & H(w) \geq 0 \end{aligned}$$

Large and sparse NLP

Illustrative example of direct collocation with Newton-type optimization

Illustrative nonlinear optimal control problem (with one state and one control)

$$\underset{x(\cdot), u(\cdot)}{\text{minimize}} \quad \int_0^3 x(t)^2 + u(t)^2 \, dt$$

subject to

$$x(0) = \bar{x}_0 \quad (\text{initial value, } \bar{x}_0 = 0.6)$$

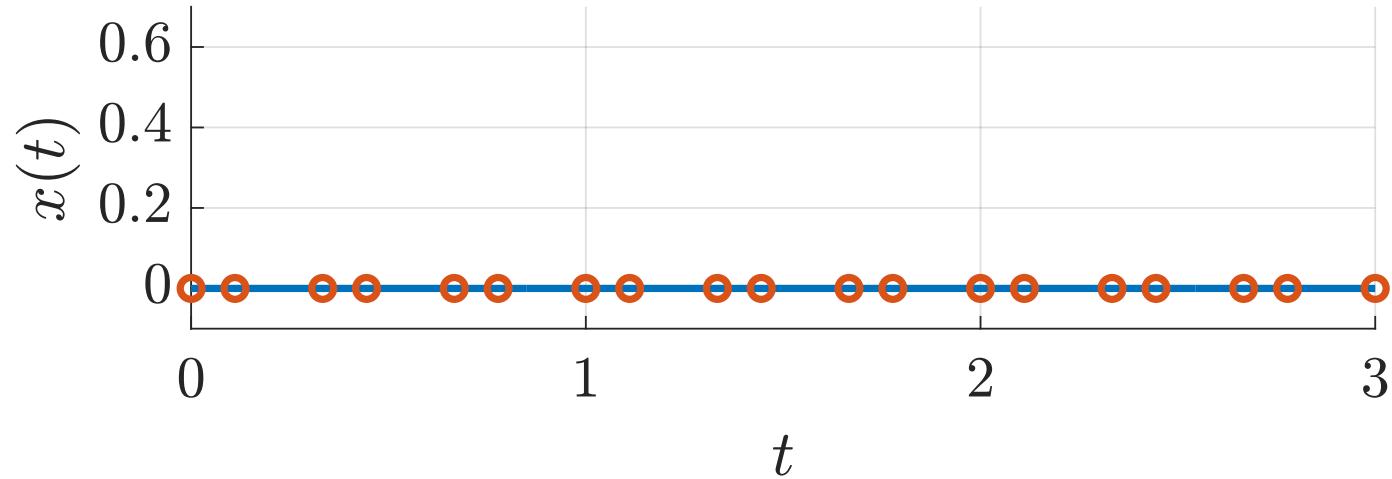
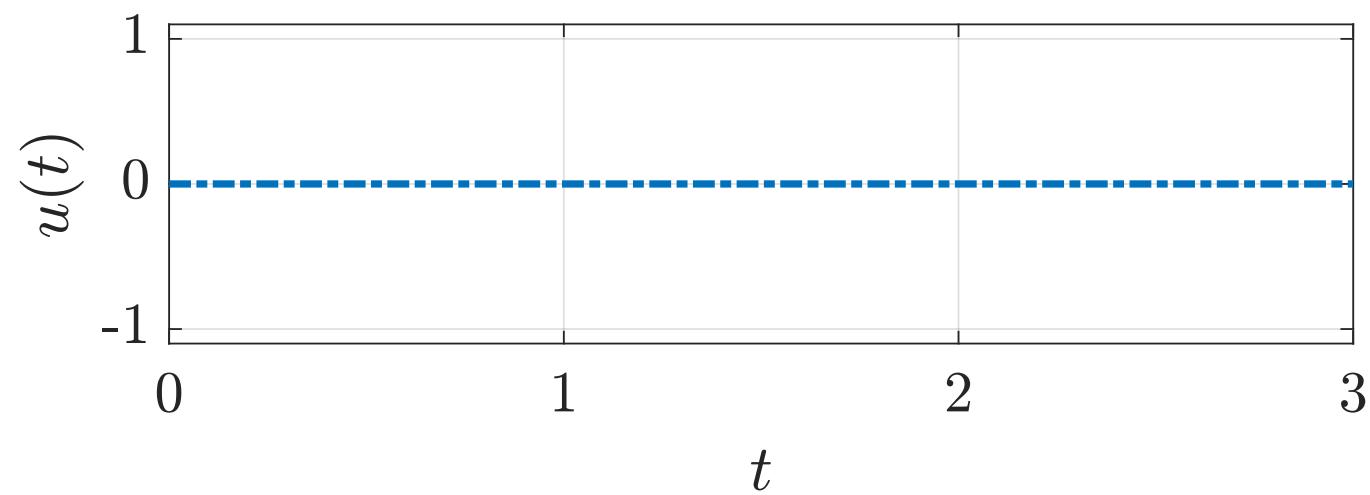
$$\dot{x} = (1 + x)x + u, \quad (\text{ODE model})$$

$$-1 \leq u(t) \leq 1, \quad t \in [0, 3] \quad (\text{bounds})$$

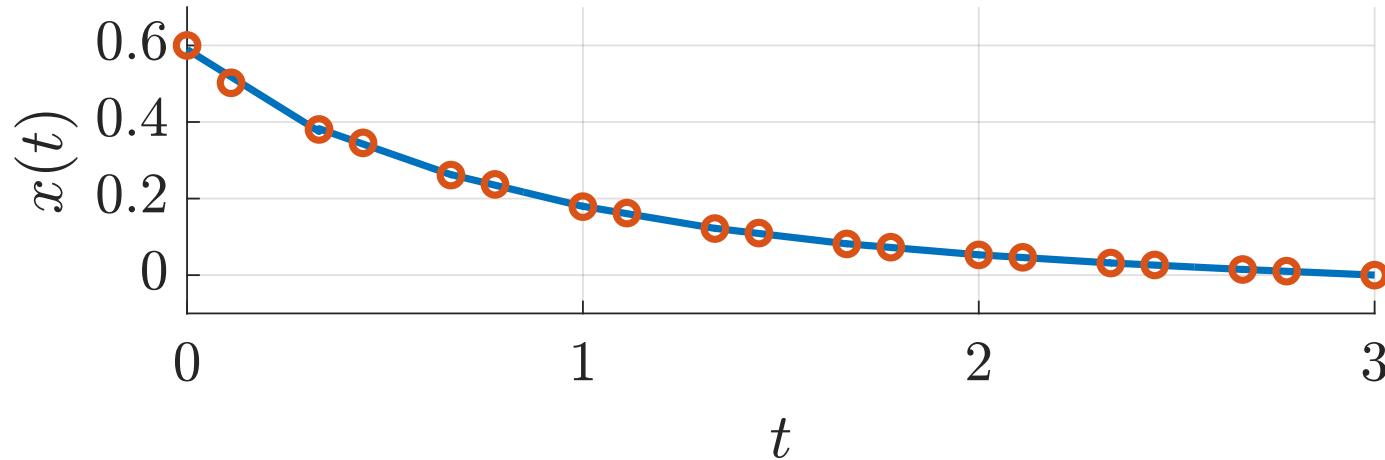
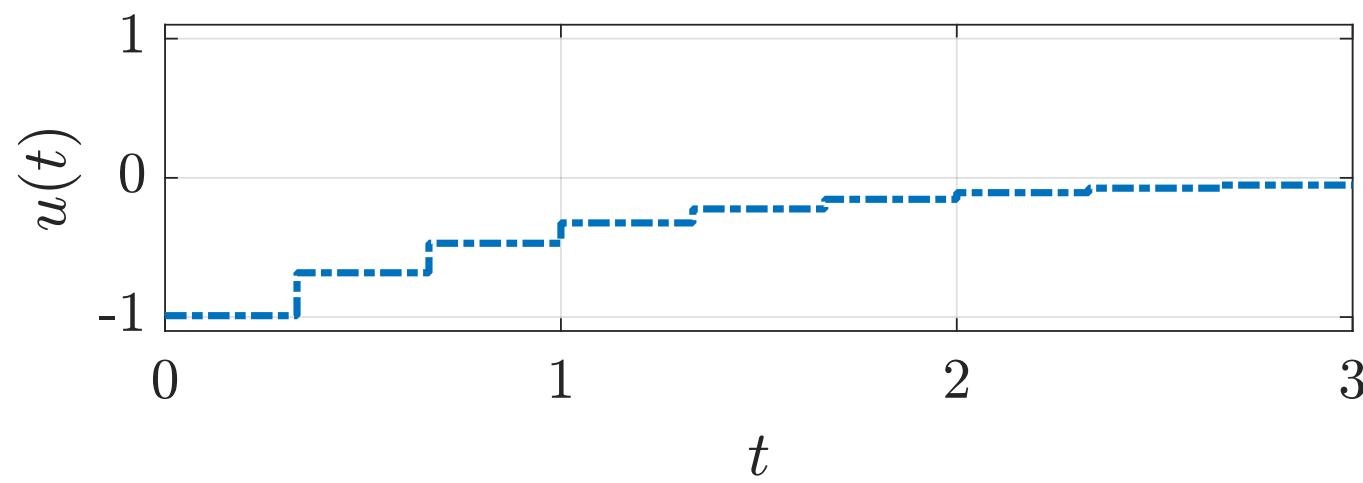
$$x(3) = 0 \quad (\text{terminal constraint})$$

- ▶ choose $N = 9$ equal intervals and Radau-IIA collocation with $n_s = 2$ stages
- ▶ obtain nonlinear program with $n_x + (2n_s + 1)Nn_x + Nn_u$ variables
- ▶ initialize with zeros everywhere, solve with CasADi and Ipopt (interior point)

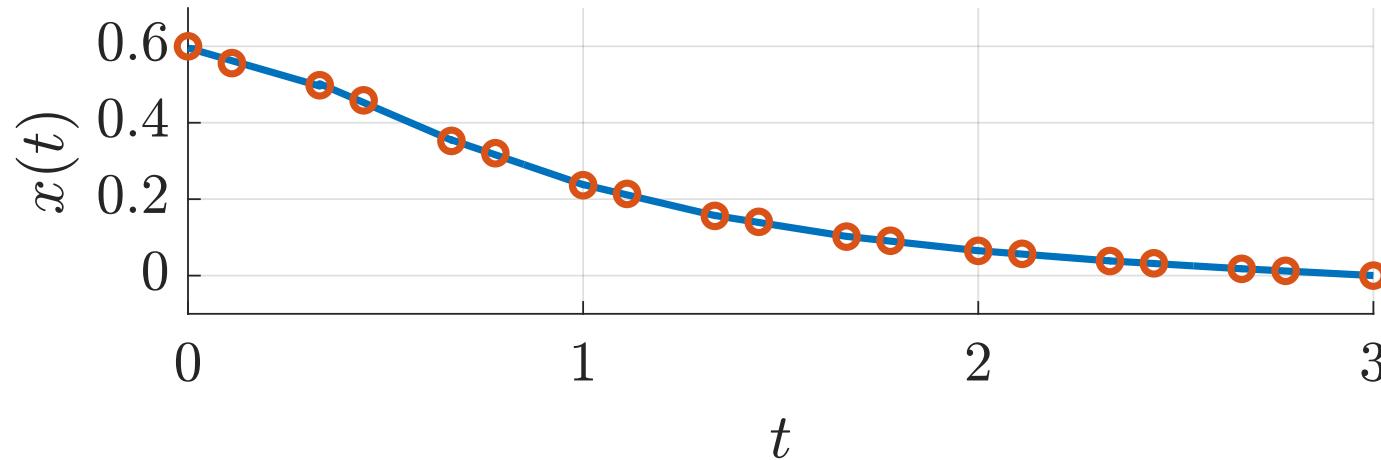
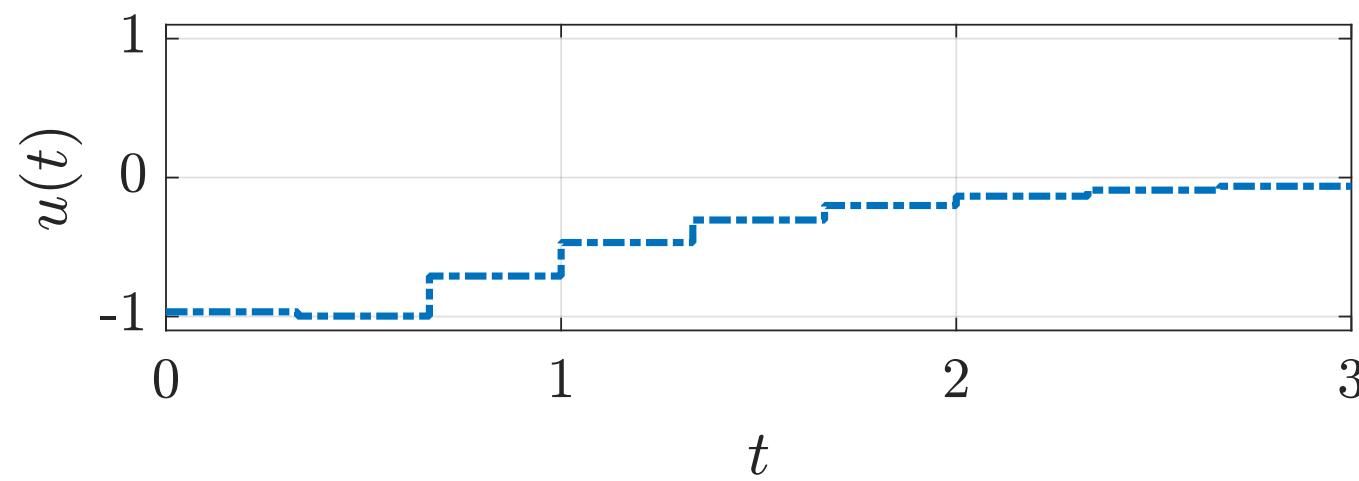
Illustrative example: Initialization



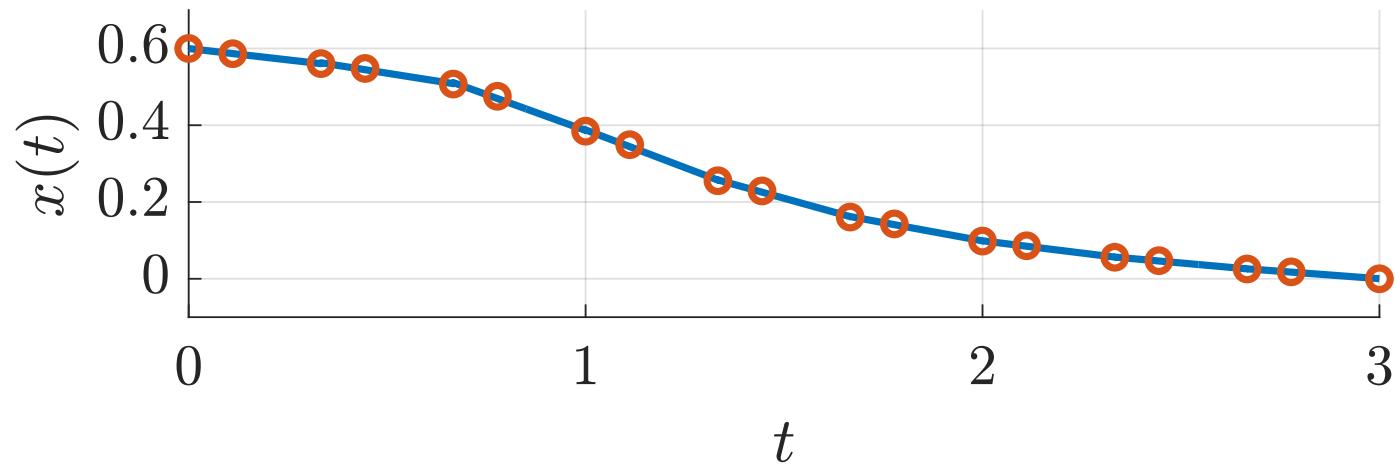
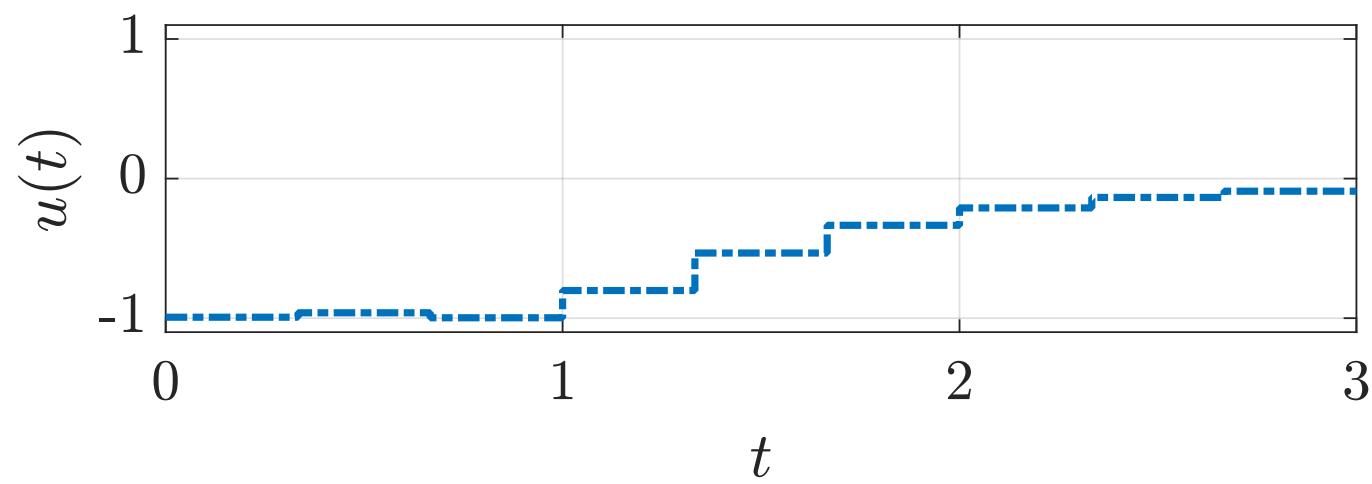
Illustrative example: First Iterate



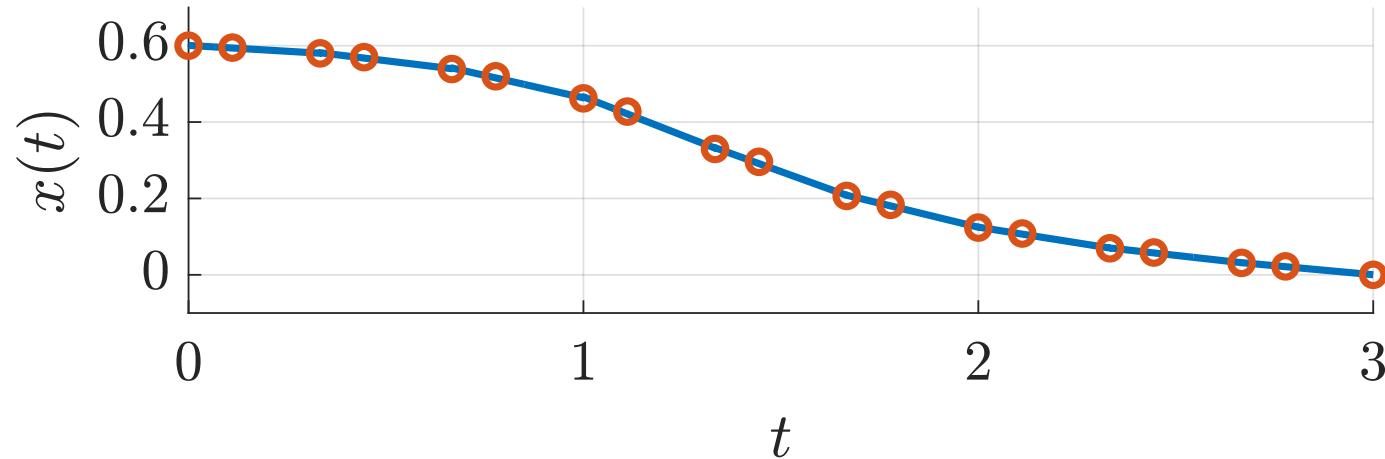
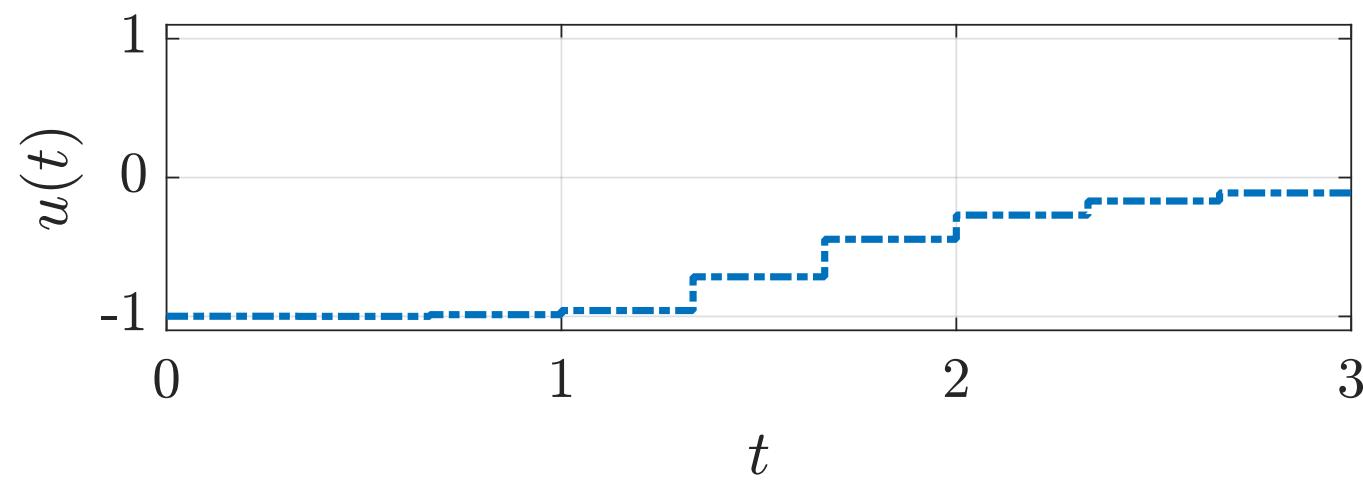
Illustrative example: Second Iterate



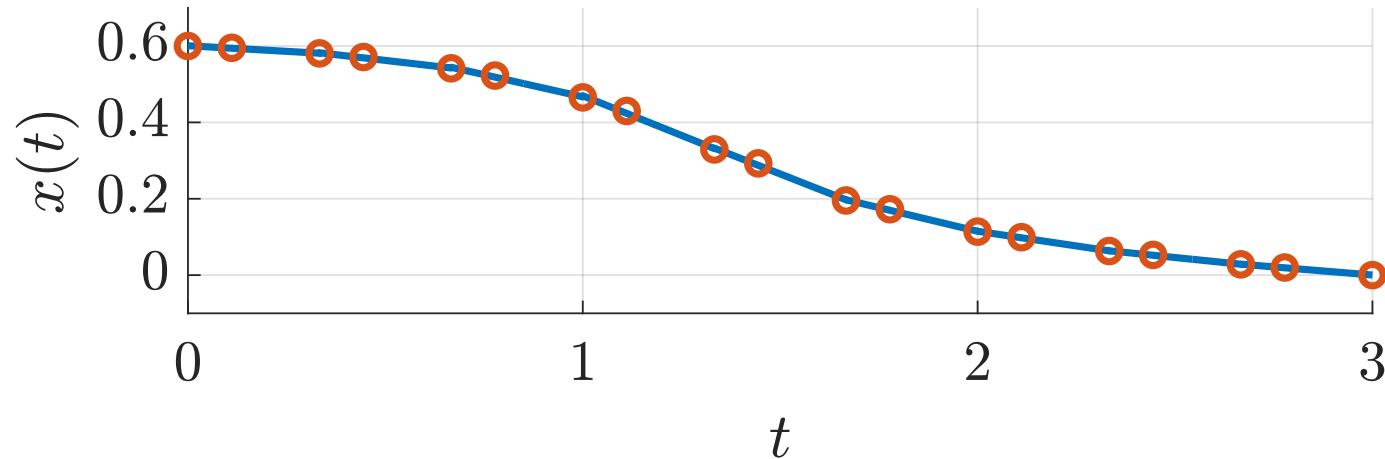
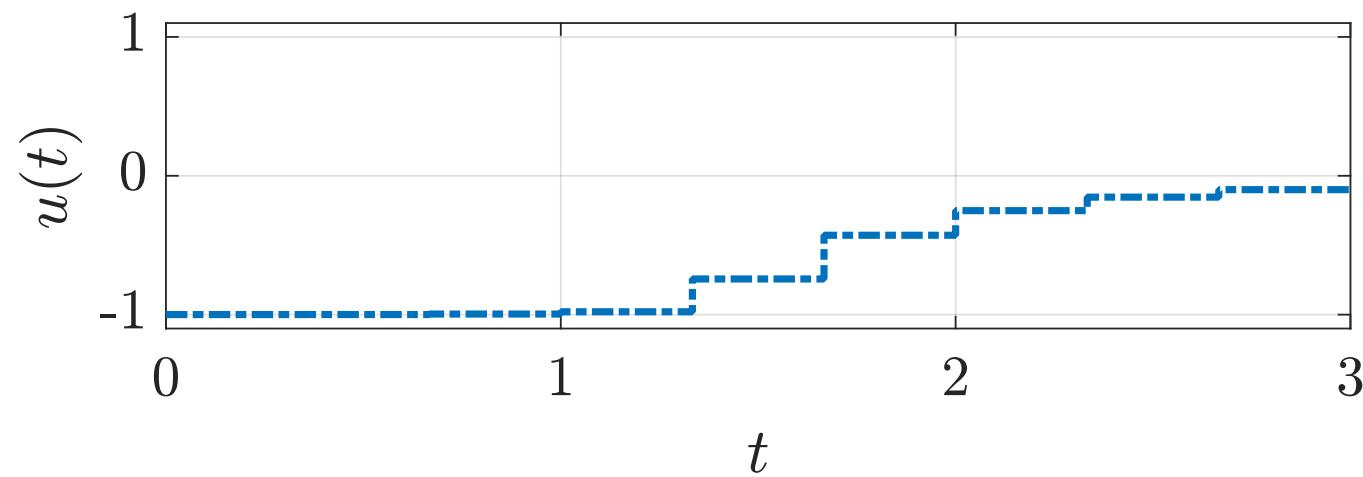
Illustrative example: Third Iterate



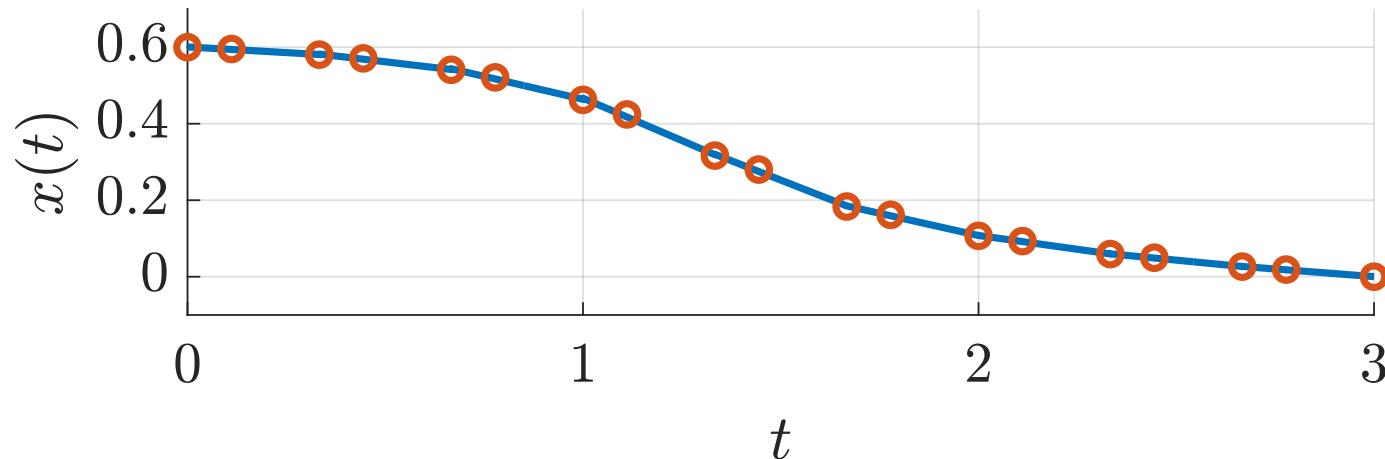
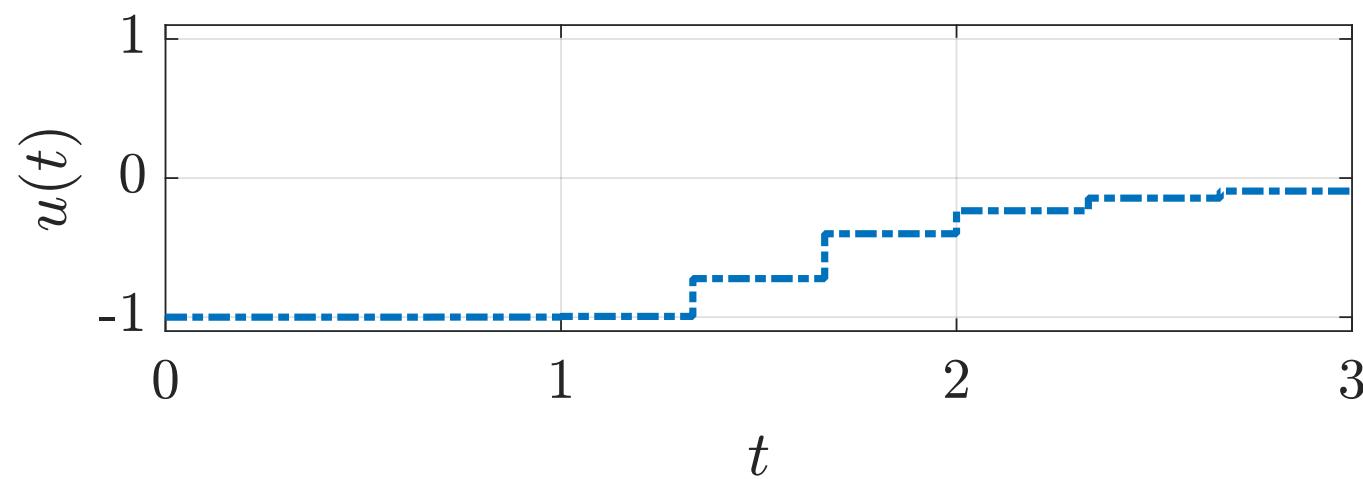
Illustrative example: Fourth Iterate



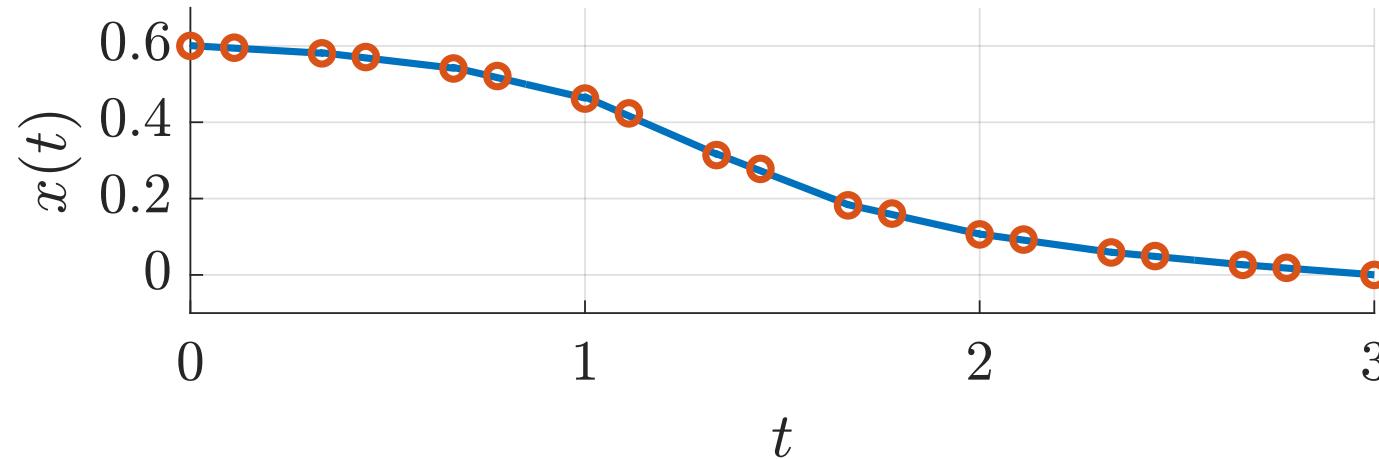
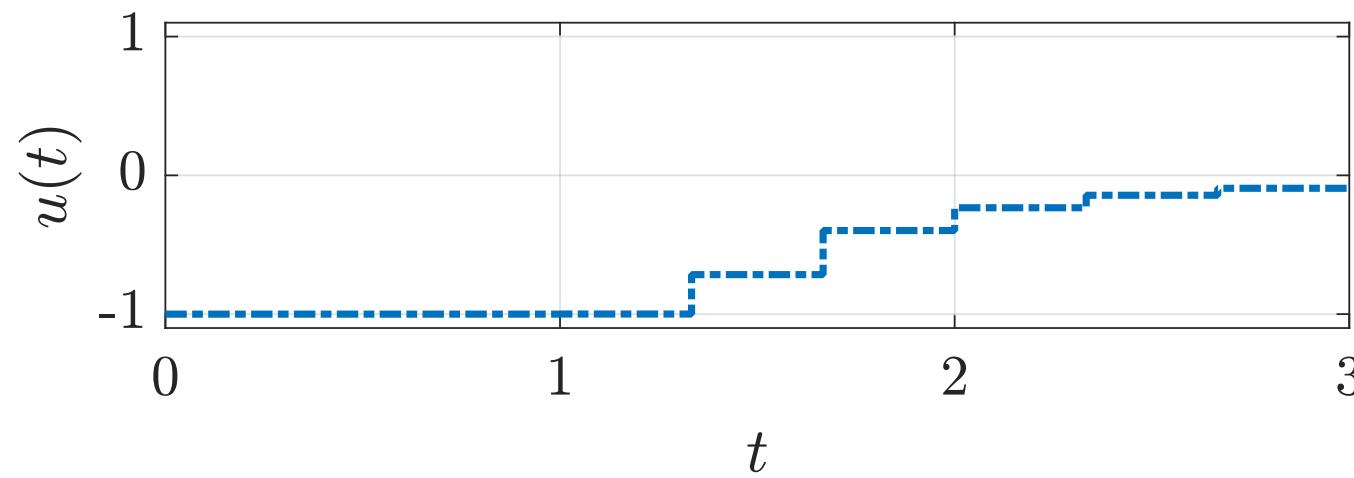
Illustrative example: Fifth Iterate



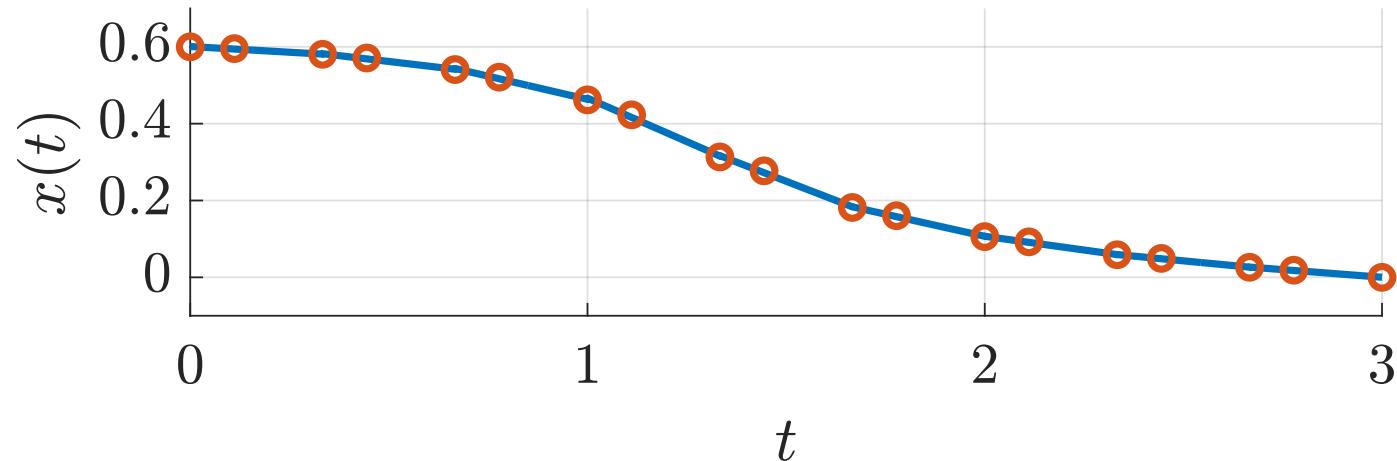
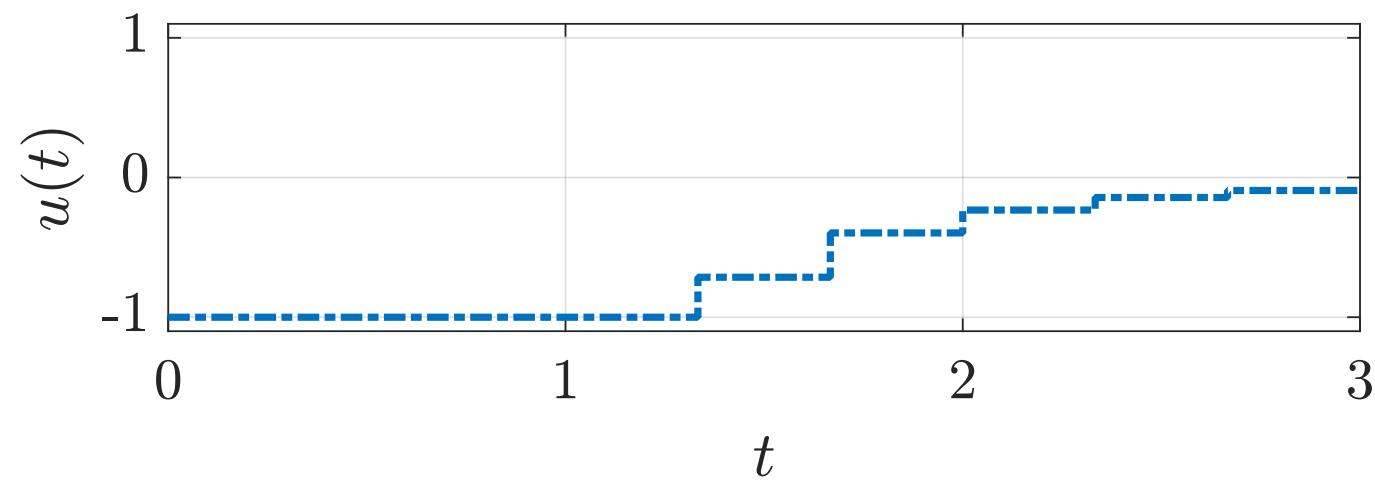
Illustrative example: Sixth Iterate



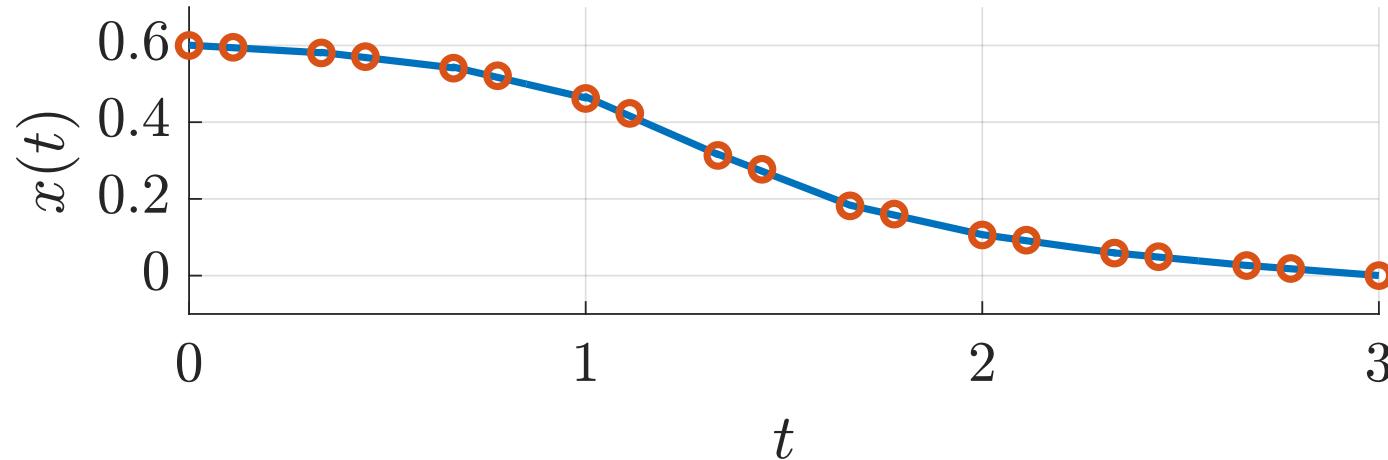
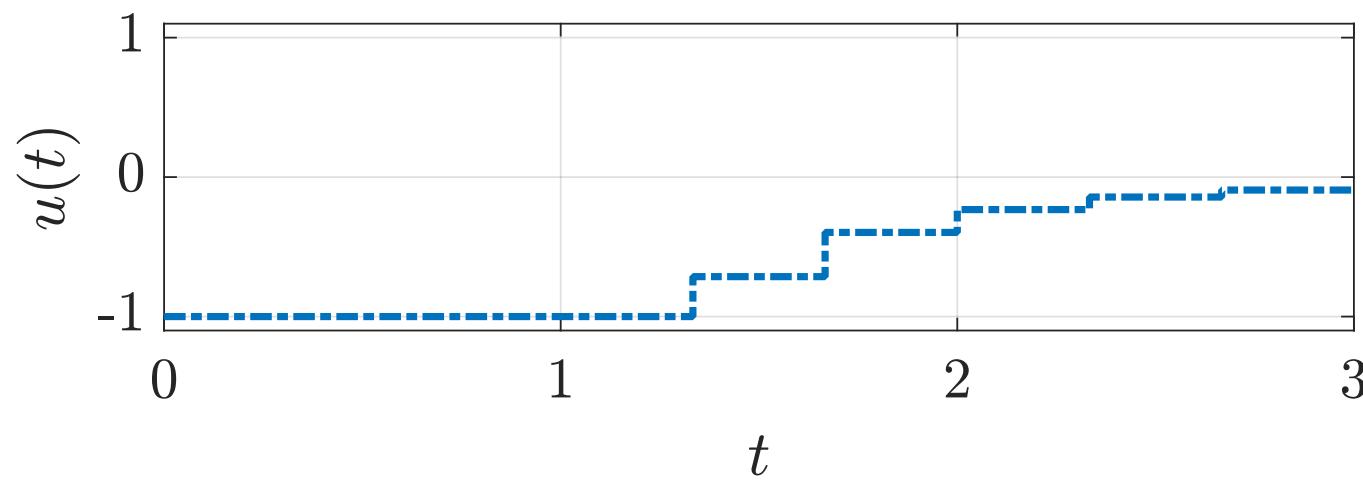
Illustrative example: Seventh Iterate



Illustrative example: Eighth Iterate



Illustrative example: Solution after Nine Newton-type Iterations



More Complex Example: Power Optimal Trajectories in Airborne Wind Energy (AWE)

formulated and solved daily by practitioners using open-source python package “AWEBox” [De Schutter et al. 2023]

For simple plane attached to a tether:

- 20 differential states (3+3 trans, 9+3 rotation, 1+1 tether)
- 1 algebraic state (tether force)
- 8 invariants (6 rotation, 2 due to tether constraint)
- 3 control inputs (aileron, elevator, tether length)

Translational:

$$\begin{bmatrix} m & 0 & 0 & x \\ 0 & m & 0 & y \\ 0 & 0 & m & z \\ x & y & z & 0 \end{bmatrix} \begin{bmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \\ \lambda \end{bmatrix} = \begin{bmatrix} F_x + m(\dot{\delta}^2 r_A + \dot{\delta}^2 x + 2\dot{\delta}\dot{y} + \ddot{\delta}y) \\ F_y + m(y\dot{\delta}^2 - 2\dot{x}\dot{\delta} - \ddot{\delta}(r_A + x)) \\ F_z - gm \\ -\dot{x}^2 - \dot{y}^2 - \dot{z}^2 \end{bmatrix}$$

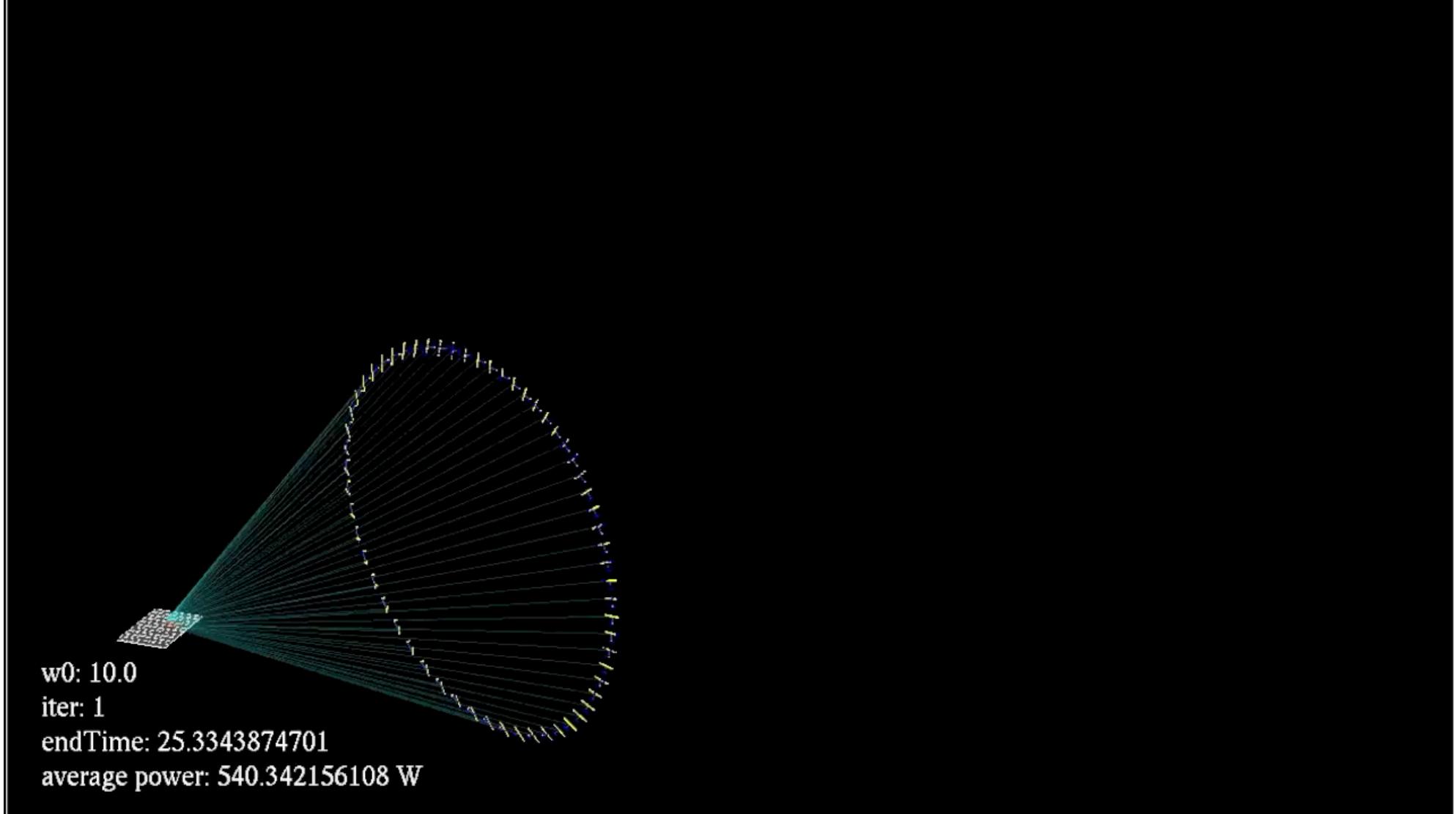
Rotational: $\dot{R} = R\omega_\times - R^T \begin{bmatrix} 0 \\ 0 \\ \dot{\delta} \end{bmatrix}, \quad J\dot{\omega} = T - \omega \times J\omega, \quad R = [\vec{E}_x \quad \vec{E}_y \quad \vec{E}_z]$

Aero. coefficients: $\vec{v} = \begin{bmatrix} \dot{x} - \dot{\delta}y \\ \dot{y} + \dot{\delta}(r_A + x) \\ \dot{z} \end{bmatrix} - \vec{w}(x, y, z, \delta, t), \quad \alpha = -\frac{\vec{E}_z^T \vec{v}}{\vec{E}_x^T \vec{v}}, \quad \beta = \frac{\vec{E}_y^T \vec{v}}{\vec{E}_x^T \vec{v}}$

Aero. forces/torques: $\vec{F}_A = \frac{1}{2}\rho A\|\vec{v}\|(C_L \vec{v} \times \vec{E}_y - C_D \vec{v}), \quad \vec{T}_A = \frac{1}{2}\rho A\|\vec{v}\|^2 \begin{bmatrix} C_R \\ C_P \\ C_Y \end{bmatrix}$

Newton-Type Optimization Iterations for Power Optimal Flight

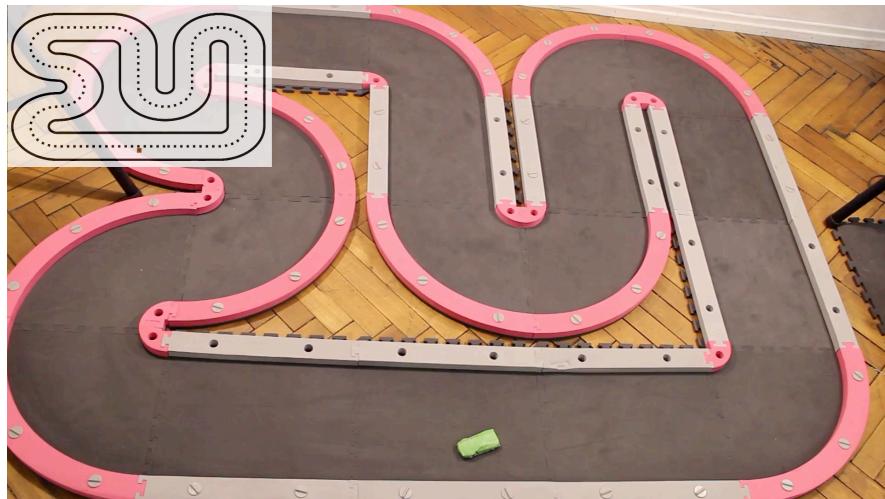
(video by Greg Horn, using CasADi and Ipopt as optimization engine)



Nonlinear Optimal Control often used for Model Predictive Control (MPC)

One widely used nonlinear MPC package is **acados** [Verscheuren et al. 2021]

Example 1: Autonomous Driving (in Freiburg)



Example 2: Quadrotor Racing (U Zurich, Scaramuzza)

Paper: <https://ieeexplore.ieee.org/abstract/document/9805699>

Video: <https://www.youtube.com/watch?v=zBVpx3bgI6E>

7730

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 3, JULY 2022

Time-Optimal Online Replanning for Agile Quadrotor Flight

Angel Romero, Robert Penicka, and Davide Scaramuzza

Abstract—In this letter, we tackle the problem of flying a quadrotor using time-optimal control policies that can be replanned online when the environment changes or when encountering unknown disturbances. This problem is challenging as the time-optimal trajectories that consider the full quadrotor dynamics are computationally expensive to generate, on the order of minutes or even hours. We introduce a simplified model for efficient generation of time-optimal paths of a point-mass model. These paths are then tracked using a Model Predictive Contouring Control approach that considers the full quadrotor dynamics and the single rotor thrust limits. Our combined approach is able to run in real-time, being fast enough to replan and adapt to changes *on-the-fly*. We showcase our approach’s adaptability by flying a quadrotor at more than 60 km/h in a racing track where gates are moving. Additionally, we show that our online replanning approach can cope with strong disturbances caused by winds of up to 68 km/h.

Index Terms—Aerial systems; Applications, integrated planning and control, motion and path planning.

SUPPLEMENTARY MATERIAL
Video of the experiments: <https://youtu.be/zBVpx3bgI6E>

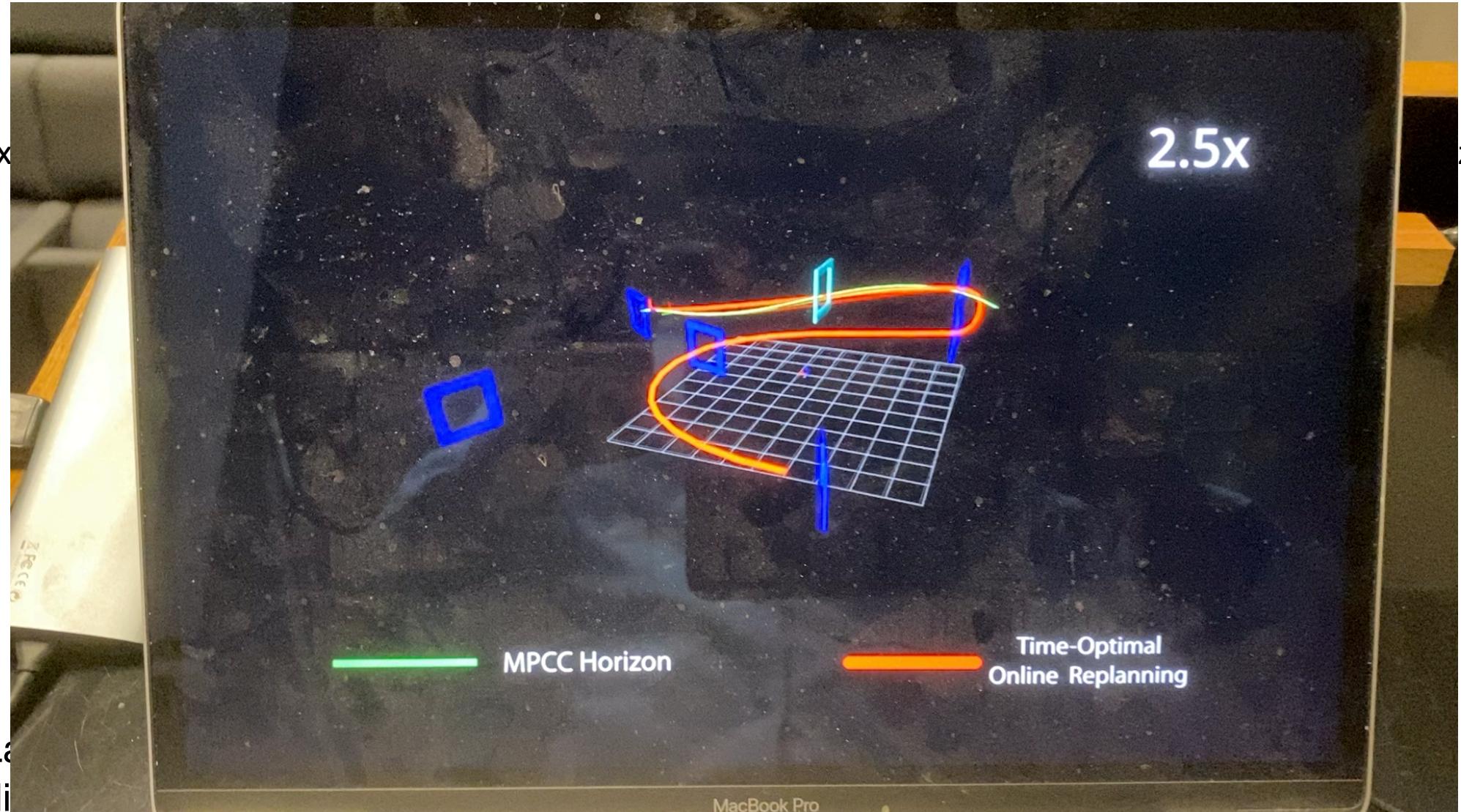
Fig. 1. The proposed algorithm is able to adapt *on-the-fly* when encountering unknown disturbances. In the figure we show a quadrotor platform flying at speeds of more than 60 km/h. Thanks to our online replanning method, the drone can adapt to wind disturbances of up to 68 km/h while flying as fast as possible.

A. Implementation Details

In order to deploy our MPCC controller, (4) needs to be solved in real-time. To this end, we have implemented our optimization problem using acados [24] as a code generation tool, in contrast to [6], where its previous version, ACADO [25] was used. It is important to note that for consistency, the optimization problem that is solved online is written in (4) and is exactly the same as in [6]. The main benefit of using acados is that it provides an interface to HPIPM (High Performance Interior Point Method) solver [26]. HPIPM solves optimization problems using BLAS-FEO [27], a linear algebra library specifically designed for

Latest **acados** development:
differentiable nonlinear MPC via adjoint approach [Frey et al. 2025, subm.]

Nonlinear Optimal Control often used for Model Predictive Control (MPC)
One widely used nonlinear MPC package is **acados** [Verscheuren et al. 2021]

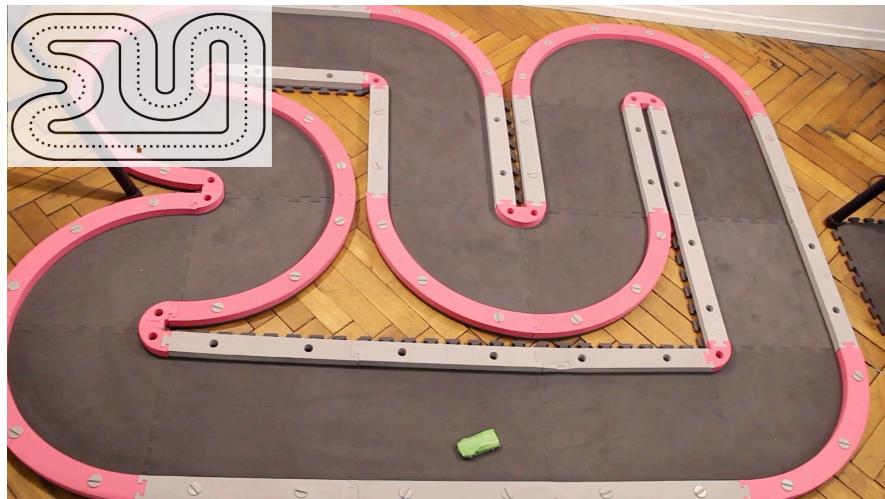


La
di

Nonlinear Optimal Control often used for Model Predictive Control (MPC)

One widely used nonlinear MPC package is **acados** [Verscheuren et al. 2021]

Example 1: Autonomous Driving (in Freiburg)



Example 2: Quadrotor Racing (U Zurich, Scaramuzza)

Paper: <https://ieeexplore.ieee.org/abstract/document/9805699>

Video: <https://www.youtube.com/watch?v=zBVpx3bgI6E>

7730

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 3, JULY 2022

Time-Optimal Online Replanning for Agile Quadrotor Flight

Angel Romero, Robert Penicka, and Davide Scaramuzza

Abstract—In this letter, we tackle the problem of flying a quadrotor using time-optimal control policies that can be replanned online when the environment changes or when encountering unknown disturbances. This problem is challenging as the time-optimal trajectories that consider the full quadrotor dynamics are computationally expensive to generate, on the order of minutes or even hours. We introduce a simplified model for efficient generation of time-optimal paths of a point-mass model. These paths are then tracked using a Model Predictive Contouring Control approach that considers the full quadrotor dynamics and the single rotor thrust limits. Our combined approach is able to run in real-time, being fast enough to replan and adapt to changes *on-the-fly*. We showcase our approach’s adaptability by flying a quadrotor at more than 60 km/h in a racing track where gates are moving. Additionally, we show that our online replanning approach can cope with strong disturbances caused by winds of up to 68 km/h.

Index Terms—Aerial systems; Applications, integrated planning and control, motion and path planning.

SUPPLEMENTARY MATERIAL
Video of the experiments: <https://youtu.be/zBVpx3bgI6E>

Fig. 1. The proposed algorithm is able to adapt *on-the-fly* when encountering unknown disturbances. In the figure we show a quadrotor platform flying at speeds of more than 60 km/h. Thanks to our online replanning method, the drone can adapt to wind disturbances of up to 68 km/h while flying as fast as possible.

A. Implementation Details

In order to deploy our MPCC controller, (4) needs to be solved in real-time. To this end, we have implemented our optimization problem using acados [24] as a code generation tool, in contrast to [6], where its previous version, ACADO [25] was used. It is important to note that for consistency, the optimization problem that is solved online is written in (4) and is exactly the same as in [6]. The main benefit of using acados is that it provides an interface to HPIPM (High Performance Interior Point Method) solver [26]. HPIPM solves optimization problems using BLAS-FEO [27], a linear algebra library specifically designed for

Latest **acados** development:
differentiable nonlinear MPC via adjoint approach [Frey et al. 2025, subm.]

Next Challenge: Nonsmooth Optimal Control

Next Challenge: Nonsmooth Optimal Control

Continuous-Time OCP

$$\min_{x(\cdot), u(\cdot)} \int_0^T L_c(x(t), u(t)) \, dt + E(x(T))$$

$$\text{s.t. } x(0) = \bar{x}_0$$

$$\dot{x}(t) = f(x(t), u(t))$$

$$0 \geq h(x(t), u(t)), \quad t \in [0, T]$$

$$0 \geq r(x(T))$$

Three levels of difficulty:

- (a) Linear ODE: $f(x, u) = Ax + Bu$
- (b) Nonlinear smooth ODE: $f \in \mathcal{C}^1$
- (c) **Nonsmooth Dynamics (NSD):**
 - ▶ f not differentiable (NSD1),

Next Challenge: Nonsmooth Optimal Control

Continuous-Time OCP

$$\min_{x(\cdot), u(\cdot)} \int_0^T L_c(x(t), u(t)) \, dt + E(x(T))$$

$$\text{s.t. } x(0) = \bar{x}_0$$

$$\dot{x}(t) = f(x(t), u(t))$$

$$0 \geq h(x(t), u(t)), \quad t \in [0, T]$$

$$0 \geq r(x(T))$$

Three levels of difficulty:

- (a) Linear ODE: $f(x, u) = Ax + Bu$
- (b) Nonlinear smooth ODE: $f \in \mathcal{C}^1$
- (c) **Nonsmooth Dynamics (NSD):**
 - ▶ f not differentiable (NSD1),
 - ▶ f not continuous (NSD2), or even

Next Challenge: Nonsmooth Optimal Control

Continuous-Time OCP

$$\min_{x(\cdot), u(\cdot)} \int_0^T L_c(x(t), u(t)) \, dt + E(x(T))$$

$$\text{s.t. } x(0) = \bar{x}_0$$

$$\dot{x}(t) = f(x(t), u(t))$$

$$0 \geq h(x(t), u(t)), \quad t \in [0, T]$$

$$0 \geq r(x(T))$$

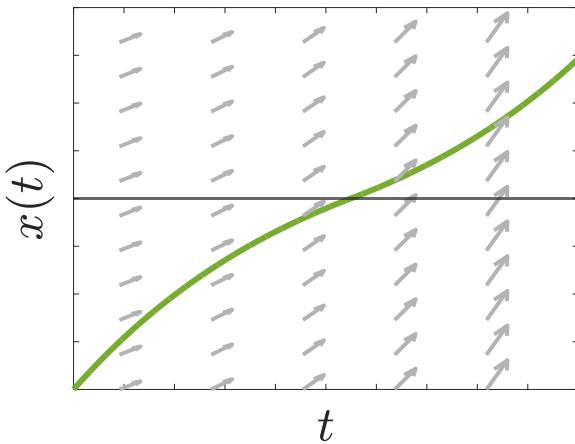
Three levels of difficulty:

- (a) Linear ODE: $f(x, u) = Ax + Bu$
- (b) Nonlinear smooth ODE: $f \in \mathcal{C}^1$
- (c) **Nonsmooth Dynamics (NSD):**
 - ▶ f not differentiable (NSD1),
 - ▶ f not continuous (NSD2), or even
 - ▶ f not finite valued, discontinuous state $x(t)$ (NSD3)

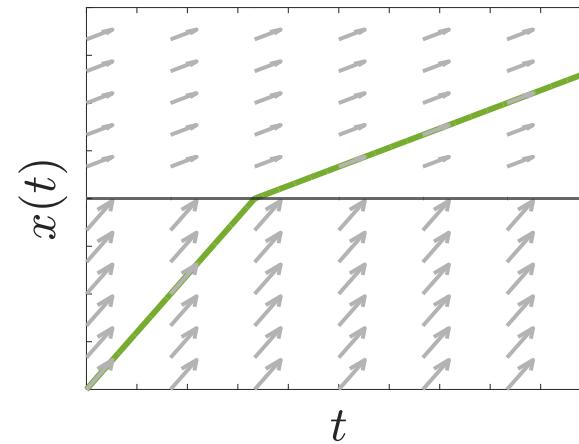
Nonsmooth differential equations - hybrid systems

Classification of Nonsmooth Dynamics (NSD)

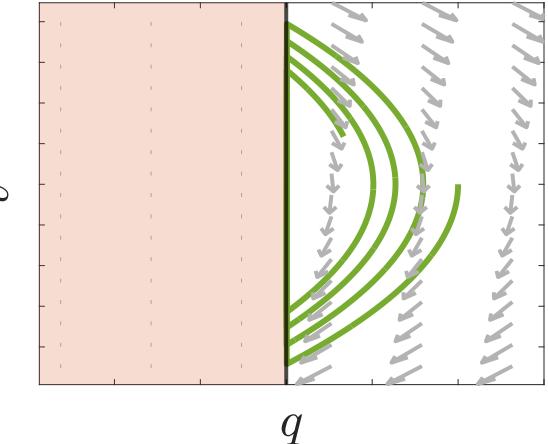
Ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).



NSD1
non-differentiable RHS



NSD2
discontinuous RHS



NSD3
state dependent jump

Nonsmooth differential equations - hybrid systems

Classification of Nonsmooth Dynamics (NSD)

Ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).

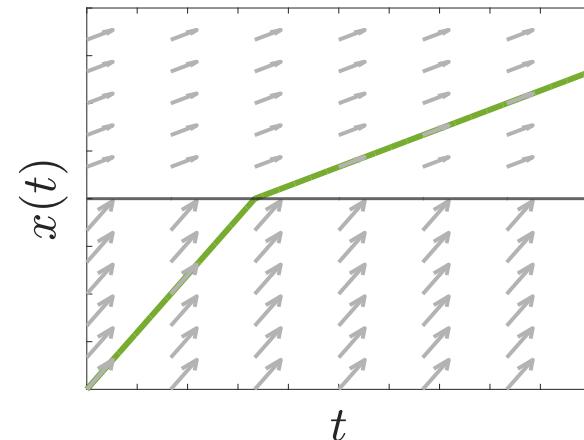
Continuous activation
functions in the RHS

$$\dot{x} = 1 + \max(0, x)$$

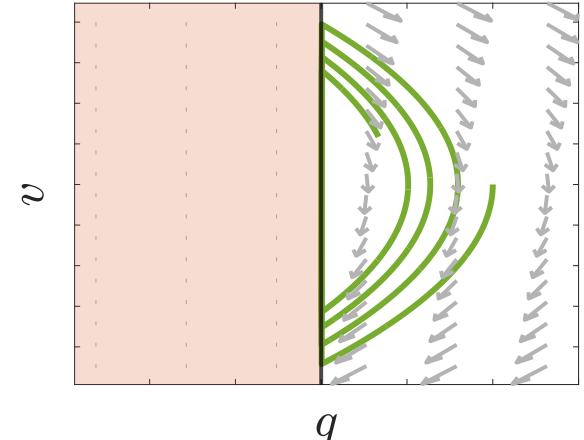
Continuous non-diff. ODEs

$$\dot{x} = 1 + |x|$$

NSD1
non-differentiable RHS



NSD2
discontinuous RHS



NSD3
state dependent jump

Nonsmooth differential equations - hybrid systems

Classification of Nonsmooth Dynamics (NSD)

Ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).

Continuous activation
functions in the RHS

$$\dot{x} = 1 + \max(0, x)$$

Piecewise smooth systems

$$\begin{aligned}\dot{x} &= f_i(x), \text{ if } x \in R_i \\ i &= 1, \dots, m\end{aligned}$$

Continuous non-diff. ODEs

$$\dot{x} = 1 + |x|$$

Projected dynamical systems

$$\dot{x} = \mathbf{P}_{\mathcal{T}_C(x)}(f(x))$$

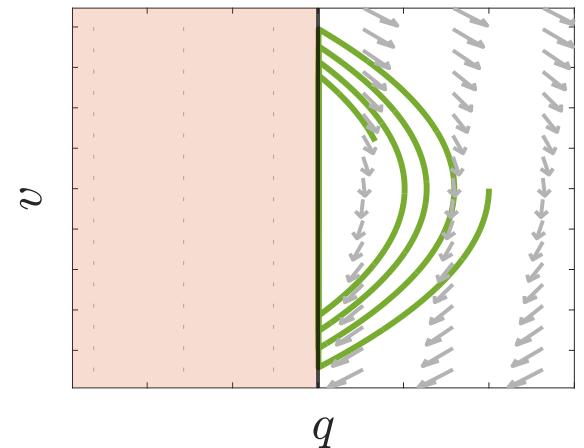
NSD1
non-differentiable RHS

NSD2

discontinuous RHS

NSD3

state dependent jump



Nonsmooth differential equations - hybrid systems

Classification of Nonsmooth Dynamics (NSD)

Ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).

Continuous activation
functions in the RHS

$$\dot{x} = 1 + \max(0, x)$$

Piecewise smooth systems

$$\begin{aligned}\dot{x} &= f_i(x), \text{ if } x \in R_i \\ i &= 1, \dots, m\end{aligned}$$

Continuous non-diff. ODEs

$$\dot{x} = 1 + |x|$$

NSD1

non-differentiable RHS

Rigid bodies with impacts
and friction

$$\dot{q} = v$$

$$\begin{aligned}M(q)\dot{v} &= f_v(q, v) + J_n(q)\lambda_n \\ 0 \leq \lambda_n \perp f_c(q) &\geq 0\end{aligned}$$

(state jump law for v)

Projected dynamical systems

$$\dot{x} = P_{\mathcal{T}_C(x)}(f(x))$$

NSD2

discontinuous RHS

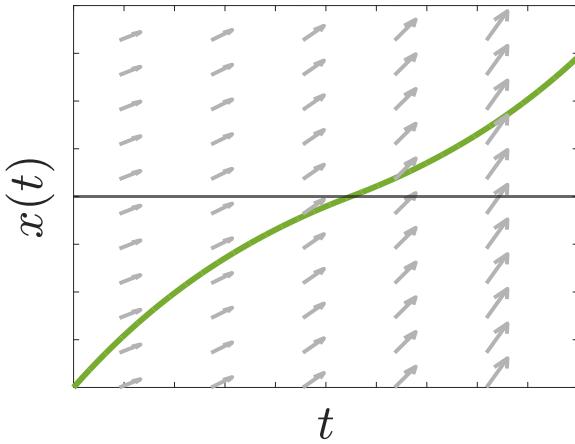
NSD3

state dependent jump

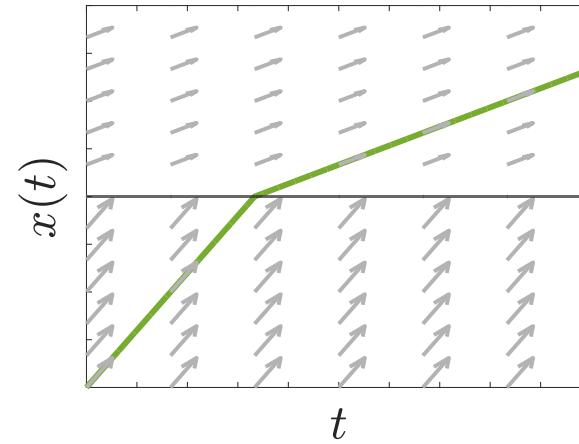
Nonsmooth differential equations - hybrid systems

Classification of Nonsmooth Dynamics (NSD)

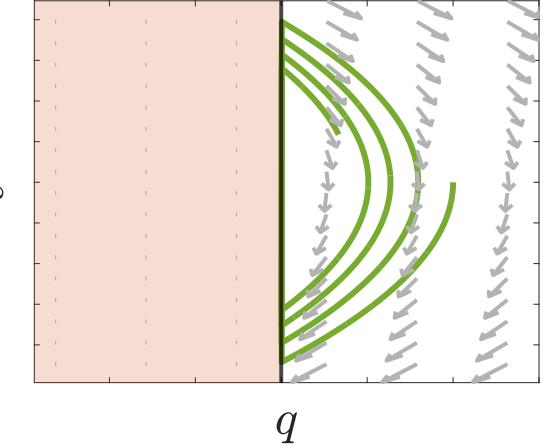
Ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).



NSD1
non-differentiable RHS



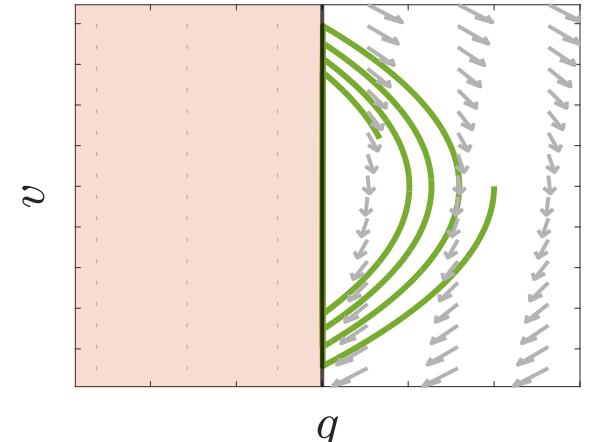
NSD2
discontinuous RHS



NSD3
state dependent jump

Nonsmooth differential equations - hybrid systems

Classification of Nonsmooth Dynamics (NSD)

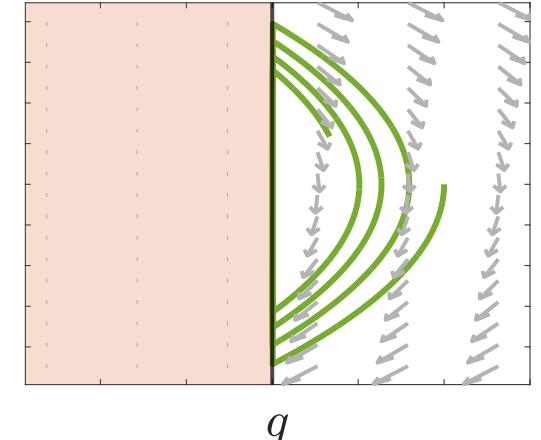


NSD3
state dependent jump

Nonsmooth differential equations - hybrid systems

Classification of Nonsmooth Dynamics (NSD)

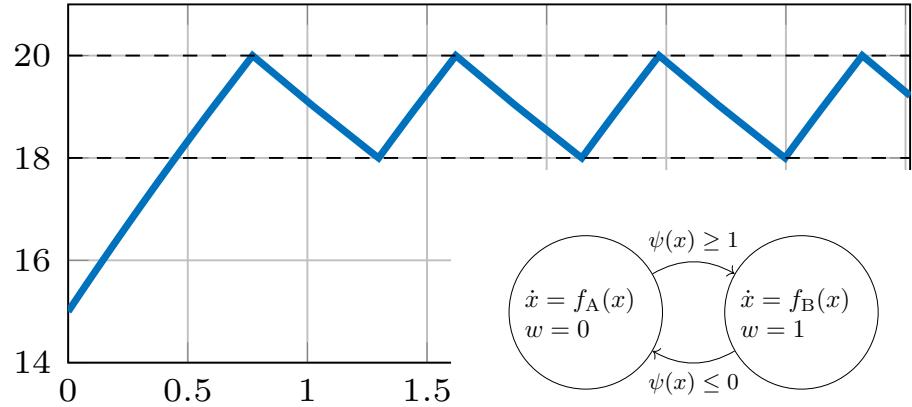
Bouncing Ball (NSD3)



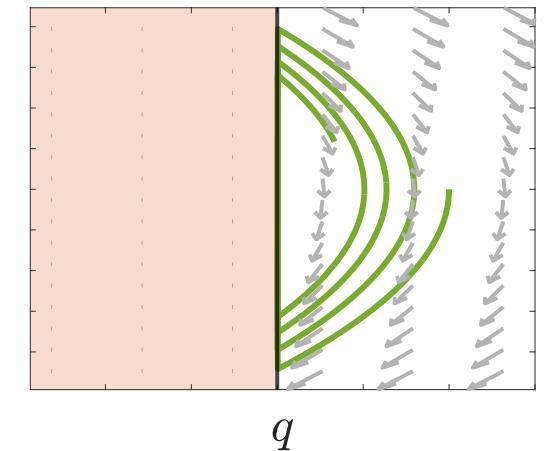
NSD3
state dependent jump

Nonsmooth differential equations - hybrid systems

Classification of Nonsmooth Dynamics (NSD)

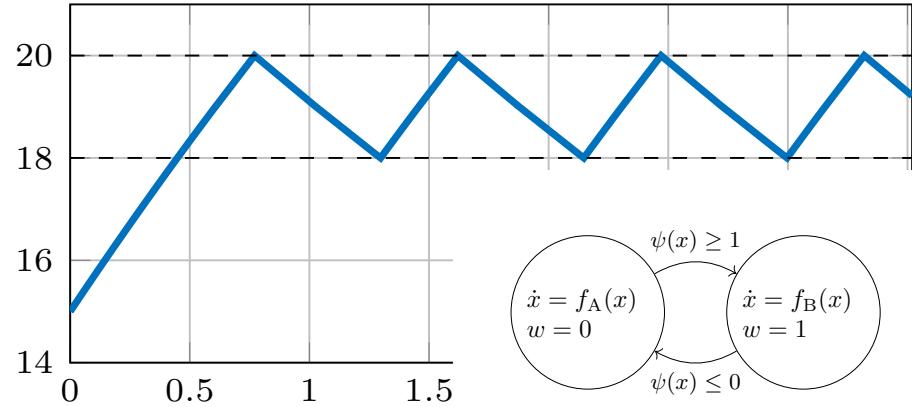


Bouncing Ball (NSD3)



Nonsmooth differential equations - hybrid systems

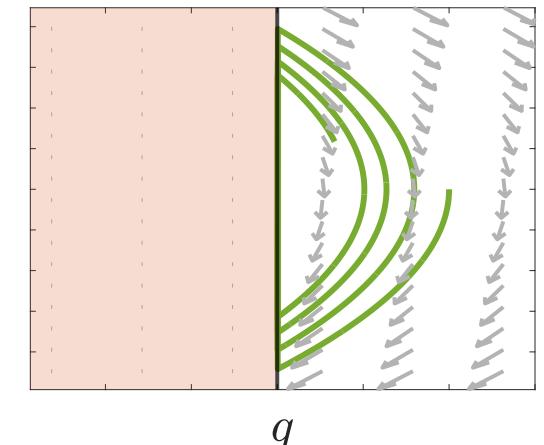
Classification of Nonsmooth Dynamics (NSD)



State Machine in Hysteresis Control (NSD3)

Walking Robot (unitree at LAAS, NSD3)

Bouncing Ball (NSD3)



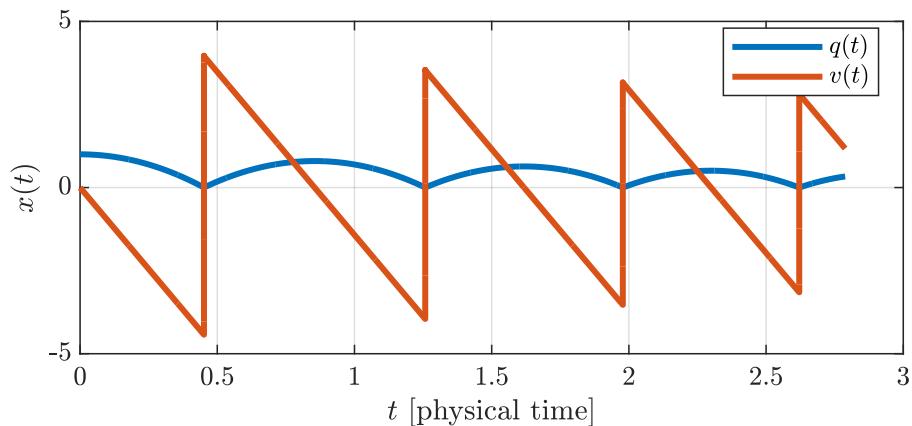
NSD3
state dependent jump

NSD3 state jump example: bouncing ball

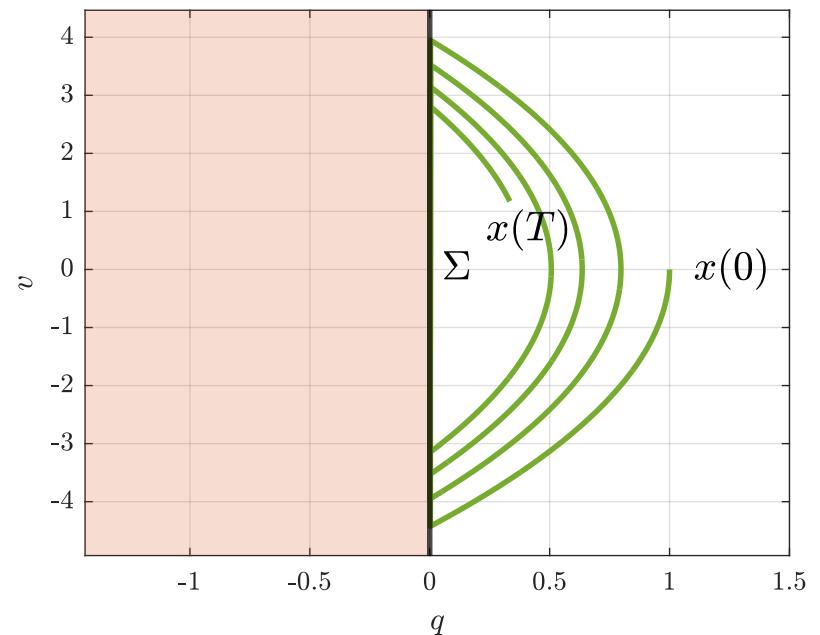
Bouncing ball with state $x = (q, v)$:

$$\begin{aligned}\dot{q} &= v, \quad m\dot{v} = -mg, \quad \text{if } q > 0 \\ v(t^+) &= -0.9v(t^-), \quad \text{if } q(t^-) = 0 \text{ and } v(t^-) < 0\end{aligned}$$

Time plot of bouncing ball trajectory:



Phase plot of bouncing ball trajectory:



Can Newton-Type Optimization be Useful for NSD3 Systems ?

Can Newton-Type Optimization be Useful for NSD3 Systems ?

Surprisingly, Yes !

Can Newton-Type Optimization be Useful for NSD3 Systems ?

Surprisingly, Yes !

Some recent progress in Nonsmooth Optimal Control:

Can Newton-Type Optimization be Useful for NSD3 Systems ?

Surprisingly, Yes !

Some recent progress in Nonsmooth Optimal Control:

- Can transform many NSD3 systems into (easier) NSD2 via **time-freezing**

Can Newton-Type Optimization be Useful for NSD3 Systems ?

Surprisingly, Yes !

Some recent progress in Nonsmooth Optimal Control:

- Can transform many NSD3 systems into (easier) NSD2 via **time-freezing**
- Can discretize NSD2 systems with highly accurate **Finite Elements with Switch Detection (FESD)**, removing spurious local minimisers

Can Newton-Type Optimization be Useful for NSD3 Systems ?

Surprisingly, Yes !

Some recent progress in Nonsmooth Optimal Control:

- Can transform many NSD3 systems into (easier) NSD2 via **time-freezing**
- Can discretize NSD2 systems with highly accurate **Finite Elements with Switch Detection (FESD)**, removing spurious local minimisers
- Can solve the resulting **Mathematical Programs with Complementarity Constraints (MPCC)** via homotopy of NLP (e.g. based on IPOPT)

Can Newton-Type Optimization be Useful for NSD3 Systems ?

Surprisingly, Yes !

Some recent progress in Nonsmooth Optimal Control:

- Can transform many NSD3 systems into (easier) NSD2 via **time-freezing**
- Can discretize NSD2 systems with highly accurate **Finite Elements with Switch Detection (FESD)**, removing spurious local minimisers
- Can solve the resulting **Mathematical Programs with Complementarity Constraints (MPCC)** via homotopy of NLP (e.g. based on IPOPT)
- Can use open-source software **NOSNOC**, from MATLAB and Python

github.com/nosnoc/nosnoc

Can Newton-Type Optimization be Useful for NSD3 Systems ?

Surprisingly, Yes !

Some recent progress in Nonsmooth Optimal Control:

- Can transform many NSD3 systems into (easier) NSD2 via **time-freezing**
- Can discretize NSD2 systems with highly accurate **Finite Elements with Switch Detection (FESD)**, removing spurious local minimisers
- Can solve the resulting **Mathematical Programs with Complementarity Constraints (MPCC)** via homotopy of NLP (e.g. based on IPOPT)
- Can use open-source software **NOSNOC**, from MATLAB and Python

github.com/nosnoc/nosnoc

PhD and Postdoc Work by **Armin Nurkanovic**

First: Time Freezing

First: Time Freezing

Question: could we transform NSD3 systems into (easier) NSD2 systems?

First: Time Freezing

Question: could we transform NSD3 systems into (easier) NSD2 systems?

Time Freezing Reformulation based on three ideas:

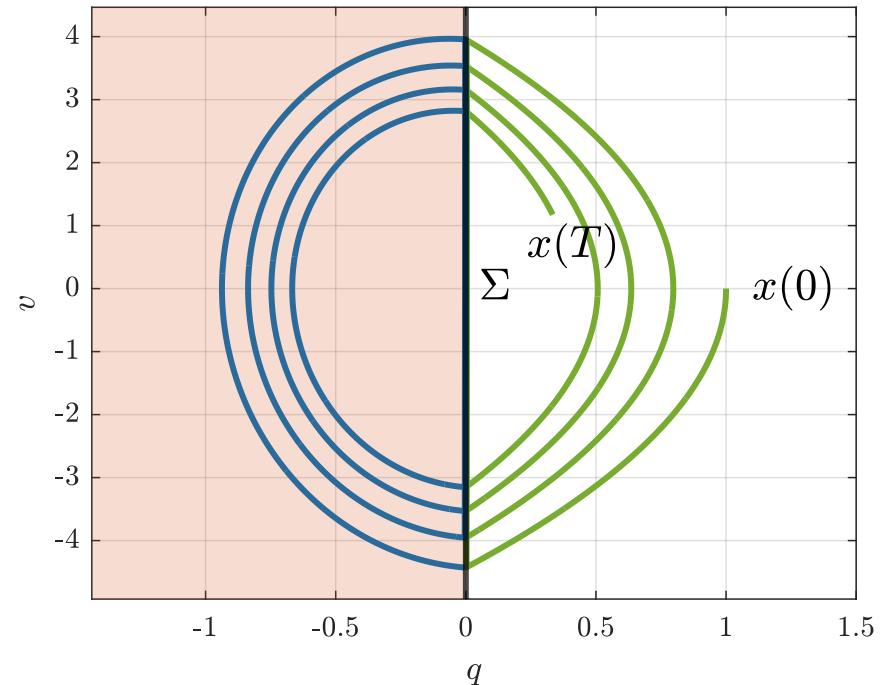
1. mimic state jump by **auxiliary dynamic system** $\dot{x} = f_{\text{aux}}(x)$ on prohibited region
2. introduce a **clock state** $t(\tau)$ that stops counting when the auxiliary system is active
3. adapt speed of time, $\frac{dt}{d\tau} = s$ with $s \geq 1$, and **impose terminal constraint** $t(T) = T$

The time-freezing reformulation

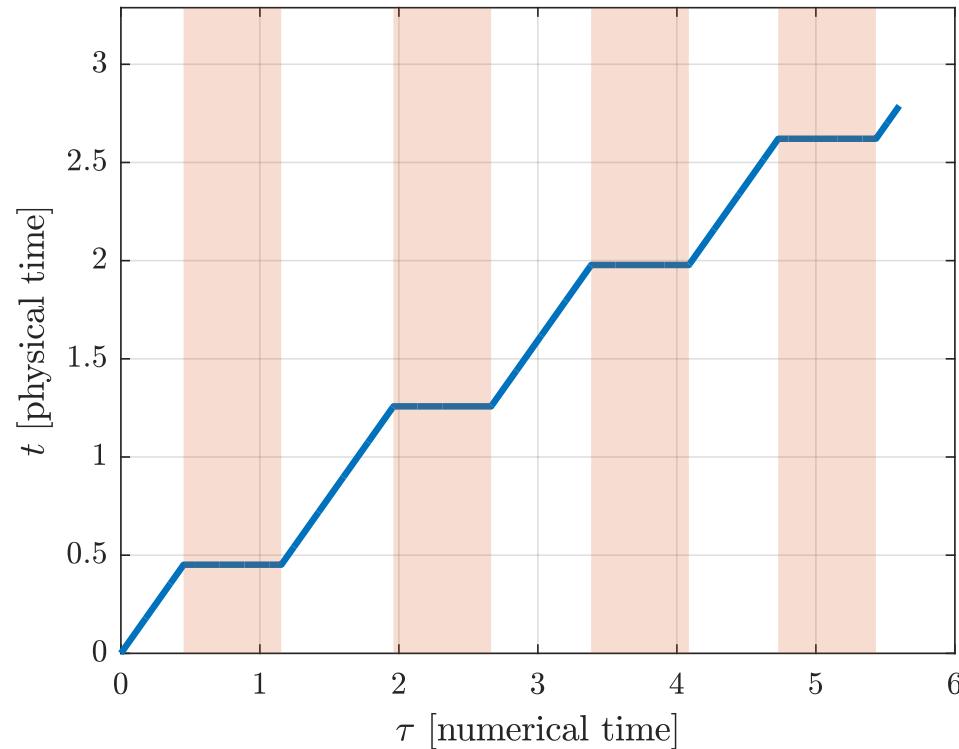
Augmented state $(x, t) \in \mathbb{R}^{n+1}$ evolves in **numerical time** τ . Augmented system is nonsmooth, of NSD2 type:

$$\frac{d}{d\tau} \begin{bmatrix} x \\ t \end{bmatrix} = \begin{cases} \textcolor{red}{s} \begin{bmatrix} f(x) \\ 1 \end{bmatrix}, & \text{if } c(x) \geq 0 \\ \begin{bmatrix} \textcolor{red}{s} f_{\text{aux}}(x) \\ 0 \end{bmatrix}, & \text{if } c(x) < 0 \end{cases}$$

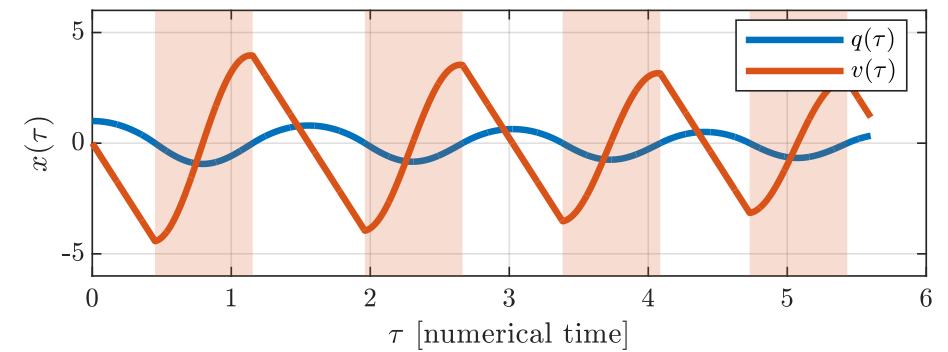
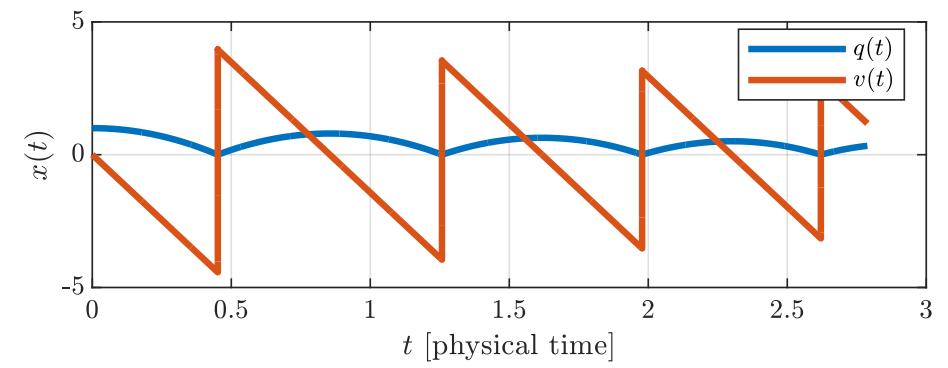
- ▶ During normal times, system and clock state evolve with adapted speed $\textcolor{red}{s} \geq 1$.
- ▶ Auxiliary system $\frac{dx}{d\tau} = f_{\text{aux}}(x)$ mimics state jump while time is frozen, $\frac{dt}{d\tau} = 0$.



Time-freezing for bouncing ball example



Evolution of physical time (clock state) during augmented system simulation ($s = 1$).



We can recover the true solution by plotting $x(\tau)$ vs. $t(\tau)$ and disregarding "frozen pieces".

Second: How to Optimise Switched (NSD2) Systems ?

Regard Switched Systems that may include Sliding Modes

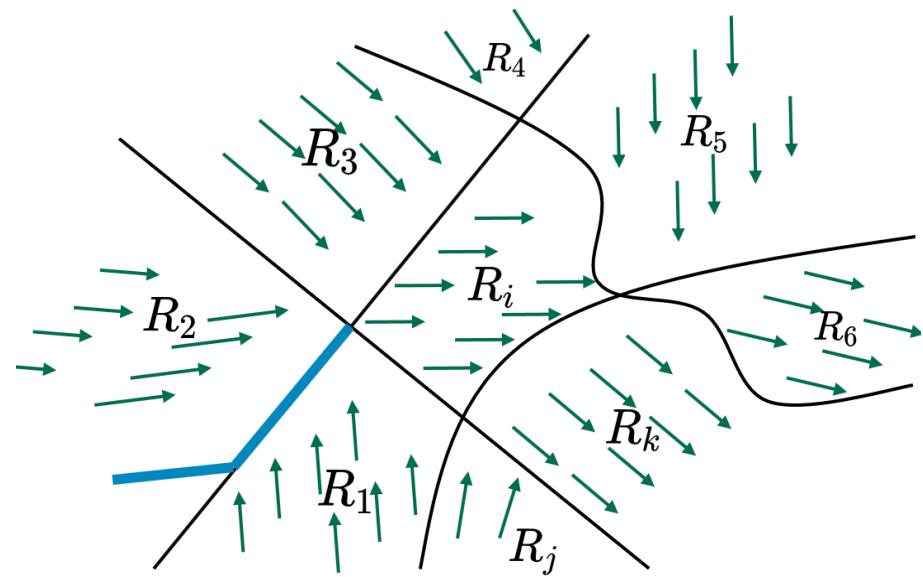
Regard **discontinuous** right-hand side, piecewise smooth on disjoint open regions $R_i \subset \mathbb{R}^{n_x}$

Discontinuous ODE (NSD2)

$$\dot{x} = f_i(x, u), \text{ if } x \in R_i, \\ i \in \{1, \dots, n_f\}$$

Numerical aims:

1. exactly detect switching times
2. obtain exact sensitivities across regions
3. appropriately treat evolution on boundaries
(sliding mode \rightarrow Filippov convexification)

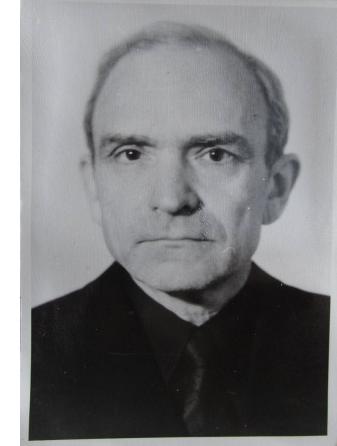


Filippov Convexification

Dynamics not yet well-defined on region boundaries ∂R_i . Idea by A.F. Filippov (1923-2006): replace ODE by differential inclusion, using convex combination of neighboring vector fields.

Filippov Differential Inclusion

$$\dot{x} \in F_F(x, u) := \left\{ \sum_{i=1}^{n_f} f_i(x, u) \theta_i \quad \middle| \quad \sum_{i=1}^{n_f} \theta_i = 1, \right. \\ \theta_i \geq 0, \quad i = 1, \dots, n_f, \\ \theta_i = 0, \quad \text{if } x \notin \overline{R_i} \quad \left. \right\}$$



Aleksei F. Filippov
(1923-2006)
image source: wikipedia

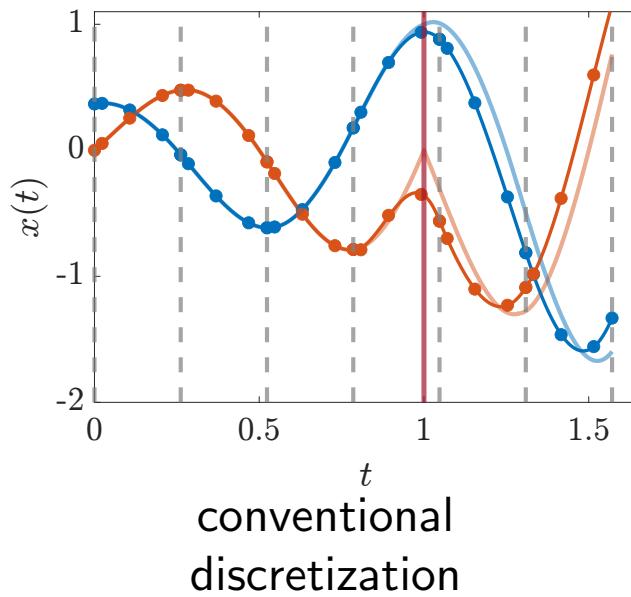
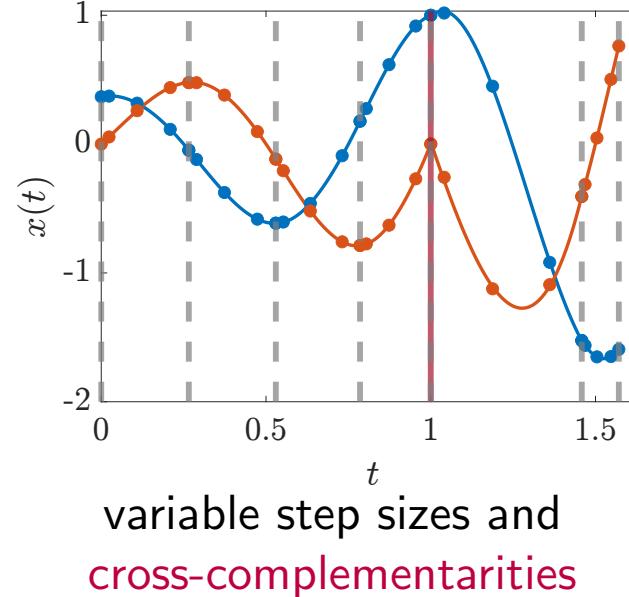
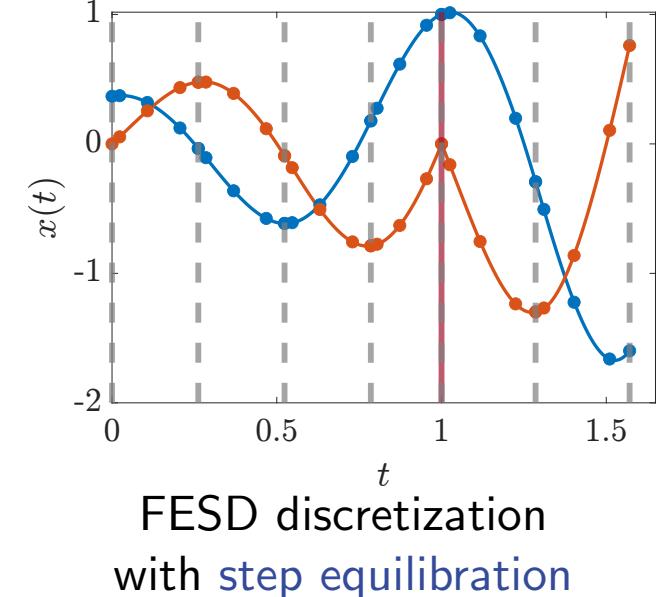
- ▶ for interior points $x \in R_i$ nothing changes: $F_F(x, u) = \{f_i(x, u)\}$
- ▶ Provides meaningful generalization on region boundaries.
E.g. on $\overline{R_1} \cap \overline{R_2}$ both θ_1 and θ_2 can be nonzero

Finite Elements with Switch Detection (FESD)

Introduced in [Nurkanović et al., 2024], implemented in [Nurkanović and Diehl, 2022], extended in [Nurkanović et al., 2024, Nurkanović et al., 2024, Pozharskiy et al., 2024].

FESD is a novel DCS discretization method based on three ideas:

- ▶ make step sizes h_n free, ensure $\sum_{n=0}^{N-1} h_n = T$ (cf. [Baumrucker and Biegler, 2009])
- ▶ allow switches only at element boundaries, enforce via **cross-complementarities**,
- ▶ remove spurious degrees of freedom via **step equilibration**.



Conventional DCS and FESD discretization

Time-stepping discretization

$$x_{0,0} = \bar{x}_0, \quad h = T/N$$

$$x_{n+1,0} = x_{n,0} + h \sum_{i=1}^{n_s} b_i v_{n,i}$$

$$x_{n,i} = x_{n,0} + h \sum_{j=1}^{n_s} a_{i,j} v_{n,j}$$

$$v_{n,i} = F(x_{n,i}, u_{n,i}) \theta_{n,i}$$

$$0 = g(x_{n,i}) - \lambda_{n,i} - e\mu_{n,i}$$

$$0 \leq \theta_{n,i} \perp \lambda_{n,i} \geq 0$$

$$1 = e^\top \theta_{n,i}$$

for $i = 1, \dots, n_s$

and $n = 0, \dots, N-1$

FESD discretization with step equilibration

$$x_{0,0} = \bar{x}_0, \quad \sum_{n=0}^{N-1} h_n = T$$

$$x_{n+1,0} = x_{n,0} + h_n \sum_{i=1}^{n_s} b_i v_{n,i}$$

$$x_{n,i} = x_{n,0} + h_n \sum_{j=1}^{n_s} a_{i,j} v_{n,j}$$

$$v_{n,i} = F(x_{n,i}, u_{n,i}) \theta_{n,i}$$

$$0 = g(x_{n,i'}) - \lambda_{n,i'} - e\mu_{n,i'}$$

$$0 \leq \theta_{n,i} \perp \lambda_{n,i'} \geq 0 \quad (\text{cross-complementarities})$$

$$1 = e^\top \theta_{n,i}$$

$$0 = \nu(\theta_{n'}, \theta_{n'+1}, \lambda_{n'}, \lambda_{n'+1}) \cdot (h_{n'} - h_{n'+1})$$

for $i = 1, \dots, n_s$ and $n = 0, \dots, N-1$

and $i' = 0, 1, \dots, n_s$ and $n' = 0, \dots, N-2$

- ▶ N extra variables (h_0, \dots, h_{N-1}) restricted by one extra equality
- ▶ Additional multipliers $\lambda_{n,0}, \mu_{n,0}$ are uniquely determined
- ▶ Indicator function $\nu(\theta_{n'}, \theta_{n'+1}, \lambda_{n'}, \lambda_{n'+1})$ only zero if a switch occurs

Numerical methods for MPCCs

MPEC

$$\min_{w \in \mathbb{R}^n} f(w) \quad (3a)$$

$$\text{s.t. } g(w) = 0, \quad (3b)$$

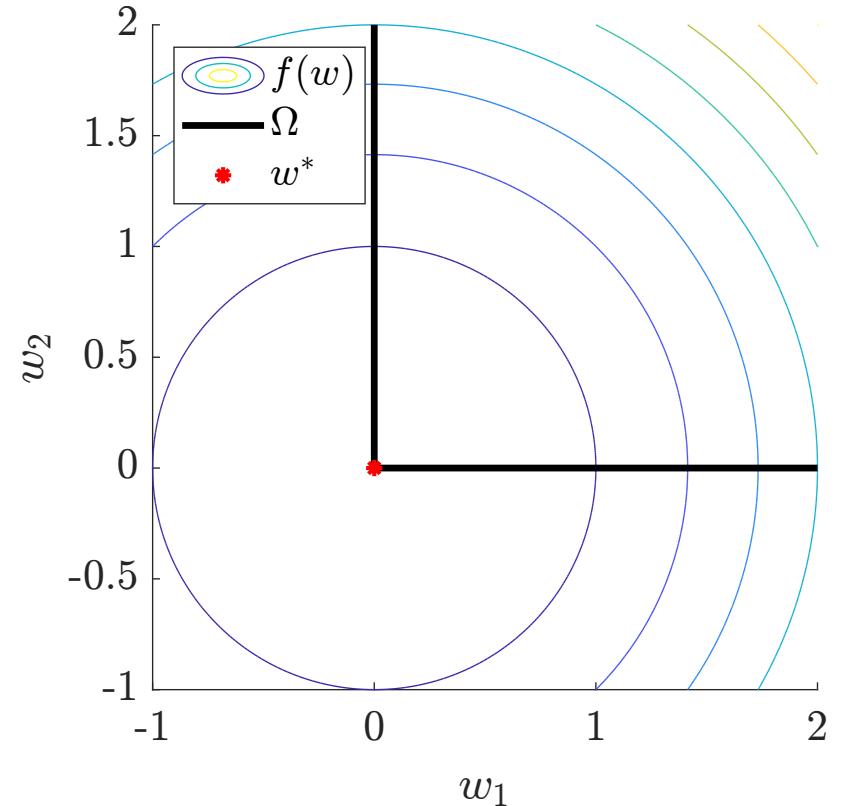
$$h(w) \geq 0, \quad (3c)$$

$$0 \leq w_1 \perp w_2 \geq 0, \quad (3d)$$

$$w = (w_0, w_1, w_2) \in \mathbb{R}^n, \quad w_0 \in \mathbb{R}^p, \quad w_1, w_2 \in \mathbb{R}^m,$$

$$\Omega = \{x \in \mathbb{R}^n \mid g(w) = 0, h(w) \geq 0, \quad 0 \leq w_1 \perp w_2 \geq 0\},$$

- ▶ Standard NLP methods solve the KKT conditions.
- ▶ MPECs violate constraint qualifications, and the KKT conditions may not be necessary.
- ▶ There are many stationary concepts for MPECs, and not all are useful.



Numerical methods for MPCCs

MPEC

$$\min_{w \in \mathbb{R}^n} f(w) \quad (3a)$$

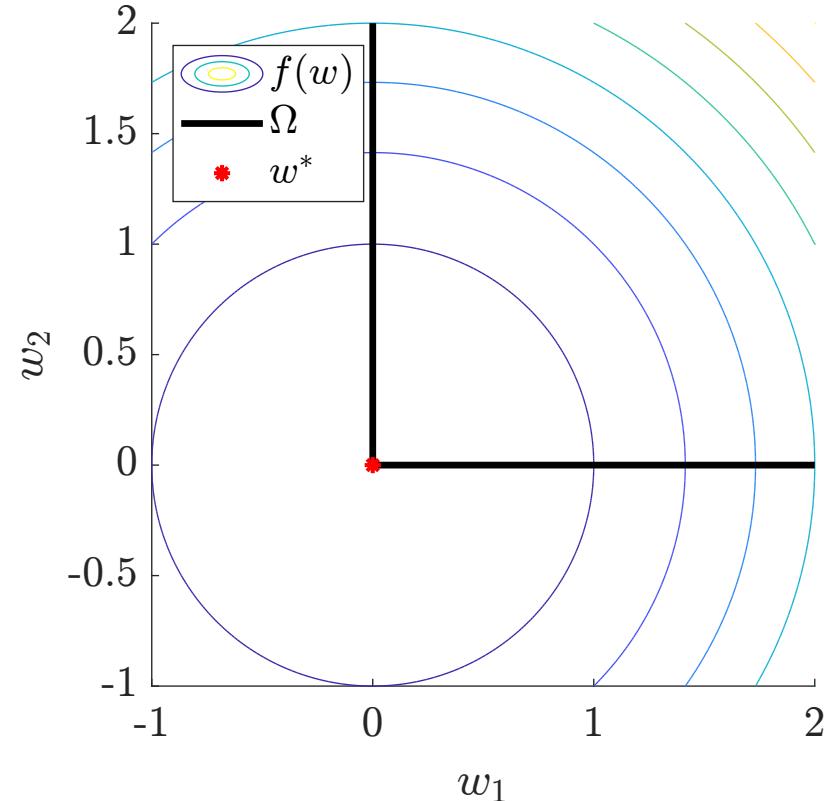
$$\text{s.t. } g(w) = 0, \quad (3b)$$

$$h(w) \geq 0, \quad (3c)$$

$$0 \leq w_1 \perp w_2 \geq 0, \quad (3d)$$

$$w = (w_0, w_1, w_2) \in \mathbb{R}^n, \quad w_0 \in \mathbb{R}^p, \quad w_1, w_2 \in \mathbb{R}^m,$$

$$\Omega = \{x \in \mathbb{R}^n \mid g(w) = 0, h(w) \geq 0, \quad 0 \leq w_1 \perp w_2 \geq 0\},$$



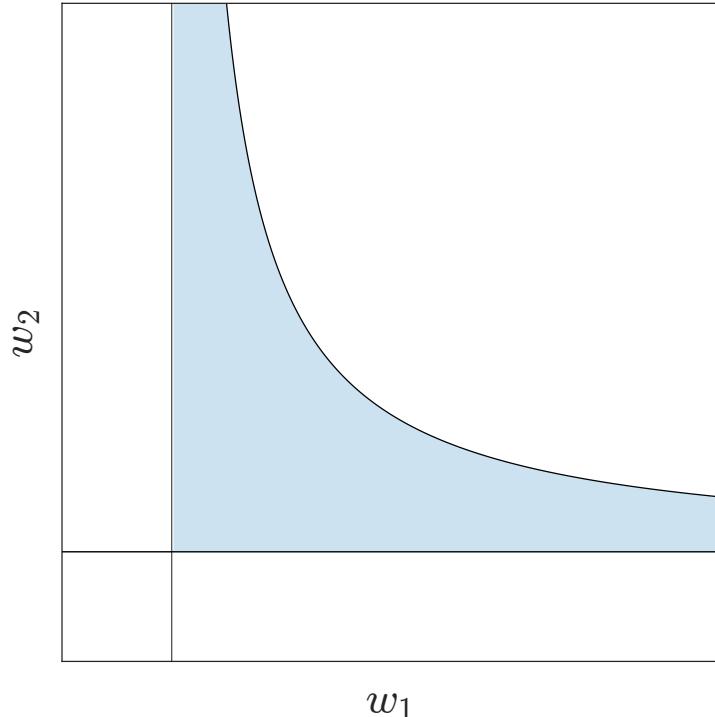
- ▶ Standard NLP methods solve the KKT conditions.
- ▶ MPECs violate constraint qualifications, and the KKT conditions may not be necessary.
- ▶ There are many stationary concepts for MPECs, and not all are useful.
- ▶ **Workaround/main idea:** solve a (finite) sequence of more regular problems.

Scholtes' global relaxation method

The easiest to implement and the most efficient regularization method [Scholtes, 2001].

Reg(σ^k)

$$\begin{aligned}
 \min_{w \in \mathbb{R}^n} \quad & f(w) \\
 \text{s.t.} \quad & g(w) = 0, \\
 & h(w) \geq 0, \\
 & w_1, w_2 \geq 0, \\
 & w_{1,i} w_{2,i} \leq \sigma^k, \quad i = 1, \dots, m.
 \end{aligned}$$

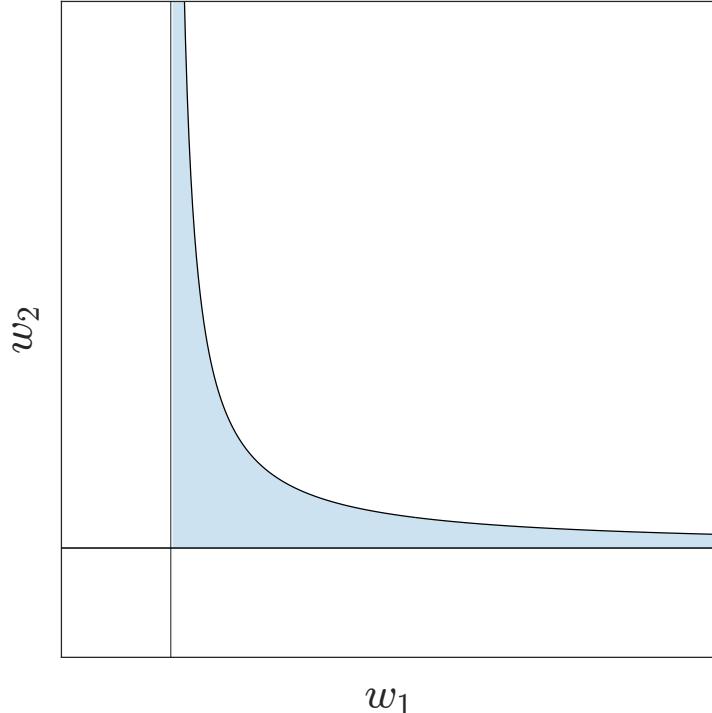


Scholtes' global relaxation method

The easiest to implement and the most efficient regularization method [Scholtes, 2001].

Reg(σ^k)

$$\begin{aligned} \min_{w \in \mathbb{R}^n} \quad & f(w) \\ \text{s.t.} \quad & g(w) = 0, \\ & h(w) \geq 0, \\ & w_1, w_2 \geq 0, \\ & w_{1,i} w_{2,i} \leq \sigma^k, \quad i = 1, \dots, m. \end{aligned}$$

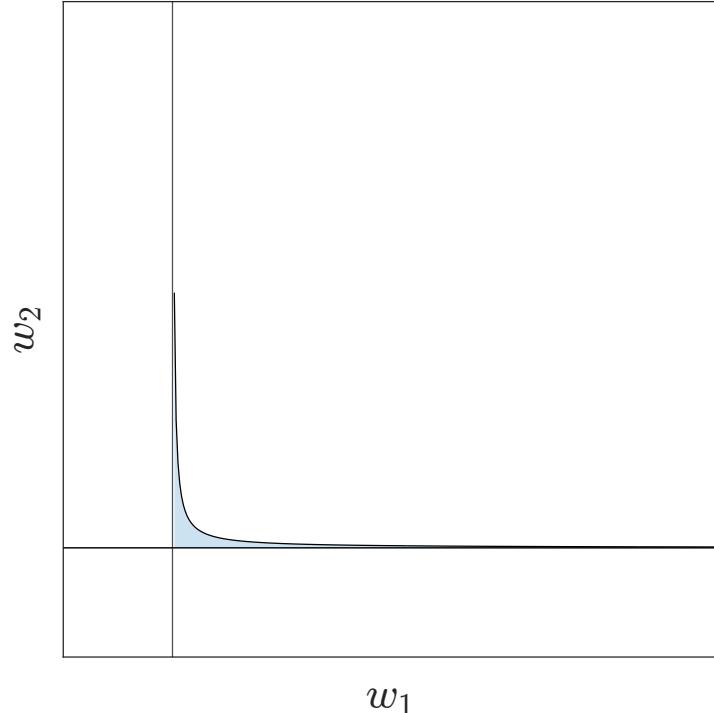


Scholtes' global relaxation method

The easiest to implement and the most efficient regularization method [Scholtes, 2001].

Reg(σ^k)

$$\begin{aligned} \min_{w \in \mathbb{R}^n} \quad & f(w) \\ \text{s.t.} \quad & g(w) = 0, \\ & h(w) \geq 0, \\ & w_1, w_2 \geq 0, \\ & w_{1,i} w_{2,i} \leq \sigma^k, \quad i = 1, \dots, m. \end{aligned}$$



Optimal control problem - benchmark example

Benchmark example with entering/leaving sliding mode.

States $q, v \in \mathbb{R}^2$ and control $u \in \mathbb{R}^2$, $x = (q, v)$

OCP with sliding modes

$$\min_{x(\cdot), u(\cdot)} \int_0^4 u(t)^\top u(t) + v(t)^\top v(t) \, dt$$

$$\text{s.t. } x(0) = \left(\frac{2\pi}{3}, \frac{\pi}{3}, 0, 0 \right)$$

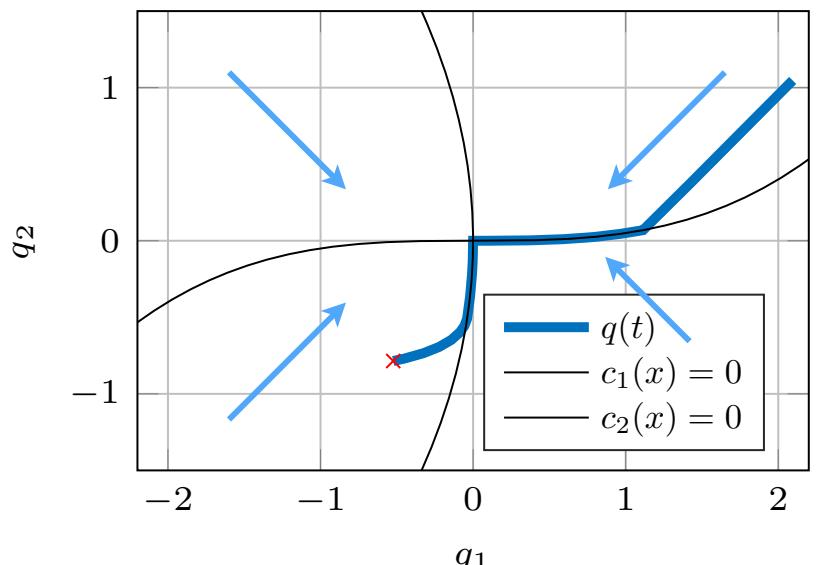
$$\dot{x}(t) = \begin{bmatrix} -\text{sign}(c(x(t))) + v(t) \\ u(t) \end{bmatrix}$$

$$-2e \leq v(t) \leq 2e$$

$$-10e \leq u(t) \leq 10e \quad t \in [0, 4],$$

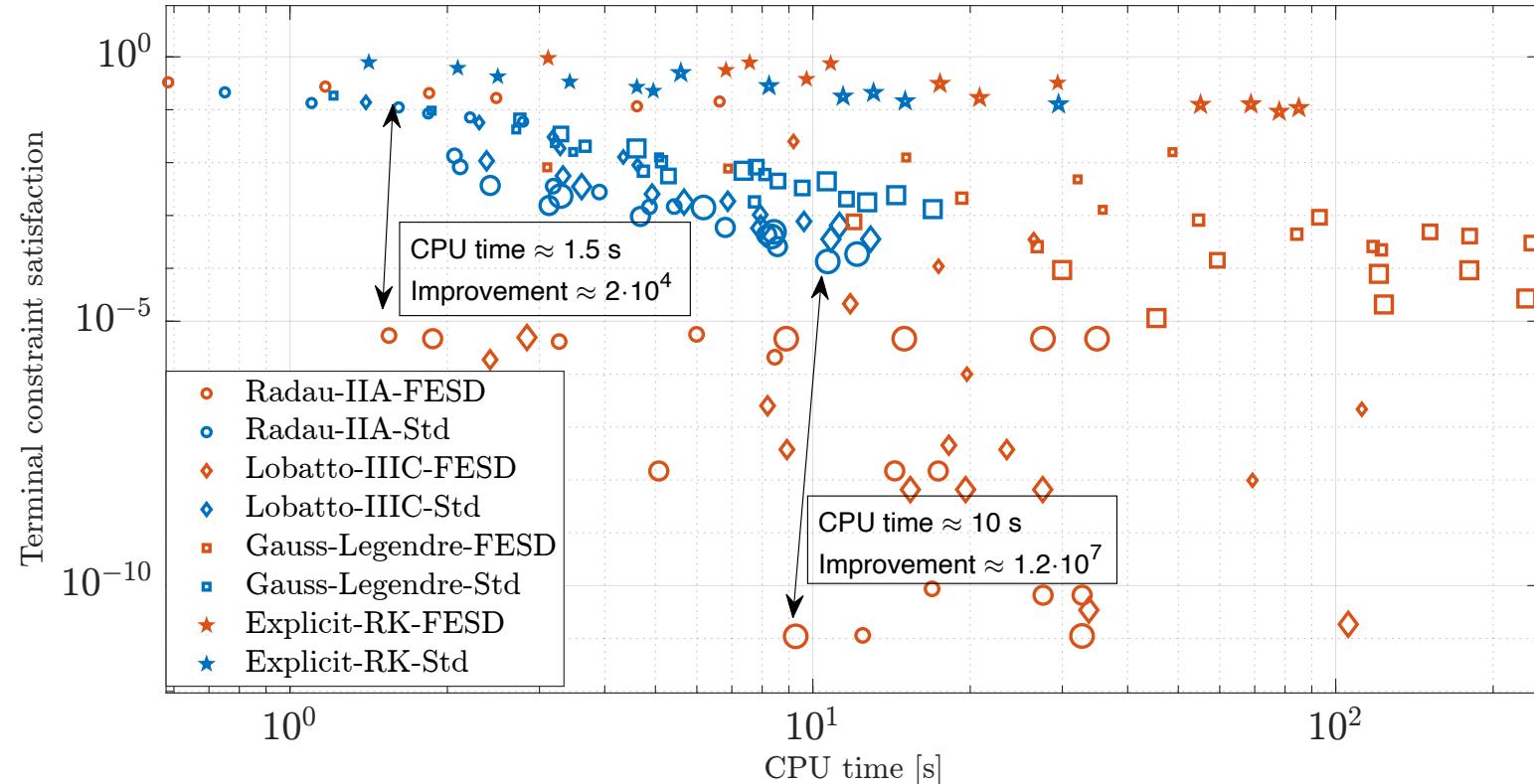
$$q(T) = \left(-\frac{\pi}{6}, -\frac{\pi}{4} \right)$$

$$\text{Switching functions } c(x) = \begin{bmatrix} q_1 + 0.15q_2^2 \\ 0.05q_1^3 + q_2 \end{bmatrix}$$



FESD vs standard IRK benchmark run with nosnoc

Benchmark on an optimal control problem with nonlinear sliding modes. Bigger marker = higher order.

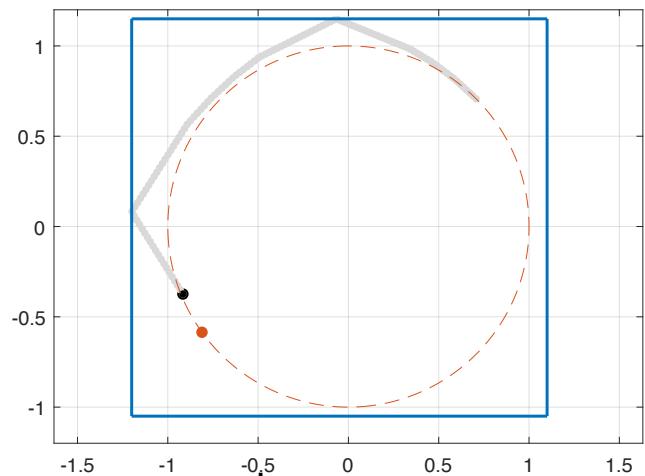


FESD orders of magnitude more accurate than time-stepping for same CPU time.

Now: apply FESD and MPCC to Time-Freezing Problems

A tracking OCP example with Time-Freezing and FESD in NOSNOC

Regard bouncing ball in two dimensions driven by bounded force: $\ddot{q} = u$

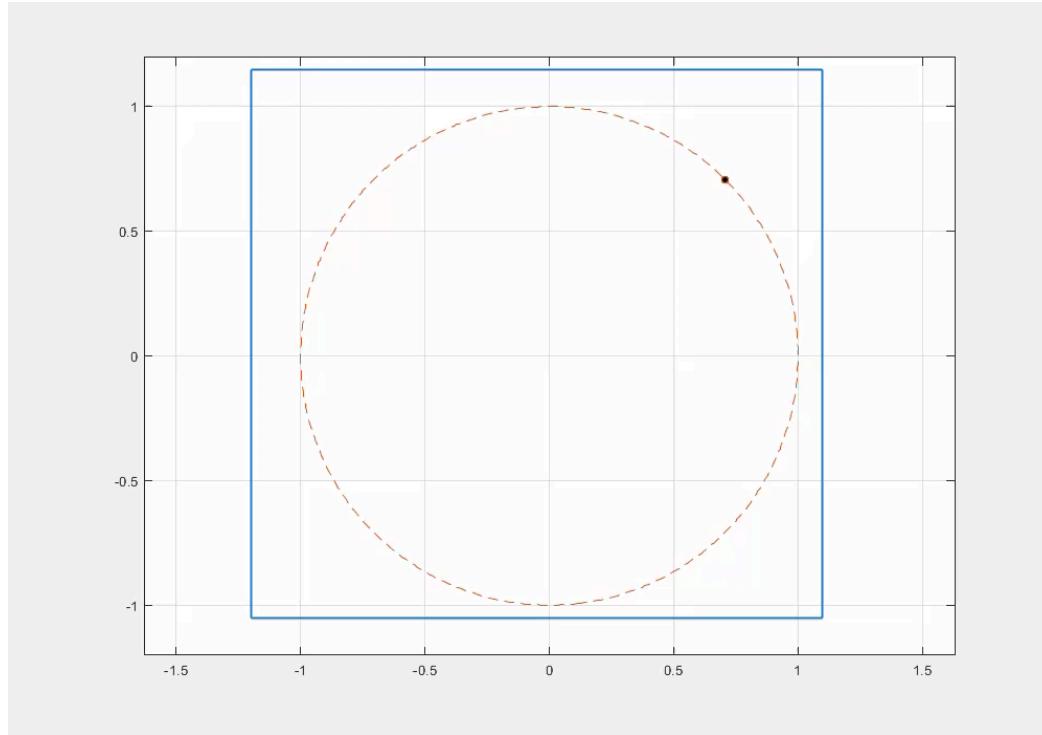
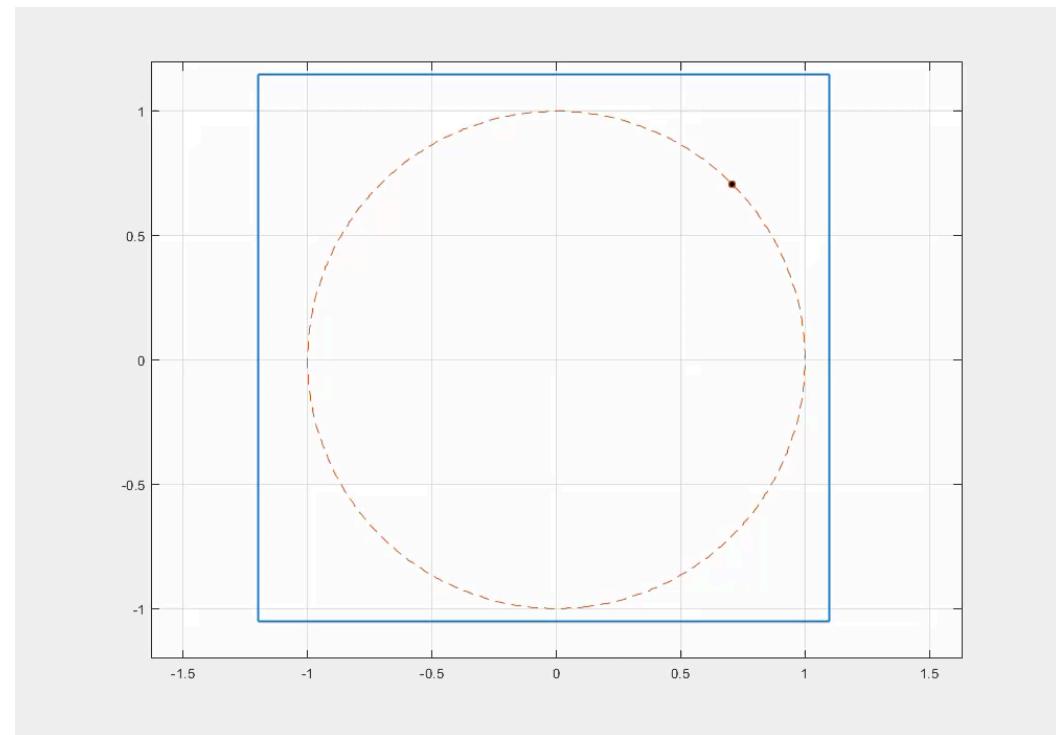


- ▶ **augmented state**
 $x = (q, \dot{q}, t) \in \mathbb{R}^5$
- ▶ $n_f = 9$ regions (8 with auxiliary dynamics for state jumps)

$$\begin{aligned}
 & \min_{\substack{x(.), u(.), s(.), \\ \theta(.), \lambda(.), \mu(.)}} \int_0^T (q - q_{\text{ref}}(\tau))^{\top} (q - q_{\text{ref}}(\tau)) s(\tau) \, d\tau \\
 \text{s.t.} \quad & x(0) = x_0, \quad t(T) = T, \\
 & x'(\tau) = \sum_{i=1}^{n_f} \theta_i(\tau) f_i(x(\tau), u(\tau), s(\tau)), \\
 & 0 = g(x(\tau)) - \lambda(\tau) - \mu(\tau) e, \\
 & 0 \leq \lambda(\tau) \perp \theta(\tau) \geq 0, \\
 & 1 = e^{\top} \theta(\tau), \\
 & \|u(\tau)\|_2^2 \leq u_{\max}^2, \\
 & 1 \leq s(\tau) \leq s_{\max}, \quad \tau \in [0, T]. \\
 & q_{\text{ref}}(\tau) = (R \cos(\omega t(\tau)), R \sin(\omega t(\tau))).
 \end{aligned}$$

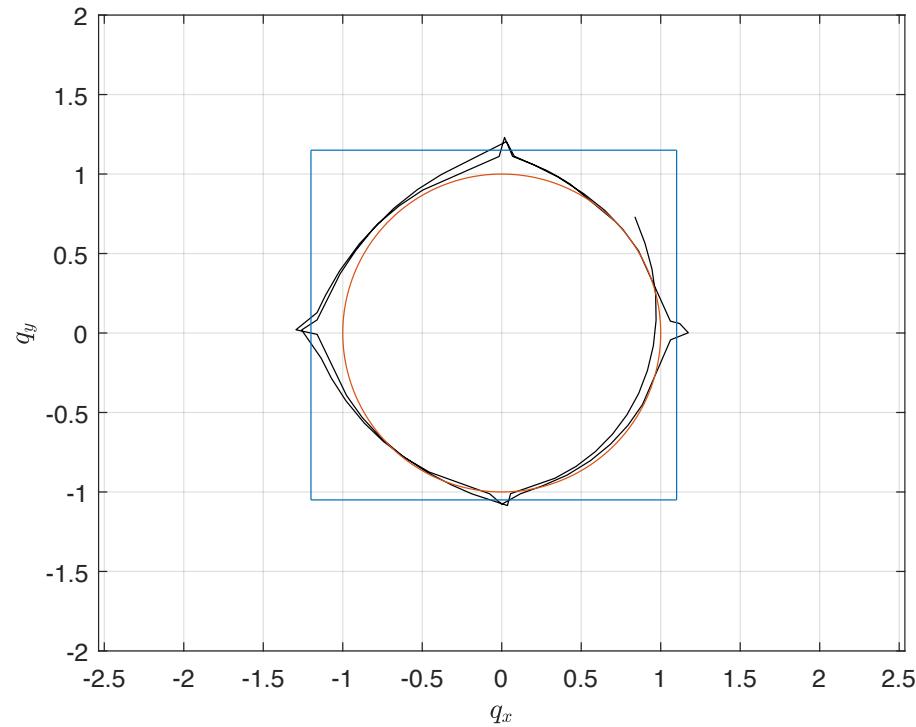
A tracking OCP example with Time-Freezing and FESD in NOSNOC

Regard bouncing ball in two dimensions driven by bounded force: $\ddot{q} = u$

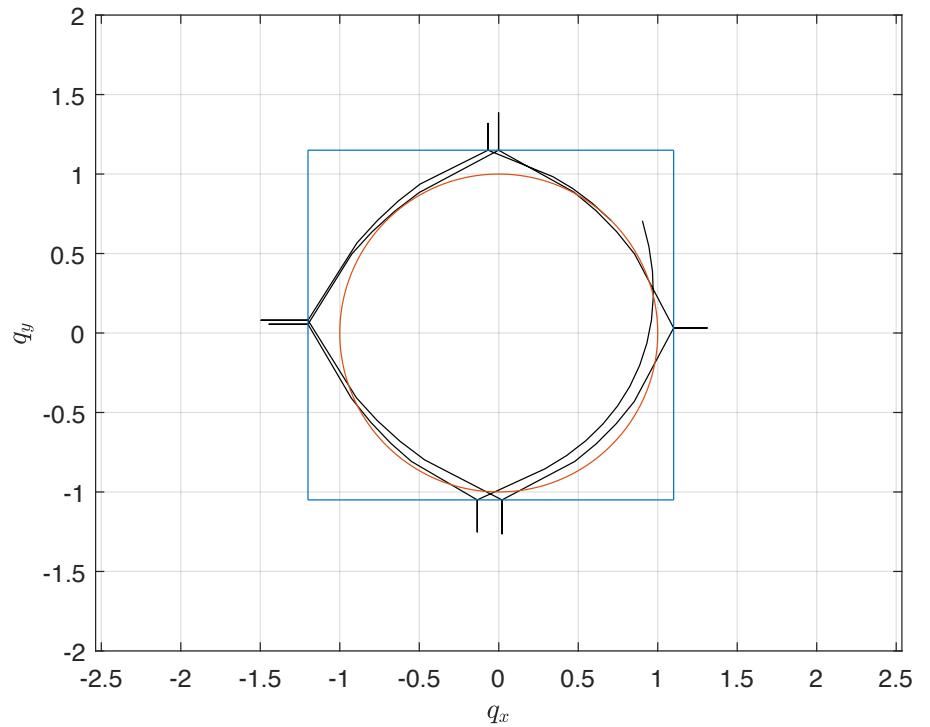


Homotopy: first iteration vs converged solution

Geometric trajectory



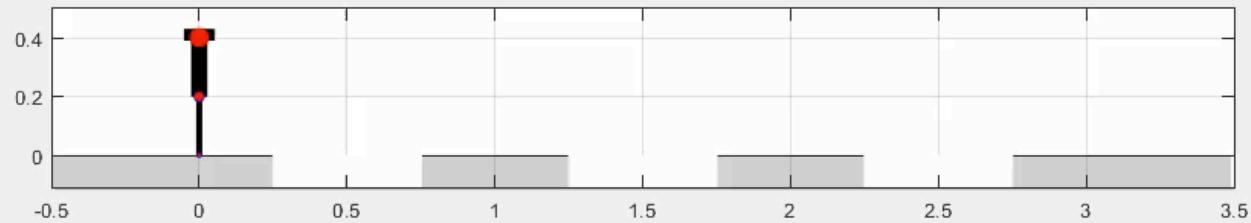
After the first homotopy iteration



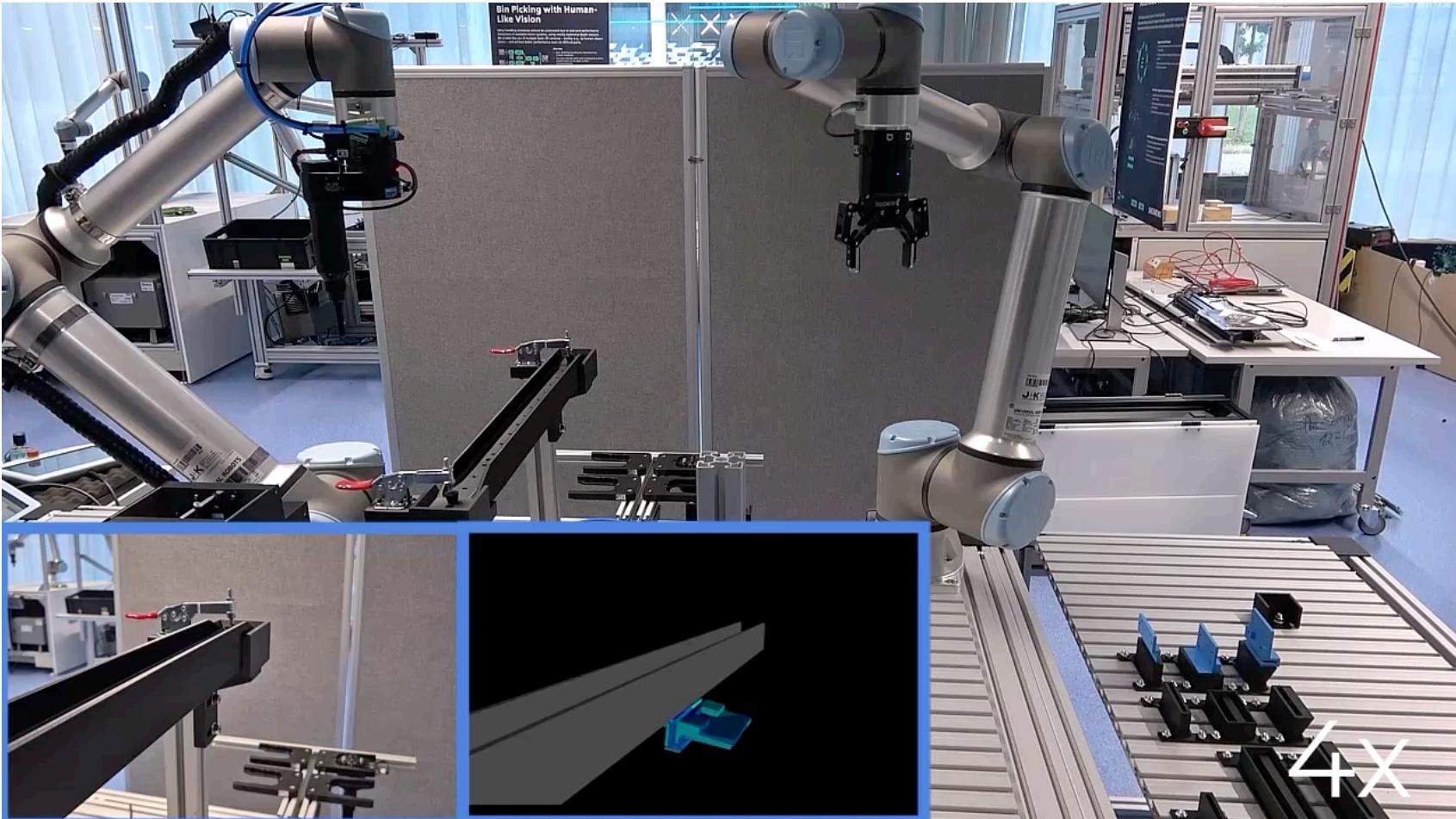
The solution trajectory after convergence

Hopping robot - move with minimal effort from start to end position

Homotopy initialized with start position everywhere. Optimizer finds creative solution.

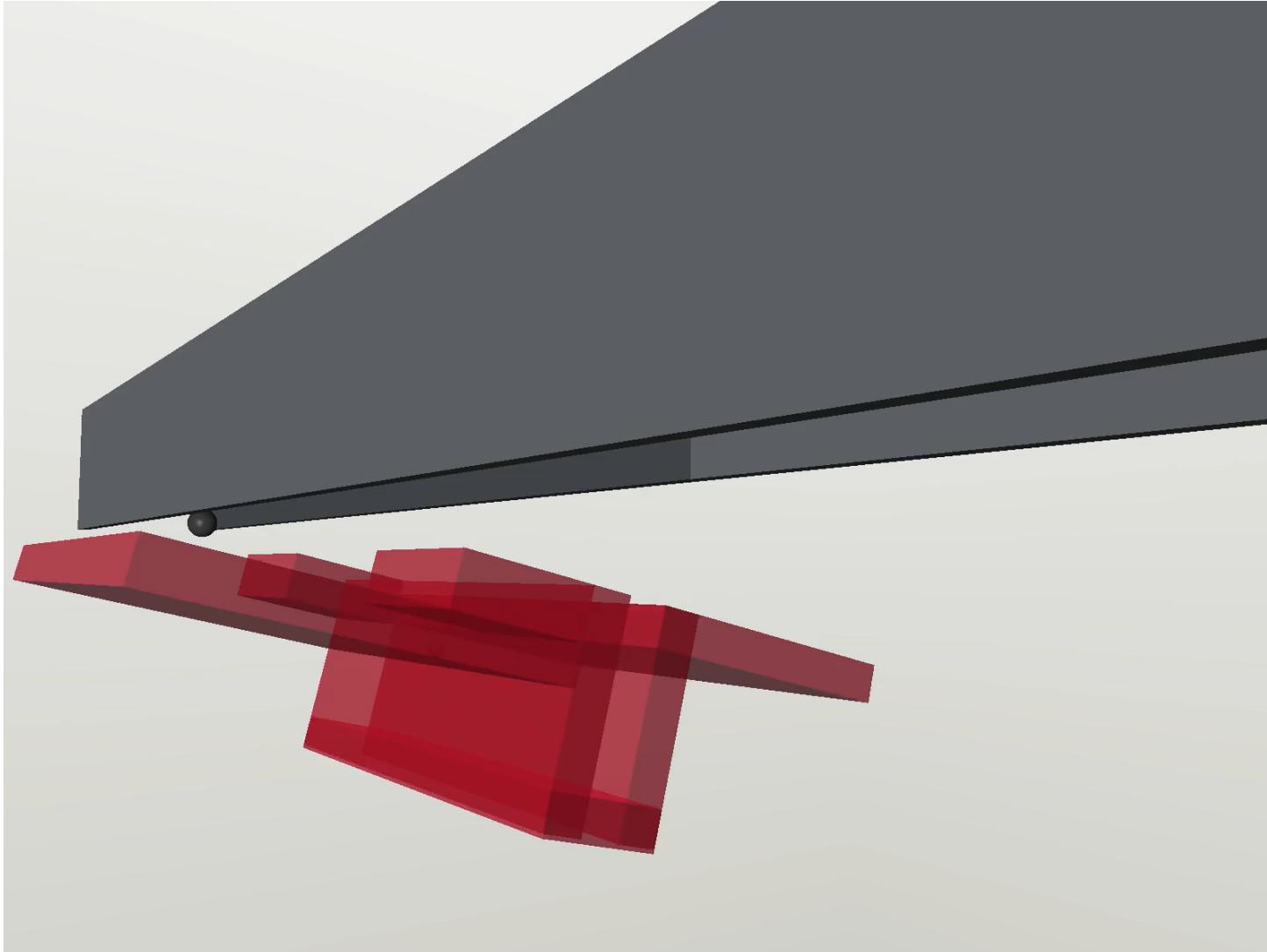


Real-World Application: Assembly Robots at Siemens in Munich (NSD3)



Christian Dietz
(MSc Mathematics)
industrial PhD
student at
University of
Freiburg,
supervised by
Armin Nurkanovic,
Sebastian Albrecht,
and MD

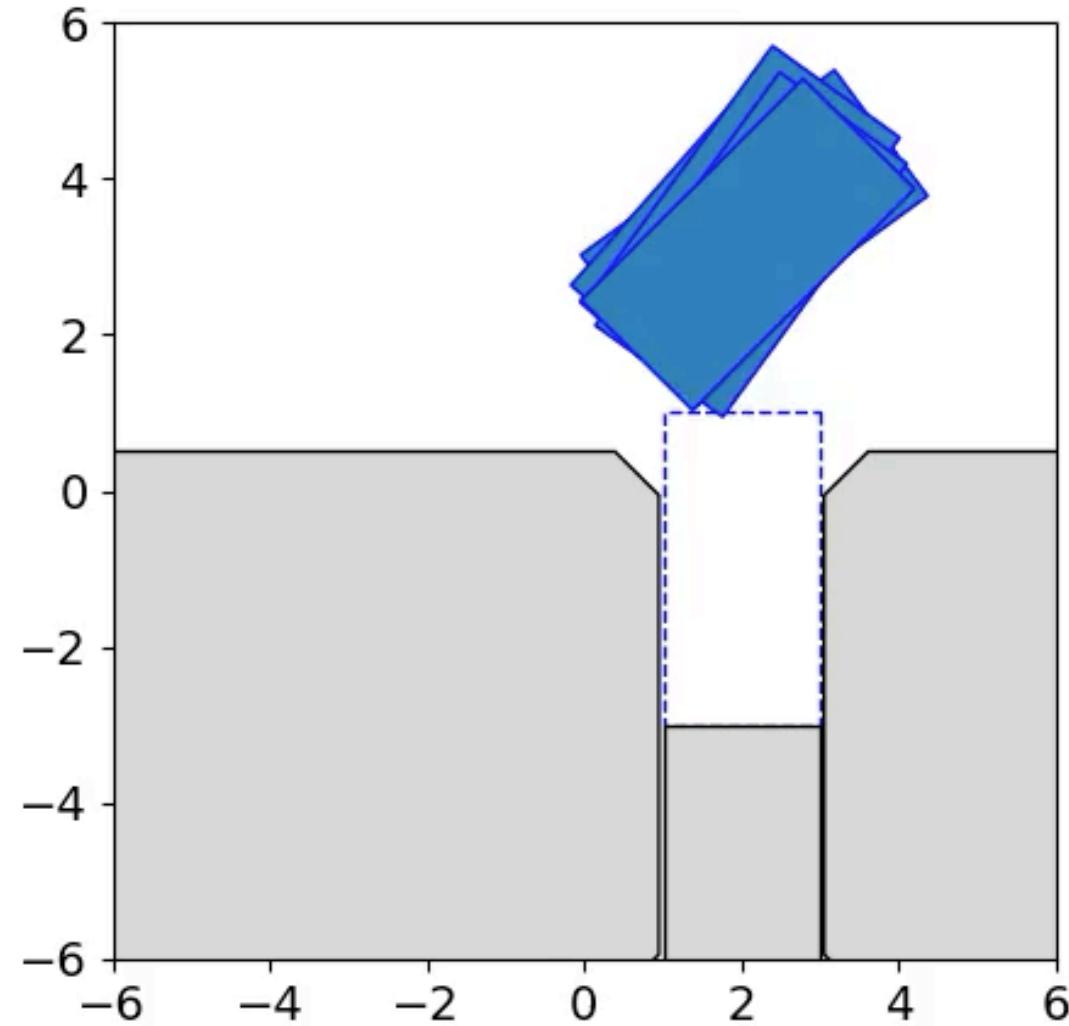
Dream: Use Optimal Control to Move Robot to Desired End Position
(simulated solution of optimal control problem, L2-control penalty)



Dream: Use Optimal Control to Move Robot to Desired End Position
(experiment)

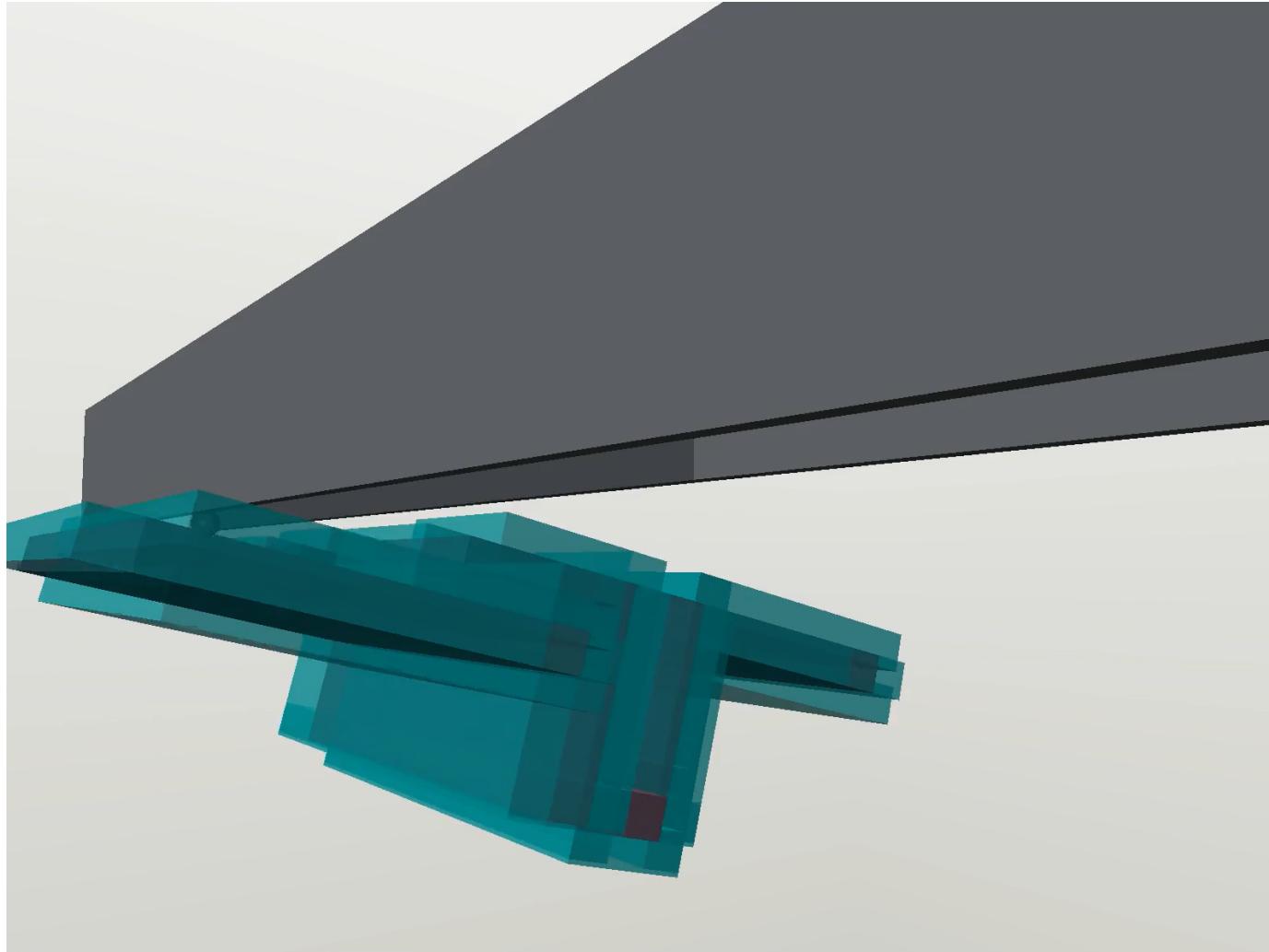
Dream: Use Optimal Control to Move Robot to Desired End Position
(experiment)

Idea: robustify motions by optimizing several reference trajectories simultaneously



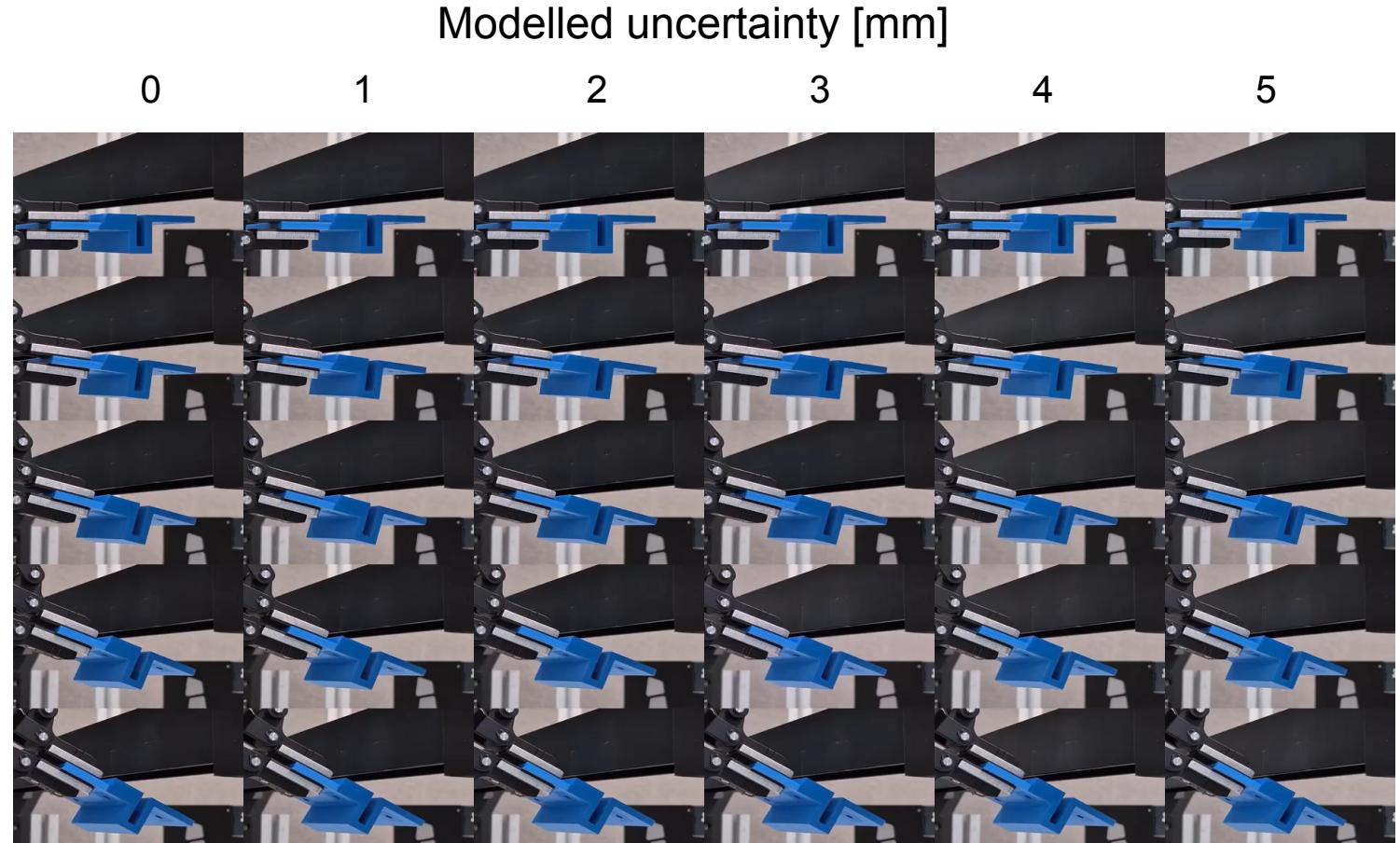
Robust Optimal Control Solution (5 scenarios)

(simulation)



Robust Optimal Control Solution (5 scenarios) (experiment)

Tracking references on real robotic system with artificially introduced model-reality mismatch of 3mm



Conclusions

- Newton-type optimization can address seemingly combinatorial optimization problems in nonsmooth optimal control (recent advances are time freezing and FESD)
- Mathematical Programs with Complementarity Constraints (MPCC) are a powerful tool for “disciplined nonsmooth programming”
- Derivatives remain a crucial optimization ingredient also when the nonconvexity of problems increases

Thank you!

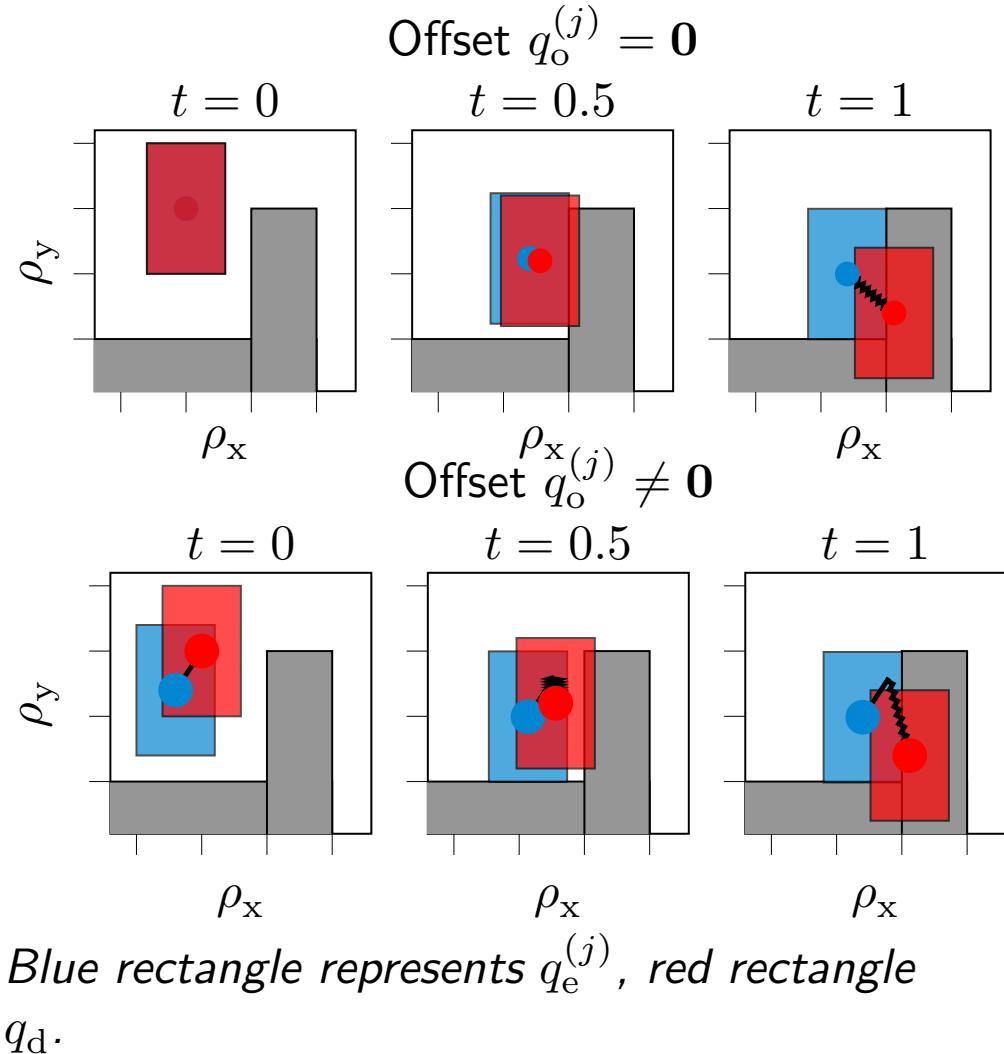
APPENDIX 1 - Details on Siemens Assembly Robot Optimization

Impedance law for reliable motion execution on real systems

- ▶ To achieve closed-loop execution on a real system, we utilize an impedance law as control strategy
- ▶ The goal of the planning algorithm is to determine a desired trajectory which results in robust assembly motions if it is tracked by the impedance controller
- ▶ For a given desired trajectory $x_d = (q_d, \nu_d)$, a trajectory $x_e^{(j)} = (q_e^{(j)}, \nu_e^{(j)})$ in the ensemble is controlled by the impedance force

$$u_j = D(\nu_d - \nu_e^{(j)}) + K((q_d \oplus q_o^{(j)}) \ominus q_e^{(j)}),$$

with gain matrices D, K and a fixed offset $q_o^{(j)}$.



How to formulate and solve OCP for assembly robot at Siemens?

1. Divide colliding bodies each into rigidly connected convex polyhedra
2. Define Signed Distance Function (SDF) between polyhedra
3. Compute Contact Normal of SDF (unique if slightly smoothed)
4. Formulate Complementarity Lagrangian System Model (NSD3)
5. Discretize OCP with Time-Stepping Method (Implicit Euler, Fixed Steps)
6. Solve resulting Mathematical Program with Complementarity Constraints (MPCC) via Scholtes' Relaxation Method
7. Play open-loop control trajectory on real robot

How to formulate and solve OCP for assembly robot at Siemens?

1. Divide colliding bodies each into rigidly connected convex polyhedra
2. **Define Signed Distance Function (SDF) between polyhedra**
3. **Compute Contact Normal of SDF (unique if slightly smoothed)**
4. Formulate Complementarity Lagrangian System Model (NSD3)
5. Discretize OCP with Time-Stepping Method (Implicit Euler, Fixed Steps)
6. Solve resulting Mathematical Program with Complementarity Constraints (MPCC) via Scholtes' Relaxation Method
7. Play open-loop control trajectory on real robot

Optimization-based signed distance function (SDF) for polytopes

Halfspace representation of polytopes for
 $n_w \in \{2, 3\}$:

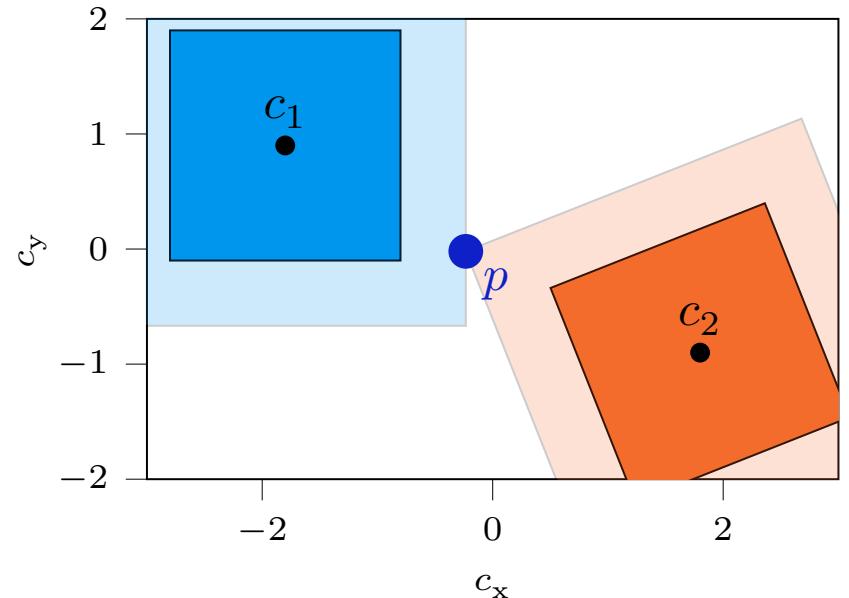
$$\mathcal{P}_1 = \{p \in \mathbb{R}^{n_w} \mid G_1 p \leq h_1\}, \mathcal{P}_2 = \{p \in \mathbb{R}^{n_w} \mid G_2 p \leq h_2\}.$$

Associating degrees of freedom:

- ▶ ρ_i center of mass of i -th polytope
- ▶ ξ_i orientation of i -th polytope
- ▶ System configuration: $q = (\rho_1, \xi_2, \rho_2, \xi_2)$
- ▶ $R(\xi_i)$ - rotation matrices

Calculating the SDF as growth distance:

$$\begin{aligned} \Phi_0(q) = \min_{p, \alpha} \quad & \alpha \\ \text{s.t.} \quad & G_1 R(\xi_1)^\top (p - \rho_1) \leq (1 + \alpha) h_1, \\ & G_2 R(\xi_2)^\top (p - \rho_2) \leq (1 + \alpha) h_2. \end{aligned}$$



Smoothing the signed distance function

The optimization-based SDF is given by a parametric linear program

$$\begin{aligned}\Phi_0(q) = \min_z \quad & c^\top z \\ \text{s.t.} \quad & A(q)z \leq b(q),\end{aligned}$$

with primal variables $z = (p, \alpha)$.

Perturbed KKT conditions as considered in interior-point methods with barrier parameter $\tau > 0$ are given by

$$\begin{aligned}0 &= c + A(q)^\top \lambda, \\ y &= b(q) - A(q)z, \\ \lambda_i y_i &= \tau, \quad i = 1, \dots, m, \\ \lambda &> \mathbf{0}, y > \mathbf{0},\end{aligned}$$

λ are Lagrange multipliers and y are inequality constraint slacks.

Smoothing the signed distance function (1)

By writing the equality conditions compactly the perturbed KKT conditions are denoted by

$$\begin{aligned} F_\tau(\gamma; q) &= \mathbf{0}, \\ \lambda &> \mathbf{0}, y > \mathbf{0}, \end{aligned}$$

with primal, dual and slack variables $\gamma = (z, \lambda, y)$.

Proposition

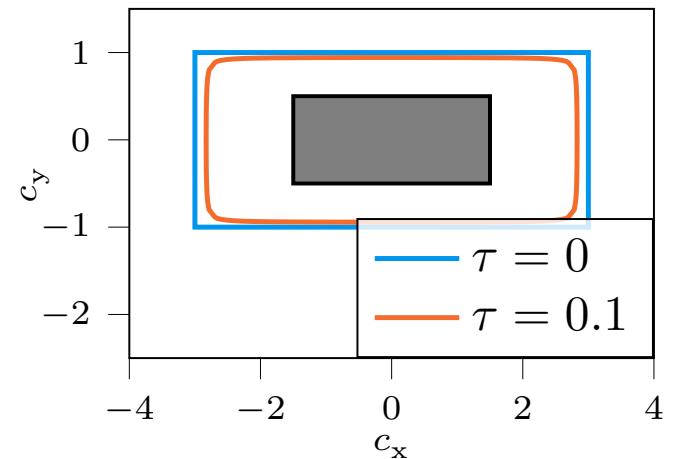
The solution $\gamma_\tau = (z_\tau, \lambda_\tau, y_\tau)$ of the perturbed optimality conditions exists and is unique.¹

This implies that the distance function defined by

$$\Phi_\tau(q) = \{\alpha \mid F_\tau(\gamma_\tau; q) = \mathbf{0}, \lambda_\tau > \mathbf{0}, y_\tau > \mathbf{0}\},$$

is well-defined for $\tau > 0$.

Level lines $\Phi_\tau(q) = 1$, q point mass



¹ C. Dietz, S. Albrecht, A. Nurkanović, M. Diehl. *Smoothed Distance Functions for Direct Optimal Control of Contact-Rich Systems*. European Control Conference (ECC) 2025.

Smoothing the signed distance function (1)

By writing the equality conditions compactly the perturbed KKT conditions are denoted by

$$\begin{aligned} F_\tau(\gamma; q) &= \mathbf{0}, \\ \lambda &> \mathbf{0}, y > \mathbf{0}, \end{aligned}$$

with primal, dual and slack variables $\gamma = (z, \lambda, y)$.

Proposition

*The solution $\gamma_\tau = (z_\tau, \lambda_\tau, y_\tau)$ of the perturbed optimality conditions exists and is unique.*¹

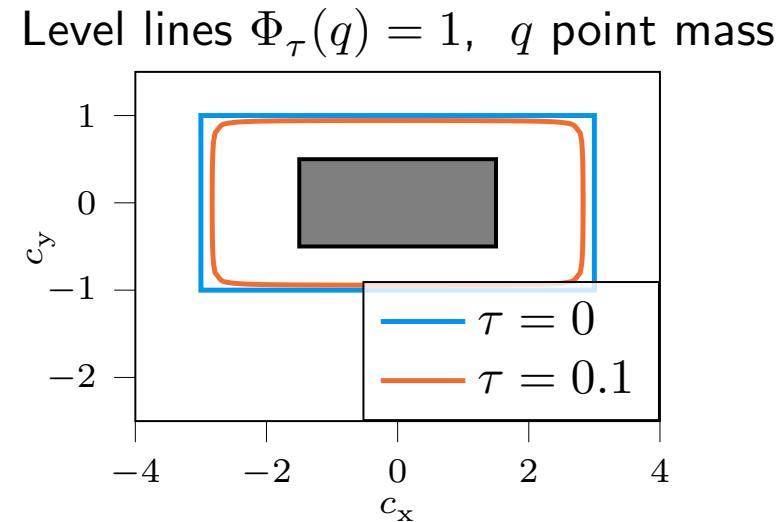
This implies that the distance function defined by

$$\Phi_\tau(q) = \{\alpha \mid F_\tau(\gamma_\tau; q) = \mathbf{0}, \lambda_\tau > \mathbf{0}, y_\tau > \mathbf{0}\},$$

is well-defined for $\tau > 0$.

How to obtain the contact normal $\cdot \nabla_q \Phi_\tau(q)$?

¹ C. Dietz, S. Albrecht, A. Nurkanović, M. Diehl. *Smoothed Distance Functions for Direct Optimal Control of Contact-Rich Systems*. European Control Conference (ECC) 2025.

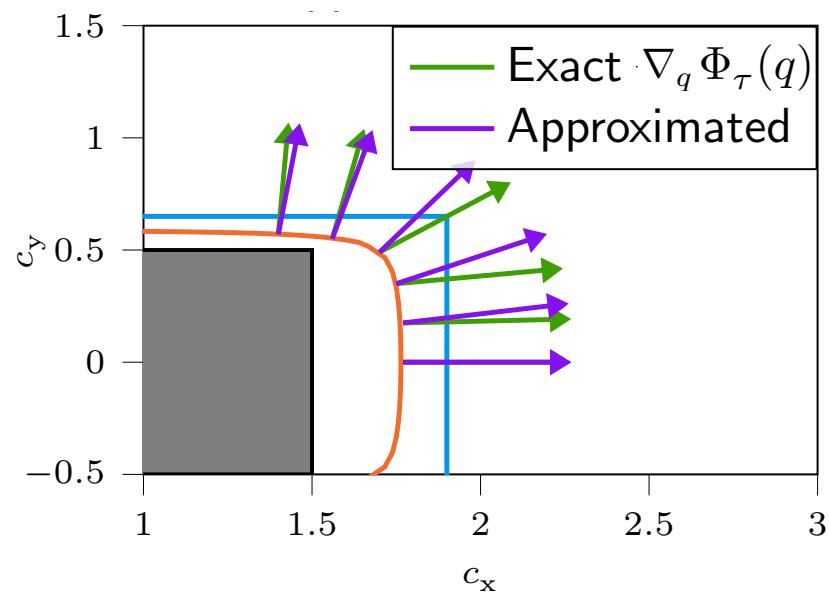


Contact normal approximation for the smooth SDF

Proposed approximation: $n_\tau(q) = \frac{-\nabla_q y(z_\tau, q)\lambda_\tau}{\|\nabla_q y(z_\tau, q)\lambda_\tau\|_2} \approx \cdot \nabla_q \Phi_\tau(q)$ (exact for $\tau=0$)

Contact normal approximation for the smooth SDF

Proposed approximation: $n_\tau(q) = \frac{-\nabla_q y(z_\tau, q)\lambda_\tau}{\|\nabla_q y(z_\tau, q)\lambda_\tau\|_2} \approx \nabla_q \Phi_\tau(q)$ (exact for $\tau=0$)



Contact normal approximation for the smooth SDF

Recap on definitions

The SDF is given by

$$\begin{aligned}\Phi_0(q) = \min_z \quad & c^\top z \\ \text{s.t.} \quad & A(q)z \leq b(q),\end{aligned}\tag{1}$$

with inequality constraint slacks

$$y(z, q) = b(q) - A(q)z.$$

We additionally define

- $\bar{Z}(q)$ denotes the set of all primal optimal solutions to (1)
- $\bar{\Lambda}(q)$ denotes the set of all corresponding dual optimal solutions

- Modelling of contact-rich systems requires definition of a contact normal vector
- Normally the contact normal is chosen as the gradient of the SDF (results in third-order sensitivities in Newton-type optimization!)

Directional derivatives at an exact solution:²

$$\partial_d \Phi_0(q) = \min_{z \in \bar{Z}(q)} \max_{\lambda \in \bar{\Lambda}(q)} -d^\top \nabla_q y(z, q) \lambda,$$

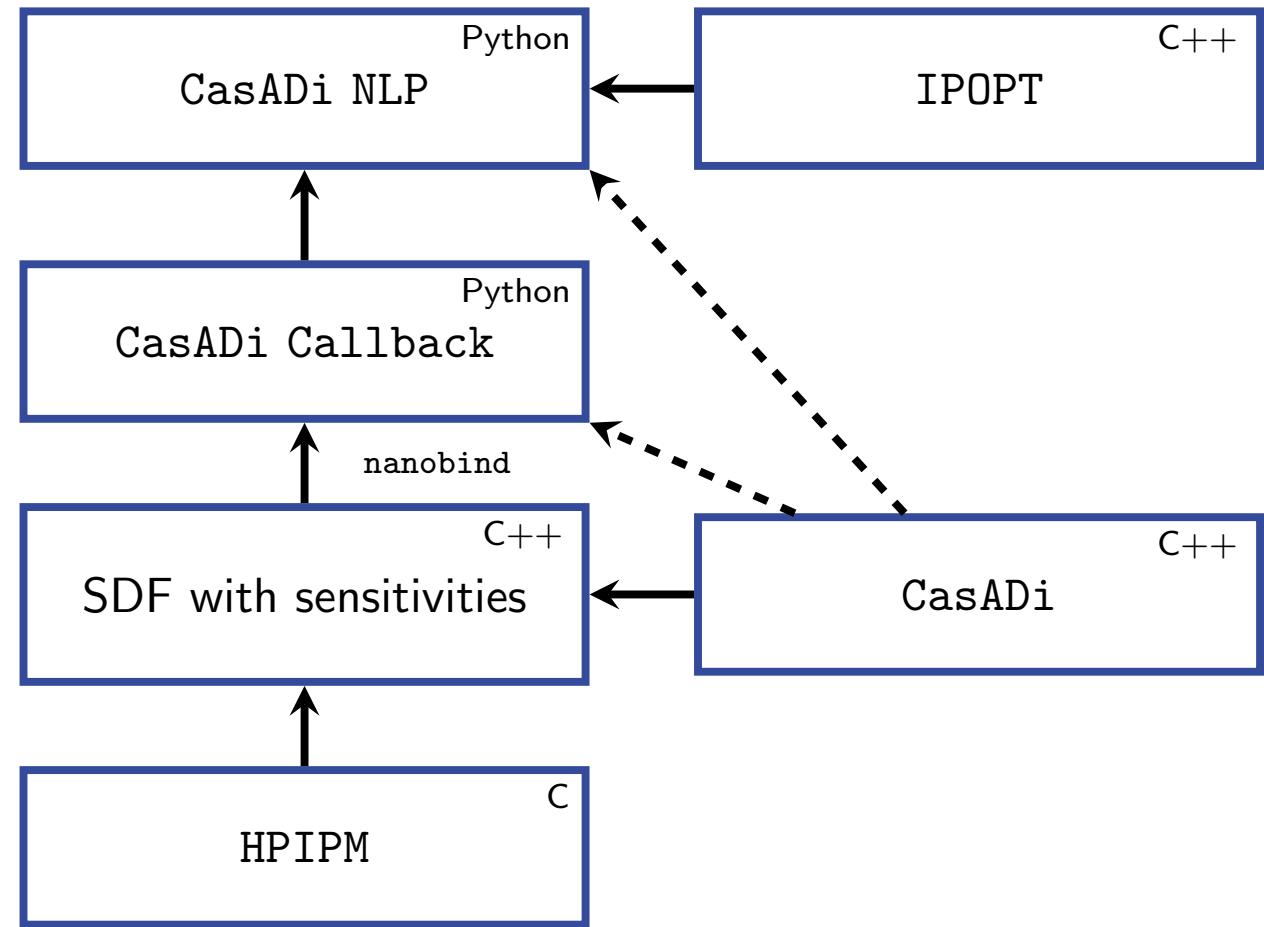
Proposed contact normal approximation:

$$n_\tau(q) = \frac{-\nabla_q y(z_\tau, q) \lambda_\tau}{\|\nabla_q y(z_\tau, q) \lambda_\tau\|_2}.$$

²W. Hogan. *Directional derivatives for extremal-value functions with applications to the complementarity problem*. Ph.D. thesis, University of California, Berkeley, 1981.

SDF implementation

- ▶ Numerical experiments use the CasADi toolbox through its Python interface and IPOPT as solver
- ▶ The SDF is specified through CasADi's Callback class
- ▶ HPIPM is used to solve the distance problems up to barrier parameter $\tau > 0$
- ▶ A C++ wrapper is used to efficiently manage HPIPM structures and parallel computing
- ▶ C++ code is interfaced back to Python by using the nanobind library



How to formulate and solve OCP for assembly robot at Siemens?

1. Divide colliding bodies each into rigidly connected convex polyhedra
2. Define Signed Distance Function (SDF) between polyhedra
3. Compute Contact Normal of SDF (unique if slightly smoothed)
- 4. Formulate Complementarity Lagrangian System Model (NSD3)**
- 5. Discretize OCP with Time-Stepping Method (Implicit Euler, Fixed Steps)**
6. Solve resulting Mathematical Program with Complementarity Constraints (MPCC) via Scholtes' Relaxation Method
7. Play open-loop control trajectory on real robot

Robust contact-implicit trajectory optimization

Continuous-time contact-rich dynamical system:

$$\dot{q} = \nu,$$

$$M\dot{\nu} = u + \sum_{i=1}^{n_d} n_{\tau,i}(q) \lambda_{n,i},$$

$$0 \leq \Phi_{\tau,i}(q) \perp \lambda_{n,i} \geq 0, \quad i = 1, \dots, n_d,$$

Multi impact law.

- ▶ $\nu \in \mathbb{R}^{n_q}$ system velocity
- ▶ $M \in \mathbb{R}^{n_q \times n_q}$ inertia matrix
- ▶ $u \in \mathbb{R}^{n_u}$ control input
- ▶ $n_d \in \mathbb{N}$ object pairs with smooth SDF $\Phi_{\tau,i}$ and corresponding contact normals $n_{\tau,i}$

Implicit-Euler time-stepping discretization

Time-stepping discretization:

$$q_{k+1} = q_k + h\nu_{k+1},$$

$$\nu_{k+1} = \nu_k + hM^{-1}(u_k + \sum_{i=1}^{n_d} n_{\tau,i}(q_{k+1})\lambda_{n,k,i}),$$

$$\Phi_{\tau,i}(q_{k+1})\lambda_{n,k,i} \leq \sigma, \quad i = 1, \dots, n_d,$$

$$0 \leq \Phi_{\tau,i}(q_{k+1}), \quad 0 \leq \lambda_{n,k,i}, \quad i = 1, \dots, n_d,$$

with time-step $h > 0$ and using Scholtes' relaxation to relax complementarity constraints with $\sigma > 0$.

Discretization and cost function for robust motion generation

Contact-rich system with quaternion dynamics:

$$\dot{q}_d = Q(q_d)\nu_d,$$

For $j = 1, \dots, n_s$:

$$\dot{q}_e^{(j)} = Q(q_e^{(j)})\nu_e^{(j)},$$

$$M\dot{\nu}_e^{(j)} = u_j + \sum_{i=1}^{n_d} Q(q_e^{(j)})^\top n_{\tau,i}(q_e^{(j)})\lambda_{n,i}^{(j)},$$

$$\lambda_{n,i}^{(j)}\Phi_{\tau,i}(q_e^{(j)}) \leq \sigma, \quad i = 1, \dots, n_d$$

$$0 \leq \lambda_{n,i}^{(j)}, \quad 0 \leq \Phi_{\tau,i}(q_e^{(j)}), \quad i = 1, \dots, n_d,$$

$$u_j = D(\nu_d - \nu_e^{(j)}) + K((q_d \oplus q_o^{(j)}) \ominus q_e^{(j)}),$$

- ▶ Discretization through N_{cnt} intervals with N_{sim} simulation intervals per control interval
- ▶ Total simulation steps $N_{\text{tot}} = N_{\text{cnt}}N_{\text{sim}}$
- ▶ On each simulation interval an implicit Euler time-stepping discretization is utilized
- ▶ On each control interval a constant $\nu_{d,k}$, $k = 1, \dots, N_{\text{cnt}}$ is used
- ▶ Cost function for terminal state

$$\bar{x} = (\bar{q}, \bar{\nu}):$$

$$\begin{aligned} \text{cost} = & \sum_{k=1}^{N_{\text{cnt}}} 0.001\|\nu_{d,k,\text{trs}}\|_2^2 + 0.01\|\nu_{d,k,\text{ang}}\|_2^2 \\ & + 1\|\bar{\rho} - \rho_{d,N_{\text{tot}}}\|_2^2 + 10(1 - (\bar{\xi}^\top \xi_{d,N_{\text{tot}}})^2) \\ & + \sum_{j=1}^{n_e} 100\|\bar{\rho} - \rho_{e,N_{\text{tot}}}^{(j)}\|_2^2 + 1000(1 - (\bar{\xi}^\top \xi_{e,N_{\text{tot}}}^{(j)})^2) \end{aligned}$$

Contact-rich dynamics in three-dimensional space

Contact-rich system with quaternion dynamics:

$$\dot{q}_d = Q(q_d)\nu_d,$$

For $j = 1, \dots, n_s$:

$$\dot{q}_e^{(j)} = Q(q_e^{(j)})\nu_e^{(j)},$$

$$M\dot{\nu}_e^{(j)} = u_j + \sum_{i=1}^{n_d} Q(q_e^{(j)})^\top n_{\tau,i}(q_e^{(j)})\lambda_{n,i}^{(j)},$$

$$\lambda_{n,i}^{(j)}\Phi_{\tau,i}(q_e^{(j)}) \leq \sigma, \quad i = 1, \dots, n_d$$

$$0 \leq \lambda_{n,i}^{(j)}, \quad 0 \leq \Phi_{\tau,i}(q_e^{(j)}), \quad i = 1, \dots, n_d,$$

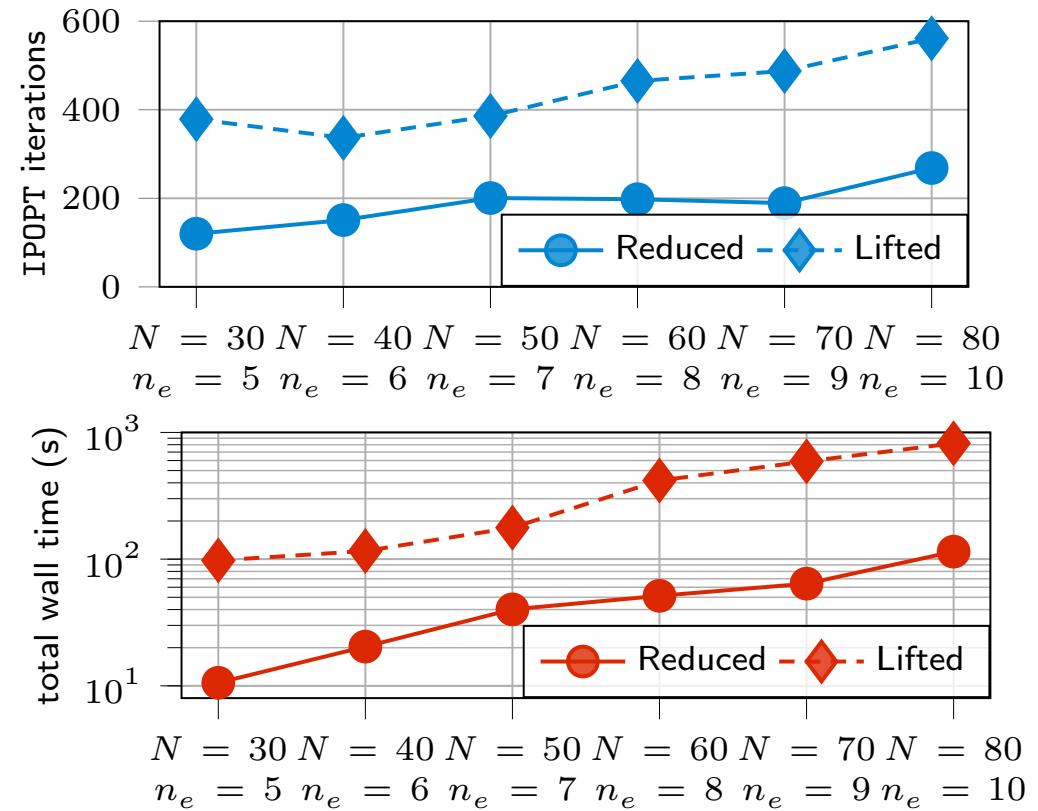
$$u_j = D(\nu_d - \nu_e^{(j)}) + K((q_d \oplus q_o^{(j)}) \ominus q_e^{(j)}),$$

- Position $q = (\rho, \xi)$, with $\rho \in \mathbb{R}^3$ translational position and $\xi \in \mathbb{R}^4$ quaternion orientation

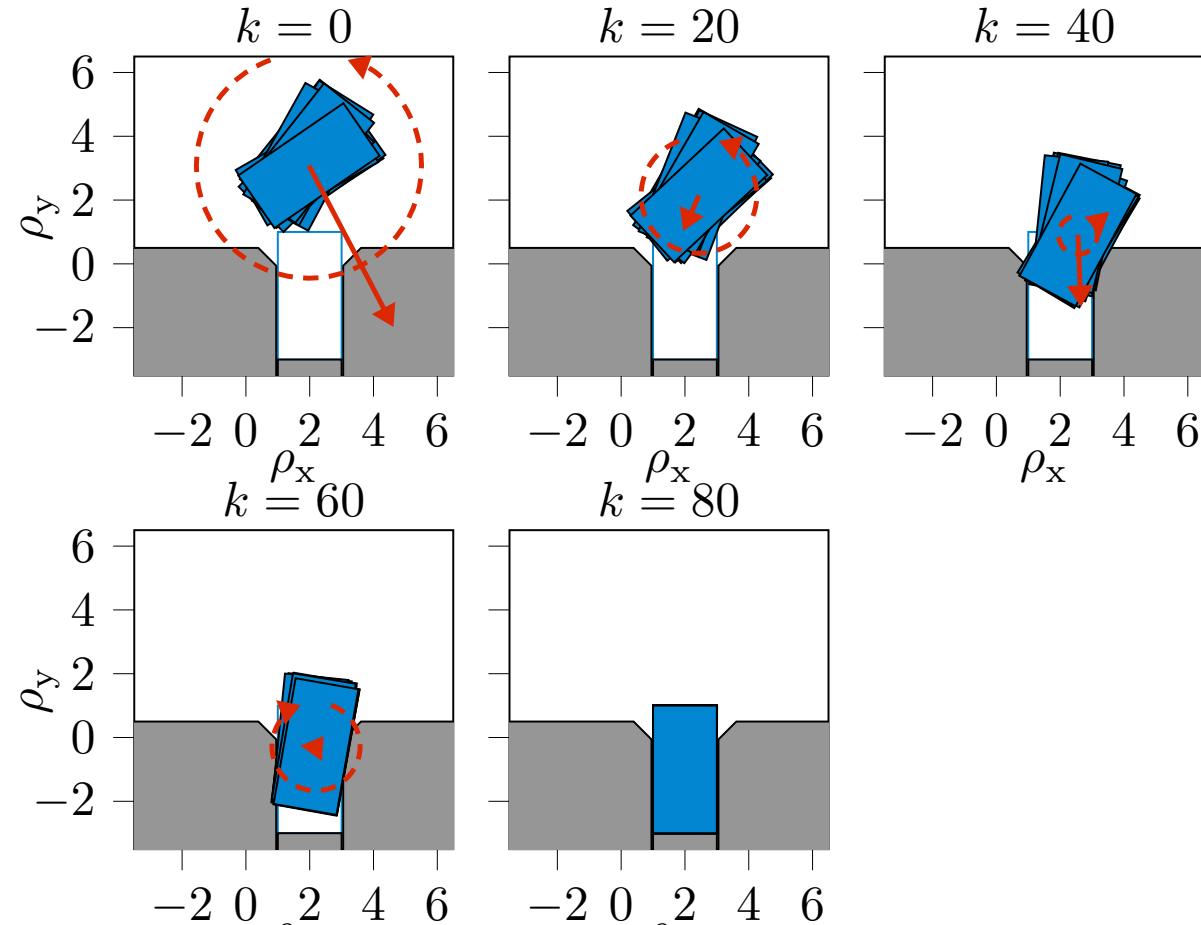
- ▶ q_d, ν_d desired position and velocity (control input)
- ▶ $q_{e,j}, \nu_{e,j}$ position and velocity of particle j
- ▶ $Q(\cdot)$ 7×6 matrix required to describe quaternion dynamics
- ▶ D, K gain matrices, describe the spring-damper behaviour of the feedback controller
- ▶ $q_o^{(j)}$ fixed offsets required to achieve robustness
- ▶ Quaternion multiplication is denoted by \oplus as well as \ominus for multiplication with conjugation

Computational performance comparison of reduced and lifted SDF implementations

- ▶ The SDF $\Phi_{\tau,i}$ can be either evaluated as proposed by using HPIPM or by adding the perturbed KKT conditions directly in the optimal control problem (reduced or lifted implementation)
- ▶ We compare computational performance on a two-dimensional peg-in-hole problem for different trajectory lengths N and number of simultaneously simulated trajectories n_e
- ▶ Using the reduced modelling with external SDF evaluation results in less IPOPT iterations and less total wall time for all considered problem sizes



Example robust trajectory for peg in hole



*Robust solution trajectory for an assembly problem.
Orange arrows indicate applied control forces u_k .*

Additional References Relevant to Siemens Assembly Robot Problem

Growth-Distances:

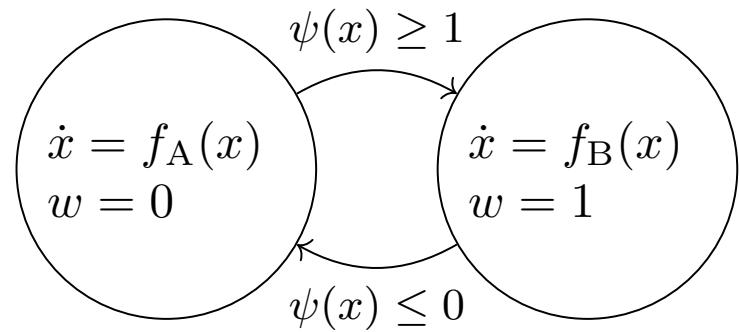
Chong Jin Ong and Elmer G. Gilbert, "Growth distances: New measures for object separation and penetration," in *IEEE Transactions on Robotics and Automation*, vol. 12, no. 6, pp. 888-903, 1996.

Ensemble Trajectories for Robustified Robot Control:

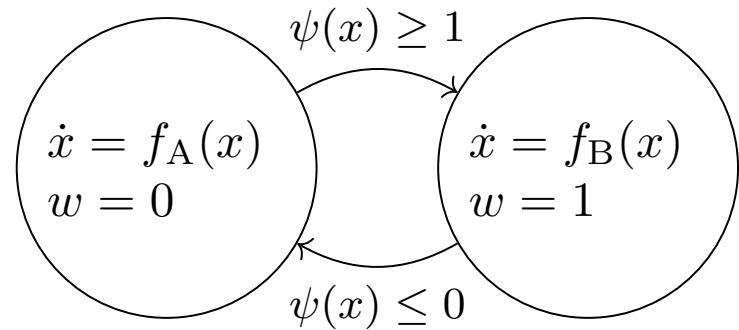
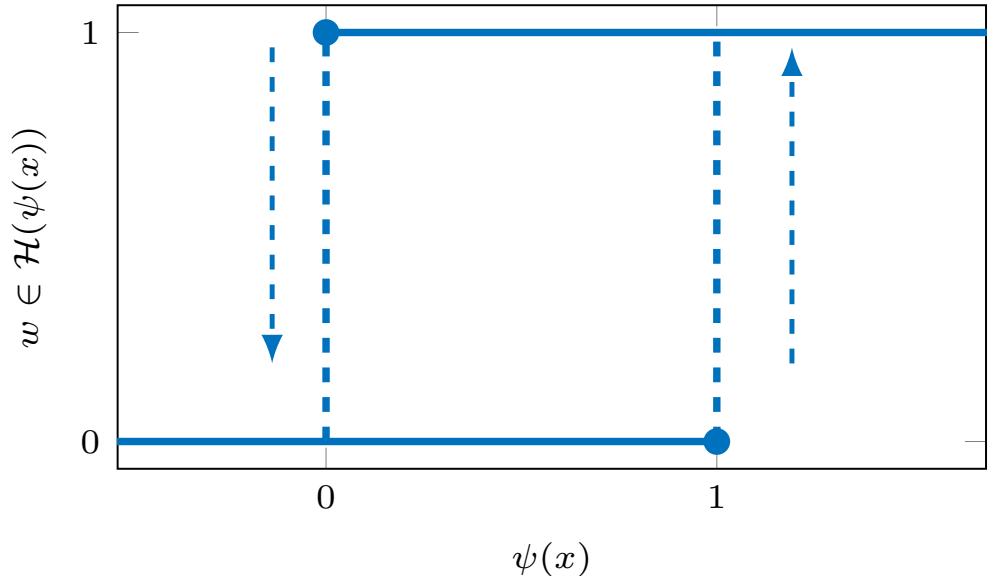
Igor Mordatch, Kendall Lowrey and Emanuel Todorov, "Ensemble-CIO: Full-body dynamic motion planning that transfers to physical humanoids," *2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pp. 5307-5314, 2015.

APPENDIX 2 - Time Freezing for Automata (Hysteresis)

Hybrid systems and finite automaton



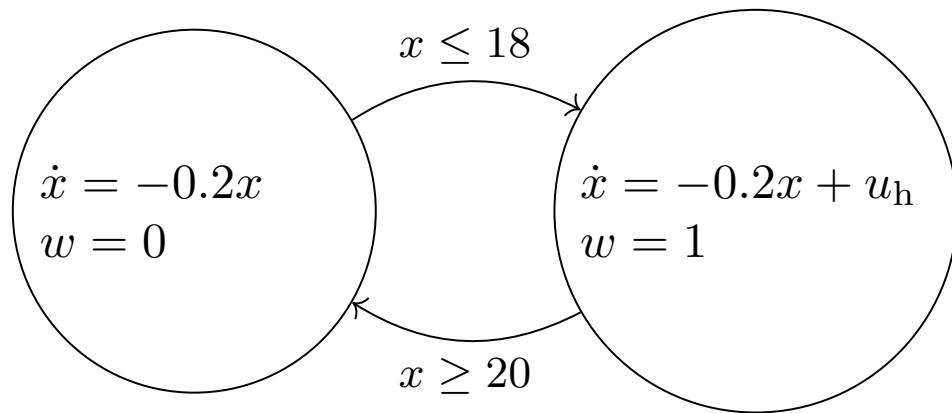
Hybrid systems and finite automaton



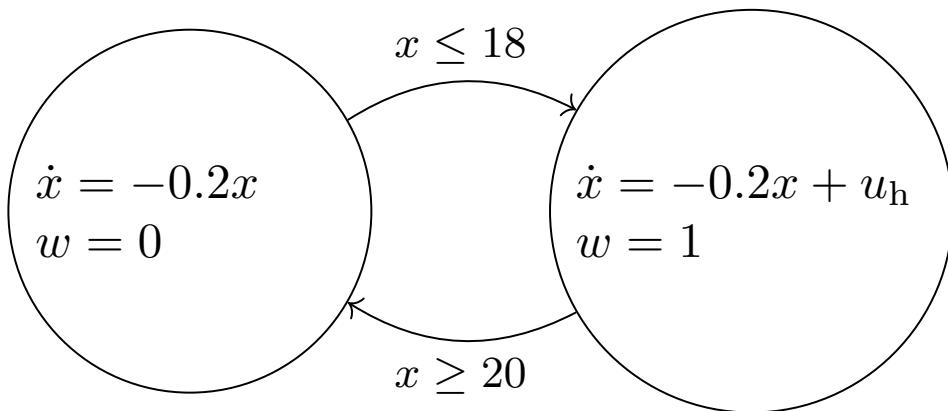
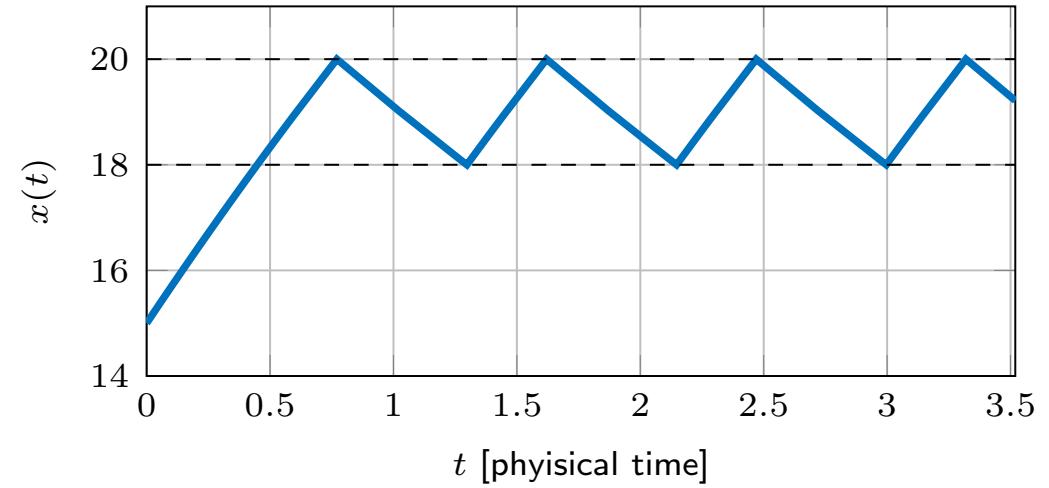
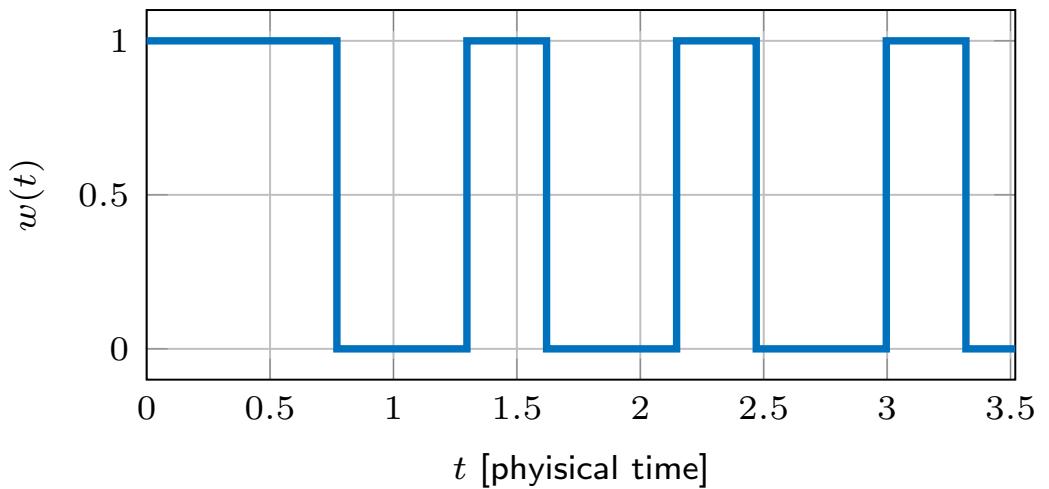
Hybrid system with hysteresis (*incomplete description*)

$$\dot{x} = f(x, w) = (1 - w)f_A(x) + wf_B(x)$$

Tutorial example: thermostat with hysteresis



Tutorial example: thermostat with hysteresis

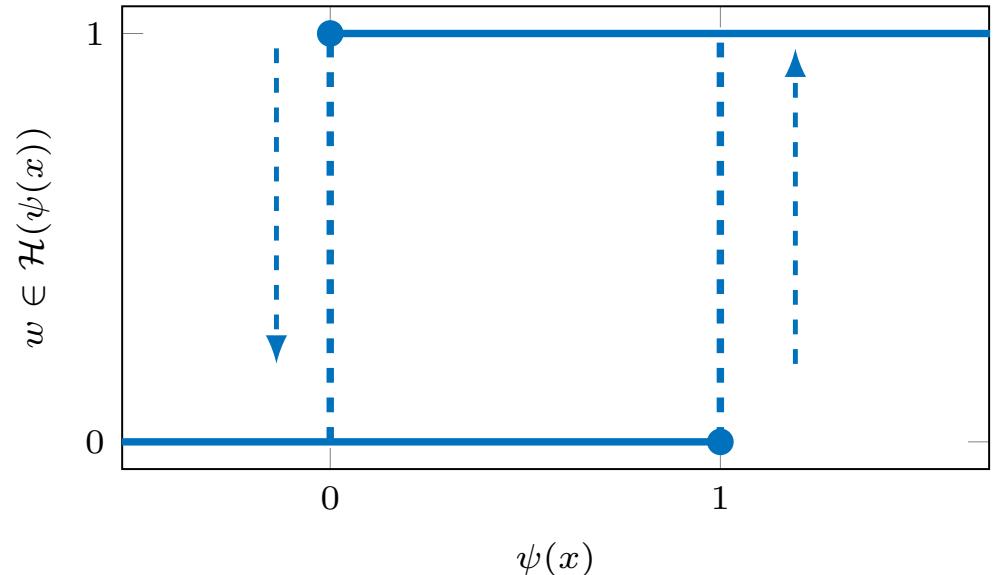


Hysteresis: a system with state jumps

Hybrid system with hysteresis

$$\dot{x} = f(x, w) = (1 - w)f_A(x) + wf_B(x)$$

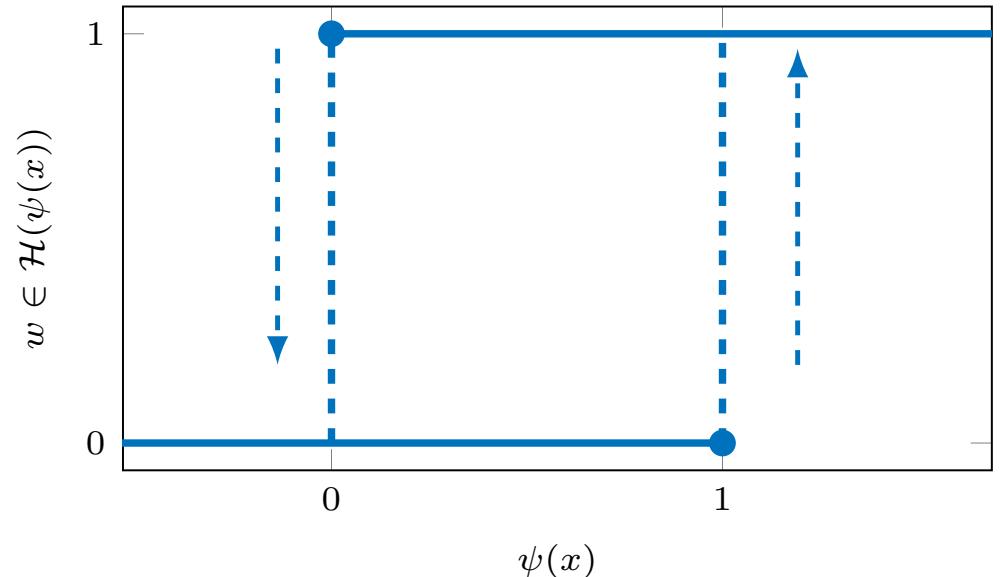
$$\dot{w} = 0$$



Hysteresis: a system with state jumps

Hybrid system with hysteresis

$$\begin{aligned}\dot{x} &= f(x, w) = (1 - w)f_A(x) + wf_B(x) \\ \dot{w} &= 0\end{aligned}$$

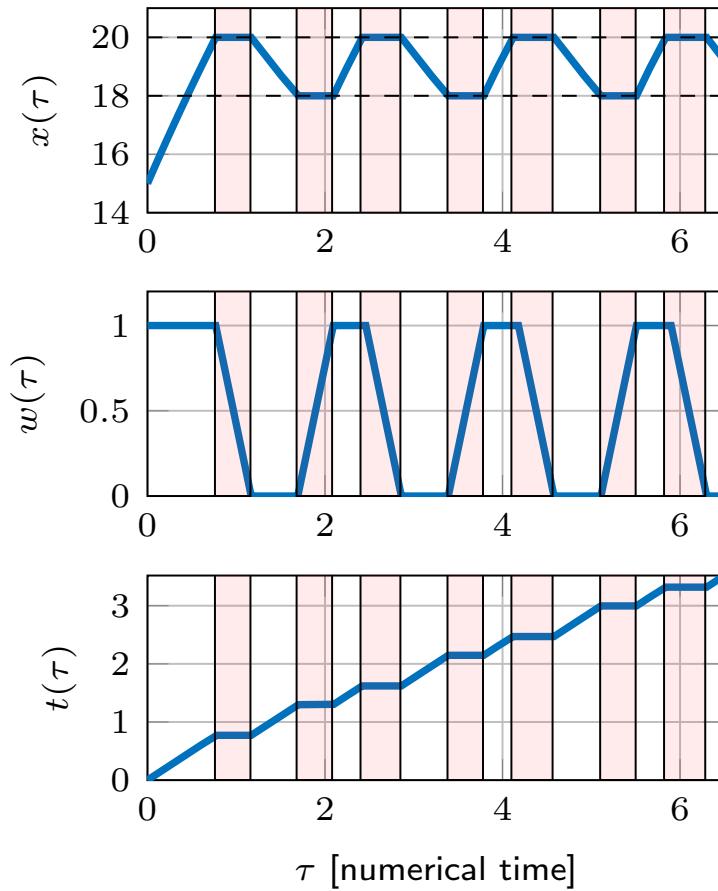
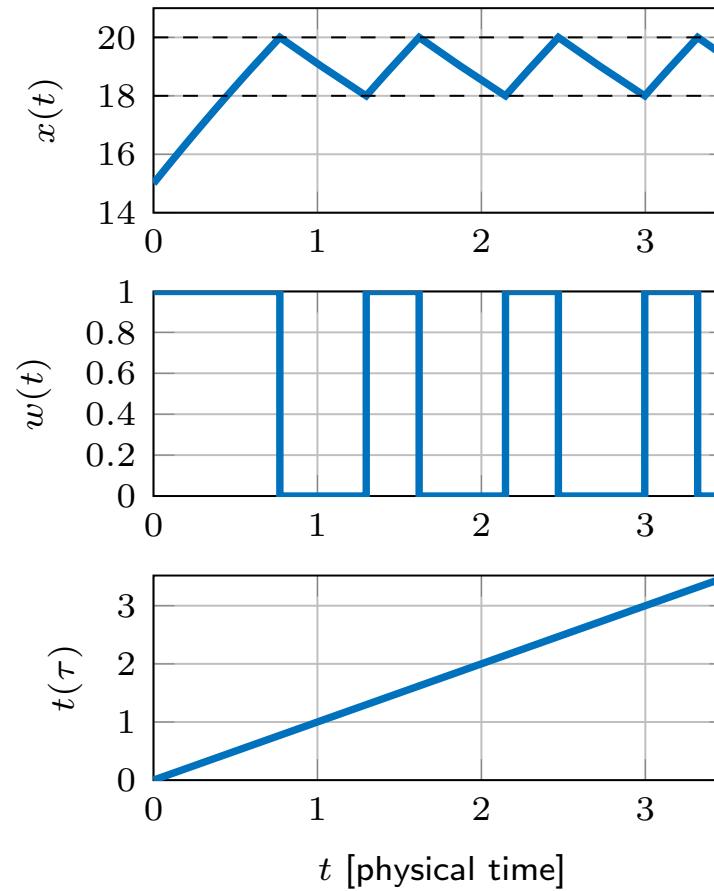


The State Jump Law

1. if $w(t_s^-) = 0$ and $\psi(x(t_s^-)) = 1$, then $x(t_s^+) = x(t_s^-)$ and $w(t_s^+) = 1$
2. if $w(t_s^-) = 1$ and $\psi(x(t_s^-)) = 0$, then $x(t_s^+) = x(t_s^-)$ and $w(t_s^+) = 0$

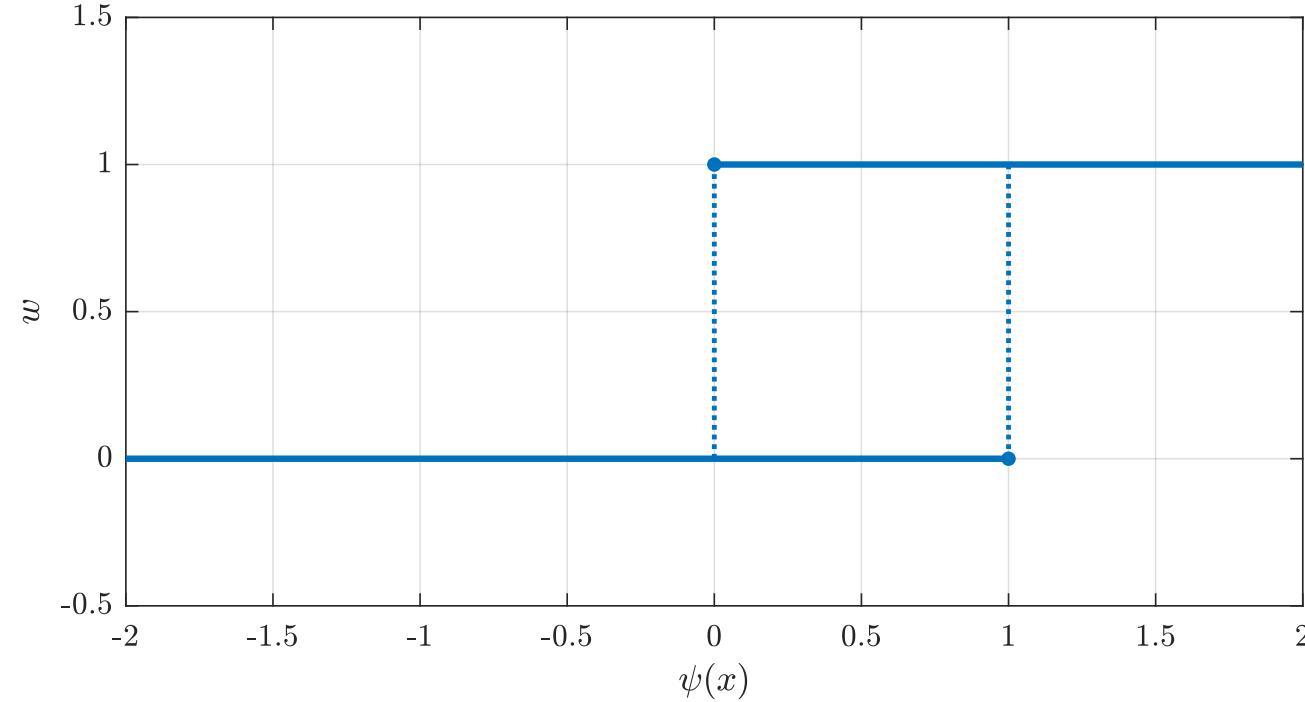
Remember: $w(t)$ is now a discontinuous differential state!

Tutorial example: thermostat and time-freezing



Time-freezing: the state space

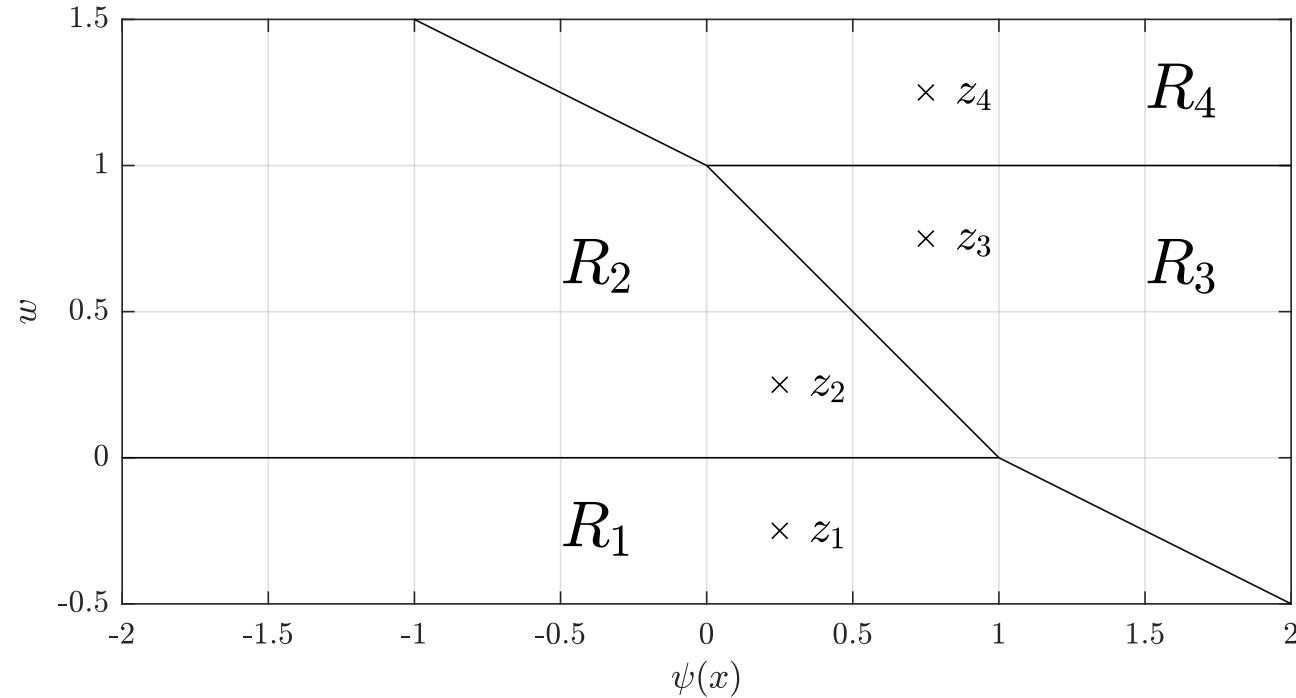
A look at the $(\psi(x), w)$ -plane



- ▶ Everything except the blue solid curve is prohibited in the (ψ, w) -space (use 1st principle of time-freezing)
- ▶ The evolution happens in a lower-dimensional space \implies *sliding mode* (use 4th principle of time-freezing)

Time-freezing: partitioning of the space

An efficient partition leads to less variables in FESD

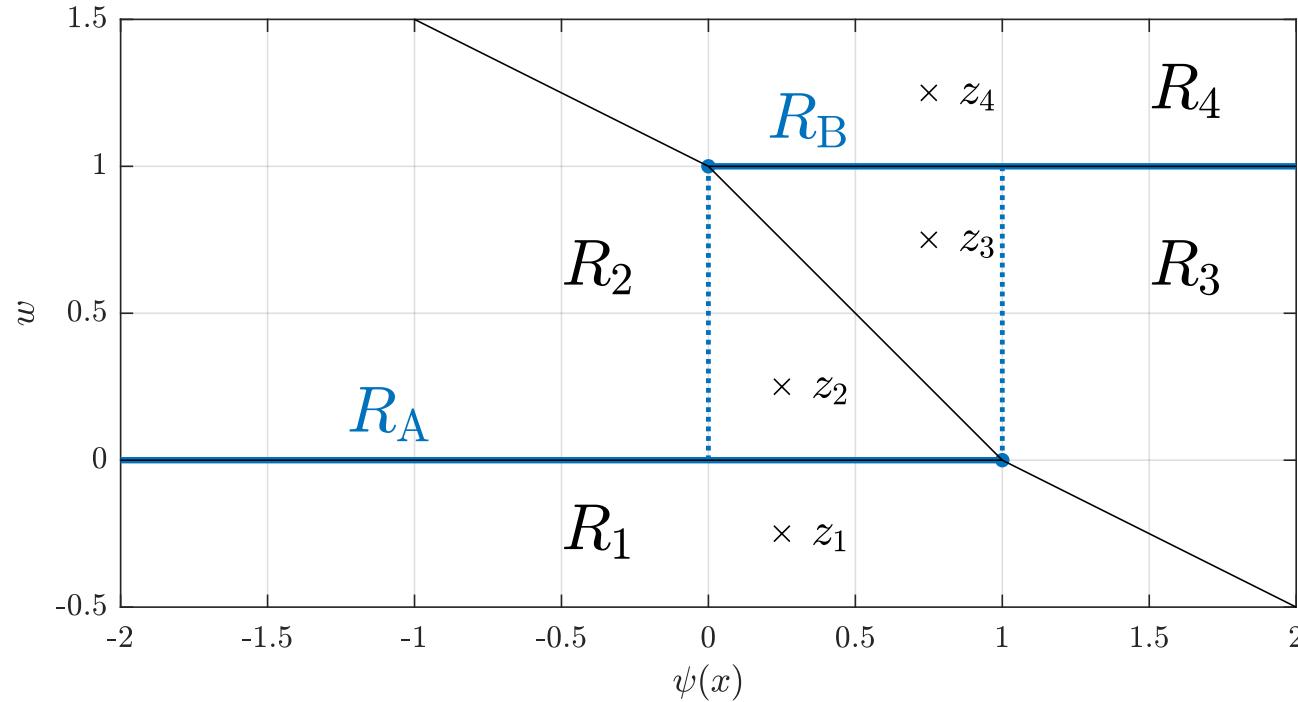


- ▶ Partition the state space into *Voronoi regions*:

$$R_i = \{z \mid \|z - z_i\|^2 < \|z - z_j\|^2, j = 1, \dots, 4, j \neq i\}, z = (\psi(x), w)$$

Time-freezing: partitioning of the space

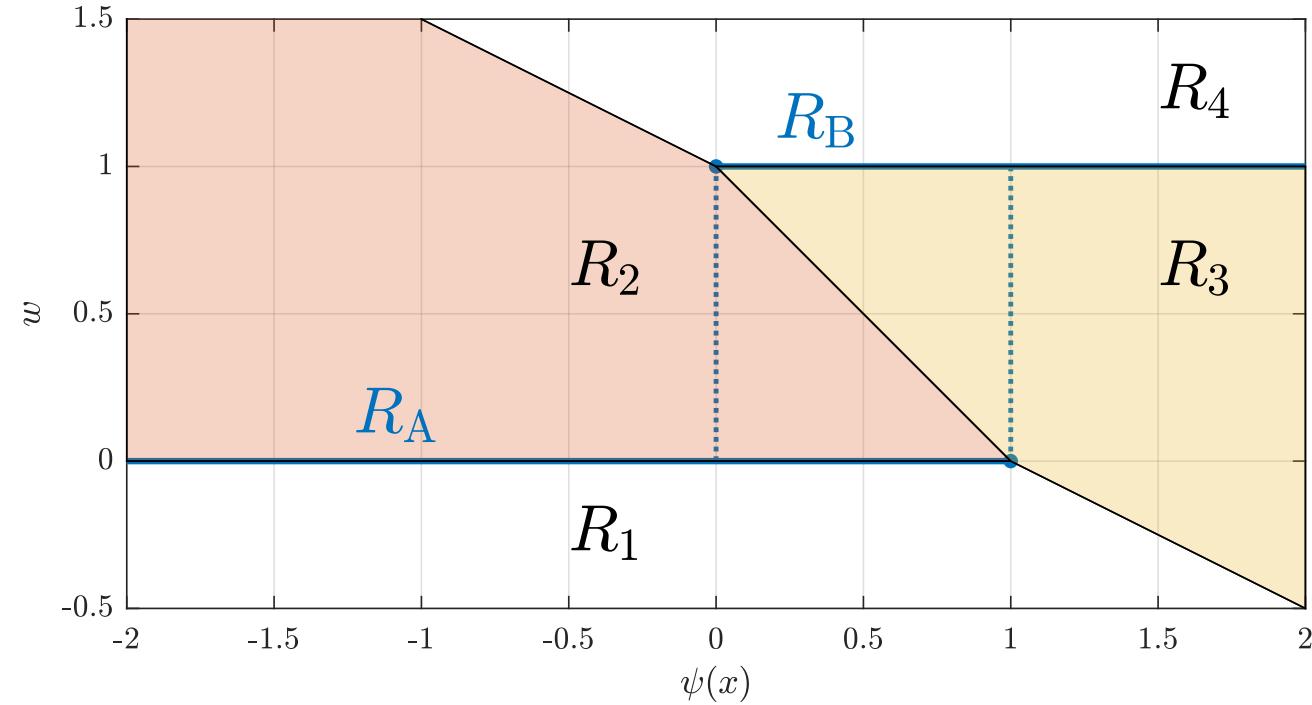
An efficient partition leads to less variables in FESD



- ▶ Partition the state space into *Voronoi regions*:
$$R_i = \{z \mid \|z - z_i\|^2 < \|z - z_j\|^2, j = 1, \dots, 4, j \neq i\}, z = (\psi(x), w)$$
- ▶ Feasible region for initial *hybrid system with hysteresis* on the region boundaries

Time-freezing: auxiliary dynamics

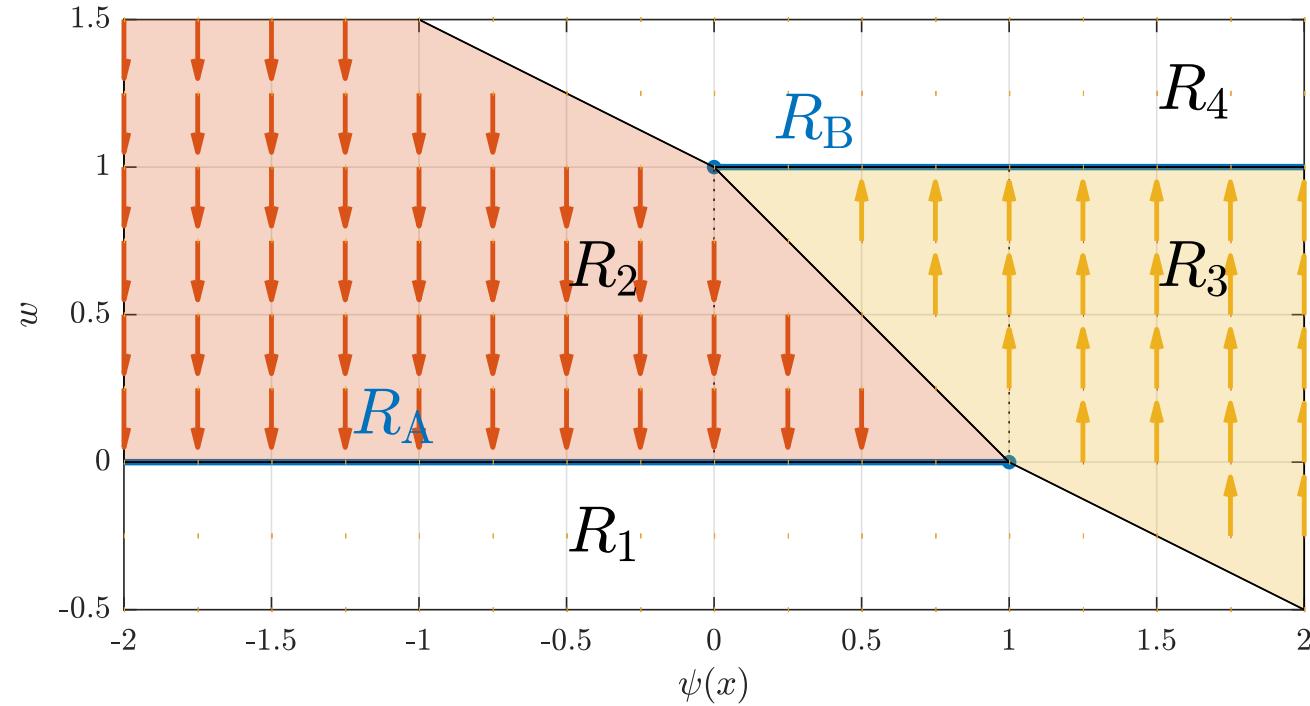
To mimic state jumps in finite numerical time



- ▶ Use regions R_2 and R_3 to define auxiliary dynamics for the state jumps of $w(\cdot)$

Time-freezing: auxiliary dynamics

To mimic state jumps in finite numerical time



- ▶ Use regions R_2 and R_3 to define auxiliary dynamics for the state jumps of $w(\cdot)$
- ▶ Evolution in w -direction happens only for $\psi \in \{0, 1\}$

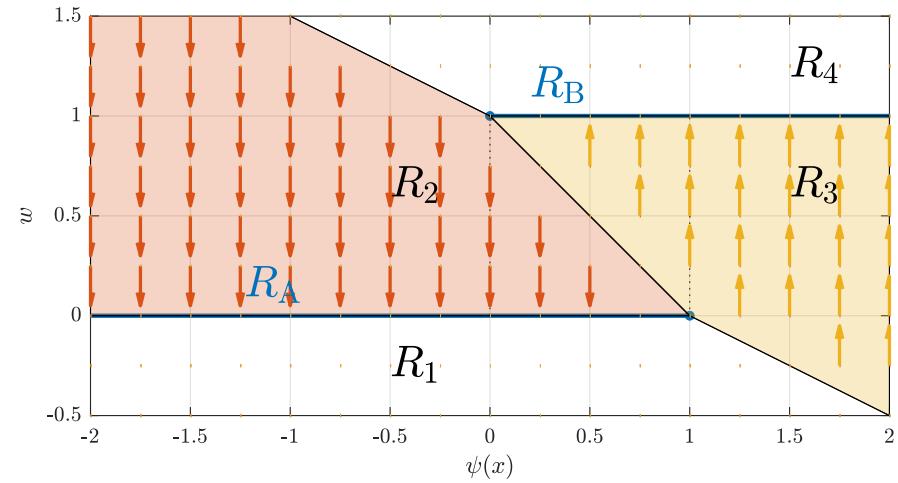
Time-freezing: auxiliary dynamics

The new state space of the system is $y = (x, w, t) \in \mathbb{R}^{n_x+2}$

Auxiliary dynamics

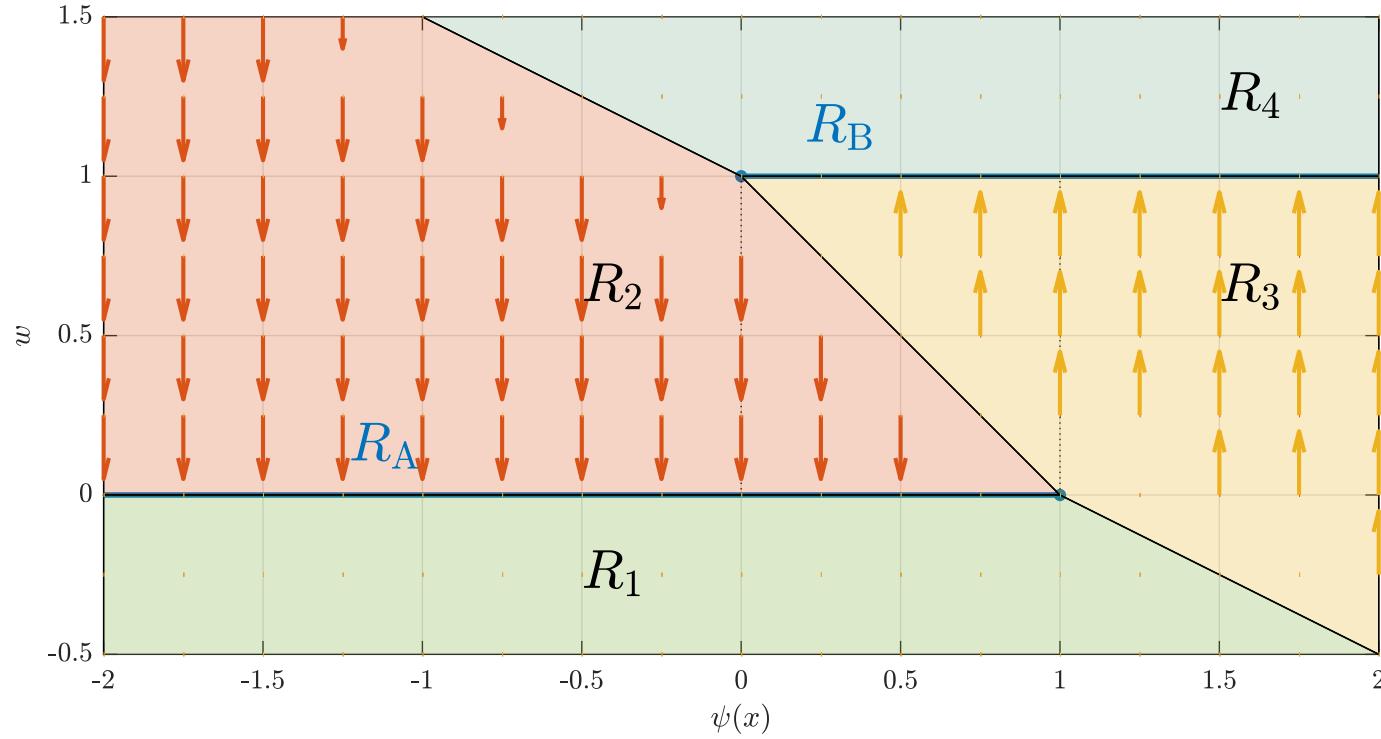
$$f_2(y) = \begin{bmatrix} 0 \\ -a \\ 0 \end{bmatrix}, \quad f_3(y) = \begin{bmatrix} 0 \\ a \\ 0 \end{bmatrix}$$

$$a > 0$$



Time-freezing: DAE forming dynamics

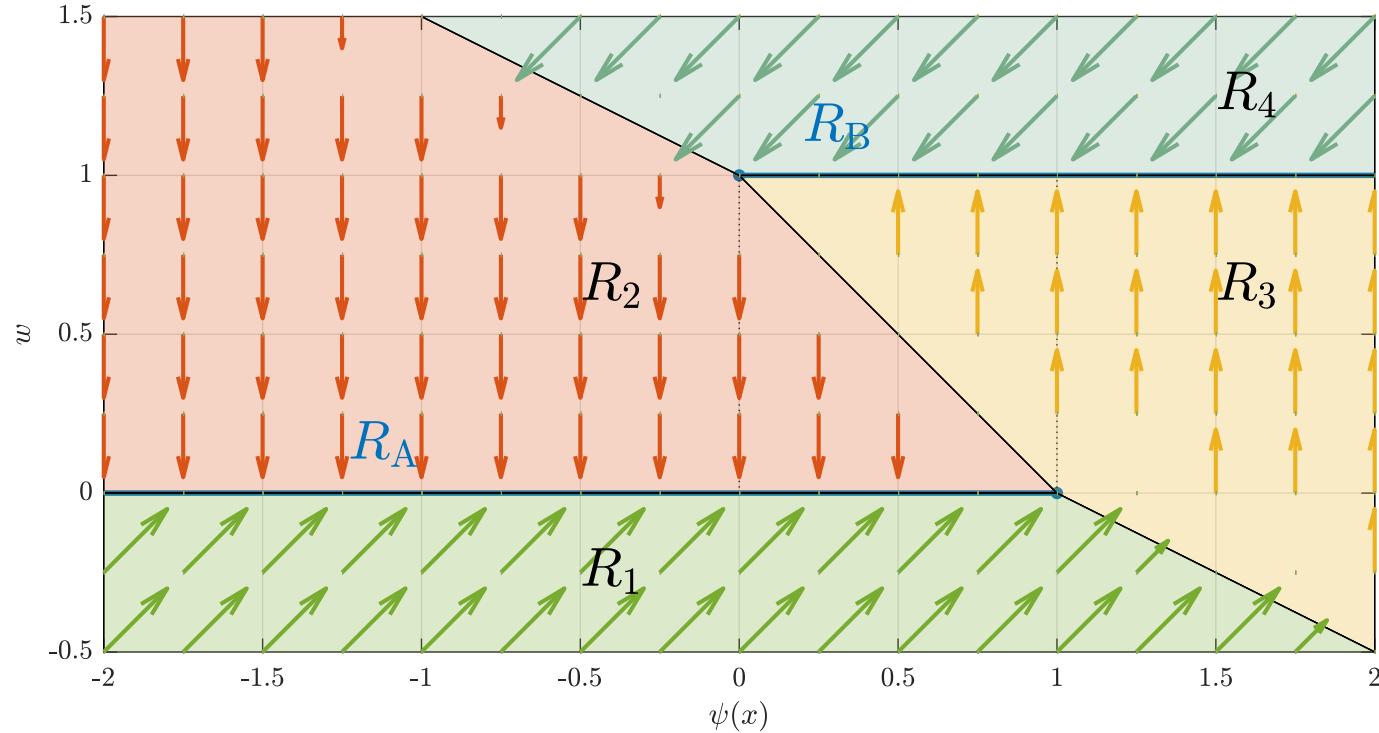
Stop the state jump and construct suitable sliding mode



- Dynamics in R_1 and R_4 **stops** evolution of auxiliary ODE - similar to inelastic impacts

Time-freezing: DAE forming dynamics

Stop the state jump and construct suitable sliding mode



- Dynamics in R_1 and R_4 **stops** evolution of auxiliary ODE - similar to inelastic impacts
- **Sliding modes** on $R_A := \partial R_1 \cap \partial R_2$ and $R_B := \partial R_3 \cap \partial R_4$ match $f_A(y)$ and $f_B(y)$, resp.

Time-freezing: summary

DAE-forming dynamics

$$y = (x, w, t)$$

$$\frac{dy}{d\tau} = f_1(y) = \begin{bmatrix} 2f_A(x) \\ a \\ 2 \end{bmatrix}$$

$$\frac{dy}{d\tau} = f_4(y) = \begin{bmatrix} 2f_B(x) \\ -a \\ 2 \end{bmatrix}$$

- ▶ In total four regions R_i , $i = 1, 2, 3, 4$ and evolution of original system is the **sliding mode**

Time-freezing: summary

DAE-forming dynamics

$$y = (x, w, t)$$

$$\frac{dy}{d\tau} = f_1(y) = \begin{bmatrix} 2f_A(x) \\ a \\ 2 \end{bmatrix}$$

$$\frac{dy}{d\tau} = f_4(y) = \begin{bmatrix} 2f_B(x) \\ -a \\ 2 \end{bmatrix}$$

- ▶ In total four regions R_i , $i = 1, 2, 3, 4$ and evolution of original system is the **sliding mode**
- ▶ Regions R_2 and R_3 equipped with aux. dynamics to mimic state jump

DAE-forming dynamics

$$y = (x, w, t)$$

$$\frac{dy}{d\tau} = f_1(y) = \begin{bmatrix} 2f_A(x) \\ a \\ 2 \end{bmatrix}$$

$$\frac{dy}{d\tau} = f_4(y) = \begin{bmatrix} 2f_B(x) \\ -a \\ 2 \end{bmatrix}$$

- ▶ In total four regions R_i , $i = 1, 2, 3, 4$ and evolution of original system is the **sliding mode**
- ▶ Regions R_2 and R_3 equipped with aux. dynamics to mimic state jump
- ▶ Regions R_1 and R_4 equipped with DAE-forming dynamics to recover original dynamics in sliding mode

Time-freezing: summary

DAE-forming dynamics

$$y = (x, w, t)$$

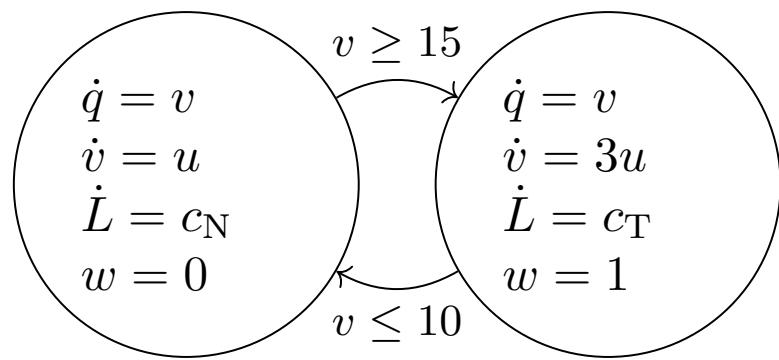
$$\frac{dy}{d\tau} = f_1(y) = \begin{bmatrix} 2f_A(x) \\ a \\ 2 \end{bmatrix}$$

$$\frac{dy}{d\tau} = f_4(y) = \begin{bmatrix} 2f_B(x) \\ -a \\ 2 \end{bmatrix}$$

- ▶ In total four regions R_i , $i = 1, 2, 3, 4$ and evolution of original system is the **sliding mode**
- ▶ Regions R_2 and R_3 equipped with aux. dynamics to mimic state jump
- ▶ Regions R_1 and R_4 equipped with DAE-forming dynamics to recover original dynamics in sliding mode
- ▶ E.g., $w' = 0 \implies \theta_1 f_1(y) + \theta_2 f_2(y) = f_A(y)$ (sliding mode)
- ▶ Conclusion: we have a PSS and can treat it with FESD

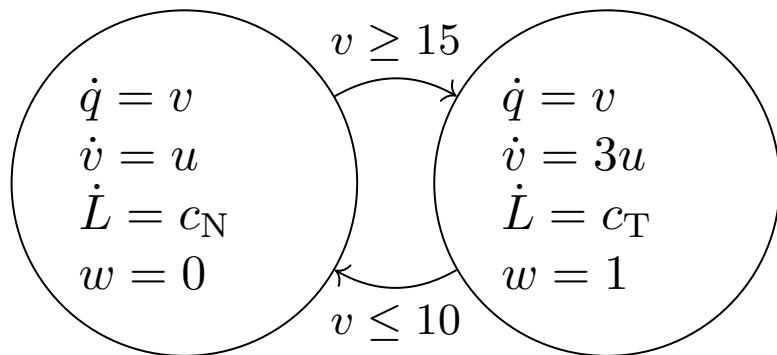
Time optimal control of a car with a turbo accelerator

Example from [Avraam, 2000] solved with NOSNOC



Time optimal control of a car with a turbo accelerator

Example from [Avraam, 2000] solved with NOSNOC

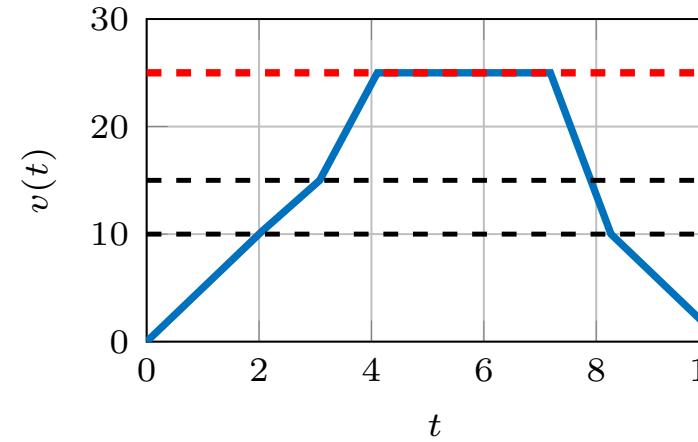
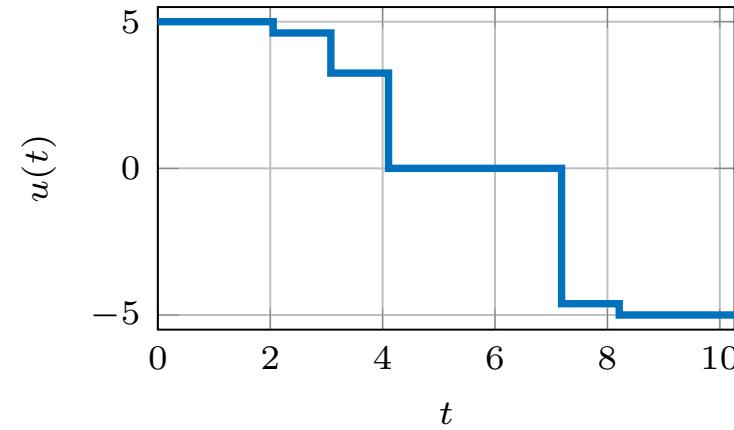
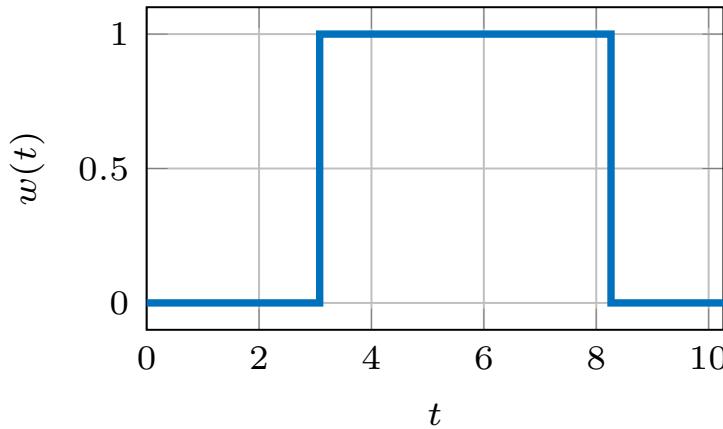
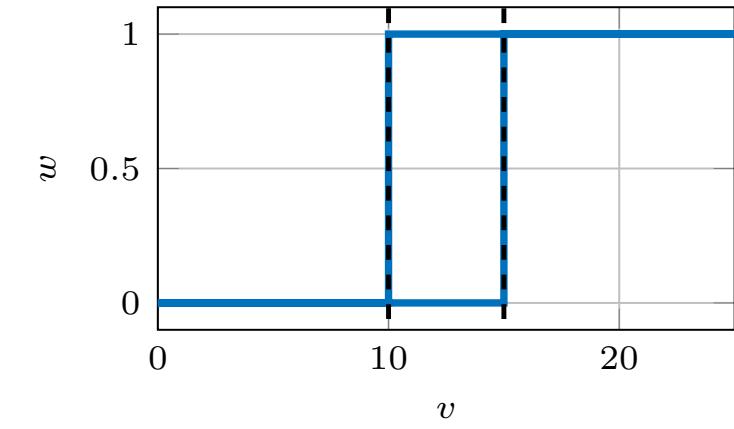


Time optimal control problem

$$\begin{aligned}
 & \min_{y(\cdot), u(\cdot), s(\cdot)} \quad t(\tau_f) + L(\tau_f) \\
 \text{s.t.} \quad & y(0) = (z_0, 0) \\
 & y'(\tau) \in s(\tau) F_{\text{TF}}(y(\tau), u(\tau)) \\
 & -\bar{u} \leq u(\tau) \leq \bar{u} \\
 & \bar{s}^{-1} \leq s(\tau) \leq \bar{s} \\
 & -\bar{v} \leq v(\tau) \leq \bar{v} \quad \tau \in [0, \tau_f] \\
 & (q(\tau_f), v(\tau_f)) = (q_f, v_f)
 \end{aligned}$$

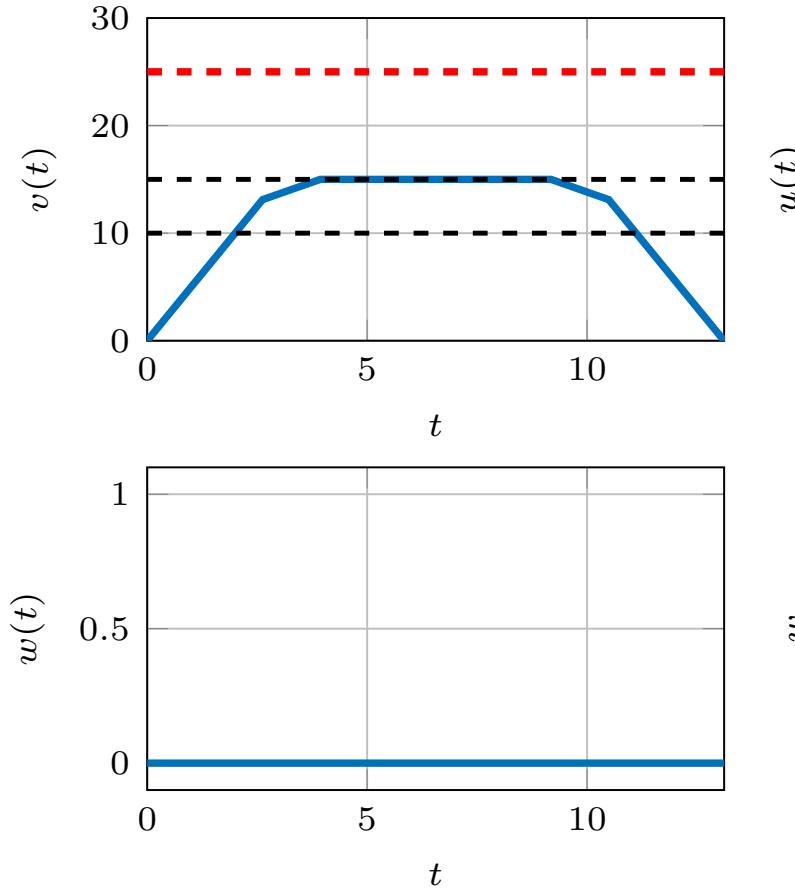
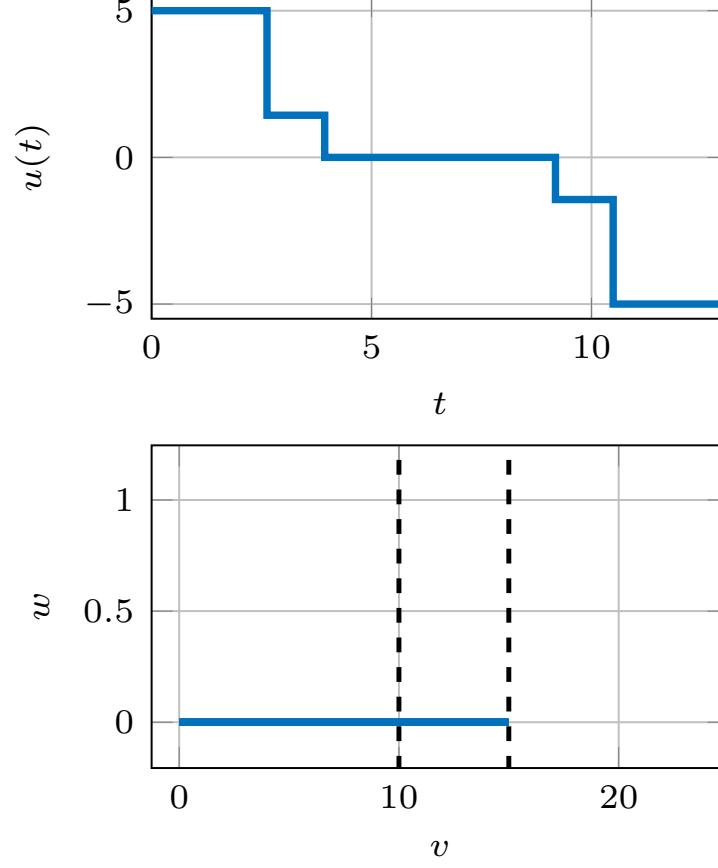
Scenario 1: turbo and nominal cost the same

$$c_N = c_T$$



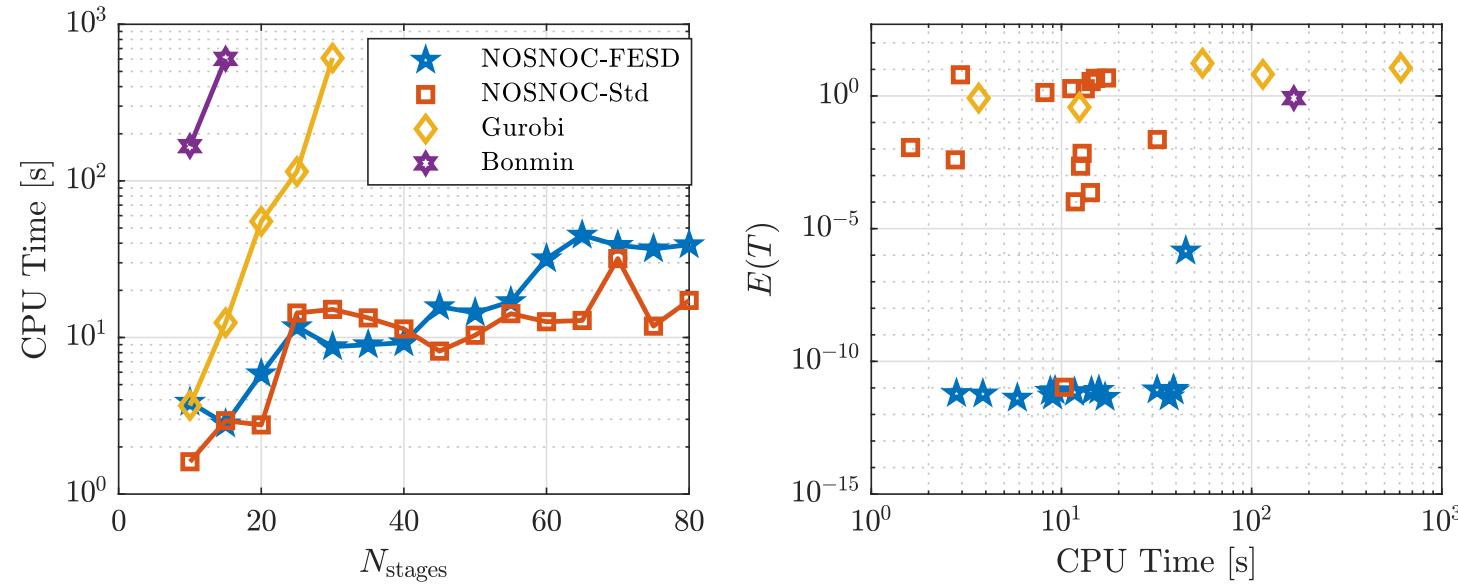
Scenario 2: Turbo is Expensive

$$c_N < c_T$$



NOSNOC vs MILP/MINLP formulations

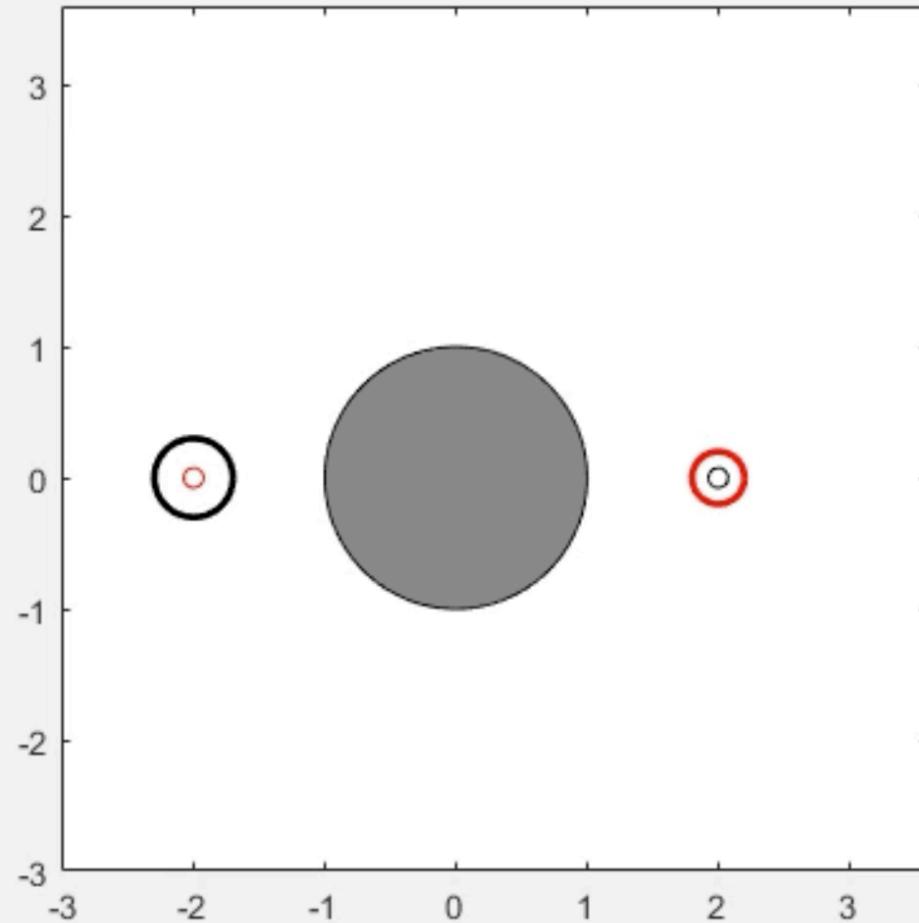
Benchmark on time-optimal control problem of a car with turbo



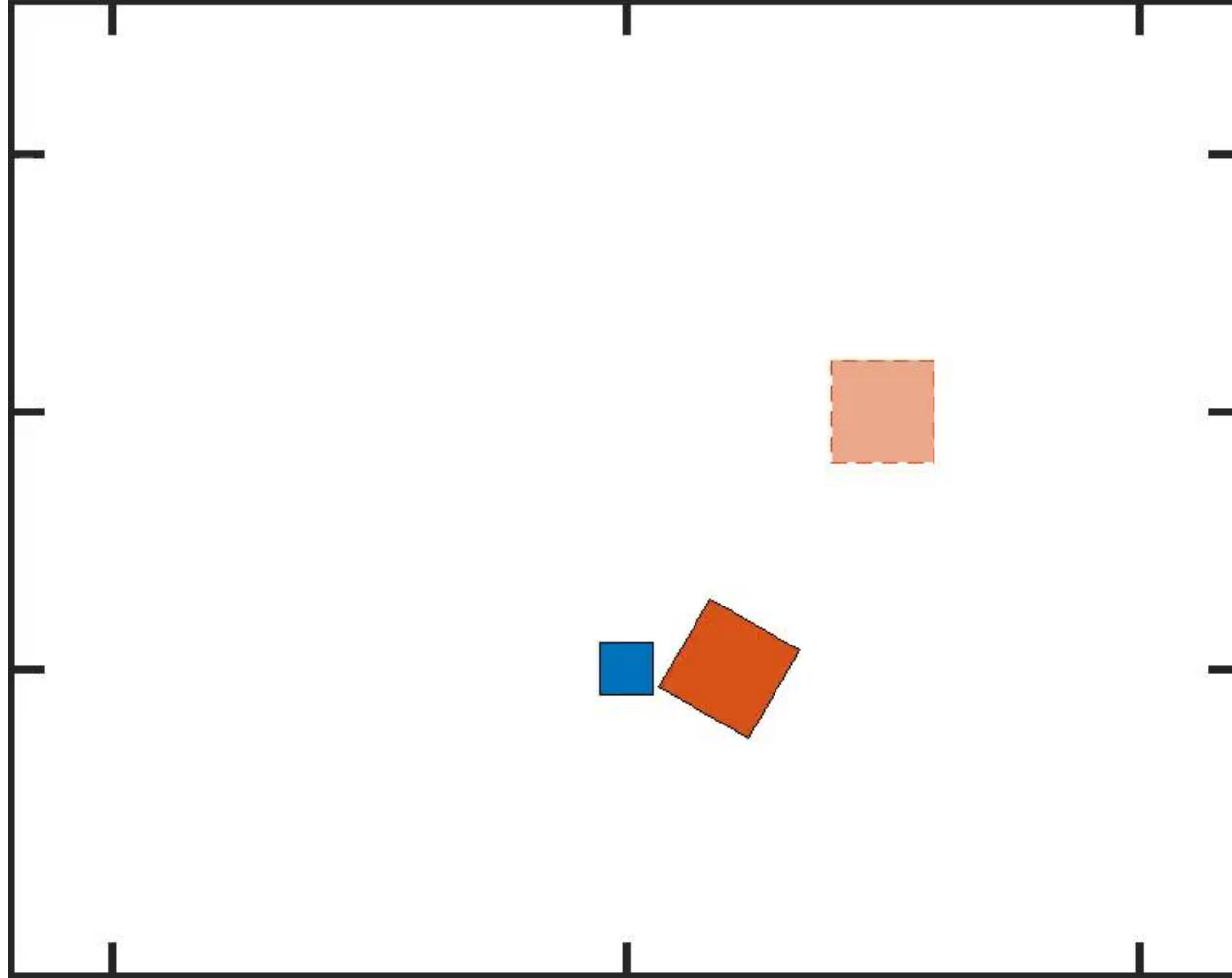
- ▶ compare CPU time as function of number of control intervals N (left) and solution accuracy (right)
- ▶ MILP (Gurobi): solve problem with fixed T until indefeasibly happens with grid search in T
- ▶ MILP/MINLP and NOSNOC-Std no switch detection = low accuracy

APPENDIX 3 - More NOSNOC Examples and Time-Freezing

NOSNOC examples



NOSNOC examples

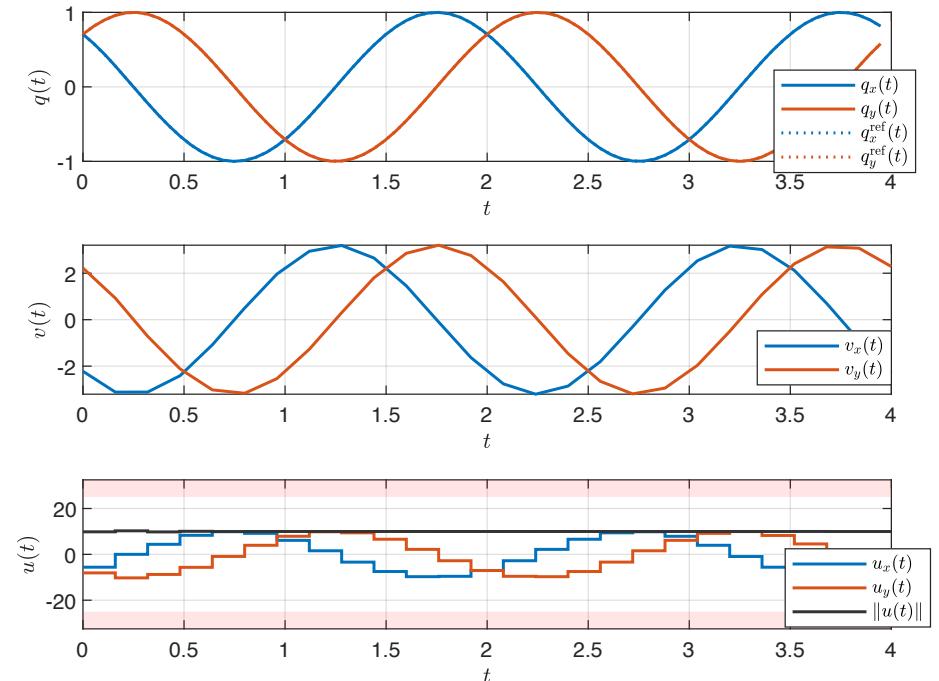


Finite Elements with Switch Detection for Numerical Optimal Control of Projected Dynamical Systems

Results with slowly moving reference

For $\omega = \pi$, tracking is easy: no jumps occur in optimal solution.

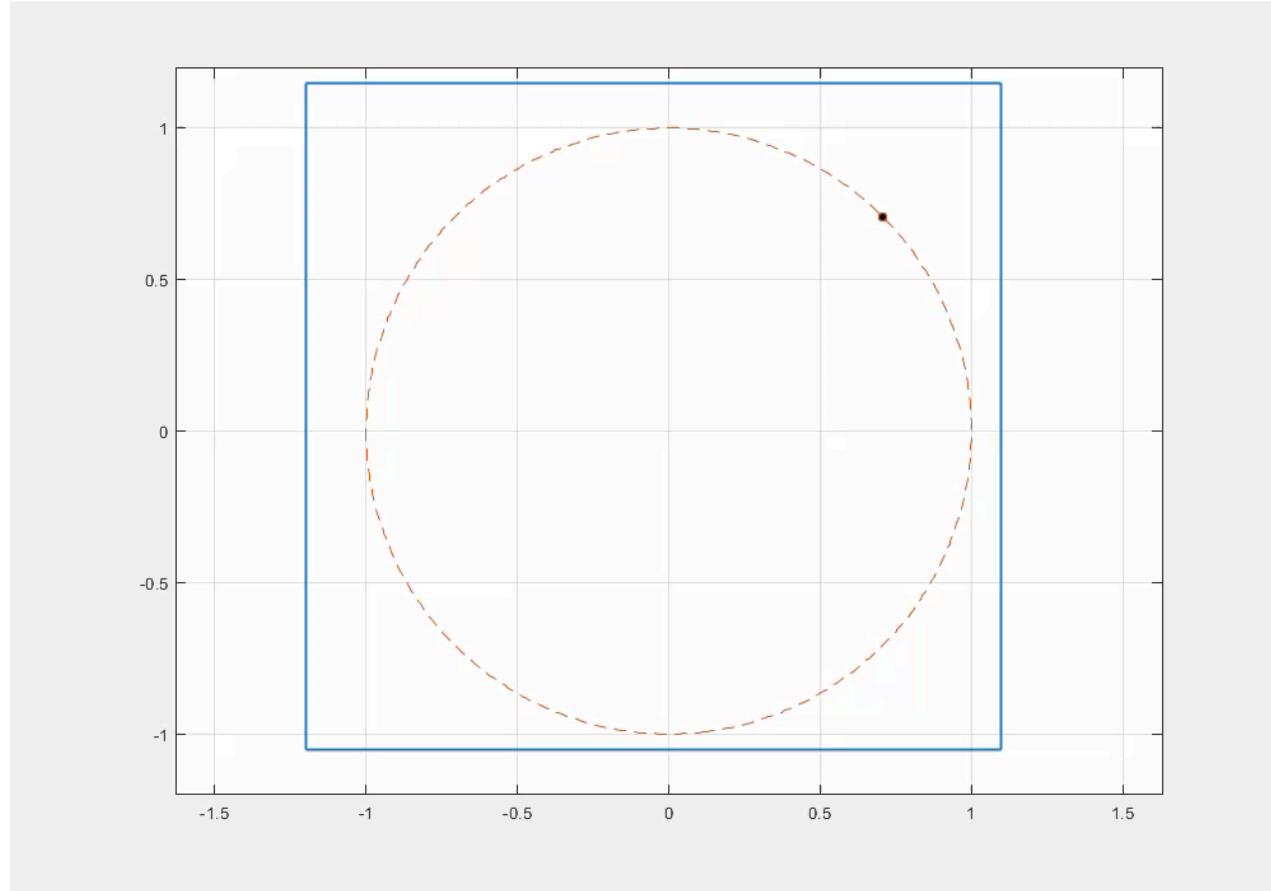
- ▶ Regard time horizon of two periods
- ▶ $N = 25$ equidistant control intervals
- ▶ use FESD with $N_{FE} = 3$ finite elements with Radau 3 on each control interval
- ▶ each FESD interval has one constant control u and one speed of time s
- ▶ MPCC solved via ℓ_∞ penalty reformulation and homotopy
- ▶ For homotopy convergence: in total 4 NLPs solved with IPOPT via CasADI



States and controls in physical time.

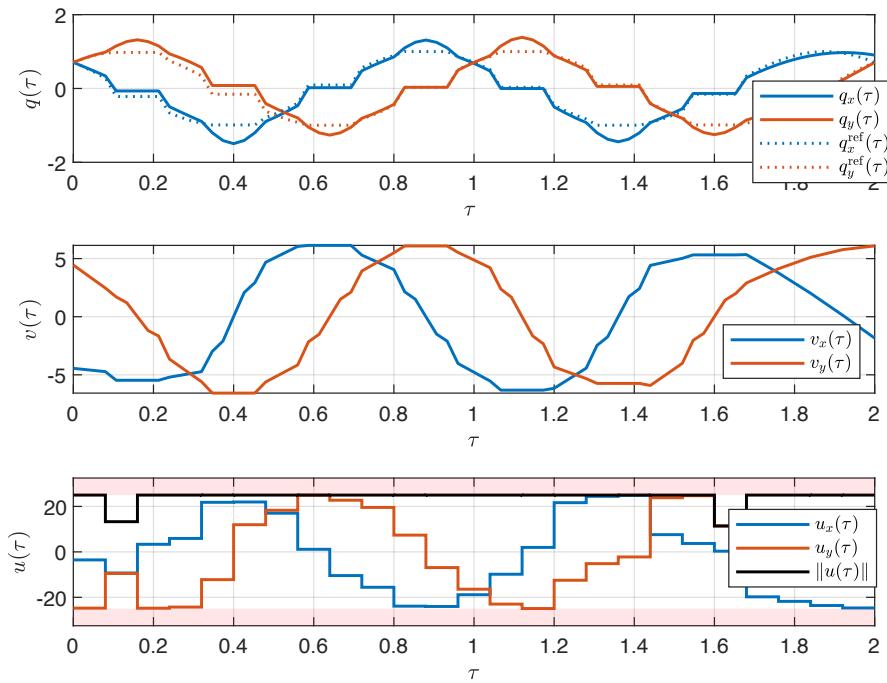
Results with slowly moving reference - movie

For $\omega = \pi$, tracking is easy: no jumps occur in optimal solution.

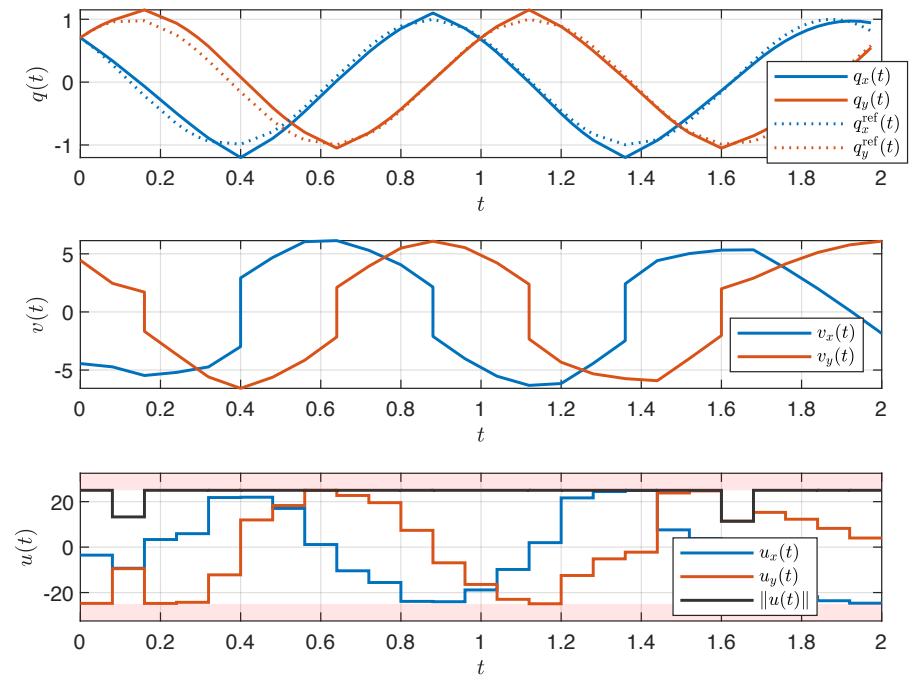


Results with fast reference

For $\omega = 2\pi$, tracking is only possible if ball bounces against walls.



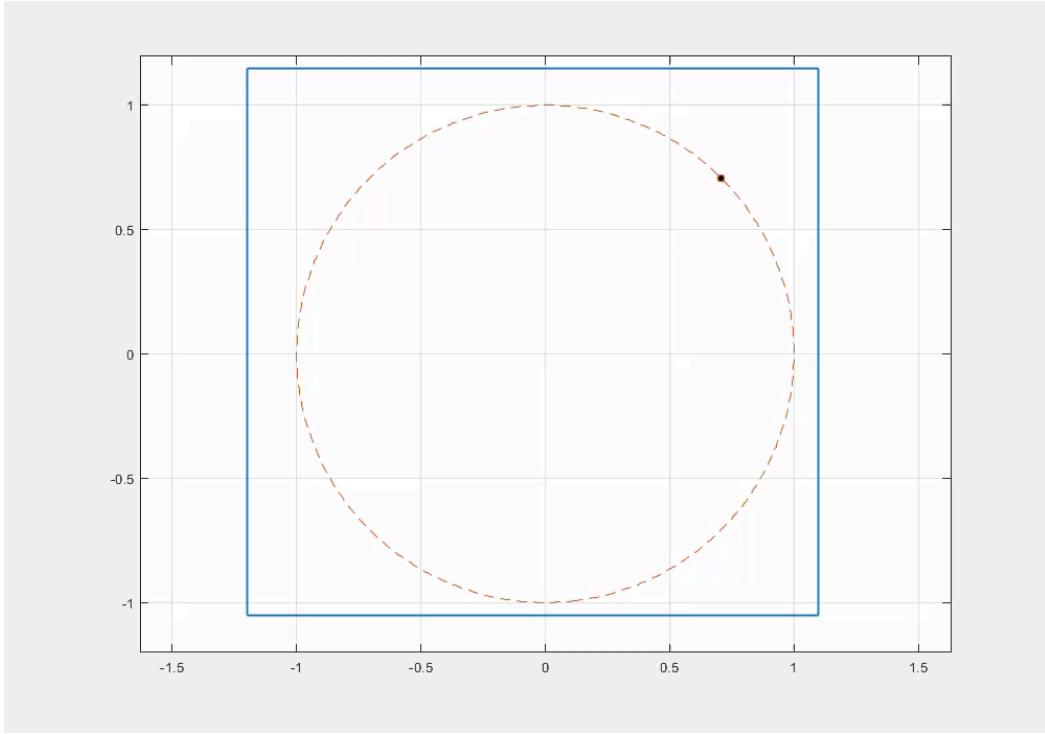
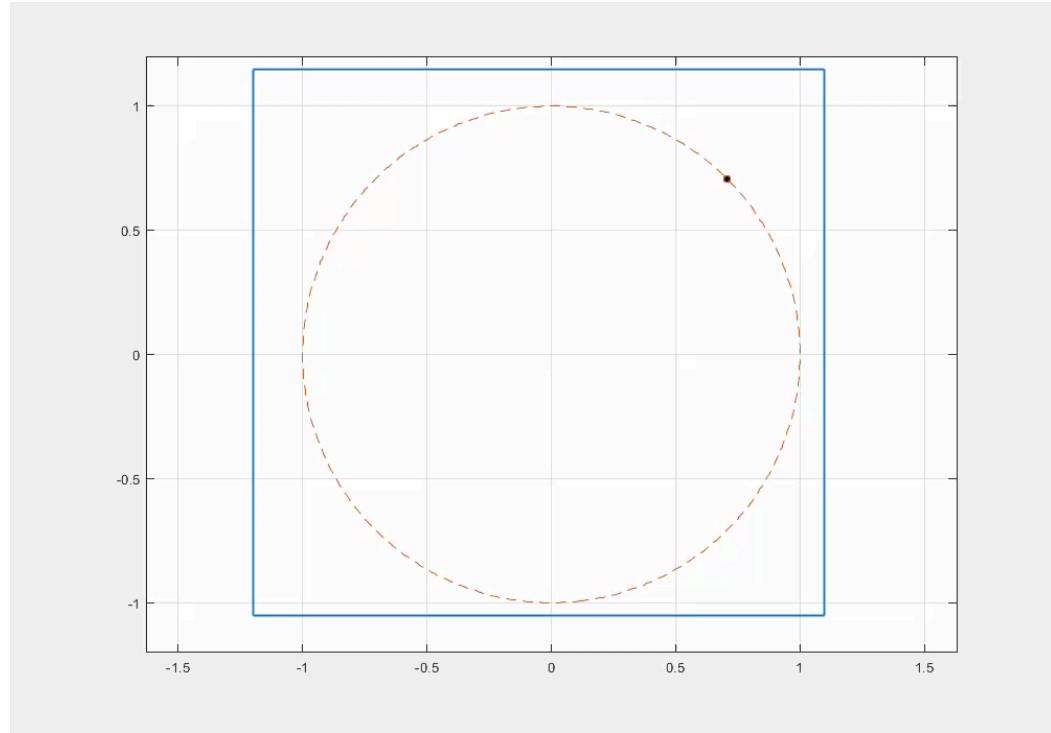
States and controls in numerical time.



States and controls in physical time.

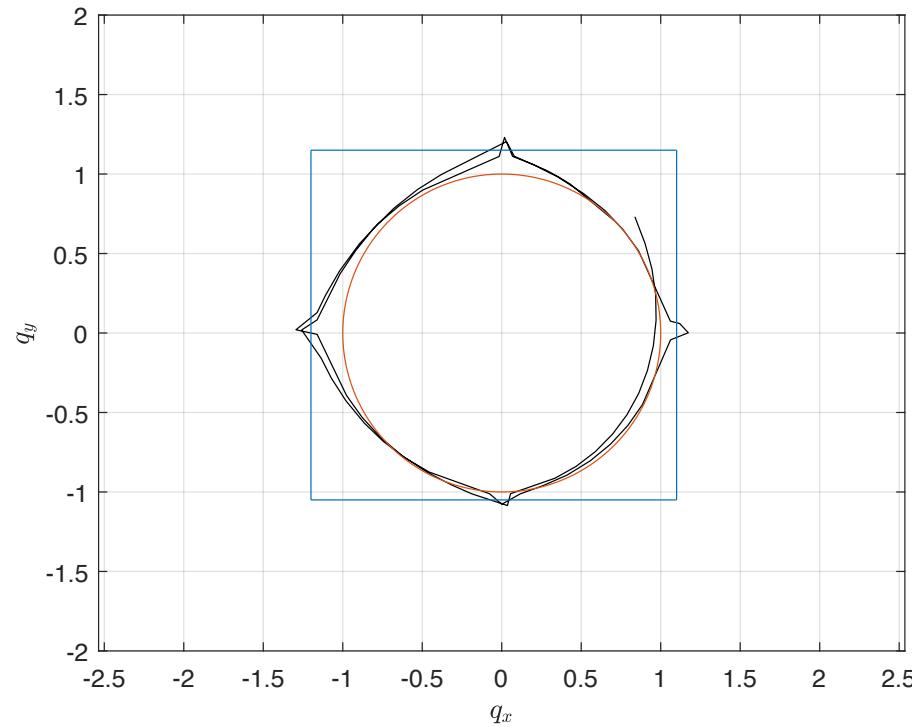
Results with fast reference - movie

For $\omega = 2\pi$, tracking is only possible if ball bounces against walls.

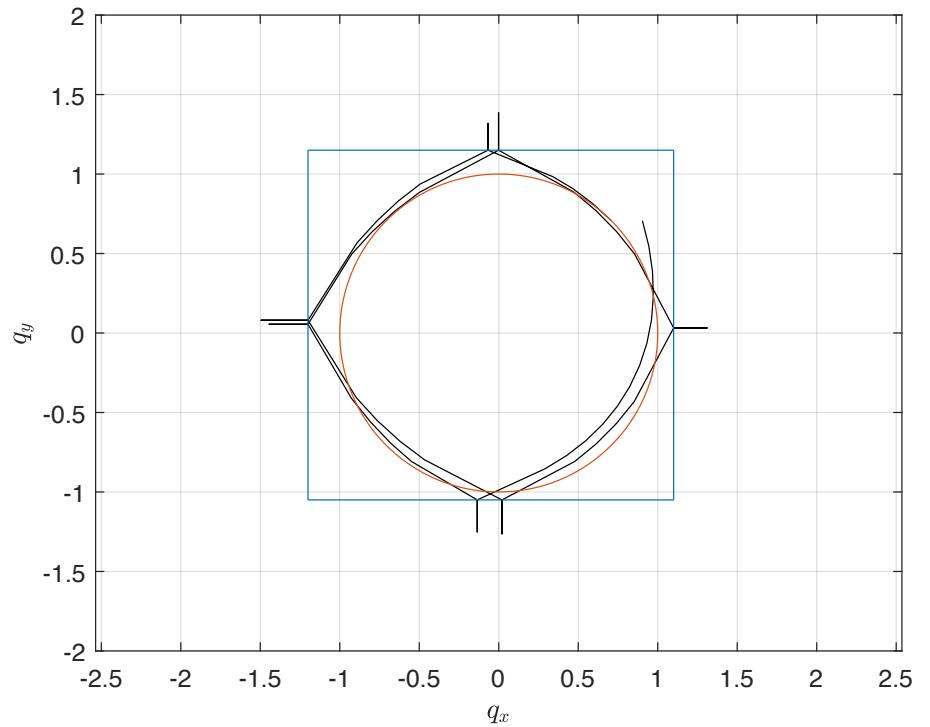


Homotopy: first iteration vs converged solution

Geometric trajectory



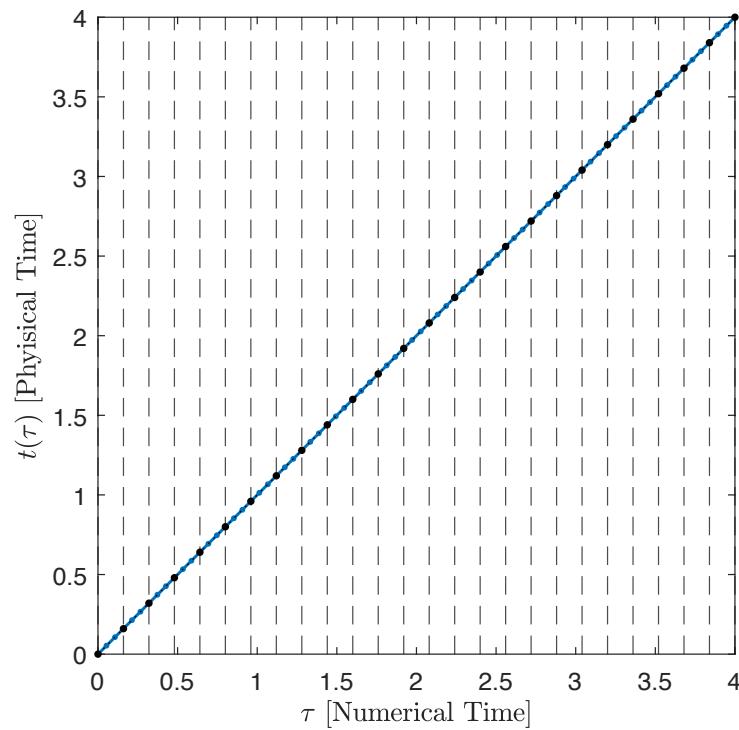
After the first homotopy iteration



The solution trajectory after convergence

Physical vs. Numerical Time

for $\omega = \pi$



for $\omega = 2\pi$

