universitatfreiburg

Numerical Optimal Control:
Smooth, Nonsmooth, and
Robust

Moritz Diehl?

joint work with Armin Nurkanovic!, Christian Dietz'.2, Anton
Pozharskiy', Gianluca Frison'3 Sebastian Albrecht?

1 Department of Microsystems Engineering and Department
of Mathematics, University of Freiburg, Germany

2 Siemens Foundational Technology, Munich, Germany
3 MOSEK ApS, Denmark

NTNU Trondheim, February 16, 2026

Continuous-Time Optimal Control Problems (OCP)

Continuous-Time OCP with Ordinary Differential Equation (ODE) Constraints

Continuous-Time Optimal Control Problems (OCP)

Continuous-Time OCP with Ordinary Differential Equation (ODE) Constraints

Can in most applications assume convexity of all "outer” problem functions: L., E, h,r.

Three Levels of Difficulty in Continuous-Time OCP

Three levels of difficulty:

Continuous-Time OCP

Three Levels of Difficulty in Continuous-Time OCP

Three levels of difficulty:

Continuous-Time OCP (a) Linear ODE: f(z,u) = Az + Bu
] .

s.t. x(0) =
2(t) = f(x(t), u(t))
0> h(x(t),u(t)), t €[0,T]
0= r(z(T))

Three Levels of Difficulty in Continuous-Time OCP

Three levels of difficulty:

Continuous-Time OCP (a) Linear ODE: f(z,u) = Az + Bu

min fOTLC(x(t),u(t))dt+E(:U(T)) (b) Nonlinear smooth ODE: f € C'

Three Levels of Difficulty in Continuous-Time OCP

Three levels of difficulty:

Continuous-Time OCP (a) Linear ODE: f(z,u) = Az + Bu

) _ 1
min fOTLC(ZC(t),’LL(t)) dt + E(CI}(T)) (b) Nonlinear smooth ODE: f € C
z(-)u(") (c) Nonsmooth Dynamics (NSD):
s.t. x(0) =z > f not differentiable (NSD1),
i(t) = f(z(t),u(t)) : f not c.or.1tinuous (NS.D2), or even
f not finite valued, discontinuous state
02 h(x(t),u(t), t € [0,T] z(t) (NSD3)
0> r(a(T))

Three Levels of Difficulty in Continuous-Time OCP

Three levels of difficulty:

Continuous-Time OCP (a) Linear ODE: f(z,u) = Az + Bu

) _ 1
min fOTLC(x(t),u(t))dt+E(:U(T)) (b) Nonlinear smooth ODE: f € C
z(-),u(:) (c) Nonsmooth Dynamics (NSD):
s.t. x(0) =z > f not differentiable (NSD1),
2(t) = F(z(t), u(t)) : f not c.or.ltinuous (NSDZ), or even
f not finite valued, discontinuous state
0> h(z(t),u(t)), t €0,T] z(t) (NSD3)
0> 7r(x(T)) First focus on smooth cases (a) and (b).

Three Levels of Difficulty in Continuous-Time OCP

Three levels of difficulty:

(3) Linear ODE: f(z.u) = Az + Bu
m(r.glin(.) fOTLC(x(t),u(t))dt+E(:U(T)) (b) Nonlinear smooth ODE: f € ¢!
s.t. x(0) =z
#(t) = f(a(t), u(t)
0= h(z(t),u(t)), t €[0,T]
0> r(z(T)) First focus bln ‘smoot'h cases (a) and (b).

Recall: Runge-Kutta Discretization for Smooth Systems

Ordinary Differential Equation (ODE
Y i () Discretization: N Runge-Kutta steps of each n, stages

At =

2]=

o0 = To,
Vg5 — f(ajk:,jauk:>
Tp =Tpo+ ALY 01 Ginlkn
Initial Value Problem (IVP) Tpi10=Tpo+ At 21 by
j=1,...,n,, k=0,....N—1
z(0) = g
v(t) = f(z(t),u(t)) For fixed controls and initial value: square system with
i(t) = v(t) ny + N(2ng + 1)n, unknowns, implicitly defined via
ny + N(2ng + 1)n, equations.

tel0,T L s .
0,71 (trivial eliminations in case of explicit RK methods)
xo T ’U171 U1’2 ce Ul,ns To 333
¢ . ° o ! ° ® ° ¢ ® . . ® > 1
to to1 to ton, U1 to ts

Direct Methods Transform OCP into Nonlinear Program (NLP)

Continuous time OCP

» Direct methods " first discretize,
then optimize”

Direct Methods Transform OCP into Nonlinear Program (NLP)

Continuols time G CP 1. Parameterize controls, e.g.
U(t) = uﬂ?t < [tn7tn—|—1]-

» Direct methods " first discretize,
then optimize”

Direct Methods Transform OCP into Nonlinear Program (NLP)

Continuous time OCP

» Direct methods " first discretize,
then optimize”

. Parameterize controls, e.g.

u(t) — unat € [tnatn—i—l]-

. Discretize cost and dynamics

La(z,, 2k, U,) & /t " L.(x(t),u(t))dt

Replace & = f(x,u) by
xn—|—1 — ¢f(xn7 2% un)

0= ¢int (xn7 Zns un)

Direct Methods Transform OCP into Nonlinear Program (NLP)

Continuous time OCP

» Direct methods " first discretize,
then optimize”

. Parameterize controls, e.g.

u(t) — unat € [tnatn—i—l]-

. Discretize cost and dynamics

La(z,, 2k, U,) & /t " L.(x(t),u(t))dt

n

Replace & = f(x,u) by
xn—|—1 — ¢f(xn7 2% un)

0= ¢int (xn7 Zns un)

. Also discretize path constraints

0> on(x,, 2p,upy), n=0,...N —1.

Continuous time OCP

s.t. 2(0) =
2(t) = f(2(t), u(?))
0> h(z(t),u(t)), t € 0,T]
0> r(2(T))

» Direct methods " first discretize,
then optimize”

Discrete time OCP (an NLP)

. N-1
min) ;o Lq(Zg, 25, ug) + E(zy)

X,z,u
s.t. xy9 =X
Trny1 = Of(Tn, 2n, Up)
0 = Pint(Tns 2n, Un)
0> op(x,, 2n,Uy,), n=0,...,N—1
0>r(zy)

Variables x = (xg,...,zn), 2= (29,---,2N)
and u = (Uo, .o JuN—l)'

Here, z are the intermediate variables of the
integrator (e.g. Runge-Kutta)

Simplest Direct Transcription: Single Step Explicit Euler

(not recommended in practice, other Runge-Kutta methods are much more efficient)

i() = fa(t), u(t)) By = 2, + f(zy)AL
0> h(x(t),u(t)), t €[0,T] 0> h(z,,u,), n=0,...,N—1
0>r(x(T)) 0> r(zy)
» Direct methods: first discretize, Variables x = (xg,...,xy) and
then optimize u = (ug,-..,Un_1)-

(single step explicit Euler has no internal
integrator variables z)

2nd Simplest Direct Transcription: Midpoint Rule

i) Jo Lela@ u®) dt+ B@T) i S L (o, ug) At + Ee)
s.t. x(0) =T st. Tp = Zo
z(t) = f(z(t), u(?)) Tni1 = Tp + f(zn, un)At

0> h(x(t),u(t)), t €[0,T] 0. Ty + i1

0>r(z(T)) " 2
0> h(zn,un), n=0,...,N—1
0>r(zy)

Variables x = (xg,...,zN), 2= (20,---,2N—-1),

and u = (uo, ce ,’LLN_l).

Sparse NLP resulting from direct transcription

Discrete time OCP (an NLP) Nonlinear Program (NLP)
min 373" La (@, 20, ue) + E(aw) .
X,Z,u mug F(w)
s.t. xg =12 wek
s.t. G(w) =0
Lp4+1 = ¢f(xn7znaun) H(w) >0

0= ¢int($nazn7un)
0> on(xy, 2p,Up), n=0,...,N—1

0> r(zy) Large and sparse NLP

Variables w = (x,z,u)

Sparse NLP resulting from direct transcription

V2 L(w, X, 1)

Nonlinear Program (NLP)
20 |
0 VuG(w)
7Y 40 f
“.‘b. .
by, 60 ! min F'(w)
“‘u weR"™z
baa, 80}
50 . t. G(w) =
0 50 100 100 S.T. (w —
nz =196 '
120+ . . . H(w Z O
0 50 100
nz=611

Variables w = (x, z,u) Large and sparse NLP

lllustrative nonlinear optimal control problem (with one state and one control)

3
minimize / x(t)” + u(t)” dt
z(-),u(-) 0

subject to
z(0) =z (initial value, z, = 0.6)
t=(1+2x)x + u, (ODE model)
—1 <wu(t) <1, t €10,3] (bounds)
z(3) =0 (terminal constraint)

» choose N =9 equal intervals and Radau-IlA collocation with n, = 2 stages
» obtain nonlinear program with n_, + (2ng + 1)Nn,, + Nn,, variables

» initialize with zeros everywhere, solve with CasADi and Ipopt (interior point)

r/

lllustrative example of direct collocation with Newton-type optimization: .

lllustrative example: Initialization

lllustrative example: First lterate

lllustrative example: Second lterate

lllustrative example: Third lterate

lllustrative example: Fourth lterate

lllustrative example: Fifth lterate

Illustrative example: Sixth lterate

lllustrative example: Seventh Iterate

lllustrative example: Eighth lterate

More Complex Example: Power Optimal Trajectories in Airborne Wind Energy (AWE)

formulated and solved daily by practitioners using open-source python package “AWEBox” [De Schutter et al. 2023]

For simple plane attached to a tether:

- 20 differential states (3+3 trans, 9+3 rotation, 1+1 tether)
- 1 algebraic state (tether force)

- 8 invariants (6 rotation, 2 due to tether constraint)

- 3 control inputs (aileron, elevator, tether length)

m 0 0 = 3 F,+m 52rA+52x+25y+5y
Translational: 0 m 0y Yil=| Fy+m 952 — 206 — 8(7’14 +)
0 0 m =z Z F. — gm
z y =z 0 A] j:2z g2 — 32 |
' 0
Rotational: R=Rwy —RT| 0 , Ju=T—wx Jw, R = [E, B, E, }
0
& — by ETy ETg
: = - z
Aero. coefficients: U= y+ 5(7"'A +x2) | —u(z,y,246,1), o= ~ B = P
z x T

Aero. forces/torques: Fp = 5pA||17H(CL17 x E, — Cpv), Ta= épAH'ﬁ’HZ

Cr
Cp

Newton-Type Optimization lterations for Power Optimal Flight
(video by Greg Horn, using CasADi and Ipopt as optimization engine)

w0: 10.0

iter: 1

endTime: 25.3343874701

average power: 540.342156108 W

Nonlinear Optimal Control often used for Model Predictive Control (MPC

One widely used nonlinear MPC package is acados [Verscheuren et al. 2021]

Example 1: Autonomous Driving (in Freiburg) Example 2: Quadrotor Racing (U Zurich, Scaramuzza)

Paper: https://ieeexplore.ieee.org/abstract/document/9805699

Video: https://www.youtube.com/watch?v=zBVpx3bgl6E

7730 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 3, JULY 2022

Time-Optimal Online Replanning for Agile
Quadrotor Flight

Angel Romero ™, Robert Penicka”, and Davide Scaramuzza

e problem of flying a quadro-
s that can be replanned online

problem is challenging as the time-optimal trajec-
tories that consider the full quadrotor dynamics are computation-
ally expensive to generate, on the order of minutes or even hours.
We introduce a sampling-based method for efficient generation of
time-optimal paths of a point-mass model. These paths are then
tracked using a Model Predictive Contouring Control approach
that considers the full quadrotor dynamics and the single rotor
thrust limits. Our combined approach is able to run in real-time,
being the first time-optimal method that is able to adapt to changes
on-the-fly. We showcase our approach’s adaption capabilities by
flying a quadrotor at more than 60 km/h in a racing track where
gates are moving. Additionally, we show that our online replanning
approach can cope with strong disturbances caused by winds of up
to 68 knv/h,

A. Implementation Details

In order to deploy our MPCC controller, (4) needs to be solved
in real-time. To this end, we have implemented our optimization
problem using acados [24] as a code generation tool, in contrast
to [6], where its previous version, ACADO [25] was used. It is
important to note that for consistency, the optimization problem
that is solved online is written in (4) and is exactly the same as

Index Terms—Aerial systems:

tions, integrated planning

and control, motion and path planning. Fig. 1. The proposed algorithm is able to adapt on-the-fly when encountering in [6]. The main benefit of using acados is that it provides an
unknown disturbances. In the figure we show a quadrotor platform flying at interface to HPIPM (High Performance Interior Point Method)
speeds of more than 60 kmv/h. Thanks to our online replanning method, the N N o o
‘SUPPLEMENTARY MATERIAL drone can adap 10 wind disturbances of up to 68 km/h while fying as fast as solver [26]. HPIPM solves optimization problems using BLAS-
possible. FEO [27], a linear algebra library specifically designed for

Video of the experiments: hitps://youtu.be/zBVpx3bgl6E

Latest acados development:
differentiable nonlinear MPC via adjoint approach [Frey et al. 2025, subm.]

https://ieeexplore.ieee.org/abstract/document/9805699
https://www.youtube.com/watch?v=zBVpx3bgI6E

Nonlinear Optimal Control often used for Model Predictive Control (MPC)
One widely used nonlinear MPC package is acados [Verscheuren et al. 2021]

'Online Replanning

MacBook Pro :

https://ieeexplore.ieee.org/abstract/document/9805699
https://www.youtube.com/watch?v=zBVpx3bgI6E

Nonlinear Optimal Control often used for Model Predictive Control (MPC

One widely used nonlinear MPC package is acados [Verscheuren et al. 2021]

Example 1: Autonomous Driving (in Freiburg) Example 2: Quadrotor Racing (U Zurich, Scaramuzza)

Paper: https://ieeexplore.ieee.org/abstract/document/9805699

Video: https://www.youtube.com/watch?v=zBVpx3bgl6E

7730 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 3, JULY 2022

Time-Optimal Online Replanning for Agile
Quadrotor Flight

Angel Romero ™, Robert Penicka”, and Davide Scaramuzza

e problem of flying a quadro-
s that can be replanned online

problem is challenging as the time-optimal trajec-
tories that consider the full quadrotor dynamics are computation-
ally expensive to generate, on the order of minutes or even hours.
We introduce a sampling-based method for efficient generation of
time-optimal paths of a point-mass model. These paths are then
tracked using a Model Predictive Contouring Control approach
that considers the full quadrotor dynamics and the single rotor
thrust limits. Our combined approach is able to run in real-time,
being the first time-optimal method that is able to adapt to changes
on-the-fly. We showcase our approach’s adaption capabilities by
flying a quadrotor at more than 60 km/h in a racing track where
gates are moving. Additionally, we show that our online replanning
approach can cope with strong disturbances caused by winds of up
to 68 knv/h,

A. Implementation Details

In order to deploy our MPCC controller, (4) needs to be solved
in real-time. To this end, we have implemented our optimization
problem using acados [24] as a code generation tool, in contrast
to [6], where its previous version, ACADO [25] was used. It is
important to note that for consistency, the optimization problem
that is solved online is written in (4) and is exactly the same as

Index Terms—Aerial systems:

tions, integrated planning

and control, motion and path planning. Fig. 1. The proposed algorithm is able to adapt on-the-fly when encountering in [6]. The main benefit of using acados is that it provides an
unknown disturbances. In the figure we show a quadrotor platform flying at interface to HPIPM (High Performance Interior Point Method)
speeds of more than 60 kmv/h. Thanks to our online replanning method, the N N o o
‘SUPPLEMENTARY MATERIAL drone can adap 10 wind disturbances of up to 68 km/h while fying as fast as solver [26]. HPIPM solves optimization problems using BLAS-
possible. FEO [27], a linear algebra library specifically designed for

Video of the experiments: hitps://youtu.be/zBVpx3bgl6E

Latest acados development:
differentiable nonlinear MPC via adjoint approach [Frey et al. 2025, subm.]

https://ieeexplore.ieee.org/abstract/document/9805699
https://www.youtube.com/watch?v=zBVpx3bgI6E

Next Challenge: Nonsmooth Optimal Control

Next Challenge: Nonsmooth Optimal Control

Three levels of difficulty:

Sentiimene: s OEE (a) Linear ODE: f(x,u) = Az + Bu
) _ 1
min fOTLC(x(t),u(t))dt+E(:U(T)) (b) Nonlinear smooth ODE: f € C
z(-),u(:) (c) Nonsmooth Dynamics (NSD):
s.t. x(0) =z > [not differentiable (NSD1),
#(t) = f(x(t), u(t))
0> h(a(t), u(t)), t € [0,]
0> r(2(T))

Next Challenge: Nonsmooth Optimal Control

Three levels of difficulty:

Continuous-Time OCP (a) Linear ODE: f(z,u) = Az + Bu

in fOTLC(x(t),u(t))dt+E(:U(T)) (b) Nonlinear smooth ODE: f € C'

z(-),u(") (c) Nonsmooth Dynamics (NSD):
s.t. x(0) =z > f not differentiable (NSD1),
2(t) = F(z(t), u(t)) » f not continuous (NSD2), or even
0> ha(t),u(t)), t € [0,T]

Next Challenge: Nonsmooth Optimal Control

Three levels of difficulty:

Continuous-Time OCP (a) Linear ODE: f(z,u) = Az + Bu

) _ 1
min fOTLC(ZU(t),U(t)) dt + E(CB(T)) (b) Nonlinear smooth ODE: f cC
AQRAQ; (c) Nonsmooth Dynamics (NSD):
s.t. x(0) =z > f not differentiable (NSD1),
i(t) = f(z(t),u(t)) : f not c.or.ltinuous (NSDZ), or even
f not finite valued, discontinuous state
02 h(xz(t),u(t), t [0,T] z(t) (NSD3)
0= r(z(T))

Nonsmooth differential equations - hybrid systems

Classification of Nonsmooth Dynamics (NSD)

Ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).

T T T T T T T T T

‘i
NSD1
non-differentiable RHS

\\
\
A

S

x(
\\
S

NSD2 NSD3
discontinuous RHS state dependent jump

Nonsmooth differential equations - hybrid systems

Classification of Nonsmooth Dynamics (NSD)

Ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).

Continuous activation S — —
functions in the RHS ~

///
=14 max(0, z) o -~)

g7 2/
Continuous non-diff. ODEs /
=1+ |z|
t q
NSD1 NSD2 NSD3

non-differentiable RHS discontinuous RHS state dependent jump

Nonsmooth differential equations - hybrid systems

Classification of Nonsmooth Dynamics (NSD)

Ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).

Continuous activation Piecewise smooth systems — ——=
functions in the RHS
i = fi(z), if z € R; \
& =1+ max(0, x) i=1,....m . 3
Continuous non-diff. ODEs Projected dynamical systems /
z=1+ |£I3| T = PTc(a:) (f(il’,‘)) q ‘ ‘
NSD1 NSD2 NSD3

non-differentiable RHS discontinuous RHS state dependent jump

Nonsmooth differential equations - hybrid systems

Classification of Nonsmooth Dynamics (NSD)

Ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).

Continuous activation Piecewise smooth systems Rigid bodies with impacts

functions in the RHS and friction
t = fi(x), ifx € R;
z =1+ max(0,) i=1,....,m q="v
. . M(q)v = fv(q,v) + Ju(q@)An
Continuous non-diff. ODEs Projected dynamical systems 0 S)\n 1 fc(q) 2 0
=1+ |z & =Pr, o (f(2)) (state jump law for v)
NSD1 NSD?2 NSD3

non-differentiable RHS discontinuous RHS state dependent jump

Nonsmooth differential equations - hybrid systems

Classification of Nonsmooth Dynamics (NSD)

Ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).

T T T T T T T T T

‘i
NSD1
non-differentiable RHS

\\
\
A

S

x(
\\
S

NSD2 NSD3
discontinuous RHS state dependent jump

Nonsmooth differential equations - hybrid systems

Classification of Nonsmooth Dynamics (NSD)

2

~r =

EAS

NSD3
state dependent jump

Nonsmooth differential equations - hybrid systems

Classification of Nonsmooth Dynamics (NSD)

2

~r =

-

NSD3
state dependent jump

Bouncing Ball (NSD3)

Nonsmooth differential equations - hybrid systems

Classification of Nonsmooth Dynamics (NSD)

P e e e

18-S N NN -

16 W(z) > 1
14 ‘ ‘ ‘ V | | | | “—
0 0.5 1 1.5 Y(@) <0 »

State Machine in Hysteresis Control (NSD3)

g

~r =

-

NSD3
state dependent jump

Bouncing Ball (NSD3)

Nonsmooth differential equations - hybrid systems

Classification of Nonsmooth Dynamics (NSD)

P e e e

18-S N NN -

16 W(z) > 1
14 ‘ ‘ ‘ V | | | | “—
0 0.5 1 1.5 Y(@) <0 »

NSD3
state dependent jump

Bouncing Ball (NSD3)
Walking Robot (unitree at LAAS, NSD3)

NSD3 state jump example: bouncing ball

Bouncing ball with state = = (g, v):

: : : Phase plot of bouncing ball trajectory:
g=v, mv=—mg, ifqg>0 | | | |

4L
v(tT) = —0.9v(t7), if ¢(t7) =0and v(t7) <0 3|
.| \
. . . 1+
. x
T|me5plot of bouncing ball trajectory: o 5 (%) #(0) 1
| | | | —) a1l
s) ()
Dyt
S ok N 37
8 4 L
1 0.5 0 0.5 1 1.5
0 0.5 1 5 > 25 3

t [physical time]

Can Newton-Type Optimization be Useful for NSD3 Systems ?

Can Newton-Type Optimization be Useful for NSD3 Systems ?

Surprisingly, Yes !

Can Newton-Type Optimization be Useful for NSD3 Systems ?

Surprisingly, Yes !

Some recent progress in Nonsmooth Optimal Control:

Can Newton-Type Optimization be Useful for NSD3 Systems ?

Surprisingly, Yes !

Some recent progress in Nonsmooth Optimal Control:
- Can transform many NSD3 systems into (easier) NSD2 via time-freezing

Can Newton-Type Optimization be Useful for NSD3 Systems ?

Surprisingly, Yes !

Some recent progress in Nonsmooth Optimal Control:

- Can transform many NSD3 systems into (easier) NSD2 via time-freezing

- Can discretize NSD2 systems with highly accurate Finite Elements with
Switch Detection (FESD), removing spurious local minimisers

Can Newton-Type Optimization be Useful for NSD3 Systems ?

Surprisingly, Yes !

Some recent progress in Nonsmooth Optimal Control:

- Can transform many NSD3 systems into (easier) NSD2 via time-freezing

- Can discretize NSD2 systems with highly accurate Finite Elements with
Switch Detection (FESD), removing spurious local minimisers

- Can solve the resulting Mathematical Programs with Complementarity
Constraints (MPCC) via homotopy of NLP (e.g. based on IPOPT)

Can Newton-Type Optimization be Useful for NSD3 Systems ?

Surprisingly, Yes !

Some recent progress in Nonsmooth Optimal Control:

- Can transform many NSD3 systems into (easier) NSD2 via time-freezing

- Can discretize NSD2 systems with highly accurate Finite Elements with
Switch Detection (FESD), removing spurious local minimisers

- Can solve the resulting Mathematical Programs with Complementarity
Constraints (MPCC) via homotopy of NLP (e.g. based on IPOPT)

- Can use open-source software NOSNOC, from MATLAB and Python

‘ github.com/nosnoc/nosnoc

Can Newton-Type Optimization be Useful for NSD3 Systems ?

Surprisingly, Yes !

Some recent progress in Nonsmooth Optimal Control:

- Can transform many NSD3 systems into (easier) NSD2 via time-freezing

- Can discretize NSD2 systems with highly accurate Finite Elements with
Switch Detection (FESD), removing spurious local minimisers

- Can solve the resulting Mathematical Programs with Complementarity
Constraints (MPCC) via homotopy of NLP (e.g. based on IPOPT)

- Can use open-source software NOSNOC, from MATLAB and Python

A github.com/nosnoc/nosnoc

PhD and Postdoc Work by Armin Nurkanovic

First: Time Freezing

First: Time Freezing

Question: could we transform NSD3 systems into (easier) NSD2 systems?

First: Time Freezing

Question: could we transform NSD3 systems into (easier) NSD2 systems?

Time Freezing Reformulation based on three ideas:

1. mimic state jump by auxiliary dynamic system & = f,..(x) on prohibited region

2. introduce a clock state ¢(7) that stops counting when the auxiliary system is active

3. adapt speed of time, g—i = s with s > 1, and impose terminal constraint ¢t(7) =T

The time-freezing reformulation

Augmented state (z,t) € R"™! evolves in
numerical time 7. Augmented system is
nonsmooth, of NSD2 type:

4L
(
3k
s [f(x)] , if c(x)>0 \
1 27
d |z I
4 — ' (%)
dr | _ 0f > z(0) -
Sfaux(x) . qb
, if c(x) <0 1
\ 0 2t
3L
» During normal times, system and clock 4 r
state evolve with adapted speed s > 1. X 0 . o : .
> Auxiliary system 9% = faux(z) mimics q

state jump while time is frozen, g—i = 0.

Time-freezing for bouncing ball example

T T T T T 5_ _q(T) -1
s) (T

3 N) v

. \
o0 4

8
2.5} -

5 1 1 1 1 1]
21 ’ 0 1 2 3 4 5 6

7 [numerical time]

—_
(S
T
1
ot

t [physical time]

\ /

o
ot
T
1
X
1

-5 1 1 1 1 1

0 : 0 0.5 1 1.5 2 2.5 3
0 1 2 3 4 5 6 t [physical time]
7 [numerical time]
Evolution of physical time (clock state) We can recover the true solution by plotting
during augmented system simulation x(7) vs. t(7) and disregarding " frozen pieces” .

(s =1).

M. Diehl 62

Second: How to Optimise Switched (NSD2) Systems ?

Regard discontinuous right-hand side, piecewise smooth on disjoint open regions R; C R"=

Discontinuous ODE (NSD2)

T = fi(x,u),if v € R;,
1€ {1,...,nf}

Numerical aims:
1. exactly detect switching times

2. obtain exact sensitivities across regions

3. appropriately treat evolution on boundaries
(sliding mode — Filippov convexification)

Filippov Convexification

Dynamics not yet well-defined on region boundaries OR;. Idea by A.F. Filippov (1923-2006):
replace ODE by differential inclusion, using convex combination of neighboring vector fields.

Filippov Differential Inclusion

i3

T € Fp(x,u) : {Zfzacu | Zﬁizl,

1=1
9220, 7,21,...7'1,]?,

0;=0, ifo¢ R |

Aleksei F. Filippov

L . . 1923-2006
» for interior points x € R; nothing changes: Fp(z,u) = {fi(x,u)} o s e

> Provides meaningful generalization on region boundaries.
E.g. on Ry N Ry both #; and 65 can be nonzero

Finite Elements with Switch Detection (FESD)

Introduced in [Nurkanovi¢ et al., 2024], implemented in [Nurkanovi¢ and Diehl, 2022], extended in
[Nurkanovi¢ et al., 2024, Nurkanovi¢ et al., 2024, Pozharskiy et al., 2024].

FESD is a novel DCS discretization method based on three ideas:
» make step sizes h,, free, ensure 271272—01 h, =T (cf. [Baumrucker and Biegler, 2009])
» allow switches only at element boundaries, enforce via cross-complementarities,

» remove spurious degrees of freedom via step equilibration.

0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5
t _ t t
conventional variable step sizes and FESD discretization

discretization cross-complementarities with step equilibration

Conventional DCS and FESD discretization

Time-stepping discretization FESD discretization with step equilibration

200 = F9, h=T/N 200 = Zo, Son—g hn =
Tpt+1,0 = Tno +hD 2 bivni Tpt1,0 = Tno + hn Yooy biVn

Tni= Tno+ hzj 1 Qi Un Ty = Tno + hn Z?il Qi jUn,j

Uni = F(Tn i, Uni)Oni Uni = F(Tn i, Uni)Oni
0= g(Tn,i) — Ani — elin U= glwne) — Paw — Qi
0<60nh;LX;i>0 0<6,; L A\piv >0 (cross-complementarities)
1= eTHn,i 1= eTH,w

0= V(‘gn’a On/ 41, A,)‘n’+1) : (h 1 — Ry +1)
fore =1,...,ng for 1=1,...,n and n=0,...,N—1
and n=0,...,N —1 and ¢ =0,1,...,ng and n' =0,...,N—2
» N extra variables (hg,...,hny_1) restricted by one extra equality

» Additional multipliers A, o, ptn,,0 are uniquely determined

» Indicator function v(0,,/,0,/ 11, Ak, Akr11) only zero if a switch occurs

Numerical methods for MPCCs

w = (wOawlan) S Rn? Wy S Rpa Wy, Wa S Rma

Q={zeR" | g(w)=0,h(w)>0, 0<w; L wy>0},

» Standard NLP methods solve the KKT conditions.
» MPECs violate constraint qualifications, and the KKT conditions may not be necessary.

» There are many stationary concepts for MPECs, and not all are useful.

Numerical methods for MPCCs

W = (w07w17w2) < Rna Wy € Rpa Wy, Wy € Rma

Q={zxeR" | g(w)=0,h(w)>0, 0<w; L wy>0},

» Standard NLP methods solve the KKT conditions.
» MPECGs violate constraint qualifications, and the KKT conditions may not be necessary.
» There are many stationary concepts for MPECs, and not all are useful.

» Workaround/main idea: solve a (finite) sequence of more regular problems.

Scholtes’ global relaxation method

The easiest to implement and the most efficient regularization method [Scholtes, 2001].

Reg(c™")
min f(w)
weR"™
s.t. g(w) =0, 5
h(w) > 0,
Wy, Wa > 07
wl,in,i S O'k, 1= 1, oo o9 1L,

w1

Scholtes’ global relaxation method

The easiest to implement and the most efficient regularization method [Scholtes, 2001].

Reg(c™)
min f(w)
weR"™
s.t. g(w) =0, 5

h(w) > 0,

Wy, Wo Z 07

k .
wl,iniSU , Z=1,...,m.

9

w1

Scholtes’ global relaxation method

The easiest to implement and the most efficient regularization method [Scholtes, 2001].

Reg(o")
min f(w)
weR
s.t. g(w) =0, 5
h(w) > 0,

Wy, Wy Z 07
k .
wl,in,iSO' ; Z—l,...,m.

w1

Optimal control problem - benchmark example

Benchmark example with entering/leaving sliding mode.

States ¢, v € R? and control u € R?, z = (q,v)

OCP with sliding modes g1 + 0.15¢2

Switching functions ¢(z) =
0.05¢7 + g2

s.t. z(0)=(—,—=,0,0)

— /O w(t)Tu(t) + v(t) To(t) dt

FESD vs standard IRK benchmark run with nosnoc

Benchmark on an optimal control problem with nonlinear sliding modes. Bigger marker = higher order.

T T T T I T T T T T T T T I T T T T T T T T I T
10° - * % * *x K 7
* * * *
e 0B 0 5 9 @ B B X aaka T x X o Kok 7
= ¢
:‘% L % % I?I:In J%E DD o B o i
E I @00 (8%° og O [o O .
2 : = o %O . o O o
= CPUtime ~1.5s (_'9 # - h O
% L 4 ¢ O O O b
e 10_5 i Improvement ~ 2-10 o - O El
= o o
g (0] o Qo é) @) . O O |
ugj o Radau-IIA-FESD o .
© o Radau-ITA-Std o o o 1
g ¢ Lobatto-IIIC-FESD o OA\Opn A o i
é ¢ Lobatto-IIIC-Std CPU tirFIe ;10 S M
- o Gauss-Legendre-FESD]
= & | t~1.210
10710 Gauss-Legendre-Std mproven;en 0O % N
* Explicit-RK-FESD O o d ¢]
» Explicit-RK-Std | |
10V 10t 102

CPU time [s
FESD orders of magnitude more accurate than time-stepping for same CPU time.

Now: apply FESD and MPCC to Time-Freezing Problems

A tracking OCP example with Time-Freezing and FESD in NOSNOC

Regard bouncing ball in two dimensions driven by bounded force: | § = u

min /0 (4 — Grer(1)) T (4 — Grer(7)) 5(r) dr

z(.)u(.),s(.),
e 0(.);A()m(.)
il R 1 S.t. 33(0) = Ty, t(T) — T7
05k /// \\\\] nf
\ (1) =) 0i(7) filz(7), u(r), s(1)),
i | ,‘ i=1
w | 0 = g(a(r) = A(r) — ulr)e,
V \\\\\\///// 0< A7) LO(r) >0,
I I L=e'0(r),
» augmented state |

x =(q,q,t) € R

|
> n; =9 regions (8 with auxiliary 1 < s(7)
dynamics for state jumps)
Gret(7) = (Rcos(wt(7)), Rsin(wt(1))).

Regard bouncing ball in two dimensions driven by bounded force: | § = u

1
-0.5 0 0.5

Homotopy: first iteration vs converged solution

Geometric trajectory

27 2
15 1.5
I
1k 1
05 0.5
S < > S0] —
0.5 05
i T i]
15 15
_2I 1 1 1 1 1 1 _2I 1 1 1 1 1 1 1 1
25 2 45 -1 05 0 05 1 15 2 25 25 2 45 -1 05 0 05 1 15 2 25
G qx

After the first homotopy iteration The solution trajectory after convergence

Hopping robot - move with minimal effort from start to end position

Homotopy initialized with start position everywhere. Optimizer finds creative solution.

04 -
02 =]

-0.5 0 05 1 1.5 2 2.5 3 3.5

Real-World Application

(MSc Mathematics)
industrial PhD
student at
University of
Freiburg,
supervised by
Armin Nurkanovic,
Sebastian Albrecht,
and MD

Dream: Use Optimal Control to Move Robot to Desired End Position
(simulated solution of optimal control problem, L2-control penalty)

Dream: Use Optimal Control to Move Robot to Desired End Position
(experiment)

Dream: Use Optimal Control to Move Robot to Desired End Position
(experiment)

ldea: robustify motions by optimizing several reference trajectories simultaneously

Robust Optimal Control Solution (5 scenarios)
(simulation)

Robust Optimal Control Solution (5 scenarios)
(experiment)

Tracking references on real robotic system
with artificially introduced model-reality mismatch of 3mm

Modelled uncertainty [mm]

1 -1

N/
Y
¢

W
i

4 J

Vi
’}
N/

Conclusions

Newton-type optimization can address seemingly
combinatorial optimization problems in nonsmooth optimal
control (recent advances are time freezing and FESD)

Mathematical Programs with Complementarity Constraints
(MPCC) are a powerful tool for “disciplined nonsmooth
programming”

Derivatives remain a crucial optimization ingredient also
when the nonconvexity of problems increases

Thank you!

APPENDIX 1 - Details on Siemens Assembly Robot Optimization

» To achieve closed-loop execution on a
real system, we utilize an impedance law
as control strategy

» The goal of the planning algorithm is to
determine a desired trajectory which
results in robust assembly motions if it is
tracked by the impedance controller

» For a given desired trajectory
xq = (qq,vq), a trajectory
29 = (¢, 19)) in the ensemble is
controlled by the impedance force

uj = Dlvg = v’ + K((aa @ 05”) © a”),

with gain matrices D, K and a fixed

offset q(‘7)

Offset ') =
t=20 t=0.5 t=1

Px Px Px

Blue rectangle represents qéj), red rectangle

qq-

How to formulate and solve OCP for assembly robot at Siemens? (f/

1.
2.
3.
4.
5.
6.

N

Divide colliding bodies each into rigidly connected convex polyhedra
Define Signed Distance Function (SDF) between polyhedra

Compute Contact Normal of SDF (unique if slightly smoothed)

Formulate Complementarity Lagrangian System Model (NSD3)
Discretize OCP with Time-Stepping Method (Implicit Euler, Fixed Steps)
Solve resulting Mathematical Program with Complementarity Constraints
(MPCC) via Scholtes’ Relaxation Method

Play open-loop control trajectory on real robot

y

How to formulate and solve OCP for assembly robot at Siemens? |

1.
2.
3.
4.
5.
6.

N

Divide colliding bodies each into rigidly connected convex polyhedra
Define Signed Distance Function (SDF) between polyhedra
Compute Contact Normal of SDF (unique if slightly smoothed)
Formulate Complementarity Lagrangian System Model (NSD3)
Discretize OCP with Time-Stepping Method (Implicit Euler, Fixed Steps)
Solve resulting Mathematical Program with Complementarity Constraints
(MPCC) via Scholtes’ Relaxation Method

Play open-loop control trajectory on real robot

Optimization-based signed distance function (SDF) for polytopes

Halfspace representation of polytopes for
ne € {2,3}:

Pi={peR™ |Gip<hi}, Po={peR"™ |Gyp < hy}.

Associating degrees of freedom:
» p, center of mass of i-th polytope
» &, orientation of i-th polytope
» System configuration: g = (p1,&a, P2,&)
> R(&;) - rotation matrices
Calculating the SDF as growth distance:

st GiR(&) (p—p1) < (1+a)hy,
G2R(§2)T(p —p2) < (1 + a)hsy.

Smoothing the signed distance function

The optimization-based SDF is given by a parametric linear program

$y(¢) = min ¢z

z

s.t. A(g)z < b(q),

with primal variables z = (p, «).
Perturbed KKT conditions as considered in interior-point methods with barrier parameter
7 > 0 are given by

0=c+A(q)" A,
y = blq) — A(q)z,

Ny; =T, t=1,...,m,

A>0,y >0,

A are Lagrange multipliers and y are inequality constraint slacks.

Smoothing the signed distance function (1)

By writing the equality conditions compactly the perturbed
KKT conditions are denoted by

F.(v:q) =0,
A>0,y >0,

with primal, dual and slack variables v = (z, A\, y).

The solution v, = (2., A, y,) of the perturbed optimality
conditions exists and is unique.

This implies that the distance function defined by

. (q) ={a| F.(v+;9) =0,A, > 0,y, > 0},

is well-defined for 7 > 0.

1 C. Dietz, S. Albrecht, A. Nurkanovié, M. Diehl. Smoothed Distance Functions for Direct Optimal Control of Contact-Rich Systems. European Control Conference
(ECC) 2025.

Smoothing the signed distance function (1)

By writing the equality conditions compactly the perturbed
KKT conditions are denoted by

F.(v:q) =0,
A>0,y >0,

with primal, dual and slack variables v = (z, A\, y).

The solution v, = (2., A, y,) of the perturbed optimality
conditions exists and is unique.

This implies that the distance function defined by

®.(q) ={a| Fr(v719) = 0,A; > 0,y > 0},

is well-defined for 7 > 0. How to obtain the contact normal V,®_(q) ?

1 C. Dietz, S. Albrecht, A. Nurkanovié, M. Diehl. Smoothed Distance Functions for Direct Optimal Control of Contact-Rich Systems. European Control Conference
(ECC) 2025.

Contact normal approximation for the smooth SDF

Proposed approximation: n (¢q) = —Vyler, A

B = V2, exact for 7=0
oo, = Velr@) | 7=0)

Contact normal approximation for the smooth SDF

Proposed approximation: n (¢q) = —Vyler, A

B = V2, exact for 7=0
oo, = Velr@) | 7=0)

1.5

—— Exact V,.(q)
—— Approximated

$ 0.5

—0.5 ‘ |

Contact normal approximation for the smooth SDF

Recap on definitions

The SDF is given b
& y » Modelling of contact-rich systems requires

$,(¢) = min ol 2 " definition of a contact normal vector
o 1
s.t. A(g)z < b(q), » Normally the contact normal is chosen as
the gradient of the SDF (results in
with inequality constraint slacks third-order sensitivities in Newton-type
: y optimization!)
y(2,4) = bla) = Alg)z. Directional derivatives at an exact solution:”

We a(jdltlonally define 9,B(q) = min max —dTqu(z,q))\,
» Z(q) denotes the set of all primal optimal 2€Z(q) AeA(q)

solutions to (1
(1) Proposed contact normal approximation:

> A denotes the set of all correspondin
(Q) . . p g _vqy(ZTa Q))\T
dual optimal solutions n,(q) = ,
quy(ZT7 Q))\T”Q

W. Hogan. Directional derivatives for extremal-value functions with applications to the comple

SDF implementation

Numerical experiments use the
CasADi toolbox through its
Python interface and IPOPT as
solver

The SDF is specified through
CasADi’'s Callback class

HPIPM is used to solve the
distance problems up to barrier
parameter 7 > 0

A C++ wrapper is used to
efficiently manage HPIPM
structures and parallel
computing

C++ code is interfaced back to
Python by using the nanobind
library

Python
CasADi NLP

IPOPT

C++

Python

CasADi Callback

T nanobind

C++
SDF with sensitivities

CasADi

C++

1

HPIPM

y

How to formulate and solve OCP for assembly robot at Siemens? |

1.Divide colliding bodies each into rigidly connected convex polyhedra

2.Define Signed Distance Function (SDF) between polyhedra

3.Compute Contact Normal of SDF (unique if slightly smoothed)

4.Formulate Complementarity Lagrangian System Model (NSD3)

5.Discretize OCP with Time-Stepping Method (Implicit Euler, Fixed Steps)

6.Solve resulting Mathematical Program with Complementarity Constraints
(MPCC) via Scholtes’ Relaxation Method

7.Play open-loop control trajectory on real robot

Robust contact-implicit trajectory optimization

Continuous-time contact-rich dynamical system:
q=v,

ng
Mi=u+Y n, (@)
1=1

OS(I)T,@(Q) 1L >‘n,73207 t=1,...,ng,

Multi impact law.

» v € R" system velocity
» M € R"™”™ ™ jnertia matrix
» u € R™ control input

> n4 € N object pairs with smooth SDF ®_; and corresponding contact normals n. ;

Implicit-Euler time-stepping discretization

Time-stepping discretization:
Q1 = Qs + MVkq1

ng
—1
Vip1 = Vg + hM ™ (uy, + Z Ny i (Qkt1) ki)
i=1
(I)T,i(QIH—l))‘n,k,i < g, 1= 17 -ee5Ng,
0 < (I)T,i(Qk—l—l)a 0 <)‘n,kz,ia 1=]-7 <oy g,

with time-step h > 0 and using Scholtes’ relaxation to relax complementarity constraints with
o> 0.

Contact-rich system with quaternion
dynamics:

da = Q(qa)va;
Forj=1,...,ng:
-(j) = Q(q (j))y(j)

(J)_u _|_ZQ (J) ”(qéj))Aﬁfz,

Ao (qP) <o, i=1,...,n4
0<A o<, (¢Y), i=1,...,nq,

n,2?’

u; = D(vg —v9) + K((qq ® ¢¥) © ¢9),

Discretization through N_,. intervals with

Ngi,, simulation intervals per control

Interval
Total simulation steps Nio¢ = Nent NVaim

On each simulation interval an implicit
Euler time-stepping discretization is
utilized

On each control interval a constant
Vak, K =1,..., Ny Is used

Cost function for terminal state

T = (q,7);

2 2
= > 0.001lvg k ersllz + 0.01]|vg 1 ang I
k=1

+ 1015 = pan,. N5 +10(1 — (€ &4 N,)7)

- _ 2 =T 2
+ 31005 = p% Iz +1000(1 — (ETEXN)?)

Contact-rich dynamics in three-dimensional space

Contact-rich system with quaternion dynamics:

da = Q(qa)va,
For j=1,...,ng:
9 = 0(q <j>)y<j>

(J)_u +ZQ (J) ”qé"))AffZ,

Ao (qP) <o, i=1,...,nq
0< A 0< ., (gY), i=1,...,nq

n,2’

u; = D(vg —v) + K((qq ® ¢5) © ¢,

» Position ¢ = (p, &), with p € R?
translational position and £ € R
quaternion orientation

dq,Vq desired position and velocity
(control input)

e j» Ve ; POSItion and velocity of particle j
Q(-) 7 x 6 matrix required to describe
quaternion dynamics

D, K gain matrices, describe the
spring-damper behaviour of the feedback
controller

q\? fixed offsets required to achieve
robustness

Quaternion multiplication is denoted by
@ as well as © for multiplication with
conjugation

Computational performance comparison of reduced and lifted SDF

Implementations

_ 600 +
» The SDF @ ; can be either /‘_____‘_,,—
evaluated as proposed by using 400 — Q-___‘____Q—"

HPIPM or by adding the perturbed 200 ././. o — 4/.
KKT conditions directly in the —@— Reduced - §- - Lifted
optimal control problem (reduced or 0 | | \ \ \

N =30N =40N = 50N = 60N = 70 N = 80

lifted implementation) 6 n —Tn —8m —9n — 10

IPOPT iterations

» We compare computational
performance on a two-dimensional
peg-in-hole problem for different
trajectory lengths N and number of
simultaneously simulated trajectories
ne

total wall time (s)
—_
(@]
Lol 1

—
@}

S 2

i |
S

S 2

I
S

S 2

=
3
2
I
2
2
I
3
2
I
g

» Using the reduced modelling with
external SDF evaluation results in
less IPOPT iterations and less total
wall time for all considered problem
sizes

Example robust trajectory for peg in hole

—20 2 46
Px
k = 80

—20 2 46
Px

20246 -20246

Robust so/ut%(n trajectory for an assembly problem.
Orange arrows indicate applied control forces ;.

Additional References Relevant to Siemens Assembly Robot Problem

Growth-Distances:

Chong Jin Ong and Elmer G. Gilbert, "Growth distances: New measures for object separation and
penetration,” in IEEE Transactions on Robotics and Automation, vol. 12, no. 6, pp. 888-903, 1996.

Ensemble Trajectories for Robustified Robot Control:

Ilgor Mordatch, Kendall Lowrey and Emanuel Todorov, "Ensemble-ClO: Full-body dynamic motion planning
that transfers to physical humanoids," 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 5307-5314, 2015.

APPENDIX 2 - Time Freezing for Automata (Hysteresis)

Hybrid systems and finite automaton

Time-freezing for optimal control with state jump Moritz Diehl

Hybrid systems and finite automaton

e —
() > 1 ~ B D
s = L
5 v i : E
<0 1 1
P(z) . T o i
0 1

Time-freezing for optimal control with state jump Moritz Diehl

Tutorial example: thermostat with hysteresis

r <18

x > 20

Time-freezing for optimal control with state jump Moritz Diehl

Tutorial example: thermostat with hysteresis

x > 20

Time-freezing for optimal control with state jump

Moritz Diehl

w(t)

0.5

t [phyisical time]

\ \ \ \ \ \
0 0.5 1 1.5 2 2.5 3.5
t [phyisical time]
| | |
B | | | | | |
0 0.5 1 1.5 2 2.5 3.5

Hysteresis: a system with state jumps

| \
1 . ? 1
Hybrid system with hysteresis g E : : E
= Lo !
= f(zr,w) =(1—w)falx)+wfs(x) USJ Lo !
0 T , |
0 1

Y(x)

Time-freezing for optimal control with state jump Moritz Diehl

Hysteresis: a system with state jumps

1] e ; T
Hybrid system with hysteresis § E : : E
3 L o
= f(x,w) = (1—-w)fa(r) +wfp(r) s L o
=0 - ;!
0 : ® i
0 1

P (x)

The State Jump Law

L ifw(t;)=0and ¥(x(t;)) =1, then z(tF) = z(t;) and w(t}) =1
2. ifw(t;)=1and ¥(x(t;)) =0, then z(t7) = x(t;) and w(t]) =0

S

Remember: w(t) is now a discontinuous differential state!

Time-freezing for optimal control with state jump Moritz Diehl

Tutorial example: thermostat and time-freezing

1
1 0.8 |- n
© S 06| =
3 0.5 S 04 i
0.2 - —
0 \ \ \ 0 I I

0 2 4 6 0 1 2 3
s | | P 3 [| |]
o2 1 L 20 a
+~ 1 | L | +~ 1 | N

0 \ \ \ 0 \ \ \

0 2 4 6 0 1 2 3

7 [numerical time] t [physical time]

Time-freezing for optimal control with state jump Moritz Diehl

Time-freezing: the state space

A look at the (¢ (x), w)—plane

1.5 , . T T T T T
1+ °
3 05F |
0) |
-0.5 ' ' l I I | |
-2 -1.5 -1 -0.5 0.5 1 1.5 2

0
()

» Everything except the blue solid curve is prohibited in the (1), w)— space (use 15" principle
of time-freezing)

» The evolution happens in a lower-dimensional space = sliding mode (use 4" principle
of time-freezing)

Time-freezing for optimal control with state jump Moritz Diehl

Time-freezing: partitioning of the space

An efficient partition leads to less variables in FESD

3 05} _
X 22
0 -
R1 X Z1
_05 | | | | | | |
-2 -1.5 -1 -0.5 0.5 1 1.5 2

0
()

» Partition the state space into Voronoi regions:
Ri={z]|z—aul?<lz=zl% ji=1....4j#i} 2= (Y(z),w)

Time-freezing for optimal control with state jump Moritz Diehl

Time-freezing: partitioning of the space

An efficient partition leads to less variables in FESD

1.5 I T T T T T
X 2 R
Rp ! 4
1r : :
Ry R
3 05F 2 3 .
R X
0 A : .
R1 X Z1
_05 | | | | | | |
2 1.5 -1 0.5 0.5 1 1.5 2

» Partition the state space into Voronoi regions:
Ri={z|llz—zl*<llz—#l* j=1,...,4,7 #1i}, 2 = (¥(z),w)
» Feasible region for initial hybrid system with hysteresis on the region boundaries

Time-freezing for optimal control with state jump Moritz Diehl

Time-freezing: auxiliary dynamics

To mimic state jumps in finite numerical time

15 T T T T T T
R
R 4
n B
R2 RS
3 0.5 _
R
O]
Ry
_0.5 | | | | | | |
-2 -1.5 -1 -0.5 0.5 1 1.5 2

()

» Use regions Ry and Rj3 to define auxiliary dynamics for the state jumps of w(-)

Time-freezing for optimal control with state jump Moritz Diehl

Time-freezing: auxiliary dynamics

To mimic state jumps in finite numerical time

1.5

- — e— — — g

-0.5

» Use regions Ry and R3 to define auxiliary dynamics for the state jumps of w(-)

» Evolution in w—direction happens only for) € {0, 1}

Time-freezing for optimal control with state jump

Time-freezing: auxiliary dynamics

The new state space of the system is y = (x,w,t) € R"= T2

Auxiliary dynamics

a>0

) f3 (l/) —

Time-freezing for optimal control with state jumps

1.5

-0.5

Moritz Diehl

! T] |

Hlll\RB Fy
L

Ll R Ry |

S O A A A A i

LR ;
Ry

1.5 -1 -0.5 1/}2)3}) 0.5 1.5 2

Time-freezing: DAE forming dynamics

Stop the state jump and construct suitable sliding mode

ST |

IREN o

!lll

505r_lll I3

o 7

IR]
Ry

» Dynamics in R; and R4 stops evolution of auxiliary ODE - similar to inelastic impacts

Time-freezing for optimal control with state jumps

Time-freezing: DAE forming dynamics

Stop the state jump and construct suitable sliding mode

1.5

-

N
N\
NN

|

- T -

-

-0.5

» Dynamics in R1 and R4 stops evolution of auxiliary ODE - similar to inelastic impacts
» Sliding modes on Rp == OR; N R and R = OR3 N OR4 match fa(y) and fg(y), resp.

Time-freezing for optimal control with state jumps

Time-freezing: summary

DAE-forming dynamics

» |n total four regions R; , 1 = 1,2, 3,4 and evolution of

y=(z,wt) _ original system is the sliding mode
] 2fa(x)
y _ _
dr fily) = a
2
] 2fB(x)
y p— p— -
dr fa(y) a
2

Time-freezing for optimal control with state jumps Moritz Diehl

Time-freezing: summary

DAE-forming dynamics

» In total four regions R; , 7+ =1,2,3,4 and evolution of

y = (z,w,1) original system is the sliding mode
2fa(x) » Regions Ry and R3 equipped with aux. dynamics to
dy B mimic state jump
2
q 2fB(SIZ)
y = p— P
2

Time-freezing for optimal control with state jumps Moritz Diehl

Time-freezing: summary

DAE-forming dynamics

» In total four regions R; , 7 =1,2,3,4 and evolution of

y = (z,w,t) original system is the sliding mode
2fa(x) » Regions Ry and R3 equipped with aux. dynamics to
dy mimic state jump
—=h=| a
dr » Regions Ry and R4 equipped with DAE-forming
I 2 | dynamics to recover original dynamics in sliding mode
1 QfB (33)
y — — —
e fa(y) a
2

Time-freezing for optimal control with state jumps Moritz Diehl

Time-freezing: summary

DAE-forming dynamics

» In total four regions R; , i = 1,2, 3,4 and evolution of

y = (z,w,t) original system is the sliding mode
2fa(x) » Regions Ry and R3 equipped with aux. dynamics to
dy mimic state jump
dr fily) = a : : : :
T » Regions R1 and R4 equipped with DAE-forming
I 2 | dynamics to recover original dynamics in sliding mode
2 f5(2)] > Eg, w' =0 = 01f1(y) +02/2(y) = faly) (sliding
dy mode)
dr faly) = —a » Conclusion: we have a PSS and can treat it with FESD
2

Time-freezing for optimal control with state jumps Moritz Diehl

Time optimal control of a car with a turbo accelerator

Example from [Avraam, 2000] solved with NOSNOC

v>15

Time-freezing for optimal control with state jump Moritz Diehl

Time optimal control of a car with a turbo accelerator
Example from [Avraam, 2000] solved with NOSNOC

y(-)IzILl(i-I)ls(.) t(7e) + L(7s)
v>1 , ,
> 15 S.t. y(()) — (ZO,O)
y' (1) € 5(7) Fre (y(7), u(T))
—u<u(r) <u
e 57 <s(r) <5

—v<w(r) <vT €0,
(q(7e),v(7r)) = (at, vr)

Time-freezing for optimal control with state jumps Moritz Diehl

Scenario 1: turbo and nominal cost the same

CN = CT

T]
= i
)
\ S e
6 8 10
t t
1 ‘ ‘ Il 1| '
=
Z 05 - 3 0.5 N
3
0 \ \ \ \ \ 0 \ n
0 2 4 6 8 10 0 10 20
t Y

Time-freezing for optimal control with state jump Moritz Diehl

Scenario 2: Turbo is Expensive

CN < CT

30 5 —
20 |- —
N A S B = ol |
) 3
U - - -
0 \ \ -5 b \ \
0 5 10 0 5 10
t t
17] ‘ i 1
]_— 1 1 —
1 1
1 1
S o5l 1 = ! :
e 0o -
1 1
1 1
07 1]
0 \ \ \ ' : \
0 5 10 0 10 20
t v

Time-freezing for optimal control with state jump Moritz Diehl

NOSNOC vs MILP/MINLP formulations

Benchmark on time-optimal control problem of a car with turbo

103 T T T T T
% NOSNOC-FESD
O NOSNOC-Std 10l %% oo &
Gurobi g
= 102 | ¥ Bonmin On =)
= 105 G
& & *
o K
&~ 101
@) 107 ¢ 10710 L
B Yok 4 #oo A
10° - - - 10-15 . |
0 20 40 60 80 10° 10 102 103
Nstages CPU Time [S]

» compare CPU time as function of number of control intervals N (left) and solution
accuracy (right)

» MILP (Gurobi): solve problem with fixed T" until indefeasibly happens with grid search in T
» MILP/MINLP and NOSNOC-Std no switch detection = low accuracy

Time-freezing for optimal control with state jump Moritz Diehl

APPENDIX 3 - More NOSNOC Examples and Time-Freezing

NOSNOC examples

NOSNOC examples

Time-freezing for optimal control with state jumps

Moritz Diehl

NOSNOC examples

Finite Elements with Switch Detection for
Numerical Optimal Control of
Projected Dynamical Systems

Time-freezing for optimal control with state jumps

Results with slowly moving reference

For w = m, tracking is easy: no jumps occur in optimal solution.

v

Regard time horizon of two periods

v

N = 25 equidistant control intervals

» use FESD with Npg = 3 finite elements o o8 1 15 2 2 & 35 4
with Radau 3 on each control interval

» each FESD interval has one constant
control u and one speed of time s

» MPCC solved via /., penalty

reformulation and homotopy o 1

3 0oL us ()

» For homotopy convergence: in total 4 20t ul)
NLPs solved with IPOPT via CasADi o o5 1 15 2 25 3 35 4

States and controls in physical time.

Time-freezing for optimal control with state jump Moritz Diehl

Results with slowly moving reference - movie

For w = m, tracking is easy: no jumps occur in optimal solution.

T T T T T T
1k S S 4
.
05 - il
\‘ \
‘
) “
O | _
|
|
\
05 .
1k == 4
| 1 | 1 | ! |
1.5 - -0.5 0 0.5 1 15

Time-freezing for optimal control with state jump Moritz Diehl

Results with fast reference

For w = 27, tracking is only possible if ball bounces against walls.

States and controls in numerical time. States and controls in physical time.

Time-freezing for optimal control with state jump Moritz Diehl

Results with fast reference - movie

For w = 2w, tracking is only possible if ball bounces against walls.

f I I ! ! I T T T T T T T
1k - 4 4| B0 4
:.; Tm
05 x . 05 / R B
\ !
f
J !) I
|
oF | i = ok ‘ | i
|
I
I
I
|
\
05 — 05k 2 i
- = — il S Sl
1 1 1 1 1 1 1 L L L L L L 1
15 1 05 0 05 1 15

Time-freezing for optimal control with state jump Moritz Diehl

Homotopy: first iteration vs converged solution

Geometric trajectory

2 T T T T T T T T T T T 2 T T T T T T T T T T T
157 - 1.5 i
|
1r N 1r 7
05 7 0.5 7
S 0r < > . S o 1 —]
0.5 7 0.5 7
1r = . 1r]
[]
151 1 1.5 ¢ :
2 1 1 1 1 1 1 1 1 1 1 | 2 1 1 1 1 1 1 1 1 1 1 |
2.5 2 1.5 1 0.5 0 0.5 1 1.5 2 2.5 -2.5 2 1.5 1 0.5 0 0.5 1 1.5 2 25
dz Gz
After the first homotopy iteration The solution trajectory after convergence

Time-freezing for optimal control with state jump Moritz Diehl

)
£
—
(T
=

| -

O

=

S
=

v

>
(T
O

%

>
e
al

for w =27

forw=rm

N © © < & - © « < o o
~— — ~— - o o o o
[outy, reorsidyd] (+)7
« v ® © o ® - v o
™ (aV} — o
[y, reotstdud] (+)2

]

1

Numerical Time

[

T

3.5

3

]

2.5

2
Numerical Time

5
[

1

T

0.5

<
L
o)
N
§=
=
[¢]
P

Time-freezing for optimal control with state jump

