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Overview

Model Predictive Control and two Applications

- Convexity Exploiting Newton-Type Optimization
- Sequential Convex Programming (SCP)
- Generalized Gauss-Newton (GGN)
- Sequential Convex Quadratic Programming (SCQP)
- Local Convergence Analysis and Desirable Divergence

- Zero-Order Optimization-based Iterative Learning Control
- Tutorial Example
- Bounding the Loss of Optimality
- Local Convergence Analysis
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Model Predictive Control (MPC)

Always look a bit into the future

Example: driver predicts and optimizes,
and therefore slows down before a
curve
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Optimal Control Problem in MPC

For given system state x, which controls u lead to the best objective value
without violation of constraints ?

L = Aed state trajectory N\ 00 eee...
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Ul | controls (unknowns / variables)

prediction horizon
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Minimize least squares distance to centerline, respect constraints. Use nonlinear

embedded optimization software acados coupled to ROS, sample at 100 Hz.

[Kloeser et al., submitted]
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ecod4wind: MPC for wind turbine control

Industrial partners: IAV, SENVION (now bankrupt)
Aim: minimise fatigue and oscillations, respect constraints.

Nonlinear MPC with about 40 states based on ACADQO/acados with QP solver
HPIPM running on industrial hardware at |AV.
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Optimization Problem in Nonlinear Model Predictive Control

minimize Zgoz i(si,ui)) + on(Fn(sn))

w e R™™
subject to So = x,
Si+1 = Si(si,us), 1=0,...,N —1,
H;(si,ui) € s, 1=0,...,N —1,
Hy(sn) € Qn
variables w = (s, u) with s = (sg,...,sny) and u = (ug,...,un_1)

convexities in ; (e.g. quadratic) and €2; (e.g. polyhedral, ellipsoidal)

nonlinearities in dynamic system S; and constraint functions Fj;, H;

vV v v Vv

often: S; result of time integration (direct multiple shooting)
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Nonlinear optimization with convex substructure

]
minimize  ¢o(Fo(w))
w € R™
subject to Fij(w) € Q; i=1,...,m,
G(w) =0

Assumptions:

> twice continuously differentiable functions G : R"* — R"9 and
F;, :R"™ — R"Fi fori=0,1,...,m.

» outer function ¢g : R"Fo — R convex.

» sets €2; C R"Fi convex fori=1,...,m,
(possibly z € ©; < ¢i(z) < 0 with smooth convex ¢;)

ldea:
exploit convex substructure via iterative convex approximations.
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Why is this class of problems and algorithms interesting ?

» many optimization problems have " convex-over-nonlinear” structure
» standard NLP solvers cannot address all non-smooth convex constraints

> there exist many mature and efficient convex optimization solvers

Some application areas:

» nonlinear least squares for estimation and tracking
[Gauss 1809; Bock 1983; Li and Biegler 1989; Sideris and Bobrow 2004]

» nonlinear matrix inequalities for reduced order controller design
[Fares, Noll, Apkarian 2002; Tran-Dinh et al. 2012]

» ellipsoidal terminal regions in nonlinear model predictive control
[Chen and Allgower 1998; Verschueren 2016]

» robustified inequalities in nonlinear optimization
[Nagy and Braatz 2003; D., Bock, Kostina 2006]

» tube-following optimal control problems [Van Duijkeren 2019]
» non-smooth composite minimization [Apkarian et al. 2008; Lewis and Wright 2016]
» deep neural network training with convex loss functions

[Schraudolph 2002; Martens 2016]
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Class Picture of Iterative Convex Approximation Methods

smooth unconstrained NLP i smooth constrained NLP

constrained optimization with non-smooth structure

[Messerer and D., in preparation]
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Seqguential Convex Programming (SCP)

> linearize | F}'™(w; @) := Fi(w) + Ji (@) (w — @) | with J; (@) := L% (w)

» formulate convex subproblems:
e

minimize (bo(Féin (w; w))
w e R™

subject to Fy™(w;w) € Q, i=1,...,m,
G"™ (w;w) =0

» start at wo with £ =0

» solve convex subproblem at w0 = wj to obtain next iterate wy1
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Simplest case: smooth unconstrained problems

Unconstrained minimization of " convex over nonlinear’ function
]
minimize  ¢(F'(w))

w € R"” ~
=:f(w)

Assumptions:
- Inner function F : R™ — R” of class C?
- Outer function ¢ : RY — R of class C? and convex
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Simplest case: smooth unconstrained problems

Unconstrained minimization of " convex over nonlinear’ function
]
minimize  ¢(F'(w))

w € R"” ~
=:f(w)

Assumptions:
- Inner function F : R™ — R” of class C?
- Outer function ¢ : RY — R of class C? and convex

SCP subproblem becomes

minimize ¢ (Flin (w; ZD))
w € Rn “ / (1)

Ve

=:fscp (w;w)
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Tutorial Example: Pseudo Huber Loss Minimization

Experiments conducted by Florian Messerer

minimize ds(yi — m(x; +w
w e R Z )

J/

—-f(UO

Aim: fit n=3 measurements y; to a model m(w + x;) with m(x) = Zx + sin(x) using

the pseudo Huber loss ¢h5(x) := /6% + x’ ‘. -

4 -
3 -

>
g 2
— |X| o 11

] g

— 6=0.01 S - »
- — 5=0.1
2 \/

-2 0 2 4 6
model input x
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Cost function and SCP approximation

w=0.3
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objective function
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0 1 2 3 4 5
decision variable w
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SCP for Least Squares = Gauss-Newton

With quadratic ¢(z) = 1||z||3 = 32 ' 2, SCP subproblems become

|F (wr) + J (wi)(w — wg)||5 (2)

L. 1
minimize =
w e R"™ 2

If rank(J) = n this is uniquely solvable, giving

Wil = W — (J(wk)TJ(wk))_l T (we) T F (w)

\ . 7 G 7
~" ~

::BGN(wkz) :Vf(wk:)

SCP applied to LS = Newton method with " Gauss-Newton Hessian"

Ban(w) = V2 f(w)

M. Diehl 22



Generalized Gauss-Newton (GGN) [Schraudolph 2002]

For general convex ¢(-) we have for f(w) = ¢(F(w))

Vi f(w) = J(w) " Ve(F(w)) J(w)+ 35, VIF;(w) V; 6(F(w))

\ 4

-~ J

~"

=:Bgan(w) = BEgan (w)
"GGN Hessian” "Error matrix’
Generalized Gauss-Newton (GGN) method iterates according to
—1
Wi+1 = wi, — Bean(w) ™ "V f(wg)

Note: GGN solves convex quadratic subproblems

min £ (w)+V F(wr) (w—we)+ = (w-ws) Baon (wk) (w—ws)
weR"™ 2 ,,

:1fGG;r(w3wk:)
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Tutorial Example: SCP and GGN Approximation

w=0.3
3.0
2.5 1
S 2.0-
O
(e
=
o 1.5
=
0
2
S 1.0
— flw)
0.5 1
—— fscp(w; W)
— feen(w; W)
O-O 1 1 1 1 1 1 1
-3 -2 -1 0 1 2 3 4 5

decision variable w
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lteration count: SCP more predictable than GGN

(on a similar example)

10 |

iterations until convergence

1.2 1.4

initial guess wq
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General smooth NLP formulation with constraints

Now regard an NLP with smooth convex ¢q, ¢1,..., dm

SCP subproblem becomes

minimize ¢0(F5in (w;w))
w € R™ |

subject to ¢ (F;™ (w;w)) <

(SCP algorithm is expensive, but multiplier-free and affine-invariant)
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Constrained Gauss-Newton [Bock 1983]

Use Bean(w) := Jo(w) ' VZ¢o(Fo(w))Jo(w) and solve convex quadratic
program (QP)

- 1
minimize  fo"(w; @) + =(w — @) ' Boen (@) (w — @)
w € R™ 2
subject to  fi™(w;w) <0, i=1,...,m,
G"™ (w;w) = 0

> like SCP, the method is multiplier free and affine invariant

» QPs are potentially cheaper to solve

» but CGN diverges on some problems where SCP converges
Remark: for least-squares objectives, this method is due to [Bock 1983]. In many
papers, Bock’s method is called "the Generalized Gauss-Newton (GGN) method”. To

avoid a notation clash with Schraudolph and the computer science literature, we prefer
to call Bock's method "the Constrained Gauss-Newton (CGN) method”.
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Seqguential Convex Quadratic Programming (SCQP)
[Verschueren et al 2016]

Bscqp (w, 1) := Jo(w) ' V2o (Fo(w))Jo(w) + Y pidi(w) ' V2 (F;(w))Ji(w)
1=1

: 1
minimize  fo' (w; @) 4+ = (w — @) ' Bscqp (W, i) (w — )
w € R 2

subject to f,,}in(w;w) <0, i=1,....,m, | uT,
G (w; @) = 0

obtain pair (wgy1, g+ 1) from solution at (w, 1) = (wg, k)

"optimizer state” contains both, w and inequality multipliers

again, only a QP needs to be solved in each iteration

again, affine invariant

Bscqr(w, ) = Begn(w) (more likely to converge than CGN)

for unconstrained problems, SCQP becomes GGN

in fact, SCQP has same contraction rate as SCP [Messerer &D., ECC 2020]

vV v v v v v %
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|dentical local convergence of SCP and SCQP/GGN

Regard KKT point 2™ := (w™, u*, A*) with LICQ and strict complementarity.
Denote the reduced Hessian by A., the reduced SCQP Hessian by B. (*) and
assume that B, > 0. Then

» 2" is a fixed point for both the SCP and SCQP iterations
» both methods are well-defined in a neighborhood of z*

» their linear contraction rates are equal and given by the smallest o € R
that satisfies the linear matrix inequality

~ ~

—aB, <= A.— B, < aB, (3)

(*) A = Z"V2L(w*, u*,\)Z and B, := Z " Bscqp(w*, u*)Z with Z a
fixed nullspace basis of the Jacobian of active constraints
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|dentical local convergence of SCP and SCQP/GGN

Regard KKT point 2™ := (w™, u*, A*) with LICQ and strict complementarity.
Denote the reduced Hessian by A., the reduced SCQP Hessian by B. (*) and
assume that B, > 0. Then

» 2" is a fixed point for both the SCP and SCQP iterations
» both methods are well-defined in a neighborhood of z*

» their linear contraction rates are equal and given by the smallest o € R
that satisfies the linear matrix inequality

~ ~

—aB, <= A.— B, < aB, (3)

(*) A = Z"V2L(w*, u*,\)Z and B, := Z " Bscqp(w*, u*)Z with Z a
fixed nullspace basis of the Jacobian of active constraints

Corollary

A, =0

N —

Necessary condition for local convergence of both methods is B, >

Proof of corollary: Set a=1 in (3).
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Tutorial Example: Objective and Local Contraction Rate

3.0

objective f(w)
theoretical rate a(w)

decision variable w

10°
] -== theoretical rate a
% —e— empirical rate SCQP
= —e— empirical rate SQCQP
-f:’ —e— empirical rate SCP
é 10—1 4
C
o
@]
©
()
£
T e ———— —0=
10_2 1 1 1 1
1 2 3 4 5 6

iteration k .
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Desirable Divergence and Mirror Problem [cf. Bock 1987]

SCP and GGN do not converge to every local minimum. This can help to avoid
"bad” local minima, as discussed next.

2
. +
o © 2 !
) + o)
e ()
_1 i + e
) .
0 2 4 6

Regard maximum likelihood estimation problem | min,, ¢(M (w) — y) | with

nonlinear model M : R™ — RY and measurements y € R”. Assume penalty ¢
is symmetric with ¢(—z) = ¢(z) as is the case for symmetric error
distributions. At a solution w™, we can generate " mirror measurements”

Ymr = 2M (w™) — y obtained by reflecting the residuals.

From a statistical point of view, yn, should be as likely as .
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SCP divergence < minimum unstable under mirroring

2
'
7 ° O i
® N\
’ O ()
1l 2
-2 1
0 2 4 6

Theorem [Messerer and D., 2019/2020] generalizing [Bock 1987]

Regard a local minimizer w™ of ¢(M (w) — y) that satisfies SOSC. If the
necessary SCP convergence condition B, > %A* does not hold, then w* is a
stationary point of the mirror problem but not a local minimizer.
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SCP divergence < minimum unstable under mirroring

2
1} +
7 ° O +
o + o)
1 o) )]
1t 2
) .
0 2 4 6

Theorem [Messerer and D., 2019/2020] generalizing [Bock 1987]

Regard a local minimizer w™ of ¢(M (w) — y) that satisfies SOSC. If the
necessary SCP convergence condition B, > %A* does not hold, then w* is a
stationary point of the mirror problem but not a local minimizer.

*Sketch of proof (unconstrained): use M(w") — ymr =y — M (w™) to show
that V fur(w*) = J(w*) ' (y — M(w*)) = 0 and
V? fr(w") = Baan (w”) — Ecen(w”) = 2Baan(w”) — V2 f(w™) £ 0
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Tutorial Example and Mirror Problems at Different Local Minima

model output y

objective function value

good local minimum w* = 0.097

0 2
model input x

-1

0 1 2
decision variable w

(@2

objective function value

model output y

bad local minimum w™* = 3.757

ol
1

o
1

model input x

— fo(w)

— folw; w™)
x (W™, fow™))

-3 -2 -1 0 1 2
decision variable w

3 4 5
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Overview

Model Predictive Control and two Applications

- Convexity Exploiting Newton-Type Optimization
- Sequential Convex Programming (SCP)
- Generalized Gauss-Newton (GGN)
- Sequential Convex Quadratic Programming (SCQP)
- Local Convergence Analysis and Desirable Divergence

=P - Zero-Order Optimization-based lterative Learning Control
- Tutorial Example
- Bounding the Loss of Optimality
- Local Convergence Analysis
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Two Ingredients of Newton-Type Optimization

The convexity exploiting algorithms presented so far need two ingredients:

1. a good nonlinear model and its linearisation, and
2. convex substructure in objective and constraints
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lterative Learning Control for Lemon-Ball Throwing
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lterative Learning of Ball Throwing with Minimal Energy
Experiments conducted by Katrin Baumgartner

iteration £k =0

Model Fy;(#) maps initial velocity

2 . ‘e 5.0 1 —— plant
u € R to landing position y € R ) —— model
. Aim: throw ball further than y > 10 with ]
minimal initial velocity 0.0 Oﬁo BT rY R
Experiments with “real plant” give pairs | | ' Cope ' | |

iteration £k =1

(u,, v,) [shorter distance than predicted]
ko Yk

- We can use (1, y;) to correct the model, _ ]

P
and iteratively obtain u, , by solving the — ** m
following optimization problem: 0.0 1 . . . > . .
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Pz

minzimize u||3 iteration k = 10
ueR,ye R

subject to  y = Fnm(u) — Fa(uk) + yx,
N — d < ok
= Fpr(usug,yg) ’ \
y Z 10 0.0 T T T T T T T

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Dz
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lterations of Algorithm and Reduced Problem Visualization

4 -
3
<
52
§7
0 i 1 1 1 — ‘f 7 2 ’I e
0 6 8 10 12 14
o—=C—0—0
160
8 140
(<)
120 A
0 6 8 10 12 14
10 1 ——a—0—o
8 -
s
6 -
0 6 8 10 12 14
timestep k

. 2
minimize ||ul|3
2
u eR
subject to  Fas(u; uk,yr) > 10
20.0
\e-ry 1
Z
17.5 e 2
2 =
< |
15.0 -
\
-
12.5 - <
£ 10.0 -
7.5 1
5.0 1
2.5 \
0.0 . .
0 5 10 15 20

Ui
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Zero Order Optimization-based Iterative Learning Control (ZOO-ILC)

Aim: optimization with unknown input-output system y = Fr(u) ("reality”):

- 00000000000__]
mI%I,I:l&llze o(u,y)
subject to Fr(u) —y =

H(u,y) <

(4)
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Zero Order Optimization-based Iterative Learning Control (ZOO-ILC)

Aim: optimization with unknown input-output system y = Fr(u) ("reality”):

]
mlr@lbl,rryuze o(u,y)
subject to Fr(u) —

Y (4)
H(u,y)

0,
0

I

ZOO-ILC idea [cf. Schollig, Volkaert, Zeilinger]: use trial input ux with output
yr and a model Fy; to obtain new trial input ug1 from solution of

mlgljjl’r:ryuze o(u,y)

subject to  Fai(u) —y
H (u,y)

Fyv(uk) — yk, (5)
0

VAN

Questions: Does this method converge? What is its loss of optimality?
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Feasibility and Loss of Optimality of ZOO-ILC

TheOrem 2 [Baumgartner et al., in preparation]

For any fixed point (i, %) of the ZOO-ILC algorithm with multipliers (X, ji)
holds under mild conditions:

> (u,y) is feasible for the real problem

> the loss of optimality compared to a real solution (ur,yr) is bounded by:

6(u,7) — plur,yr) < X' (Ju(@) — Jr(a)) (ur — @)

Here, the Lagrangian of the model problem is given by
Llu,y, A\ ) = ¢(u,y) + X' (Pur(u) —y —bi) + p' H(u,y)

and Ju(u) and Jr(u) are the Jacobians of Far(u) and Fr(u).
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Special cases where ZOO-ILC delivers a lossless solution

6(a,5) — p(ur,yr) < X' (Ju(@) — Jr(w)) (ur — @)

ZOO-ILC delivers lossless solution in the following three cases:

1. Tracking ILC with zero residual (standard ILC):
=0

2. Model and real Jacobian coincide at solution (rarely the case):
Jp(i) — Jg(@) =0

3. Constrained problems where solution iy, is in vertex of the reduced feasible set:

(if the Jacobian error is small enough, LICQ and strict complementarity hold)
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Solutions for L,- and L__-norm minimisation

. 2
minimize ||ul|3
2
u € R
subject to  Fis(u; uk, yx) > 10
20.0 ‘
\—-ry
S
17.5 - e B
2 £
=)
15.0 -
W
—
12.5 1 <
£ 10.0 1
7.5 1
5.0
2.5 ‘\
0-0 1 1 1
0 5 10 15 20

U1

suboptimality: 0.874 < 1.377 (bound)
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Solutions for L,- and L__-norm minimisation

o e 2 e e
Ininimize |2 minimize  ||u||co
subject to  Fas(u; uk, yr) > 10 subject to  Fazs(u; uk, yx) > 10
20.0 = 200 s
3 -
1 = P 17.5 1 A
17.5 7 S . =
15.0 S v =
12.5 1 E 12.5 1 =
£ 10.0 A £ 10.0
7.5 - 75
5.0 - 5.0
2.5 \ 2.5
0.0 T T T “‘ 0.0 !
0 5 10 15 20 0 5 10 15 20
U1 u1
suboptimality: 0.874 < 1.377 (bound) solution in vertex, no loss of optimaliy
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Time-Optimal Motion of an oscillator (L1-tracking)

Real plant: 72y + 2Tdy + vy + By> = Kyu

Twx
o _ _ _ inimi t) — Yret| + au(t)? dt
withT=1,d=0.5,=2,Kzy =0.9 r;(lrilfgiz)e /0 Y(t) — Yret| + au(t)

subject to  y(t) = Fm(t;u) + ye(t) — Fam(t; uk),

Model: 7%y + 2Tdy + y = Kyu
[u(®)| <1, te€(0,TH]

a=10"
iteration k =1 iteration k =1
0.75 - : 14 I I S
optimal v
0.50 4 F=—————tm — plant
— model
= 0.25 - s 07
optimal u
0.00 A

e current u
0 1 2 3 4 0 1 2 3 4

t t
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Time-Optimal Motion of an oscillator (L1-tracking)

iteration k =1 iteration k =1
0.75 - 14 —_————— e e ]
optimal v
0.50 +—=—————tm plant
model
= 0.25 - S 07
optimal u
0.00 A
TN SN DR i W A § S — current u
T T T T T T T T T T
0 1 2 3 4 0 1 2 3 4
t t
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Time-Optimal Motion of an oscillator (L1-tracking)

iteration k =1 iteration k =1
0.75 - 1 - —_————— e e ]
optimal v
0.50 - —— plant
—— model
= 0.25 - S 07
optimal u
0.00 A
[T I U i U I | S S — current u
T T T T T T T T T T
0 1 2 3 4 0 1 2 3 4
t t
iteration k = 2 iteration k = 2
0.75 14—
M\
0.50 A
> 0.25 - = 07
0.00 A
_1 o ———— S —— i —————— ———— ——
T T T T T T T T T T
0 1 2 3 4 0 1 2 3 4
t t
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Time-Optimal Motion of an oscillator (L1-tracking)

iteration k =1

0.75 .
optimal
0.50 —— plant
—— model
=0.25 -
0.00 A
T T T
2 3 4
t
iteration k = 2
0.75
0.50 A
=0.25 -
0.00 A
T T T
2 3 4
t
iteration k =5
0.75
0.50 A
= 0.25 -
0.00

iteration k =1

1 - S S~ S~
0 -
optimal u
TN SN DR i W A § S — current u
T T T T T
0 1 2 3 4
t
iteration k = 2
1 e ——————————————————— - S
'\
0 -
) [ E CNNUNUNUNGNS It T SN U SE——
T T T T T
0 1 2 3 4
t
iteration k=5
1 sttt sttt -
0 -
1 4—t—— e
T T T T T
0 1 2 3 4
t
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When does the ZOO-ILC method converge?

Theorem 3 (Convergence of ZOO—ILC) [Baumgartner et al., in preparation]

Regard a fixed point z = (@, §, A, fia) of ZOO-ILC and assume it satisfies
LICQ, SOSC and strict complementarity in the model problem. Then the local

contraction rate is given by the spectral radius p(A) of the matrix

0
A = [I,, 0 0 0] (%—f(é;ﬂ,@)) JM(a)QJR(a)
0

The ZOO-ILC method converges if p(A) < 1 and diverges if p(A) > 1.

Here, pa are the active constraint multipliers and R(z;u’,y") is defined by

_vu»CM (ua Y, )‘7 HAS u/7 y,) |
VyLa(u,y, A, pasu’,y')
Fu(u) —y+y — Fu(uw)

H_A(U, y)

where the Lagrangian of the model problem is given by

R(zu',y') =

Lo (u, yy A pras ', y') = d(u,y) + A (Fu(u) —y+y — Fu(u)) + paHalu,y)

and Jy(u) and Jr(u) are the Jacobians of Fyi(u) and Fr(u).
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When does the ZOO-ILC method converge?

JM (l_b) — JR(’L_L)
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When does the ZOO-ILC method converge?

Contraction rate grows with distance between model and real Jacobian.
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Summary and Recent Software Developments

Exploiting convex structures in nonlinear problems is key for reliable and fast
nonlinear MPC algorithms.

Sequential Convex Programming (SCP) and its variants converge linearly. They
avoid “bad” minimizers (where the nonlinearity dominates the convex substructure).

- Zero-Order Optimization allows us to design theoretically solid Iterative Learning
Control algorithms. They can recover an optimal solution in special cases.

Latest open-source (BSD 3) software developments from the team are:

- BLASFEO: Basic Linear Algebra Subroutines For Embedded Optimization (Frison et al.),
targeting dense matrices from 10x10 to 400x400

- HPIPM: interior point QP/QCQP solver for block-sparse problems with optimal control and tree
structure, based on BLASFEO (Frison et al., IFAC 2020)

- acados: Nonlinear MPC and MHE library implementing SCP type algorithms, using HPIPM
and CasADi, with user interfaces from MATLAB and Python (Verschueren, Kouzoupis, Frison,
Frey et al., successor of ACADO)
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Summary and Recent Software Developments

Exploiting convex structures in nonlinear problems is key for reliable and fast
nonlinear MPC algorithms.

Sequential Convex Programming (SCP) and its variants converge linearly. They
avoid “bad” minimizers (where the nonlinearity dominates the convex substructure).

Zero-Order Optimization allows us to design theoretically solid lterative Learning
Control algorithms. They can recover an optimal solution in special cases.

Latest open-source (BSD 3) software developments from the team are:

- BLASFEO: Basic Linear Algebra Subroutines For Embedded Optimization (Frison et al.),
targeting dense matrices from 10x10 to 400x400

- HPIPM: interior point QP/QCQP solver for block-sparse problems with optimal control and tree
structure, based on BLASFEO (Frison et al., IFAC 2020)

- acados: Nonlinear MPC and MHE library implementing SCP type algorithms, using HPIPM
and CasADi, with user interfaces from MATLAB and Python (Verschueren, Kouzoupis, Frison,
Frey et al., successor of ACADO)

- pycombina: fast solution of a special class of mixed integer linear programs arising in the

combinatorial integral approximation (CIA) method for nonlinear mixed integer optimal control
(Burger et al., IFAC 2020)
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Thank you
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Nonlinear Mixed-Integer MPC of a Solar Adsorptive Cooling Machine
[BUrger et al., 2019]

1% hts.m
Macm

i hts. b

Nonlinear ODE with 39 states, 6
continuous and 2 binary inputs.
Contains combinatorial constraints
such as minimum uptime, minimum
downtime, ...

Predict 24 hours. Aim: minimise
electricity consumption.
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Three Stage Algorithm [Sager et al., Biirger et al.]

1. Solve Nonlinear Optimal Control Problem with Relaxed Integer Controls,
using direct collocation or multiple shooting and a nonlinear programming
(NLP) solver.

2. Find the integer input trajectory that
(a) satisfies all combinatorial constraints and
(b) minimises the distance to the relaxed input trajectory (L_- norm of the integrals)
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(pycombina algorithm is 10-100x times faster than standard MILP solver)

3. Fix the integer inputs and reoptimize over all remaining variables by solving
another NLP.
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Experimental Results from Sept 14-17, 2019
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Every 2 minutes, a new nonlinear mixed integer optimal control problem is
solved, using a real-time algorithm based on CasADi, IPOPT [Wachter and
Biegler 2006], and Pycombina [Burger et al, 2019], an implementation of
the combinatorial integral approximation (CIA) method [Sager 2009].
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Details on recent algorithmic developments

- Inexact Newton with Iterated Sensitivities (INIS) [Quirynen et al, 2017 ]:
partial answer to Potschka’s problem,achieves same contraction rate for
optimisation as for simulation problem with wrong Jacobian

 Mutligrid INIS for Elliptic PDE Optimization (Pearse-Danker)

« Zero-Order SCP Methods for MPC [Zanelli et al. 2019]

« Zero-Order Moving Horizon Estimation [Baumgartner et al. 2019]:
surprisingly, consistently wrong derivatives can result in same estimation
error as exact optimisation

* iterative learning control via zero-order optimization

- BLASFEO [Frison et al, 2018, 2020]: Basic Linear Algebra Subroutines for
Embedded Optimization: up to 5x speedup against BLAS on matrix
dimensions below 300 x 300

- HPIPM [Frison et al., submitted]: BLASFEOQO based QP solver for optimal
control problems

- General Nonlinear Static Feedback (GNSF) structure detection and
exploitation in DAE solvers [Frey et al. 2019]

 acados [Verschueren et al., submitted]: stand-alone nonlinear optimal control
package for embedded optimization, building on BLASFEO, HPIPM,
gpOASES, GNSF Integrators, SCQP, CasADi,
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