
Convexity Exploiting Newton-Type Optimization
for Learning and Control

Moritz Diehl
Systems Control and Optimization Laboratory

Department of Microsystems Engineering and Department of Mathematics
University of Freiburg

joint work with Florian Messerer and Katrin Baumgärtner

UCSB, March 3, 2020

M. Diehl

Overview

• Model Predictive Control and two Applications

• Convexity Exploiting Newton-Type Optimization
• Sequential Convex Programming (SCP)
• Generalized Gauss-Newton (GGN)
• Sequential Convex Quadratic Programming (SCQP)
• Local Convergence Analysis and Desirable Divergence

• Zero-Order Optimization-based Iterative Learning Control
• Tutorial Example
• Bounding the Loss of Optimality
• Local Convergence Analysis

2

M. Diehl

Model Predictive Control (MPC)

3

Always look a bit into the future

Example: driver predicts and optimizes,
and therefore slows down before a
curve

M. Diehl

Optimal Control Problem in MPC

4

For given system state x, which controls u lead to the best objective value
without violation of constraints ?

prediction horizon

controls (unknowns / variables)

simulated state trajectory

M. Diehl

Optimal Control Problem in MPC

5

For given system state x, which controls u lead to the best objective value
without violation of constraints ?

prediction horizon

controls (unknowns / variables)

simulated state trajectory

M. Diehl

Model Predictive Control of RC Race Cars (in Freiburg)

6

Minimize least squares distance to centerline, respect constraints. Use nonlinear
embedded optimization software acados coupled to ROS, sample at 100 Hz.

[Kloeser et al., submitted]

M. Diehl

eco4wind: MPC for wind turbine control

7

Industrial partners: IAV, SENVION (now bankrupt)
Aim: minimise fatigue and oscillations, respect constraints.
Nonlinear MPC with about 40 states based on ACADO/acados with QP solver
HPIPM running on industrial hardware at IAV.

M. Diehl

Optimization Problem in Nonlinear Model Predictive Control

8 31/38

Dynamic Optimization in a Nutshell

minimize
w 2 Rnw

NX

i=0

'i(Fi(si, ui)) + 'N (FN (sN))

subject to s0 = x,

si+1 = Si(si, ui), i = 0, . . . , N � 1,

Hi(si, ui) 2 ⌦i, i = 0, . . . , N � 1,

HN (sN) 2 ⌦N

I variables w = (s, u) with s = (s0, . . . , sN) and u = (u0, . . . , uN�1)

I convexities in 'i (e.g. quadratic) and ⌦i (e.g. polyhedral, ellipsoidal)

I nonlinearities in dynamic system Si and constraint functions Fi, Hi

I often: Si result of time integration (direct multiple shooting)

M. Diehl

Overview

• Model Predictive Control and two Applications

• Convexity Exploiting Newton-Type Optimization
• Sequential Convex Programming (SCP)
• Generalized Gauss-Newton (GGN)
• Sequential Convex Quadratic Programming (SCQP)
• Local Convergence Analysis and Desirable Divergence

• Zero-Order Optimization-based Iterative Learning Control
• Tutorial Example
• Bounding the Loss of Optimality
• Local Convergence Analysis

9

M. Diehl 10

Nonlinear optimization with convex substructure

2/34

Nonlinear optimization with convex substructure

minimize
w 2 Rnw

�0(F0(w))

subject to Fi(w) 2 ⌦i i = 1, . . . ,m,

G(w) = 0

Assumptions:

I twice continuously di↵erentiable functions G : Rnw ! Rng and
Fi : Rnw ! RnFi for i = 0, 1, . . . ,m.

I outer function �0 : RnF0 ! R convex.

I sets ⌦i ⇢ RnFi convex for i = 1, . . . ,m,
(possibly z 2 ⌦i , �i(z)  0 with smooth convex �i)

Idea:
exploit convex substructure via iterative convex approximations.

M. Diehl 11

Why is this class of problems and algorithms interesting ?

3/38

Why is this class of problems and algorithms interesting?

I many optimization problems have ”convex-over-nonlinear” structure

I standard NLP solvers cannot address all non-smooth convex constraints

I there exist many mature and e�cient convex optimization solvers

Some application areas:

I nonlinear least squares for estimation and tracking
[Gauss 1809; Bock 1983; Li and Biegler 1989; Sideris and Bobrow 2004]

I nonlinear matrix inequalities for reduced order controller design
[Fares, Noll, Apkarian 2002; Tran-Dinh et al. 2012]

I ellipsoidal terminal regions in nonlinear model predictive control
[Chen and Allgöwer 1998; Verschueren 2016]

I robustified inequalities in nonlinear optimization
[Nagy and Braatz 2003; D., Bock, Kostina 2006]

I tube-following optimal control problems [Van Duijkeren 2019]

I non-smooth composite minimization [Apkarian et al. 2008; Lewis and Wright 2016]

I deep neural network training with convex loss functions
[Schraudolph 2002; Martens 2016]

M. Diehl

Class Picture of Iterative Convex Approximation Methods

12

[Messerer and D., in preparation]

smooth unconstrained NLP smooth constrained NLP

constrained optimization with non-smooth structure

SCP

SCQP

SQCQP

CGGN
CGN

GGN

GN

S-SDP S-SOCP

SLP

M. Diehl

Class Picture of Iterative Convex Approximation Methods

13

[Messerer and D., in preparation]

smooth unconstrained NLP smooth constrained NLP

constrained optimization with non-smooth structure

SCP

SCQP

SQCQP

CGGN
CGN

GGN

GN

S-SDP S-SOCP

SLP

M. Diehl

Class Picture of Iterative Convex Approximation Methods

14

[Messerer and D., in preparation]

smooth unconstrained NLP smooth constrained NLP

constrained optimization with non-smooth structure

SCP

SCQP

SQCQP

CGGN
CGN

GGN

GN

S-SDP S-SOCP

SLP

M. Diehl

Class Picture of Iterative Convex Approximation Methods

15

[Messerer and D., in preparation]

smooth unconstrained NLP smooth constrained NLP

constrained optimization with non-smooth structure

SCP

SCQP

SQCQP

CGGN
CGN

GGN

GN

S-SDP S-SOCP

SLP

M. Diehl

Class Picture of Iterative Convex Approximation Methods

16

[Messerer and D., in preparation]

smooth unconstrained NLP smooth constrained NLP

constrained optimization with non-smooth structure

SCP

SCQP

SQCQP

CGGN
CGN

GGN

GN

S-SDP S-SOCP

SLP

M. Diehl 17

Sequential Convex Programming (SCP)

3/34

Method 1: Sequential Convex Programming (SCP)

I linearize F
lin
i (w; w̄) := Fi(w̄) + Ji(w̄) (w � w̄) with Ji(w̄) := @Fi

@w (w̄)

I formulate convex subproblems:

minimize
w 2 Rnw

�0(F
lin
0 (w; w̄))

subject to F
lin
i (w; w̄) 2 ⌦i, i = 1, . . . ,m,

G
lin(w; w̄) = 0

I start at w0 with k = 0

I solve convex subproblem at w̄ = wk to obtain next iterate wk+1

Historical notes:

The SCP idea with LP subproblems was originally called ”Method of Approximation

Programming” in [Gri�th & Stewart, 1961]. SCP with more general convex sets

(matrix cones) was proposed in [Fares, Apkarian, Noll 2002].

M. Diehl 18

Simplest case: smooth unconstrained problems

5/38

Simplest case: smooth unconstrained problems

Unconstrained minimization of ”convex over nonlinear” function

minimize
w 2 Rn

�(F (w))| {z }
=:f(w)

Assumptions:
- Inner function F : Rn ! RN of class C2

- Outer function � : RN ! R of class C2 and convex

SCP subproblem becomes

minimize
w 2 Rn

�
⇣
F lin(w; w̄)

⌘

| {z }
=:fSCP(w;w̄)

(1)

M. Diehl 19

Simplest case: smooth unconstrained problems

5/38

Simplest case: smooth unconstrained problems

Unconstrained minimization of ”convex over nonlinear” function

minimize
w 2 Rn

�(F (w))| {z }
=:f(w)

Assumptions:
- Inner function F : Rn ! RN of class C2

- Outer function � : RN ! R of class C2 and convex

SCP subproblem becomes

minimize
w 2 Rn

�
⇣
F lin(w; w̄)

⌘

| {z }
=:fSCP(w;w̄)

(1)

M. Diehl

Tutorial Example: Pseudo Huber Loss Minimization
Experiments conducted by Florian Messerer

20

Aim: fit =3 measurements to a model with using

the pseudo Huber loss

n yi m(w + xi) m(x) =
3
4

x + sin(x)

ϕδ(x) := δ2 + x2

ESAIM: PROCEEDINGS AND SURVEYS 3

Figure 1. The pseudo Huber loss as defined in (4) for two values of � compared to the absolute
value |x|, which corresponds to the L1 norm.

Huber parameter �. The larger �, the larger the quadratic region. In the limit case of � ! 0 it becomes identical
to the L1 norm. A visualization of this behaviour is given in figure 1.

Example 0.3. Assume we have modeled the explicit time dependency of some output 2 R as

 (t) =
3

4
t+ sin(t). (5)

We have noisy measurements ⌘i of this output, obtained at time xi, but they are associated with some unknown
time delay w̃, i.e., xi = ti � w̃. Our aim is now to identify this time delay w̃ from N measured input-output
pairs (xi, ⌘i), i = 1, ..., N , such that may know the true time ti = xi + w at which the output (ti) occurred.
We thus model the measurements as

⌘i = (xi + w)| {z }
:=m(xi;w)

+⌫i (6)

where ⌫i is unknown noise. The ⌘i are collected in ⌘ 2 RN and the model predictions in M(w), M : R ! RN ,
with Mi(w) =:= m(xi;w). If we choose the Huber loss (4) as penalty of the model-measurement mismatch, we
obtain

min
w 2 R

'� (⌘ �M(w))| {z }
f0(w)

(7)

as our identification problem. This has convex-over-nonlinear structure, with outer convexity �0(·) = '�(·) and
inner nonlinearity F0(w) = ⌘ �M(w). For purpose of a clean demonstration of the concepts we assume N = 3
with the date given as x = (�0.5, 0, 0.5) and ⌘ = (0, 0, 1). The Huber parameter is chosen as � = 0.1.

1. Methods for smooth unconstrained NLP

In this section we will consider only the unconstrained problem

min
w 2 Rn

�0(F0(w))| {z }
=:f0(w)

,
(8)

with �0(·) and F0(w) smooth, and introduce two methods that exploit its convex-over-nonlinear substructure.

ESAIM: PROCEEDINGS AND SURVEYS 13

Figure 6. Illustration of the mirror problem. The mirrored measurements ⌘̆ are obtained by
mirroring the original measurements ⌘ vertically at the model function.

Before continuing, we rephrase (38) as

min
w 2 Rn,
s 2 RN

�0(s)

s.t. ⌘ �M(w)  s,

� (⌘ �M(w))  s,

g(w) = 0,

(40)

i.e., its epigraph reformulation with slack variable s. Note that implicitly we have s � 0 for all feasible points.
This has the advantage that (40) can be smooth even if (38) is non-smooth. Consider, e.g., the L1-norm,
�0(·) := k·k1. For the non-negative reals, s 2 Rn

+
, it holds that �0(s) = s. We can thus simply replace �0(s) by

s to obtain an equivalent smooth NLP. It follows that our convergence analysis from the previous section will
be applicable. The mirror problem of (40) is the epigraph reformulation of (39). The Lagrangian of (40) is

L(z) = L(w, s,�, µ+, µ�) = �0(s) + �>g(w) + µ>
+
(⌘ �M(w)� s) + µ>

� (M(w)� ⌘ � s) (41)

and correspondingly for its mirror problem.

Lemma 4.3. Assume z⇤ = (w⇤, s⇤,�⇤, µ⇤
+
, µ⇤

�) is a KKT point of (40). Then z̆ = (w⇤, s⇤,��⇤, µ⇤
�, µ

⇤
+
) is a

KKT point of its mirror problem at w⇤
and vice versa.

41/45

Pseudo Huber Loss Minimization

minimize
w 2 R

nX

i=1

��(yi �m(xi + w))

| {z }
=:f(w)

M. Diehl

Cost function and SCP approximation

21

ESAIM: PROCEEDINGS AND SURVEYS 5

Figure 2. Illustration of the SCP and GGN approximations to the nonlinear objective f0(w)
for two values of w̄. GGN approximates f0(w) only quadratically, whereas SCP is able to match
the characteristic shape of the outer convexity �0(·).

1.3. Local convergence Analysis

We state here already a theorem on the linear local convergence rate of SCP and GGN. This is actually a
special case of Theorem 3.1 which will be proven later for the smooth constrained case. We therefore refrain
from giving a proof of this special case and refer to the proof of the more general Theorem 3.1.

Theorem 1.2 (Linear local convergence of SCP and GGN [4]). Regard a local minimizer w⇤
of f that satisfies

rf0(w⇤) = 0 and BGGN(w⇤) � 0. Then w⇤
is a fixed point for both the SCP and GGN iterations, the iterates

of both methods are well-defined in a neighborhood of w⇤
, and the local linear contraction – or divergence –

rates of SCP and GGN are equal to each other and given by the smallest ↵ � 0 that satisfies the linear matrix

inequalities (LMI)

�↵BGGN(w
⇤) � EGGN(w

⇤) � ↵BGGN(w
⇤). (13)

As a consequence, a su�cient condition for linear local convergence with contraction rate ↵ < 1 is given by the

equivalent LMI

1

1 + ↵
r

2f0(w
⇤) � BGGN(w

⇤) �
1

1� ↵
r

2f(w⇤) (14)

In particular, a necessary condition for local convergence is given by BGGN(w⇤) ⌫ 1

2
r

2f0(w⇤). If r2f0(w⇤) � 0,
a su�cient condition for local convergence is given by BGGN(w⇤) � 1

2
r

2f0(w⇤).

Example 1.3. We return to our example problem defined in (7). Since w 2 R, the LMI in (13) simplify to
scalar inequalities. We can thus explicitly compute the smallest ↵ satisfying (13) as

↵̌(w) :=
|r

2f0(w)�BGGN(w)|

|BGGN(w)|
, (15)

though we emphasize that only for a local minimizer w⇤ the interpretation of ↵̌(w⇤) as linear local convergence
rate is valid. It is still interesting to visualize ↵̌(w) for general w, but in this case there is no theoretically sound
meaning we are aware of. In figure 3 the objective function f0(w) as well as ↵̌ are illustrated for the example
problem. For the local minimum at wgood ⇡ 0.1 – which is actually the global minimum – we compute the
theoretical contraction rate as ↵̌(wgood) ⇡ 0.02. We now tease the reader a bit by pointing to an interesting

M. Diehl

SCP for Least Squares = Gauss-Newton

22
9/38

SCP for Least Squares Problems = Gauss-Newton

With quadratic �(z) = 1
2kzk

2
2 = 1

2z
>z, SCP subproblems become

minimize
w 2 Rn

1
2
kF (wk) + J(wk)(w � wk)k22 (2)

If rank(J) = n this is uniquely solvable, giving

wk+1 = wk �
⇣
J(wk)

>J(wk)| {z }
=:BGN(wk)

⌘�1
J(wk)

>F (wk)| {z }
=rf(wk)

SCP applied to LS = Newton method with ”Gauss-Newton Hessian”

BGN(w) ⇡ r2f(w)

M. Diehl

Generalized Gauss-Newton (GGN) [Schraudolph 2002]

23
10/38

Method 2: Generalized Gauss-Newton cf. [Schraudolph 2002]

For general convex �(·) we have for f(w) = �(F (w))

r2f(w) = J(w)> r2�(F (w)) J(w)| {z }
=:BGGN(w)

”GGN Hessian”

+
PN

j=1 r
2Fj(w) rzj�(F (w))

| {z }
=:EGGN(w)

”Error matrix”

Generalized Gauss-Newton (GGN) method iterates according to

wk+1 = wk �BGGN(w)�1rf(wk)

Note: GGN solves convex quadratic subproblems

min
w2Rn

f(wk)+rf(wk)
>(w�wk)+

1
2
(w�wk)

>BGGN(wk)(w�wk)
| {z }

=:fGGN(w;wk)

M. Diehl

Tutorial Example: SCP and GGN Approximation

24

ESAIM: PROCEEDINGS AND SURVEYS 5

Figure 2. Illustration of the SCP and GGN approximations to the nonlinear objective f0(w)
for two values of w̄. GGN approximates f0(w) only quadratically, whereas SCP is able to match
the characteristic shape of the outer convexity �0(·).

1.3. Local convergence Analysis

We state here already a theorem on the linear local convergence rate of SCP and GGN. This is actually a
special case of Theorem 3.1 which will be proven later for the smooth constrained case. We therefore refrain
from giving a proof of this special case and refer to the proof of the more general Theorem 3.1.

Theorem 1.2 (Linear local convergence of SCP and GGN [4]). Regard a local minimizer w⇤
of f that satisfies

rf0(w⇤) = 0 and BGGN(w⇤) � 0. Then w⇤
is a fixed point for both the SCP and GGN iterations, the iterates

of both methods are well-defined in a neighborhood of w⇤
, and the local linear contraction – or divergence –

rates of SCP and GGN are equal to each other and given by the smallest ↵ � 0 that satisfies the linear matrix

inequalities (LMI)

�↵BGGN(w
⇤) � EGGN(w

⇤) � ↵BGGN(w
⇤). (13)

As a consequence, a su�cient condition for linear local convergence with contraction rate ↵ < 1 is given by the

equivalent LMI

1

1 + ↵
r

2f0(w
⇤) � BGGN(w

⇤) �
1

1� ↵
r

2f(w⇤) (14)

In particular, a necessary condition for local convergence is given by BGGN(w⇤) ⌫ 1

2
r

2f0(w⇤). If r2f0(w⇤) � 0,
a su�cient condition for local convergence is given by BGGN(w⇤) � 1

2
r

2f0(w⇤).

Example 1.3. We return to our example problem defined in (7). Since w 2 R, the LMI in (13) simplify to
scalar inequalities. We can thus explicitly compute the smallest ↵ satisfying (13) as

↵̌(w) :=
|r

2f0(w)�BGGN(w)|

|BGGN(w)|
, (15)

though we emphasize that only for a local minimizer w⇤ the interpretation of ↵̌(w⇤) as linear local convergence
rate is valid. It is still interesting to visualize ↵̌(w) for general w, but in this case there is no theoretically sound
meaning we are aware of. In figure 3 the objective function f0(w) as well as ↵̌ are illustrated for the example
problem. For the local minimum at wgood ⇡ 0.1 – which is actually the global minimum – we compute the
theoretical contraction rate as ↵̌(wgood) ⇡ 0.02. We now tease the reader a bit by pointing to an interesting

M. Diehl 25

Iteration count: SCP more predictable than GGN
(on a similar example)

24/34

Iteration count: SCP more predictable than GGN

0.6 0.8 1 1.2 1.4
0

5

10

initial guess w0

it
er
at
io
n
s
u
n
ti
l
co

n
v
er
ge

n
ce SCP

GGN

M. Diehl 26

General smooth NLP formulation with constraints

12/34

A General Smooth NLP Formulation

Now regard an NLP with smooth convex �0,�1, . . . ,�m

minimize
w 2 Rnw

�0(F0(w))| {z }
=:f0(w)

subject to �i(Fi(w))| {z }
=:fi(w)

 0, i = 1, . . . ,m,

G(w) = 0

SCP subproblem becomes

minimize
w 2 Rnw

�0(F
lin
0 (w; w̄))

subject to �i(F
lin
i (w; w̄))  0, i = 1, . . . ,m,

G
lin(w; w̄) = 0

(SCP algorithm is expensive, but multiplier-free and a�ne-invariant)

M. Diehl 27

Constrained Gauss-Newton [Bock 1983]

15/34

Constrained Gauss-Newton [Bock 1983]

Use BCGN(w) := J0(w)>r2
�0(F0(w))J0(w) and solve convex quadratic

program (QP)

minimize
w 2 Rnw

f
lin
0 (w; w̄) +

1
2
(w � w̄)>BCGN(w̄)(w � w̄)

subject to f
lin
i (w; w̄)  0, i = 1, . . . ,m,

G
lin(w; w̄) = 0

I like SCP, the method is multiplier free and a�ne invariant

I QPs are potentially cheaper to solve

I but CGN diverges on some problems where SCP converges

Remark: for least-squares objectives, this method is due to [Bock 1983]. In many
papers, Bock’s method is called ”the Generalized Gauss-Newton (GGN) method”. To
avoid a notation clash with Schraudolph and the computer science literature, we prefer
to call Bock’s method ”the Constrained Gauss-Newton (CGN) method”.

M. Diehl 28

Sequential Convex Quadratic Programming (SCQP)
[Verschueren et al 2016]

19/38

Sequential Convex Quadratic Programming (SCQP) [Verschueren et al. 2016]

BSCQP(w, µ) := J0(w)>r2
�0(F0(w))J0(w) +

mX

i=1

µiJi(w)>r2
�i(Fi(w))Ji(w)

minimize
w 2 Rnw

f
lin
0 (w; w̄) +

1

2
(w � w̄)>BSCQP(w̄, µ̄)(w � w̄)

subject to f
lin
i (w; w̄)  0, i = 1, . . . ,m, | µ

+
,

G
lin(w; w̄) = 0

I obtain pair (wk+1, µk+1) from solution at (w̄, µ̄) = (wk, µk)

I ”optimizer state” contains both, w̄ and inequality multipliers µ̄

I again, only a QP needs to be solved in each iteration

I again, a�ne invariant

I BSCQP(w, µ) ⌫ BCGN(w) (more likely to converge than CGN)

I for unconstrained problems, SCQP becomes GGN

I in fact, SCQP has same contraction rate as SCP [Messerer &D., ECC 2020]

M. Diehl 29

Identical local convergence of SCP and SCQP/GGN

20/38

Local Convergence of SCP and SCQP

Theorem 1 [Messerer and Diehl, ECC 2020]

Regard KKT point z⇤ := (w⇤, µ⇤,�⇤) with LICQ and strict complementarity.
Denote the reduced Hessian by ⇤̃⇤, the reduced SCQP Hessian by B̃⇤ (*) and
assume that B̃⇤ � 0. Then

I z⇤ is a fixed point for both the SCP and SCQP iterations

I both methods are well-defined in a neighborhood of z⇤

I their linear contraction rates are equal and given by the smallest ↵ 2 R
that satisfies the linear matrix inequality

� ↵B̃⇤ � ⇤̃⇤ � B̃⇤ � ↵B̃⇤ (3)

(*) ⇤̃⇤ := Z>r2L(w⇤, µ⇤,�⇤)Z and B̃⇤ := Z>BSCQP(w
⇤, µ⇤)Z with Z a

fixed nullspace basis of the Jacobian of active constraints

Corollary

Necessary condition for local convergence of both methods is B̃⇤ ⌫ 1
2 ⇤̃⇤ ⌫ 0

Proof of corollary: Set ↵=1 in (3).

M. Diehl 30

Identical local convergence of SCP and SCQP/GGN

20/38

Local Convergence of SCP and SCQP

Theorem 1 [Messerer and Diehl, ECC 2020]

Regard KKT point z⇤ := (w⇤, µ⇤,�⇤) with LICQ and strict complementarity.
Denote the reduced Hessian by ⇤̃⇤, the reduced SCQP Hessian by B̃⇤ (*) and
assume that B̃⇤ � 0. Then

I z⇤ is a fixed point for both the SCP and SCQP iterations

I both methods are well-defined in a neighborhood of z⇤

I their linear contraction rates are equal and given by the smallest ↵ 2 R
that satisfies the linear matrix inequality

� ↵B̃⇤ � ⇤̃⇤ � B̃⇤ � ↵B̃⇤ (3)

(*) ⇤̃⇤ := Z>r2L(w⇤, µ⇤,�⇤)Z and B̃⇤ := Z>BSCQP(w
⇤, µ⇤)Z with Z a

fixed nullspace basis of the Jacobian of active constraints

Corollary

Necessary condition for local convergence of both methods is B̃⇤ ⌫ 1
2 ⇤̃⇤ ⌫ 0

Proof of corollary: Set ↵=1 in (3).

M. Diehl

Tutorial Example: Objective and Local Contraction Rate

31

6 ESAIM: PROCEEDINGS AND SURVEYS

Figure 3. Visualization of the objective function and ↵̌(w). Note that ↵̌(w) attains its mean-
ing as local contraction rate only at local minima.

observation: there is also a second, worse, local minimum at wbad ⇡ 3.7, at which holds ↵̌(wbad) � 1. This
means that SCP and GGN would actually strongly diverge from this undesirable local minimum. This is actually
not a coincidence, and later in this paper we dedicate a full section to this behaviour.

2. Methods for smooth constrained NLP

We will now move on to methods that can be applied to NLP of the form

min
w 2 Rn

�0(F0(w))

s.t. �i(Fi(w))  0, i = 1, . . . , q,

g(w) = 0.,

(16)

composed of only smooth functions, and with �i(Fi(w)) =: fi(w), i = 0, . . . , q.

2.1. Sequential Convex Programming

wk+1 2 arg min
w 2 Rn

�0(F
lin

0
(w;wk))

s.t. �i(F
lin

i (w;wk))  0, i = 1, . . . , q,

glin(w;wk) = 0

(17)

with fSCP

i (wk;wk+1) := �i(F lin

i (w;wk)) for i = 0, . . . , q.

10 ESAIM: PROCEEDINGS AND SURVEYS

Figure 4. Right: Convergence to local minimum at w⇤
⇡ 0.1.

where we introduced slack variables s 2 RN , and subsumed the model-measurement residual in in Fi(w) =
⌘i � Mi(w). We apply SCP, SCQP and SQCQP to this problem, initializing the schemes at w0 = 0, s0 = 0,
and, in the case of SCQP, µ0 = 1. For the obtained iteration sequences we compute the empirical contraction
rate as

k =
|wk+1 � wk|

|wk � wk�1|
, (33)

(cleaner to define in terms of full primal-dual iterates.) and the theoretical asymptotic rate ↵̌(w⇤) as defined
in (15) (cleaner to actually use LMI (25)). The results are shown in figure 4. Note how the empirical rates
approach the theoretically predicted rate in the final iterations.

3.2. Quadratic Convergence

We transition to an interesting special case via the following example.

Example 3.3. We continue with the just introduced slack reformulation (32). This time we want to investigate
the convergence behavior when varying the Huber parameter �. Recalling that for � ! 0 the pseudo Huber
penalty approaches the L1 norm, we also consider a variation of our example where residuals are penalized by
the L1 norm. This leads us to the problem minw2Rk⌘�M(w)k1, for which the smooth epigraph reformulation
is

minimize
w, s

NX

i=1

s

subject to Fi(w)  si i = 1, . . . , N,

�Fi(w)  si i = 1, . . . , N.

(34)

We use SCP to solve this problem, as well as (32) for many values of � 2 [10�6, 102]. Note that applying SCP
to (34) actually simplifies to Sequential Linear Programming (SLP) [?]. For each � we compute the theoretical
contraction rate. The results are visualized in figure 5. For approximately � > 1 the contraction rate flatlines at
↵ ⇡ 0.04. This happens when � is so large that all residuals are penalized quadratically, i.e., in a least-squares
fashion. For � ! 1 something much more interesting happens: it seems that ↵ ! 0 as � approaches 0, i.e.,
in the limit we would obtain convergence faster than linear. We therefore turn to a theoretic analysis of this
behavior.

M. Diehl

Desirable Divergence and Mirror Problem [cf. Bock 1987]

32 50/45

Desirable divergence and mirror problem, cf. [Bock 1987]

SCP and GGN do not converge to every local minimum. This can help to avoid
”bad” local minima, as discussed next.

Regard maximum likelihood estimation problem minw �(M(w)� y) with

nonlinear model M : Rn ! RN and measurements y 2 RN . Assume penalty �
is symmetric with �(�z) = �(z) as is the case for symmetric error
distributions. At a solution w⇤, we can generate ”mirror measurements”
ymr := 2M(w⇤)� y obtained by reflecting the residuals.
From a statistical point of view, ymr should be as likely as y.

M. Diehl

SCP divergence minimum unstable under mirroring⇔

33 51/52

SCP Divergence , Minimum unstable under mirroring

Theorem [Messerer and D., 2019/2020] generalizing [Bock 1987]

Regard a local minimizer w⇤ of �(M(w)� y) that satisfies SOSC. If the
necessary SCP convergence condition B̃⇤ ⌫ 1

2
⇤̃⇤ does not hold, then w⇤ is a

stationary point of the mirror problem but not a local minimizer.

*Sketch of proof (unconstrained): use M(w⇤)� ymr = y �M(w⇤) to show
that rfmr(w

⇤) = J(w⇤)>(y �M(w⇤)) = 0 and
r2fmr(w

⇤) = BGGN(w
⇤)� EGGN(w

⇤) = 2BGGN(w
⇤)�r2f(w⇤) 6⌫ 0

M. Diehl

SCP divergence minimum unstable under mirroring⇔

34 51/52

SCP Divergence , Minimum unstable under mirroring

Theorem [Messerer and D., 2019/2020] generalizing [Bock 1987]

Regard a local minimizer w⇤ of �(M(w)� y) that satisfies SOSC. If the
necessary SCP convergence condition B̃⇤ ⌫ 1

2
⇤̃⇤ does not hold, then w⇤ is a

stationary point of the mirror problem but not a local minimizer.

*Sketch of proof (unconstrained): use M(w⇤)� ymr = y �M(w⇤) to show
that rfmr(w

⇤) = J(w⇤)>(y �M(w⇤)) = 0 and
r2fmr(w

⇤) = BGGN(w
⇤)� EGGN(w

⇤) = 2BGGN(w
⇤)�r2f(w⇤) 6⌫ 0

M. Diehl

Tutorial Example and Mirror Problems at Different Local Minima

35

ESAIM: PROCEEDINGS AND SURVEYS 13

Figure 6. Illustration of the mirror problem. The mirrored measurements ⌘̆ are obtained by
mirroring the original measurements ⌘ vertically at the model function.

Before continuing, we rephrase (38) as

min
w 2 Rn,
s 2 RN

�0(s)

s.t. ⌘ �M(w)  s,

� (⌘ �M(w))  s,

g(w) = 0,

(40)

i.e., its epigraph reformulation with slack variable s. Note that implicitly we have s � 0 for all feasible points.
This has the advantage that (40) can be smooth even if (38) is non-smooth. Consider, e.g., the L1-norm,
�0(·) := k·k1. For the non-negative reals, s 2 Rn

+
, it holds that �0(s) = s. We can thus simply replace �0(s) by

s to obtain an equivalent smooth NLP. It follows that our convergence analysis from the previous section will
be applicable. The mirror problem of (40) is the epigraph reformulation of (39). The Lagrangian of (40) is

L(z) = L(w, s,�, µ+, µ�) = �0(s) + �>g(w) + µ>
+
(⌘ �M(w)� s) + µ>

� (M(w)� ⌘ � s) (41)

and correspondingly for its mirror problem.

Lemma 4.3. Assume z⇤ = (w⇤, s⇤,�⇤, µ⇤
+
, µ⇤

�) is a KKT point of (40). Then z̆ = (w⇤, s⇤,��⇤, µ⇤
�, µ

⇤
+
) is a

KKT point of its mirror problem at w⇤
and vice versa.

16 ESAIM: PROCEEDINGS AND SURVEYS

Figure 7. Illustration of the objective functions for the mirror problem. The bad local mini-
mum turns into a maximum for the mirror problem.

smooth unconstrained NLP smooth constrained NLP

constrained optimization with non-smooth structure

SCP
SQCQP

SCQP

CGGN
CGN

GGN

GN

SLPS-SDP

S-SOCP

Figure 8. Overview

M. Diehl

Overview

• Model Predictive Control and two Applications

• Convexity Exploiting Newton-Type Optimization
• Sequential Convex Programming (SCP)
• Generalized Gauss-Newton (GGN)
• Sequential Convex Quadratic Programming (SCQP)
• Local Convergence Analysis and Desirable Divergence

• Zero-Order Optimization-based Iterative Learning Control
• Tutorial Example
• Bounding the Loss of Optimality
• Local Convergence Analysis

36

M. Diehl

The convexity exploiting algorithms presented so far need two ingredients:

1. a good nonlinear model and its linearisation, and
2. convex substructure in objective and constraints

37

Two Ingredients of Newton-Type Optimization

M. Diehl

The convexity exploiting algorithms presented so far need two ingredients:

1. a good nonlinear model and its linearisation, and
2. convex substructure in objective and constraints

Which of the two is more important for success in data-driven optimization?

38

Two Ingredients of Newton-Type Optimization

M. Diehl

The convexity exploiting algorithms presented so far need two ingredients:

1. a good nonlinear model and its linearisation, and
2. convex substructure in objective and constraints

Which of the two is more important for success in data-driven optimization?

39

Two Ingredients of Newton-Type Optimization

M. Diehl

Iterative Learning Control for Lemon-Ball Throwing

40

M. Diehl

Iterative Learning of Ball Throwing with Minimal Energy
Experiments conducted by Katrin Baumgärtner

41

VI. ILLUSTRATIVE EXAMPLE

Example 1 (Ball). The actual system is given by

ṗx = vx,

ṗy = vv,

v̇x = �CD

m

q
(vx � wx)2 + (vy � wy)2 (vx � wx) ,

v̇y = �g � CD

m

q
(vx � wx)2 + (vy � wy)2 (vy � wy) ,

with

CD = 0.05, m = 0.5kg, wx = 2m/s, wy = 0.01m/s.

with initial condition

px(0) = 0, py(0) = 0, vx(0) = u1, vy(0) = u2,

where u = (u1, u2) is the control input. The output y is
given by the x-position of the ball at the time when the ball
hits the ground, i.e.

FR(u) = px(TR)

where TR is obtained as the solution of the root-finding
problem py(T) = 0.
As an approximate model, we use the following dynamics:

˙̂px = vx,

˙̂py = vy,

˙̂vx = 0,

˙̂vy = �g,

with initial condition

p̂x(0) = 0, p̂y(0) = 0, v̂x(0) = u1, v̂y(0) = u2,

where u = (u1, u2) is the control input. In this case, the
position of the ball when it hits the ground can be computed
analytically and is given as

FM(u) = p̂x(TM) = TMu1,

where TM = 2u2
g

.

(uR, yR) = arg min
u,y

kukp

s.t. y = dR(u),

10 � y  0,

(uk+1, ŷk+1) = arg min
u,y

kukp

s.t. y = yk � dM(uk) + dM(u),

10 � y  0,

Figure 1 shows the actual trajectories, as well as the trajec-
tories predicted by the model for iterations k = 0, 1, 5, 10,
when using the L2-loss. The algorithm converges to ū after
15 iterations which is illustrated in Figure 2. At ū the sub-
optimality, as well as the upper bound on the suboptimality
defined in Proposition 2 are:

kūk2 � kuRk2 = 0.866  1.039 = (uR)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
px

0.0

2.5

5.0

p y

iteration k = 0

plant

model

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
px

0.0

2.5

5.0

p y

iteration k = 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
px

0.0

2.5

5.0
p y

iteration k = 5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
px

0.0

2.5

5.0

p y

iteration k = 10

Fig. 1. L2-cost: Actual trajectories and trajectories predicted by the model
for different iterations.

Fig. 2. L2-cost: steps �u, cost and outputs.

VI. ILLUSTRATIVE EXAMPLE

Example 1 (Ball). The actual system is given by

ṗx = vx,

ṗy = vv,

v̇x = �CD

m

q
(vx � wx)2 + (vy � wy)2 (vx � wx) ,

v̇y = �g � CD

m

q
(vx � wx)2 + (vy � wy)2 (vy � wy) ,

with

CD = 0.05, m = 0.5kg, wx = 2m/s, wy = 0.01m/s.

with initial condition

px(0) = 0, py(0) = 0, vx(0) = u1, vy(0) = u2,

where u = (u1, u2) is the control input. The output y is
given by the x-position of the ball at the time when the ball
hits the ground, i.e.

FR(u) = px(TR)

where TR is obtained as the solution of the root-finding
problem py(T) = 0.
As an approximate model, we use the following dynamics:

˙̂px = vx,

˙̂py = vy,

˙̂vx = 0,

˙̂vy = �g,

with initial condition

p̂x(0) = 0, p̂y(0) = 0, v̂x(0) = u1, v̂y(0) = u2,

where u = (u1, u2) is the control input. In this case, the
position of the ball when it hits the ground can be computed
analytically and is given as

FM(u) = p̂x(TM) = TMu1,

where TM = 2u2
g

.

(uR, yR) = arg min
u,y

kukp

s.t. y = dR(u),

10 � y  0,

(uk+1, ŷk+1) = arg min
u,y

kukp

s.t. y = yk � dM(uk) + dM(u),

10 � y  0,

Figure 1 shows the actual trajectories, as well as the trajec-
tories predicted by the model for iterations k = 0, 1, 5, 10,
when using the L2-loss. The algorithm converges to ū after
15 iterations which is illustrated in Figure 2. At ū the sub-
optimality, as well as the upper bound on the suboptimality
defined in Proposition 2 are:

kūk2 � kuRk2 = 0.866  1.039 = (uR)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
px

0.0

2.5

5.0

p y

iteration k = 0

plant

model

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
px

0.0

2.5

5.0

p y

iteration k = 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
px

0.0

2.5

5.0

p y

iteration k = 5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
px

0.0

2.5

5.0
p y

iteration k = 10

Fig. 1. L2-cost: Actual trajectories and trajectories predicted by the model
for different iterations.

Fig. 2. L2-cost: steps �u, cost and outputs.

• Model maps initial velocity
 to landing position

• Aim: throw ball further than with
minimal initial velocity

• Experiments with “real plant” give pairs
 [shorter distance than predicted]

• We can use to correct the model,
and iteratively obtain by solving the
following optimization problem:

FM(u)
u ∈ ℝ2 y ∈ ℝ

y ≥ 10

(uk, yk)
(uk, yk)

uk+1

37/41

Lemon-Ball Throwing Example

minimize
u 2 R2, y 2 R

kuk22

subject to FM(u)� y = FM(uk)� yk,

10� y  0

(6)

minimize
u 2 R2, y 2 R

kuk22

subject to y = FM(u)� FM(uk) + yk| {z }
=:F̃M (u;uk,yk)

,

y � 10

(7)

M. Diehl

Iterations of Algorithm and Reduced Problem Visualization

42

VI. ILLUSTRATIVE EXAMPLE

Example 1 (Ball). The actual system is given by

ṗx = vx,

ṗy = vv,

v̇x = �CD

m

q
(vx � wx)2 + (vy � wy)2 (vx � wx) ,

v̇y = �g � CD

m

q
(vx � wx)2 + (vy � wy)2 (vy � wy) ,

with

CD = 0.05, m = 0.5kg, wx = 2m/s, wy = 0.01m/s.

with initial condition

px(0) = 0, py(0) = 0, vx(0) = u1, vy(0) = u2,

where u = (u1, u2) is the control input. The output y is
given by the x-position of the ball at the time when the ball
hits the ground, i.e.

FR(u) = px(TR)

where TR is obtained as the solution of the root-finding
problem py(T) = 0.
As an approximate model, we use the following dynamics:

˙̂px = vx,

˙̂py = vy,

˙̂vx = 0,

˙̂vy = �g,

with initial condition

p̂x(0) = 0, p̂y(0) = 0, v̂x(0) = u1, v̂y(0) = u2,

where u = (u1, u2) is the control input. In this case, the
position of the ball when it hits the ground can be computed
analytically and is given as

FM(u) = p̂x(TM) = TMu1,

where TM = 2u2
g

.

(uR, yR) = arg min
u,y

kukp

s.t. y = dR(u),

10 � y  0,

(uk+1, ŷk+1) = arg min
u,y

kukp

s.t. y = yk � dM(uk) + dM(u),

10 � y  0,

Figure 1 shows the actual trajectories, as well as the trajec-
tories predicted by the model for iterations k = 0, 1, 5, 10,
when using the L2-loss. The algorithm converges to ū after
15 iterations which is illustrated in Figure 2. At ū the sub-
optimality, as well as the upper bound on the suboptimality
defined in Proposition 2 are:

kūk2 � kuRk2 = 0.866  1.039 = (uR)

Fig. 1. L2-cost: Actual trajectories and trajectories predicted by the model
for different iterations.

0 2 4 6 8 10 12 14

0

2

4

st
ep

�
u

0 2 4 6 8 10 12 14

120

140

160

co
st

0 2 4 6 8 10 12 14
timestep k

6

8

10

y

Fig. 2. L2-cost: steps �u, cost and outputs.

0 5 10 15 20
u1

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

u
2

F
R
(u

)
=

10

F̂
M
(u; ū, ȳ)

=
10

Fig. 3. L2-cost: Level lines of the cost function as well as feasible set.

Fig. 4. L1-cost: Level lines of the cost function as well as feasible set.

Fig. 5. Level lines of the cost function as well as feasible set.

Fig. 6. Level lines of the cost function as well as feasible set.

37/42

Lemon-Ball Throwing Example

minimize
u 2 R2, y 2 R

kuk22

subject to FM(u)� y = FM(uk)� yk,

10� y  0

(6)

minimize
u 2 R2, y 2 R

kuk22

subject to y = FM(u)� FM(uk) + yk| {z }
=:F̃M (u;uk,yk)

,

y � 10

(7)

minimize
u 2 R2

kuk22

subject to F̃M (u;uk, yk) � 10
(8)

M. Diehl

Zero Order Optimization-based Iterative Learning Control (ZOO-ILC)

43
35/43

Zero Order Optimization-based Iterative Learning Control (ZOO-ILC)

Aim: optimization with unknown input-output system y = FR(u) (”reality”):

minimize
u, y

�(u, y)

subject to FR(u)� y = 0,

H(u, y)  0

(4)

ZOO-ILC idea [cf. Schöllig, Volkaert, Zeilinger]: use trial input uk with output
yk and a model FM to obtain new trial input uk+1 from solution of

minimize
u, y

�(u, y)

subject to FM(u)� y = FM(uk)� yk,

H(u, y)  0

(5)

Questions: Does this method converge? What is its loss of optimality?

M. Diehl

Zero Order Optimization-based Iterative Learning Control (ZOO-ILC)

44
35/43

Zero Order Optimization-based Iterative Learning Control (ZOO-ILC)

Aim: optimization with unknown input-output system y = FR(u) (”reality”):

minimize
u, y

�(u, y)

subject to FR(u)� y = 0,

H(u, y)  0

(4)

ZOO-ILC idea [cf. Schöllig, Volkaert, Zeilinger]: use trial input uk with output
yk and a model FM to obtain new trial input uk+1 from solution of

minimize
u, y

�(u, y)

subject to FM(u)� y = FM(uk)� yk,

H(u, y)  0

(5)

Questions: Does this method converge? What is its loss of optimality?

M. Diehl

Feasibility and Loss of Optimality of ZOO-ILC

45
36/40

Feasibility and Loss of Optimality

Theorem 2 [Baumgärtner et al., in preparation]

For any fixed point (ū, ȳ) of the ZOO-ILC algorithm with multipliers (�̄, µ̄)
holds under mild conditions:

I (ū, ȳ) is feasible for the real problem

I the loss of optimality compared to a real solution (uR, yR) is bounded by:

�(ū, ȳ)� �(uR, yR)  �̄> (JM(ū)� JR(ū)) (uR � ū)

Here, the Lagrangian of the model problem is given by

L(u, y,�, µ) = �(u, y) + �>(FM(u)� y � bk) + µ>H(u, y)

and JM(u) and JR(u) are the Jacobians of FM(u) and FR(u).

M. Diehl

Special cases where ZOO-ILC delivers a lossless solution

46

36/40

Feasibility and Loss of Optimality

Theorem 2 [Baumgärtner et al., in preparation]

For any fixed point (ū, ȳ) of the ZOO-ILC algorithm with multipliers (�̄, µ̄)
holds under mild conditions:

I (ū, ȳ) is feasible for the real problem

I the loss of optimality compared to a real solution (uR, yR) is bounded by:

�(ū, ȳ)� �(uR, yR)  �̄> (JM(ū)� JR(ū)) (uR � ū)

Here, the Lagrangian of the model problem is given by

L(u, y,�, µ) = �(u, y) + �>(FM(u)� y � bk) + µ>H(u, y)

and JM(u) and JR(u) are the Jacobians of FM(u) and FR(u).

ZOO-ILC delivers lossless solution in the following three cases:

1. Tracking ILC with zero residual (standard ILC):

2. Model and real Jacobian coincide at solution (rarely the case):

3. Constrained problems where solution is in vertex of the reduced feasible set:

(if the Jacobian error is small enough, LICQ and strict complementarity hold)

λ̄ = 0

JM(ū) − JR(ū) = 0

uR
uR − ū = 0

M. Diehl

Special cases where ZOO-ILC delivers a lossless solution

47

36/40

Feasibility and Loss of Optimality

Theorem 2 [Baumgärtner et al., in preparation]

For any fixed point (ū, ȳ) of the ZOO-ILC algorithm with multipliers (�̄, µ̄)
holds under mild conditions:

I (ū, ȳ) is feasible for the real problem

I the loss of optimality compared to a real solution (uR, yR) is bounded by:

�(ū, ȳ)� �(uR, yR)  �̄> (JM(ū)� JR(ū)) (uR � ū)

Here, the Lagrangian of the model problem is given by

L(u, y,�, µ) = �(u, y) + �>(FM(u)� y � bk) + µ>H(u, y)

and JM(u) and JR(u) are the Jacobians of FM(u) and FR(u).

ZOO-ILC delivers lossless solution in the following three cases:

1. Tracking ILC with zero residual (standard ILC):

2. Model and real Jacobian coincide at solution (rarely the case):

3. Constrained problems where solution is in vertex of the reduced feasible set:

(if the Jacobian error is small enough, LICQ and strict complementarity hold)

λ̄ = 0

JM(ū) − JR(ū) = 0

uR
uR − ū = 0

M. Diehl

Solutions for - and -norm minimisationL2 L∞

48

0 5 10 15 20
u1

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

u
2

F
R
(u

)
=

10

F̂
M
(u; ū, ȳ)

=
10

Fig. 3. L2-cost: Level lines of the cost function as well as feasible set.

Fig. 4. L1-cost: Level lines of the cost function as well as feasible set.

Fig. 5. Level lines of the cost function as well as feasible set.

Fig. 6. Level lines of the cost function as well as feasible set.

37/42

Lemon-Ball Throwing Example

minimize
u 2 R2, y 2 R

kuk22

subject to FM(u)� y = FM(uk)� yk,

10� y  0

(6)

minimize
u 2 R2, y 2 R

kuk22

subject to y = FM(u)� FM(uk) + yk| {z }
=:F̃M (u;uk,yk)

,

y � 10

(7)

minimize
u 2 R2

kuk22

subject to F̃M (u;uk, yk) � 10
(8)

suboptimality: (bound)0.874 ≤ 1.377

M. Diehl

Solutions for - and -norm minimisationL2 L∞

49

38/42

Lemon-Ball Throwing Example

minimize
u 2 R2

kuk1

subject to F̃M (u;uk, yk) � 10
(9)

Fig. 3. L2-cost: Level lines of the cost function as well as feasible set.

0 5 10 15 20
u1

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

u
2

F
R
(u

)
=

10

F̂
M
(u; ū, ȳ)

=
10

Fig. 4. L1-cost: Level lines of the cost function as well as feasible set.

Fig. 5. Level lines of the cost function as well as feasible set.

Fig. 6. Level lines of the cost function as well as feasible set.
solution in vertex, no loss of optimaliy

0 5 10 15 20
u1

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

u
2

F
R
(u

)
=

10

F̂
M
(u; ū, ȳ)

=
10

Fig. 3. L2-cost: Level lines of the cost function as well as feasible set.

Fig. 4. L1-cost: Level lines of the cost function as well as feasible set.

Fig. 5. Level lines of the cost function as well as feasible set.

Fig. 6. Level lines of the cost function as well as feasible set.

37/42

Lemon-Ball Throwing Example

minimize
u 2 R2, y 2 R

kuk22

subject to FM(u)� y = FM(uk)� yk,

10� y  0

(6)

minimize
u 2 R2, y 2 R

kuk22

subject to y = FM(u)� FM(uk) + yk| {z }
=:F̃M (u;uk,yk)

,

y � 10

(7)

minimize
u 2 R2

kuk22

subject to F̃M (u;uk, yk) � 10
(8)

suboptimality: (bound)0.874 ≤ 1.377

M. Diehl

Time-Optimal Motion of an oscillator (L1-tracking)

50

39/43

Time-optimal point-to-point motion of oscillator

minimize
y(·), u(·)

Z TH

0

|y(t)� yref |+ ↵u(t)2 dt

subject to y(t) = FM(t;u) + yk(t)� FM(t;uk),

|u(t)|  1, t 2 [0, TH]

(9)

with TH = 4, ↵ = 10�4, yref = 0.5

Real plant:
with

Model:
with

T2··y + 2Td ·y + y + βy3 = KRu
T = 1, d = 0.5, β = 2, KR = 0.9

T2··y + 2Td ·y + y = KMu
KM = 1

0 1 2 3 4
t

0.00

0.25

0.50

0.75

y

iteration k = 1

optimal

plant

model

0 1 2 3 4
t

0.00

0.25

0.50

0.75

y

iteration k = 2

0 1 2 3 4
t

0.00

0.25

0.50

0.75

y

iteration k = 5

Fig. 13. Oscillator example with large mismatch, � = 2 and L2-cost
term, ↵ = 0.0001: Optimal trajectory, actual trajectory, as well as predicted
trajectory.

Fig. 14. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

Fig. 15. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

Fig. 13. Oscillator example with large mismatch, � = 2 and L2-cost
term, ↵ = 0.0001: Optimal trajectory, actual trajectory, as well as predicted
trajectory.

0 1 2 3 4
t

�1

0

1

u

iteration k = 1

optimal u

current u

0 1 2 3 4
t

�1

0

1

u

iteration k = 2

0 1 2 3 4
t

�1

0

1

u

iteration k = 5

Fig. 14. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

Fig. 15. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

α = 10−4

M. Diehl

Time-Optimal Motion of an oscillator (L1-tracking)

51

0 1 2 3 4
t

0.00

0.25

0.50

0.75

y

iteration k = 1

optimal

plant

model

0 1 2 3 4
t

0.00

0.25

0.50

0.75

y

iteration k = 2

0 1 2 3 4
t

0.00

0.25

0.50

0.75

y

iteration k = 5

Fig. 13. Oscillator example with large mismatch, � = 2 and L2-cost
term, ↵ = 0.0001: Optimal trajectory, actual trajectory, as well as predicted
trajectory.

Fig. 14. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

Fig. 15. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

Fig. 13. Oscillator example with large mismatch, � = 2 and L2-cost
term, ↵ = 0.0001: Optimal trajectory, actual trajectory, as well as predicted
trajectory.

0 1 2 3 4
t

�1

0

1

u

iteration k = 1

optimal u

current u

0 1 2 3 4
t

�1

0

1

u

iteration k = 2

0 1 2 3 4
t

�1

0

1
u

iteration k = 5

Fig. 14. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

Fig. 15. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

M. Diehl

Time-Optimal Motion of an oscillator (L1-tracking)

52

0 1 2 3 4
t

0.00

0.25

0.50

0.75

y

iteration k = 1

optimal

plant

model

0 1 2 3 4
t

0.00

0.25

0.50

0.75

y

iteration k = 2

0 1 2 3 4
t

0.00

0.25

0.50

0.75

y

iteration k = 5

Fig. 13. Oscillator example with large mismatch, � = 2 and L2-cost
term, ↵ = 0.0001: Optimal trajectory, actual trajectory, as well as predicted
trajectory.

Fig. 14. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

Fig. 15. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

Fig. 13. Oscillator example with large mismatch, � = 2 and L2-cost
term, ↵ = 0.0001: Optimal trajectory, actual trajectory, as well as predicted
trajectory.

0 1 2 3 4
t

�1

0

1

u

iteration k = 1

optimal u

current u

0 1 2 3 4
t

�1

0

1

u

iteration k = 2

0 1 2 3 4
t

�1

0

1
u

iteration k = 5

Fig. 14. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

Fig. 15. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

M. Diehl

Time-Optimal Motion of an oscillator (L1-tracking)

53

0 1 2 3 4
t

0.00

0.25

0.50

0.75

y

iteration k = 1

optimal

plant

model

0 1 2 3 4
t

0.00

0.25

0.50

0.75

y

iteration k = 2

0 1 2 3 4
t

0.00

0.25

0.50

0.75

y

iteration k = 5

Fig. 13. Oscillator example with large mismatch, � = 2 and L2-cost
term, ↵ = 0.0001: Optimal trajectory, actual trajectory, as well as predicted
trajectory.

Fig. 14. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

Fig. 15. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

Fig. 13. Oscillator example with large mismatch, � = 2 and L2-cost
term, ↵ = 0.0001: Optimal trajectory, actual trajectory, as well as predicted
trajectory.

0 1 2 3 4
t

�1

0

1

u

iteration k = 1

optimal u

current u

0 1 2 3 4
t

�1

0

1

u

iteration k = 2

0 1 2 3 4
t

�1

0

1
u

iteration k = 5

Fig. 14. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

Fig. 15. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

M. Diehl

When does the ZOO-ILC method converge?

54

40/44

Local Convergence Analysis

Theorem 3 (Convergence of ZOO-ILC) [Baumgärtner et al., in preparation]

Regard a fixed point z̄ = (ū, ȳ, �̄, µ̄A) of ZOO-ILC and assume it satisfies
LICQ, SOSC and strict complementarity in the model problem. Then the local
contraction rate is given by the spectral radius ⇢(A) of the matrix

A :=
⇥
Inu 0 0 0

⇤✓@R
@z

(z̄; ū, ȳ)

◆�1

2

664

0
0

JM(ū)� JR(ū)
0

3

775

The ZOO-ILC method converges if ⇢(A) < 1 and diverges if ⇢(A) > 1.

Here, µA are the active constraint multipliers and R(z;u0, y0) is defined by

R(z;u0, y0) :=

2

664

ruLM(u, y,�, µA;u0, y0)
ryLM(u, y,�, µA;u0, y0)
FM(u)� y + y0 � FM(u0)

HA(u, y)

3

775

where the Lagrangian of the model problem is given by

LM(u, y,�, µA;u0, y0) = �(u, y)+�>(FM(u)� y+ y0 �FM(u0))+µ>
AHA(u, y)

and JM(u) and JR(u) are the Jacobians of FM(u) and FR(u).

M. Diehl

When does the ZOO-ILC method converge?

55

40/44

Local Convergence Analysis

Theorem 3 (Convergence of ZOO-ILC) [Baumgärtner et al., in preparation]

Regard a fixed point z̄ = (ū, ȳ, �̄, µ̄A) of ZOO-ILC and assume it satisfies
LICQ, SOSC and strict complementarity in the model problem. Then the local
contraction rate is given by the spectral radius ⇢(A) of the matrix

A :=
⇥
Inu 0 0 0

⇤✓@R
@z

(z̄; ū, ȳ)

◆�1

2

664

0
0

JM(ū)� JR(ū)
0

3

775

The ZOO-ILC method converges if ⇢(A) < 1 and diverges if ⇢(A) > 1.

Here, µA are the active constraint multipliers and R(z;u0, y0) is defined by

R(z;u0, y0) :=

2

664

ruLM(u, y,�, µA;u0, y0)
ryLM(u, y,�, µA;u0, y0)
FM(u)� y + y0 � FM(u0)

HA(u, y)

3

775

where the Lagrangian of the model problem is given by

LM(u, y,�, µA;u0, y0) = �(u, y)+�>(FM(u)� y+ y0 �FM(u0))+µ>
AHA(u, y)

and JM(u) and JR(u) are the Jacobians of FM(u) and FR(u).

M. Diehl

When does the ZOO-ILC method converge?

56

40/44

Local Convergence Analysis

Theorem 3 (Convergence of ZOO-ILC) [Baumgärtner et al., in preparation]

Regard a fixed point z̄ = (ū, ȳ, �̄, µ̄A) of ZOO-ILC and assume it satisfies
LICQ, SOSC and strict complementarity in the model problem. Then the local
contraction rate is given by the spectral radius ⇢(A) of the matrix

A :=
⇥
Inu 0 0 0

⇤✓@R
@z

(z̄; ū, ȳ)

◆�1

2

664

0
0

JM(ū)� JR(ū)
0

3

775

The ZOO-ILC method converges if ⇢(A) < 1 and diverges if ⇢(A) > 1.

Here, µA are the active constraint multipliers and R(z;u0, y0) is defined by

R(z;u0, y0) :=

2

664

ruLM(u, y,�, µA;u0, y0)
ryLM(u, y,�, µA;u0, y0)
FM(u)� y + y0 � FM(u0)

HA(u, y)

3

775

where the Lagrangian of the model problem is given by

LM(u, y,�, µA;u0, y0) = �(u, y)+�>(FM(u)� y+ y0 �FM(u0))+µ>
AHA(u, y)

and JM(u) and JR(u) are the Jacobians of FM(u) and FR(u).

Contraction rate grows with distance between model and real Jacobian.

M. Diehl

Summary and Recent Software Developments

57

• Exploiting convex structures in nonlinear problems is key for reliable and fast
nonlinear MPC algorithms.

• Sequential Convex Programming (SCP) and its variants converge linearly. They
avoid “bad” minimizers (where the nonlinearity dominates the convex substructure).

• Zero-Order Optimization allows us to design theoretically solid Iterative Learning
Control algorithms. They can recover an optimal solution in special cases.

• Latest open-source (BSD 3) software developments from the team are:
• BLASFEO: Basic Linear Algebra Subroutines For Embedded Optimization (Frison et al.),

targeting dense matrices from 10x10 to 400x400
• HPIPM: interior point QP/QCQP solver for block-sparse problems with optimal control and tree

structure, based on BLASFEO (Frison et al., IFAC 2020)
• acados: Nonlinear MPC and MHE library implementing SCP type algorithms, using HPIPM

and CasADi, with user interfaces from MATLAB and Python (Verschueren, Kouzoupis, Frison,
Frey et al., successor of ACADO)

•

M. Diehl

Summary and Recent Software Developments

58

• Exploiting convex structures in nonlinear problems is key for reliable and fast
nonlinear MPC algorithms.

• Sequential Convex Programming (SCP) and its variants converge linearly. They
avoid “bad” minimizers (where the nonlinearity dominates the convex substructure).

• Zero-Order Optimization allows us to design theoretically solid Iterative Learning
Control algorithms. They can recover an optimal solution in special cases.

• Latest open-source (BSD 3) software developments from the team are:
• BLASFEO: Basic Linear Algebra Subroutines For Embedded Optimization (Frison et al.),

targeting dense matrices from 10x10 to 400x400
• HPIPM: interior point QP/QCQP solver for block-sparse problems with optimal control and tree

structure, based on BLASFEO (Frison et al., IFAC 2020)
• acados: Nonlinear MPC and MHE library implementing SCP type algorithms, using HPIPM

and CasADi, with user interfaces from MATLAB and Python (Verschueren, Kouzoupis, Frison,
Frey et al., successor of ACADO)

• pycombina: fast solution of a special class of mixed integer linear programs arising in the
combinatorial integral approximation (CIA) method for nonlinear mixed integer optimal control
(Bürger et al., IFAC 2020)

M. Diehl

Thank you

59

M. Diehl

Nonlinear Mixed-Integer MPC of a Solar Adsorptive Cooling Machine
[Bürger et al., 2019]

60

“thesis” — 2020/1/8 — 17:09 — page 76 — #110

76 A SOLAR THERMAL TEST PLANT FOR MPC OF RENEWABLE ENERGY SYSTEMS

Figure 4.2: Depiction of (1) the Vacuum Tube Solar Collectors (VTSC) on the
roof of the building and (2) the temperature sensor at the array outlet.

A. Bürger. For this work, a reduced version which relies solely on the MQTT
communication protocol was implemented by A. Bürger, partially adopting
and/or adapting implementations from the scope of [96].

4.1 Description of system and components

The plant presented in this chapter is a solar-thermally driven climate system
installed in the building of the Faculty of Management Science and Engineering
at Karlsruhe University of Applied Sciences. During summer, the system is
used for covering cooling loads of the atrium of the faculty building, and during
winter for heating support.

A schematic depiction of the system setup and the involved components is given
in Figure 4.1. On the roof of the building, two arrays of solar thermal collectors

Figure 4.3: Depiction of (1) the Flat Plate Solar Collectors (FPSC) on the roof
of the building and (2) the temperature sensor at the array outlet.

-- Draft version, for internal use only --

“thesis” — 2020/1/8 — 17:09 — page 77 — #111

DESCRIPTION OF SYSTEM AND COMPONENTS 77

Figure 4.4: Depiction of components installed in the cellar: (1) control cabinet,
(2) Low Temperature Storage (LTS), (3) Adsorption Cooling Machine (ACM),
(4) High Temperature Storage (HTS), (5) pump Pssc, (6) pump Ppsc, (7) pump
Plc, (8) Solar Heat Exchanger (SHX).

are installed, see Figure 4.2 and Figure 4.3. The solar heat collected by these
arrays is transported into the cellar of the building and stored in a stratified
High Temperature Storage (HTS), see Figure 4.4. The Fan Coil Units (FCUs)
installed behind a plumbing wall in the atrium of the building, see Figure 4.5,
can be supported directly by the HTS for heating of the room air during winter.

During summer, the HTS can support an Adsorption Cooling Machine (ACM)
which utilizes the solar heat to generate cooling power. Cooling energy produced
this way is stored in a Low Temperature Storage (LTS) which can support the
FCUs for cooling of the room air during summer. At the roof of the building,
a Recooling Tower (RT) is installed for dissipation of heat, see Figure 4.6. In

Figure 4.5: Fan Coil Units installed in the atrium of the building: (1) plumbing
wall, (2) installation of FCUs behind the plumbing wall (picture taken during
installation of the components, now covered by wooden panels).

-- Draft version, for internal use only --

“thesis”
—

2020/1/8
—

17:09
—

page
101

—
#

135

C
O

N
T

R
O

L
-O

R
IE

N
T

E
D

M
O

D
E

L
IN

G
O

F
T

H
E

S
Y

S
T

E
M

101

Figure 5.1: Schematic depiction of the solar thermal climate system model.

-- D
ra

ft v
e
rs

io
n

, fo
r in

te
rn

a
l u

s
e
 o

n
ly

 --

Nonlinear ODE with 39 states, 6
continuous and 2 binary inputs.
Contains combinatorial constraints
such as minimum uptime, minimum
downtime, …

Predict 24 hours. Aim: minimise
electricity consumption.

M. Diehl

1. Solve Nonlinear Optimal Control Problem with Relaxed Integer Controls,
using direct collocation or multiple shooting and a nonlinear programming
(NLP) solver.

2. Find the integer input trajectory that
(a) satisfies all combinatorial constraints and
(b) minimises the distance to the relaxed input trajectory (- norm of the integrals)

(pycombina algorithm is 10-100x times faster than standard MILP solver)

3. Fix the integer inputs and reoptimize over all remaining variables by solving
another NLP.

L∞

“thesis” — 2020/1/11 — 23:24 — page a — #1

Albert-Ludwigs-Universität Freiburg

Technische Fakultät

DRAFT

To remove, add ‘final’ to class options

Nonlinear mixed-integer
model predictive control of
renewable energy systems

Methods, software, and experiments

Adrian Bürger

January 2020

University of Freiburg, Faculty of Engineering

Department of Microsystems Engineering

Systems Control and Optimization Laboratory

-- Draft version, for internal use only --

Three Stage Algorithm [Sager et al., Bürger et al.]

61

M. Diehl

Experimental Results from Sept 14-17, 2019

62

“thesis” — 2020/1/8 — 17:09 — page 143 — #177

CONTINUOUS OPERATION UNDER VARYING AMBIENT CONDITIONS 143

Se
p
14
, 1
3:
00

Se
p
14
, 2
1:
00

Se
p
15
, 0
5:
00

Se
p
15
, 1
3:
00

Se
p
15
, 2
1:
00

Se
p
16
, 0
5:
00

Se
p
16
, 1
3:
00

Se
p
16
, 2
1:
00

Se
p
17
, 0
5:
00

Time

21
22
23
24
25
26

T
em

p
.
(◦
C
)

Tt,r,a,1 Tt,r,a,3 Tt,r,c,1 Tt,r,c,3

0.00
0.25
0.50
0.75
1.00
1.25

S
ol
.
ir
ra
d
.
(k
W

/m
2
)Ifpsc Ivtsc

0.0
0.2
0.4
0.6
0.8
1.0

O
p
er
.
le
ve
l
([
0,
1]
)vppsc pmpsc

0.00
0.25
0.50
0.75
1.00

O
p
er
.
le
ve
l
([
0,
1]
)vpssc

ṁo,hts,b

ṁssc

ṁi,hts,b

ṁac,ht

0

1

A
C
M

st
at
u
s
({
0,
1}
)bacm bfc bec

0.00
0.25
0.50
0.75
1.00

O
p
er
.
le
ve
l
([
0,
1]
)vplc

9
13
17
21
25
29
33

T
em

p
.
(◦
C
)

Tamb

15
30
45
60
75
90
105

T
em

p
.
(◦
C
)

Tfpsc Tvtsc

40
50
60
70
80
90

T
em

p
.
(◦
C
)

Tht,1 Tht,2 Tht,3 Tht,4

10
12
14
16
18
20
22
24

T
em

p
.
(◦
C
)

Tlt,1 Tlt,2 Tfcu,w

Figure 6.5: Temperature measurements and control actions for the system
operated using mixed-integer nonlinear MPC from September 14, 2019, 06:00
to September 17, 2019, 06:00.

-- Draft version, for internal use only --

“thesis” — 2020/1/8 — 17:09 — page 143 — #177

CONTINUOUS OPERATION UNDER VARYING AMBIENT CONDITIONS 143

Se
p
14
, 1
3:
00

Se
p
14
, 2
1:
00

Se
p
15
, 0
5:
00

Se
p
15
, 1
3:
00

Se
p
15
, 2
1:
00

Se
p
16
, 0
5:
00

Se
p
16
, 1
3:
00

Se
p
16
, 2
1:
00

Se
p
17
, 0
5:
00

Time

21
22
23
24
25
26

T
em

p
.
(◦
C
)

Tt,r,a,1 Tt,r,a,3 Tt,r,c,1 Tt,r,c,3

0.00
0.25
0.50
0.75
1.00
1.25

S
ol
.
ir
ra
d
.
(k
W

/m
2
)Ifpsc Ivtsc

0.0
0.2
0.4
0.6
0.8
1.0

O
p
er
.
le
ve
l
([
0,
1]
)vppsc pmpsc

0.00
0.25
0.50
0.75
1.00

O
p
er
.
le
ve
l
([
0,
1]
)vpssc

ṁo,hts,b

ṁssc

ṁi,hts,b

ṁac,ht

0

1

A
C
M

st
at
u
s
({
0,
1}
)bacm bfc bec

0.00
0.25
0.50
0.75
1.00

O
p
er
.
le
ve
l
([
0,
1]
)vplc

9
13
17
21
25
29
33

T
em

p
.
(◦
C
)

Tamb

15
30
45
60
75
90
105

T
em

p
.
(◦
C
)

Tfpsc Tvtsc

40
50
60
70
80
90

T
em

p
.
(◦
C
)

Tht,1 Tht,2 Tht,3 Tht,4

10
12
14
16
18
20
22
24

T
em

p
.
(◦
C
)

Tlt,1 Tlt,2 Tfcu,w

Figure 6.5: Temperature measurements and control actions for the system
operated using mixed-integer nonlinear MPC from September 14, 2019, 06:00
to September 17, 2019, 06:00.

-- Draft version, for internal use only --

Every 2 minutes, a new nonlinear mixed integer optimal control problem is
solved, using a real-time algorithm based on CasADi, IPOPT [Wächter and
Biegler 2006], and Pycombina [Bürger et al, 2019], an implementation of
the combinatorial integral approximation (CIA) method [Sager 2009].

M. Diehl

Details on recent algorithmic developments
• Inexact Newton with Iterated Sensitivities (INIS) [Quirynen et al, 2017]:

partial answer to Potschka’s problem,achieves same contraction rate for
optimisation as for simulation problem with wrong Jacobian

• Mutligrid INIS for Elliptic PDE Optimization (Pearse-Danker)
• Zero-Order SCP Methods for MPC [Zanelli et al. 2019]
• Zero-Order Moving Horizon Estimation [Baumgärtner et al. 2019]:

surprisingly, consistently wrong derivatives can result in same estimation
error as exact optimisation

• iterative learning control via zero-order optimization
• BLASFEO [Frison et al, 2018, 2020]: Basic Linear Algebra Subroutines for

Embedded Optimization: up to 5x speedup against BLAS on matrix
dimensions below 300 x 300

• HPIPM [Frison et al., submitted]: BLASFEO based QP solver for optimal
control problems

• General Nonlinear Static Feedback (GNSF) structure detection and
exploitation in DAE solvers [Frey et al. 2019]

• acados [Verschueren et al., submitted]: stand-alone nonlinear optimal control
package for embedded optimization, building on BLASFEO, HPIPM,
qpOASES, GNSF Integrators, SCQP, CasADi,

63

