Mixed Integer Model Predictive Control for Renewable Energy Systems

— Formulations and Applications —

Dr. Lilli Frison

University of Freiburg and Fraunhofer ISE

July 18, 2023

universitatfreiburg



Outline of talk

Introduction to MIMPC
m Motivation
m Formulations and solution methods
m MIP Modelling techniques
m MI-NMPC Applications in RES

MPC for district heating networks with multiple decentral heat producers
m Primer on control in district heating networks
m Problem formulation
m Real world application: Heating network in Weil am Rhein

MIMPC for RES — Lecture 1 L. Frison, University Freiburg and Fraunhofer ISE



Table of Contents

Introduction to MIMPC
m Motivation

MIMPC for RES — Lecture 1 L. Frison, University Freiburg and Fraunhofer ISE 2



Motivation

® What is Mixed-integer Programming?
MIP is an optimization method that combines continuous and discrete variables

® Why is it useful?
MIP can model complex planning and control problems involving both continuous and
discrete decisions

® Why now? Is MIP new?

MIP is not a new concept, BUT online use (— MPC) has only arrived with fast computers
and software
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Classes of optimization problems

(nonlinear) convex non-convex integer

T|F
TX\/
FIVIV

QP/NLP Can approx. by MIP MIP

Adopted from Mixed-integer Programming for Control notes by Arthur Richards and Jonathan How https://seis.bristol.ac.uk/~aeagr/acc0O5_tut_mip.pdf
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Modelling with integer variables

If the variable is associated with a physical entity that is indivisible, then it must be integer:
number of wind turbines to be placed, to take or not to take an (expensive) measurement, ...

We can use integer or 0-1 (binary) variables to
® logic: model decisions (yes/no), disjunctions (either-or), implications (if-then)
® plant dynamics: on-off, minimum on-time/off-time, number of on-times, minimum
power,...

® model discontinuous dynamics (to some extend): phase change material (PCM) storage,
change in flow direction

And, in the context of general modeling techniques:
® to model piecewise linear or affine (continuous) functions

® to convexify/linearize nonlinear/nonconvex dynamics
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MIOCP formulation

min J(x,u,v)
st @) = fz(t),ult),v(t)), te[0,7],  (ODE model)
z(0) = o, (fixed initial value)
0 > hz(t),ut),v(t)), t e 0,17, (path constraints)
o(t) € Z™ (integer controls)

® Usual assumption: J, f, h sufficiently smooth
® Can equivalently be formulated with binary controls b(t) € {0,1}™
® |LMPC or special structure makes problem easier to solve, e.g.: switched nonlinear system

i(t) = folx +Zb fi(z(t),u(t))  where b(t) € {0,1}"

np
with special ordered set type 1(SOS1) constraint Zbi =1
=1
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Optimal control methods for solving MIOCP

¢ (MINLP) generally NP-hard

¢ Branch-and-bound with NLP
subproblems:

Numerical approaches

Dynamic
Programming

— “Curse of dimensionality”

Indirect
Methods

— BVP difficult to solve

Direct
Methods

— (MINLP)
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MINLP

. MILP
weRI’]El,lzneZ’" f(z,2) min (@) + £ (2)
TER™,z€Z™
st 0=g(z,2), t. Az + Asz<b
s.t.
0> h(z,2) " e

Solution methods (MILP & MINLP):

® Branch & Bound (B&B): divide and conquer approach

e Other methods (e.g. Cutting Plane) and extensions (e.g. Branch & Cut) are used to
accelerate solution.

® For MINLP: convex relaxations and other decomposition methods

® Software: HiGHS (open-source, MILP/MIQP), SCIP (open-source), BONMIN (Basic
Open-source Nonlinear Mixed Integer), CPLEX, Gurobi, MOSEK; most are mature only
for MILP, convex MINLP
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Branch & Bound (B&B)

e Systematically explore search space by branching on variables and pruning sub-optimal
branches using previously found solution bounds + techniques to handle nonlinearities
(interval arithmetic, convex hull relaxations, LP relaxations)

® Algorithm: search the enumeration tree, but at each node:

1. Solve the relaxed problem at the node (e.g. with LP or conxev optimization solver)
2. Eliminate the subtree (fathom it) if

The solution is integer (there is no need to go further), or,
the best solution in the subtree cannot be as good as the best available solution (the
incumbent), or,
there is no feasible solution.
® Challenge non-convex MINLP: computationally intensive + absence of efficient global

optimization methods (no good bounds for pruning)
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Piecewise affine functions

® Any continuous nonlinear function can be arbitrarily well approximated by a Piecewise Affine (PWA)
function

® Any PWA function can be encoded using MILP
® Advantage of the MILP approach over NLP: handling of non-convexity
Minimization of a continuous PWA function f(z), X1 < z < X can be written as MILP:

N
min E yi i
x
i=1 where

® values at intermediate points f (X;) = F};

N
s.t. y; =1
; ‘ ® binary variable z; = 1if X; <z < X;414
v >0 Vie{l...N} (choosing which interval the solution lies in)

® "multipliers” y; and y;+1 of the function values at the ends

<
Y1 ; 21 Vie (2. N1} of that interval
. Zi—1 + zi i€ cee -
Yi S Zi—1t+ 2 ® f(z) = y;F; + yit1Fiy1 corresponding to
yN < ZN-1

T =y Xi +yir1Xit1
N-1

> zi=1,2€{0,1}

i=1
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Disjunctions and Non-convex Sets

One of two constraints must be satisfied, e.g., either alz < by or al'z < by

MILP formulation:

a{xﬁbl—i—le
agxgbg—l—MzQ
21+ 20 <1

where
® 21 and zo are additional binary variables
® M is a very large positive number ("big- M ")
® if M was chosen sufficiently large, this constraint is effectively relaxed

® the binary variables z; and z2 encode a choice of which constraint to apply, and the
logical constraint ensures that at least one of them is applied.
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MIP in Optimal Control

Modeling of practical applications often leads to nonlinear differential equations with integer
controls/dynamics.
Typical examples in RES:
® Valve/plant is either open or closed
® Minimum thermal power if plant is on
® Minimum up/down times

® Different operating modes, e.g.
electric battery mode (in)active,
ice-storage mode vs. water storage
mode, free cooling mode is on vs.
mechanical cooling

® One out of multiple alternative
producers is active
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Example 1: (at most) One of multiple producers is active

Prosumer-based solar district heating networks
® optimal heat distribution between prosumers in the network

® binary controls: b = bgp, U ({bi,j}lgi,jSM,iqéj)
bann = 1: DHN mode is activated,
b; ; = 1: heat transfer from building ¢ to j on

® at most one operation at each time point: either central heat
provider (DHN) or building-level heat transfer

bann + Z bi; <1 U B 2
1<4,j<M,i#j Heat transfer between two buildings: bgnn, = 0
. : o om [ H
® bilinear dependence (nonlinear), e.g.: U@ or %u;ﬁ
o Md T Ry
Qi (1) = bi s (Dri(t)ew (Ti(t) — T5(1)) SRR m Site ey

Central heat provider mode: bgn, = 1
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Example 2: Pressure loss in heating networks

The mass flow in a pipe is determined by the nodal pressure of the interconnection nodes

1
. 2
sign(fi.j)fiy = 3 (Pi = ;)

where f; ; =1, ; denotes the mass flow of pipe ¢ — j, p; is the nodal pressure of node 7 in the
heating network and K is the resistance coefficients of the pipe (depends on roughness and

diameter of pipe) !

o sign(fi,j)fﬁj is non-convex depending on flow direction f; ; >0 or f; ; <0

IThis holds under certain simplifications: horizontal pipelines, laminar flow, ...
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Replacing the signum function: the NLP way

® Assume |f; ;| < F for all i, j
® Binary variable z; ; to indicate the flow direction

b — 1 fi; >0 fi; >—F(1—z)
“ 0 fij <0 fij < Fzy

® Since
sign (fZJ) = 221'3' —1
we can replace the original non-convex function with

1
(225 — 1) 7 — X (pi —p;) =0.
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Replacing the signum function: the MIP way

Summarized:

< Fa
® z; € {0,1} : Indicator for positive flow f;; > 0 Ji - ;i]
® y;; € {0,1} : Indicator for negative flow f;; < 0 fis 2 =Fyy
. Zij +yij = 1
Constraints: .
2 < L (p; —p;) fi + Mz < M+ = (i = p;)
Jij>0= { A I 1
fijzf(pi_pj) f2+m2“>m+—(‘— )
17 1] = K Di pj
< % (0j—pi) 1
i <0=q 'YK M 24 Ly <L+ — (pj—pi
f] { %Z%(pj—pi) ij Yij > K(pj p)
1
Turn on/off using big-M/small-m formulation. fj + ly;; > 0+ 7 (pj —pi)

We obtain a convex function. Such reformulations are neither obvious nor always possible.
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Example 3: Unit commitment problem in heating networks

The unit commitment problem in thermal power production deals with the cost optimal
scheduling with forecasted demands of on/off decisions and output levels for generating units
in a thermal power system over a certain time horizon.

Hybrid (= mixed-integer/discrete) constraints:
® Min./Max. power
® Ramp-down and shutdown ramp limits
® Discrete output levels

® Minimum up- and down-time: min. up-time = minimum number of time steps the unit
has to stay committed for once it is switched on
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What can be controlled in DH?

= BUILDING SUBSTATIONS: Mass Flow Control for Heat Transfer
= Manipulated Variable: Valve Position at each transfer station

= Controlled Variable: Mass flow on the network side into the

) ) ) transfer station / Heat output to the transfer station

. .
E)l:i:srti)srj[ﬁz XZ;@%'?R ztaent%r:)%g?;;crleosing = Disturbance Variable: changing heat demand on the building side.
of valves (substations) Possibly additional
constraints due to min/max mass flows,
min/max temperature, storage charging.

= PUMPS: Differential Pressure Control
= Manipulated Variable: Pump Speed
= Controlled Variable: Differential Pressure

Pump

X . X X Valve X

2 ion 3

substation 1@ @ @

Heat producer
Return flow
= HEAT GENERATORS: Flow Temperature, Power
= Manipulated Variable: Generator Output
= Controlled Variable: Flow Temperature (usually
based on heating curve)
= Disturbance Variable: changes in mass flow /
return temperature.

= HEATING/DHW: Room Temperature Control in the Building
= Manipulated Variable: Thermostatic Valve Position / Mixing Valve Faucets
= Controlled Variable: Room Temperature / Domestic Hot Water Temperature

= Disturbance Variable: Outside Temperature / Solar Gains / Individual
Behavior of the Occupants.
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Network topology

Producer
@ o N = {1,2,3,4,5)

e N: set of nodes (producers, ) e P={1,23,4}
consumers or junctions) Qll o P = {1}
e P: set of pipes (edges) with P, C P gonsumer Py = {1,2},
set of pipes adjacent to node n <2> Ps ={2,3,4},
® Ny CN = {i1,...,ing, } indices ) Py = {3},
of thermal power generation units Qzl Ps = {4}
o C Q N indices of consumer nodes Consumer /{mction Consumer ° NTU = {1}
O—"Cr—=0© =43
Qs Q4
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Variables

Thermal power generation units:
Q;(t) > 0: Thermal power generated by unit j at time ¢ [MW] (control output)

y;(t) € {0,1}: Binary variable indicating on (1) or off (0) for unit j at time ¢
do
S5(
SP(

J

t) € {0,1}: Binary variable indicating switch down for unit j at time ¢
t) € {0,1}: Binary variable indicating switch up for unit j at time ¢

Network:
Q,(t) € R: Power flow through pipe p [MW] (can be > 0/ < 0 depending on direction)
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Objective function and parameters

Goal: Minimize operational costs
Formulation: No Nru

JQ) =Y (e + 570

Np: Number of time steps

Nry: Number of thermal power generation units

Parameters: W
¢;(t): Costs of producing one unit of heat at plant j at time t {ﬁ]

¢y Start-up cost [EUR]

d.(t) € R: Heat demand of consumer c in the set of consumers C

Generation types: Boiler (Gas/Oil), Biomass, CHP, (Electricity)

MIMPC for RES — Lecture 1 L. Frison, University Freiburg and Fraunhofer ISE 26



Constraints

1. Network

2. Thermal power generation units
Define switches
Maximum power
Maximum capacity
Ramp-up and start-up ramp limits
Minimum power
Minimum capacity
Ramp-down and shutdown ramp limits
Discrete output levels
Minimum up- and down-time
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Constraints - Network

Energy conservation:
Nodes are connected to each other with pipes and can exchange a heat flow through the

pipes Qp,n-
Sum of the incoming and outgoing heat flows at the specific node n € N for each connected

producer j € Ny, consumer ¢ € C or pipe p € Pi,.

ST Qi) D> de(®)+ D> Qp(t)=0 t=0,.,Np, neN

JENTU ,n=F ceC,n=c PEPn

Bounds:

Q™ < Qp(t) QY™ forallpeP
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Constraints - Thermal power generation units

Detect switches: u °
Y () —y;(t — 1) = SyP(t) — S5°(t),

SIP(t) + S5°(t) < 1.

Minimum up-time (down-time similar)?: for each thermal unit j € N'ry with min. up-time UT,

Unit is already on, must remain committed for the first L;p intervals:
LYP 1

J

> (—yi(k) =0.

k=0

Unit continues generating power for the remaining intervals if it is switched on in the control horizon:
t

ST ST (k) < wi(h), forallt = {L}",...,Nr},
k=t—UT;+1
L;p =UT; — UTo; : no. timesteps unit has to stay on (memory of its operational history before the first time step).

no. timesteps unit has been on

?Reference: https://dominoweb.draco.res.ibm.com/cdcb02a7c809d89e8525702300502ac0. html
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MILP formulation summary

Np Nty
min Z Z (Q](t )ci(t) +Sup(t) )
t=0 j=1

Q,y,Sup
st Qi = D> de®+ D Qp(t)=0  t=0,.,Np, n€N
JENTU,j=n ceC,c=n pEP,
L‘;p—l
> (A —yik) =0, for all j € Ny
k=0
t
D> SP(k) <ys(0), forall t ={LY +1,..., Nz}, j € Nru
k=t—UT;
Q‘;“i" <Qp(t) < Q;"ax forallpe P
Q;(t) >0 for all j € Ny
y(t) € {0, 1}NVTU | 8uP(¢) € {0, 1}NTU t=0,.,Np

(without maximum/minimum capacity, ramp up/down, discrete output level constraints)
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MPC for district heating networks with multiple decentral heat produce

= MPC for the control of heating networks with
decentralized energy sources/storage facilities

| = Power and heat optimized operation

- MI-LMPC, MI-NMPC

= Demonstration sites Weil am Rhein &
Rheinfelden
= 3-10 producers:
CHP, biomass, heat pump
gas and oil boiler for peak loads
waste heat source
= storage tanks
= Current control: Rule based prioritization between
production units

Ver "Wa : WOpS - Wa Optimi zur Sek
in Fernwéarmenetzen mitttels MPC unter Beriicksichtigung eines strommarktorientierten
Betriebes

MIMPC for RES — Lecture 1 L. Frison, University Freiburg and Fraunhofer ISE 32



Network: Weil am Rhein

® Consumers scaled based on
total consumption in 2022

Biomass &

Oil Boiler

Subnetwork North

Heat production units

CHP; Gas Boilers

& Storage
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Network model

1 Biomass Boiler

2 Oil Boiler

2

3 Consumer North

3
10 9 4 4 5 > 6 8 7 7 8 8 9
Consumer CHP Storage Gas Gas Consumer
West Boiler | Boiler Il East
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Parameters

Production unit Unit Biomass boiler Oil boiler CHP  Gas boiler 1/11
Subnetwork North North East East
Maximum capacity MW 2.0 1.6 0.87 1.16
Minimum capacity MW 0.7 1.2 0.43 0.29
Ramp-up/-down MW /h 0.2 26.1 1.32 26.1
Start-up time min 15 15 15 15
Minimum runtime h 350 0.25 1 0.25
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MPC of an exemplary day in December
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