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Motivation

• What is Mixed-integer Programming?
• MIP is an optimization method that combines continuous and discrete variables

• Why is it useful?
• MIP can model complex planning and control problems involving both continuous and

discrete decisions

• Why now? Is MIP new?
• MIP is not a new concept, BUT online use (→ MPC) has only arrived with fast computers

and software
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Classes of optimization problems

(nonlinear) convex non-convex integer

QP/NLP Can approx. by MIP MIP

Adopted from Mixed-integer Programming for Control notes by Arthur Richards and Jonathan How https://seis.bristol.ac.uk/~aeagr/acc05_tut_mip.pdf
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Modelling with integer variables

If the variable is associated with a physical entity that is indivisible, then it must be integer:
number of wind turbines to be placed, to take or not to take an (expensive) measurement, ...

We can use integer or 0–1 (binary) variables to

• logic: model decisions (yes/no), disjunctions (either-or), implications (if-then)

• plant dynamics: on-off, minimum on-time/off-time, number of on-times, minimum
power,...

• model discontinuous dynamics (to some extend): phase change material (PCM) storage,
change in flow direction

And, in the context of general modeling techniques:

• to model piecewise linear or affine (continuous) functions

• to convexify/linearize nonlinear/nonconvex dynamics
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MIOCP formulation

min
x,u,v

J(x, u, v)

s.t. ẋ(t) = f(x(t), u(t), v(t)), t ∈ [0, T ], (ODE model)
x(0) = x0, (fixed initial value)

0 ≥ h(x(t), u(t), v(t)), t ∈ [0, T ], (path constraints)
v(t) ∈ Znv (integer controls)

• Usual assumption: J, f, h sufficiently smooth
• Can equivalently be formulated with binary controls b(t) ∈ {0, 1}nb

• LMPC or special structure makes problem easier to solve, e.g.: switched nonlinear system

ẋ(t) = f0(x(t), u(t)) +

nb∑
i=1

bifi(x(t), u(t)) where b(t) ∈ {0, 1}nb

with special ordered set type 1(SOS1) constraint

nb∑
i=1

bi = 1
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Optimal control methods for solving MIOCP
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MIPs

MINLP
min

x∈Rn,z∈Zm
f (x, z)

s.t. 0 = g(x, z),

0 ≥ h(x, z)

MILP
min

x∈Rn,z∈Zm
f⊤
1 (x) + f⊤

2 (z)

s.t. A1x+A2z ≤ b

Solution methods (MILP & MINLP):

• Branch & Bound (B&B): divide and conquer approach

• Other methods (e.g. Cutting Plane) and extensions (e.g. Branch & Cut) are used to
accelerate solution.

• For MINLP: convex relaxations and other decomposition methods

• Software: HiGHS (open-source, MILP/MIQP), SCIP (open-source), BONMIN (Basic
Open-source Nonlinear Mixed Integer), CPLEX, Gurobi, MOSEK; most are mature only
for MILP, convex MINLP

MIMPC for RES – Lecture 1 L. Frison, University Freiburg and Fraunhofer ISE 9



Branch & Bound (B&B)

• Systematically explore search space by branching on variables and pruning sub-optimal
branches using previously found solution bounds + techniques to handle nonlinearities
(interval arithmetic, convex hull relaxations, LP relaxations)

• Algorithm: search the enumeration tree, but at each node:

1. Solve the relaxed problem at the node (e.g. with LP or conxev optimization solver)
2. Eliminate the subtree (fathom it) if

• The solution is integer (there is no need to go further), or,
• the best solution in the subtree cannot be as good as the best available solution (the

incumbent), or,
• there is no feasible solution.

• Challenge non-convex MINLP: computationally intensive + absence of efficient global
optimization methods (no good bounds for pruning)
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Piecewise affine functions

• Any continuous nonlinear function can be arbitrarily well approximated by a Piecewise Affine (PWA)
function

• Any PWA function can be encoded using MILP

• Advantage of the MILP approach over NLP: handling of non-convexity

Minimization of a continuous PWA function f(x), X1 ≤ x ≤ XN can be written as MILP:

min
x

N∑
i=1

yiFi

s.t.
N∑
i=1

yi = 1

yi ≥ 0 ∀i ∈ {1 . . . N}
y1 ≤ z1

yi ≤ zi−1 + zi ∀i ∈ {2 . . . N − 1}
yN ≤ zN−1

N−1∑
i=1

zi = 1, zi ∈ {0, 1}

where

• values at intermediate points f (Xi) = Fi

• binary variable zi = 1 if Xi ≤ x ≤ Xi+1

(choosing which interval the solution lies in)

• ”multipliers” yi and yi+1 of the function values at the ends
of that interval

• f(x) = yiFi + yi+1Fi+1 corresponding to
x = yiXi + yi+1Xi+1
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Disjunctions and Non-convex Sets

One of two constraints must be satisfied, e.g., either aT1 x ≤ b1 or aT2 x ≤ b2

MILP formulation:

aT1 x ≤ b1 +Mz1

aT2 x ≤ b2 +Mz2

z1 + z2 ≤ 1

where

• z1 and z2 are additional binary variables

• M is a very large positive number (”big- M ”)

• if M was chosen sufficiently large, this constraint is effectively relaxed

• the binary variables z1 and z2 encode a choice of which constraint to apply, and the
logical constraint ensures that at least one of them is applied.
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MIP in Optimal Control

Modeling of practical applications often leads to nonlinear differential equations with integer
controls/dynamics.

Typical examples in RES:

• Valve/plant is either open or closed

• Minimum thermal power if plant is on

• Minimum up/down times

• Different operating modes, e.g.
electric battery mode (in)active,
ice-storage mode vs. water storage
mode, free cooling mode is on vs.
mechanical cooling

• One out of multiple alternative
producers is active
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Example 1: (at most) One of multiple producers is active

Prosumer-based solar district heating networks

• optimal heat distribution between prosumers in the network

• binary controls: b = bdhn ∪ ({bi,j}1≤i,j≤M,i̸=j)
bdhn = 1: DHN mode is activated,
bi,j = 1: heat transfer from building i to j on

• at most one operation at each time point: either central heat
provider (DHN) or building-level heat transfer

bdhn +
∑

1≤i,j≤M,i̸=j

bi,j ≤ 1

• bilinear dependence (nonlinear), e.g.:

Q̇i,j(t) = bi,j(t)ṁ(t)cw
(
Ti(t)− Tj(t)

)
Heat transfer between two buildings: bdhn = 0

Central heat provider mode: bdhn = 1
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Example 2: Pressure loss in heating networks

The mass flow in a pipe is determined by the nodal pressure of the interconnection nodes

sign(fi,j)f
2
i,j =

1

K
(pi − pj)

where fi,j ≡ ṁi,j denotes the mass flow of pipe i− j, pi is the nodal pressure of node i in the
heating network and K is the resistance coefficients of the pipe (depends on roughness and
diameter of pipe) 1

• sign(fi,j)f
2
i,j is non-convex depending on flow direction fi,j ≥ 0 or fi,j ≤ 0

1This holds under certain simplifications: horizontal pipelines, laminar flow,...
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Replacing the signum function: the NLP way

• Assume |fi,j | ≤ F for all i, j

• Binary variable zi,j to indicate the flow direction

zij =

{
1 fij ≥ 0 fij ≥ −F (1− zij)
0 fij ≤ 0 fij ≤ Fzij

• Since
sign (fij) = 2zij − 1

we can replace the original non-convex function with

(2zij − 1) f2
ij −

1

K
(pi − pj) = 0.
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Replacing the signum function: the MIP way

Summarized:

• zij ∈ {0, 1} : Indicator for positive flow fij > 0

• yij ∈ {0, 1} : Indicator for negative flow fij < 0

Constraints:

fij > 0 ⇒
{

f2
ij ≤ 1

K (pi − pj)
f2
ij ≥ 1

K (pi − pj)

fij < 0 ⇒
{

f2
ij ≤ 1

K (pj − pi)
f2
ij ≥ 1

K (pj − pi)

Turn on/off using big-M/small-m formulation.

fij ≤ Fzij

fij ≥ −Fyij

zij + yij = 1

f2
ij +Mzij ≤ M +

1

K
(pi − pj)

f2
ij +mzij ≥ m+

1

K
(pi − pj)

f2
ij + Lyij ≤ L+

1

K
(pj − pi)

f2
ij + ℓyij ≥ ℓ+

1

K
(pj − pi)

We obtain a convex function. Such reformulations are neither obvious nor always possible.

MIMPC for RES – Lecture 1 L. Frison, University Freiburg and Fraunhofer ISE 19



Example 3: Unit commitment problem in heating networks

The unit commitment problem in thermal power production deals with the cost optimal
scheduling with forecasted demands of on/off decisions and output levels for generating units
in a thermal power system over a certain time horizon.

Hybrid (≡ mixed-integer/discrete) constraints:

• Min./Max. power

• Ramp-down and shutdown ramp limits

• Discrete output levels

• Minimum up- and down-time: min. up-time ≡ minimum number of time steps the unit
has to stay committed for once it is switched on
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What can be controlled in DH?

FHG-SK: ISE-INTERNAL2023-07-15 © Fraunhofer ISESeite 1

Heat producer

Pump

Building 

substation 1

Substation 2 Substation 3

Return flow

Valve

▪ BUILDING SUBSTATIONS: Mass Flow Control for Heat Transfer 

▪ Manipulated Variable: Valve Position at each transfer station

▪ Controlled Variable: Mass flow on the network side into the 
transfer station / Heat output to the transfer station 

▪ Disturbance Variable: changing heat demand on the building side.

▪ HEATING/DHW: Room Temperature Control in the Building 

▪ Manipulated Variable: Thermostatic Valve Position / Mixing Valve Faucets

▪ Controlled Variable: Room Temperature / Domestic Hot Water Temperature

▪ Disturbance Variable: Outside Temperature / Solar Gains / Individual 
Behavior of the Occupants.

▪ HEAT GENERATORS: Flow Temperature, Power 

▪ Manipulated Variable: Generator Output

▪ Controlled Variable: Flow Temperature (usually 
based on heating curve)

▪ Disturbance Variable: changes in mass flow / 
return temperature.

▪ PUMPS: Differential Pressure Control 

▪ Manipulated Variable: Pump Speed

▪ Controlled Variable: Differential Pressure

▪ Disturbance Variable: changing pressure
losses in the network due to opening/closing
of valves (substations) Possibly additional 
constraints due to min/max mass flows, 
min/max temperature, storage charging.
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Network topology

• N : set of nodes (producers,
consumers or junctions)

• P: set of pipes (edges) with Pn ⊆ P
set of pipes adjacent to node n

• NTU ⊆ N = {i1, . . . , iNTU
} indices

of thermal power generation units

• C ⊆ N indices of consumer nodes

• N = {1, 2, 3, 4, 5}
• P = {1, 2, 3, 4}
• P1 = {1},
P2 = {1, 2},
P3 = {2, 3, 4},
P4 = {3},
P5 = {4}

• NTU = {1}
• C = {2, 4, 5}
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Variables

Thermal power generation units:

Q̇j(t) ≥ 0: Thermal power generated by unit j at time t [MW] (control output)

yj(t) ∈ {0, 1}: Binary variable indicating on (1) or off (0) for unit j at time t

Sdo
j (t) ∈ {0, 1}: Binary variable indicating switch down for unit j at time t

Sup
j (t) ∈ {0, 1}: Binary variable indicating switch up for unit j at time t

Network:

Q̇p(t) ∈ R: Power flow through pipe p [MW] (can be ≥ 0/ ≤ 0 depending on direction)
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Objective function and parameters

Goal: Minimize operational costs

Formulation:

J(Q̇) =

NT∑
t=0

NTU∑
j=1

(
Q̇j(t)cj(t) + Sup

j (t)cpj

)
NT : Number of time steps

NTU : Number of thermal power generation units

Parameters:

cj(t): Costs of producing one unit of heat at plant j at time t

[
MW

EUR

]
cpj : Start-up cost [EUR]

dc(t) ∈ R: Heat demand of consumer c in the set of consumers C

Generation types: Boiler (Gas/Oil), Biomass, CHP, (Electricity)
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Constraints

1. Network

2. Thermal power generation units
• Define switches
• Maximum power

• Maximum capacity
• Ramp-up and start-up ramp limits

• Minimum power
• Minimum capacity
• Ramp-down and shutdown ramp limits

• Discrete output levels
• Minimum up- and down-time
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Constraints - Network

Energy conservation:

• Nodes are connected to each other with pipes and can exchange a heat flow through the
pipes Q̇p,n.

• Sum of the incoming and outgoing heat flows at the specific node n ∈ N for each connected
producer j ∈ NTU , consumer c ∈ C or pipe p ∈ Pn.∑

j∈NTU ,n=j

Q̇j(t)−
∑

c∈C,n=c

dc(t) +
∑
p∈Pn

Q̇p(t) = 0 t = 0, .., NT , n ∈ N

Bounds:

Q̇min
p ≤ Q̇p(t) ≤ Q̇max

p for all p ∈ P
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Constraints - Thermal power generation units

Detect switches:
yj(t)− yj(t− 1) = Sup

j (t)− Sdo
j (t),

Sup
j (t) + Sdo

j (t) ≤ 1.

Minimum up-time (down-time similar)2: for each thermal unit j ∈ NTU with min. up-time UTj

Unit is already on, must remain committed for the first Lup
j intervals:

L
up
j

−1∑
k=0

(1 − yj(k)) = 0.

Unit continues generating power for the remaining intervals if it is switched on in the control horizon:

t∑
k=t−UTj+1

S
up
j (k) ≤ yj(t), for all t = {Lup

j , . . . , NT },

L
up
j = UTj − UT0j︸ ︷︷ ︸

no. timesteps unit has been on

: no. timesteps unit has to stay on (memory of its operational history before the first time step).

2Reference: https://dominoweb.draco.res.ibm.com/cdcb02a7c809d89e8525702300502ac0.html
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MILP formulation summary

min
Q̇,y,Sup

NT∑
t=0

NTU∑
j=1

(
Q̇j(t)cj(t) + Sup

j (t)cpj

)
s.t.

∑
j∈NTU ,j=n

Q̇j(t)−
∑

c∈C,c=n

dc(t) +
∑

p∈Pn

Q̇p(t) = 0 t = 0, .., NT , n ∈ N

L
up
j −1∑
k=0

(1− yj(k)) = 0, for all j ∈ NTU

t∑
k=t−UTj

Sup
j (k) ≤ yj(t), for all t = {Lup

j + 1, . . . , NT }, j ∈ NTU

Q̇min
p ≤ Q̇p(t) ≤ Q̇max

p for all p ∈ P

Q̇j(t) ≥ 0 for all j ∈ NTU

y(t) ∈ {0, 1}NTU , Sup(t) ∈ {0, 1}NTU t = 0, .., NT

(without maximum/minimum capacity, ramp up/down, discrete output level constraints)
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MPC for district heating networks with multiple decentral heat producers

FHG-SK: ISE-INTERNAL

▪ MPC for the control of heating networks with 

decentralized energy sources/storage facilities

▪ Power and heat optimized operation

→ MI-LMPC, MI-NMPC

▪ Demonstration sites Weil am Rhein & 
Rheinfelden
▪ 3-10 producers: 
▪ CHP, biomass, heat pump
▪ gas and oil boiler for peak loads
▪ waste heat source

▪ storage tanks
▪ Current control: Rule based prioritization between

production units

Verbundvorhaben: EnEff:Wärme: WOpS - Wärmefluss-Optimierung zur Sektorenkopplung 

in Fernwärmenetzen mitttels MPC unter Berücksichtigung eines strommarktorientierten 

Betriebes

©
 F

ra
u
n
h
o
fe

r 
IS

E
©

 F
ra

u
n
h
o
fe

r 
IS

EMIMPC for RES – Lecture 1 L. Frison, University Freiburg and Fraunhofer ISE 32



Network: Weil am Rhein
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Network model
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Parameters

Production unit Unit Biomass boiler Oil boiler CHP Gas boiler I/II
Subnetwork North North East East

Maximum capacity MW 2.0 1.6 0.87 1.16
Minimum capacity MW 0.7 1.2 0.43 0.29
Ramp-up/-down MW/h 0.2 26.1 1.32 26.1
Start-up time min 15 15 15 15

Minimum runtime h 350 0.25 1 0.25
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MPC of an exemplary day in December
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