Implicit Central Difference Approximations of Averaged Dynamics of Oscillatory Systems

Jakob Harzer, Jochem De Schutter, Per Rutquist and Moritz Diehl

Syscop Group Retreat Autumn 2023
September 18, 2023
Optimization
Simulation
Implicit Central Difference Approximations of Averaged Dynamics of Oscillatory Systems
Implicit Central Difference Approximations of Averaged Dynamics of Oscillatory Systems
Setting

\[x(\tau) \quad \text{is a trajectory of} \quad \frac{dx}{d\tau} = F(X) \quad (1) \]

But unfortunately we don’t know the dynamics \(F \).

At some \(X^* = X(\tau^*) \) approximate \(F(X^*) \).

Tool: Solution Operator

\[X(\tau + 1) = \Phi_F(X^*) \quad (2) \]
\(X(\tau) \) is a trajectory of

\[
\frac{d}{d\tau} X = F(X)
\]

(1)
Setting

\[x(\tau) \]

\[X(\tau) \]

\[\tau \]

\[\tau^{\ast} \]

\[X^{\ast} \]

\[F \]

\[d_{\tau} X = F(X) \quad (1) \]

\[\text{But unfortunately we don’t know the dynamics } F \]
Setting

- $X(\tau)$ is a trajectory of
 \[
 \frac{d}{d\tau} X = F(X) \tag{1}
 \]

- But unfortunately we don’t know the dynamics F

- At some $X^* = X(\tau^*)$ approximate $F(X^*)$

Implicit Central Difference Approximations

J. Harzer, J. De Schutter, P. Rutquist and M. Diehl
\[\tau^* - 1 \leq \tau \leq \tau^* \leq \tau^* + 1 \]

- \(X(\tau) \) is a trajectory of
 \[\frac{d}{d\tau} X = F(X) \] (1)

- But unfortunately we don’t know the dynamics \(F \)

- At some \(X^* = X(\tau^*) \) approximate \(F(X^*) \)

- Tool: Solution Operator
 \[X(\tau + 1) = \Phi_1^F(X(\tau)) \] (2)
Setting

$\tau^* - 1 \quad \tau^* \quad \tau^* + 1$

$X(\tau)$ is a trajectory of

$$\frac{d}{d\tau} X = F(X)$$ \hspace{1cm} (1)

But unfortunately we don’t know the dynamics F.

At some $X^* = X(\tau^*)$ approximate $F(X^*)$.

Tool: Solution Operator

$$X(\tau + 1) = \Phi_1^F(X(\tau))$$ \hspace{1cm} (2)

$$= \Psi^1(X(\tau))$$ \hspace{1cm} (3)
Setting

- $X(\tau)$ is a trajectory of
 \[
 \frac{d}{d\tau} X = F(X) \quad (1)
 \]
- But unfortunately we don’t know the dynamics F
- At some $X^* = X(\tau^*)$ approximate $F(X^*)$
- Tool: Solution Operator
 \[
 X(\tau + 1) = \Phi^F_1(X(\tau)) = \Psi^1(X(\tau)) \quad (2)
 \]
Setting

$\tau^* - 1 \rightarrow \tau^* \rightarrow \tau^* + 1$

$\nabla \ n(\tau)$

$X(\tau)$ is a trajectory of

$$\frac{d}{d\tau} X = F(X) \quad (1)$$

But unfortunately we don’t know the dynamics F.

At some $X^* = X(\tau^*)$ approximate $F(X^*)$.

Tool: Solution Operator

$$X(\tau + 1) = \Phi_1^F(X(\tau)) \quad (2)$$

$$= \Psi^1(X(\tau)) \quad (3)$$

Implicit Central Difference Approximations

J. Harzer, J. De Schutter, P. Rutquist and M. Diehl
Setting

$X(\tau)$ is a trajectory of

$$\frac{d}{d\tau} X = F(X) \quad (1)$$

But unfortunately we don’t know the dynamics F.

At some $X^* = X(\tau^*)$ approximate $F(X^*)$.

Tool: Solution Operator

$$X(\tau + 1) = \Phi_1^F(X(\tau)) \quad (2)$$

$$= \Psi_1^F(X(\tau)) \quad (3)$$
Dynamics Approximations

\[\mathbf{F}(\mathbf{X}^*) \approx \Psi_1(\mathbf{X}^*) - \mathbf{X}^*_1(4) \]
Dynamics Approximations

\[\tau^* - 1 \quad \tau^* \quad \tau^* + 1 \]

\[x(\tau) \quad X(\tau) \]

\[F(\tau) \approx \Psi(\tau) \]

Implicit Central Difference Approximations

J. Harzer, J. De Schutter, P. Rutquist and M. Diehl
Dynamics Approximations

\[
x(\tau) X^{*} \Psi(\Psi^{*}) \Phi F \tau^{*} \approx \Psi^{1}(\Psi^{*}) - X^{*}^{1}(4)
\]
Dynamics Approximations

\[F(X^*) \approx \frac{\Psi^1(X^*) - X^*}{1} \] (4)

 Implicit Central Difference Approximations

J. Harzer, J. De Schutter, P. Rutquist and M. Diehl
Dynamics Approximations

\[F(X^*) \approx \frac{\Psi^1(X^*) - X^*}{1} \quad (4) \]
\[F(X^*) \approx \frac{\Psi^1(X^*) - X^*}{1} \]

(4)
Dynamics Approximations

\[F(X^*) \approx \frac{\Psi^1(X^*) - X^*}{1} \] \hspace{1cm} (4)
Dynamics Approximations

\[F(X^*) \approx \frac{\Psi^1(X^*) - X^*}{1} \quad \text{(4)} \]

\[F(X^*) \approx \frac{\Psi^1(X^*) - \Psi^{-1}(X^*)}{2} \quad \text{(5)} \]
Implicit Central Difference Approximations of Averaged Dynamics of Oscillatory Systems
Implicit Central Difference Approximations of Averaged Dynamics of Oscillatory Systems
Implicit Dynamics Approximation - 2 Points

Two points \((X'_1, X'_2)\) at times \((\tau^* - 0.5, \tau^* + 0.5)\).

Interpolating polynomial \(P\).

Solve for \(X'_1, X'_2\):

\[
0 = X'_2 - \Psi(X'_1) \quad (6a)
\]

\[
0 = P(\tau^*) - X^* \quad (6b)
\]

Approximate the dynamics as

\[
F(X^*) \approx X'_2 - X'_1 \quad (7)
\]
Implicit Dynamics Approximation - 2 Points

\[
\begin{align*}
\tau^* - 1 & \quad \tau^* & \quad \tau^* + 1 \\
X(\tau) & \quad X_1' & \quad X_2' = \Psi(X_1')
\end{align*}
\]

Implicit Central Difference Approximations

J. Harzer, J. De Schutter, P. Rutquist and M. Diehl
Implicit Dynamics Approximation - 2 Points

Two points \((X'_1, X'_2)\) at times \((\tau^* - 0.5, \tau^* + 0.5)\).
Implicit Dynamics Approximation - 2 Points

- Two points \((X'_1, X'_2)\) at times \((\tau^* - 0.5, \tau^* + 0.5)\).
- Interpolating polynomial \(P\).
Implicit Dynamics Approximation - 2 Points

Two points \((X'_1, X'_2)\) at times \((\tau^* - 0.5, \tau^* + 0.5)\).

Interpolating polynomial \(P\).

Solve for \(X'_1, X'_2\):

\[
0 = X'_2 - \Psi(X'_1) \quad (6a)
\]

\[
0 = P(\tau^*) - X^* \quad (6b)
\]
Implicit Dynamics Approximation - 2 Points

- Two points \((X'_1, X'_2)\) at times \((\tau^*-0.5, \tau^*+0.5)\).
- Interpolating polynomial \(P\).
- Solve for \(X'_1, X'_2\):

\[
0 = X'_2 - \Psi(X'_1) \quad (6a)
\]
\[
0 = P(\tau^*) - X^* \quad (6b)
\]

- Approximate the dynamics as

\[
F(X^*) \approx \frac{X'_2 - X'_1}{1} \quad (7)
\]
We need to solve a nonlinear system of equations.努力:

\[\Psi(1) \times X'_{1} \]

Points \(X'_{1}, X'_{2} \) lie on a solution of the system \(X'(\tau) \), that is not \(X(\tau) \).

Implicit Dynamics Approximation - Observations
We need to solve a nonlinear system of equations.
We need to solve a nonlinear system of equations.

Effort: \(\Psi \times 1 \)
We need to solve a nonlinear system of equations.

- Effort: $\Psi \times 1$
- Points X'_1, X'_2 lie on a solution of the system $X' (\tau)$, that is not $X (\tau)$.
Three points \((X'_1, X'_2, X'_3)\) at times \((\tau^* - 1, \tau^*, \tau^* + 1)\).
Implicit Dynamics Approximation - 3 Points

Three points \((X'_1, X'_2, X'_3)\) at times \((\tau^* - 1, \tau^*, \tau^* + 1)\).
Implicit Dynamics Approximation - 3 Points

Three points \((X'_1, X'_2, X'_3)\) at times \((\tau^* - 1, \tau^*, \tau^* + 1)\).

The points satisfy

\[
X'_2 = \Psi(X'_1) \tag{8}
\]

\[
X'_3 = \Psi(X'_2) \tag{9}
\]

\[
P(\tau^*) = X(\tau^*) \tag{10}
\]
Implicit Dynamics Approximation - 3 Points

▶ **Three** points \((X'_1, X'_2, X'_3)\) at times \((\tau^* - 1, \tau^*, \tau^* + 1)\).

▶ The points satisfy

\[
X'_2 = \Psi(X'_1) \quad (8)
\]

\[
X'_3 = \Psi(X'_2) \quad (9)
\]

\[
P(\tau^*) = X(\tau^*) \quad (10)
\]
Three points \((X_1', X_2', X_3')\) at times \((\tau^* - 1, \tau^*, \tau^* + 1)\).

The points satisfy

\[
X_2' = \Psi(X_1') \\
X_3' = \Psi(X_2') \\
P(\tau^*) = X(\tau^*)
\]

Approximate the dynamics as

\[
F(X^*) \approx \frac{X_3' - X_1'}{2}
\]
Implicit Dynamics Approximation - 3 Points

- **Three points** \((X'_1, X'_2, X'_3)\) at times \((\tau^*-1, \tau^*, \tau^*+1)\).
- The points satisfy
 \[
 X'_2 = \Psi(X'_1) \tag{8}

 X'_3 = \Psi(X'_2) \tag{9}

 P(\tau^*) = X(\tau^*) \tag{10}

- Approximate the dynamics as
 \[
 F(X^*) \approx \frac{X'_3 - X'_1}{2} \tag{11}

- We recover the explicit central difference scheme from before!
Let $\tau = \tau^* + \Delta \tau$, K stroboscopic points X'_1, \ldots, X'_K at equidistant times

$$\Delta \tau_k = k - \frac{K + 1}{2}, \quad k = 1, \ldots, K$$ \hspace{1cm} (12)
Let $\tau = \tau^* + \Delta \tau$, K stroboscopic points X'_1, \ldots, X'_K at equidistant times

$$\Delta \tau_k = k - \frac{K + 1}{2}, \quad k = 1, \ldots, K$$ \hfill (12)

i.e.

$$\Delta \tau_k \in \begin{cases} \{\ldots, -\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \ldots\} & \text{for } K \text{ even} \\ \{\ldots, -1, 0, 1, \ldots\} & \text{for } K \text{ odd} \end{cases}$$ \hfill (13)
Implicit Dynamics Approximation - K Points

- Let \(\tau = \tau^* + \Delta \tau \), \(K \) stroboscopic points \(X'_1, \ldots, X'_K \) at equidistant times

\[
\Delta \tau_k = k - \frac{K + 1}{2}, \quad k = 1, \ldots, K \tag{12}
\]

- i.e.

\[
\Delta \tau_k \in \begin{cases}
\{ \ldots, -\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \ldots \} & \text{for } K \text{ even} \\
\{ \ldots, -1, 0, 1, \ldots \} & \text{for } K \text{ odd}
\end{cases} \tag{13}
\]

- Interpolating polynomial

\[
P(\Delta \tau) = \sum_{k=1}^{K} \ell_k(\Delta \tau) X'_k, \quad \text{where } \ell_k(\Delta \tau) = \prod_{n=1, k \neq n}^{K} \frac{(\Delta \tau - \Delta \tau_n)}{(\Delta \tau_k - \Delta \tau_n)} \tag{14}
\]
Let $\tau = \tau^* + \Delta\tau$, K stroboscopic points X'_1, \ldots, X'_K at equidistant times
\begin{equation}
\Delta\tau_k = k - \frac{K + 1}{2}, \quad k = 1, \ldots, K
\end{equation}

i.e.
\begin{equation}
\Delta\tau_k \in \begin{cases}
\{ \ldots, -\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \ldots \} & \text{for } K \text{ even} \\
\{ \ldots, -1, 0, 1, \ldots \} & \text{for } K \text{ odd}
\end{cases}
\end{equation}

Interpolating polynomial
\begin{equation}
P(\Delta\tau) = \sum_{k=1}^{K} \ell_k(\Delta\tau)X'_k, \quad \text{where} \quad \ell_k(\Delta\tau) = \prod_{n=1, k\neq n}^{K} \frac{\Delta\tau - \Delta\tau_n}{\Delta\tau_k - \Delta\tau_n}
\end{equation}

with
\begin{equation}
P(0) = \sum_{k=1}^{K} \ell_k(0)X'_k, \quad \dot{P}(0) = \sum_{k=1}^{K} \dot{\ell}_k(0)X'_k.
\end{equation}
Implicit Dynamics Approximation - K Points

Let $\tau = \tau^* + \Delta \tau$, K stroboscopic points X_1', \ldots, X_K' at equidistant times

$$\Delta \tau_k = k - \frac{K + 1}{2}, \quad k = 1, \ldots, K$$

i.e.

$$\Delta \tau_k \in \left\{ \ldots, -\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \ldots \right\} \quad \text{for } K \text{ even}$$

$$\left\{ \ldots, -1, 0, 1, \ldots \right\} \quad \text{for } K \text{ odd}$$

Interpolating polynomial

$$P(\Delta \tau) = \sum_{k=1}^{K} \ell_k(\Delta \tau) X_k', \quad \text{where} \quad \ell_k(\Delta \tau) = \prod_{n=1, n \neq k}^{K} \frac{(\Delta \tau - \Delta \tau_n)}{(\Delta \tau_k - \Delta \tau_n)}$$

with

$$P(0) = \sum_{k=1}^{K} b_k X_k', \quad \dot{P}(0) = \sum_{k=1}^{K} c_k X_k'.$$

Implicit Central Difference Approximations

J. Harzer, J. De Schutter, P. Rutquist and M. Diehl
Implicit Dynamics Approximation - K Points

- Solve

\[0 = X_2' - \Psi(X_1') \] \hspace{1cm} (16a)

\[\vdots \] \hspace{1cm} (16b)

\[0 = X_K' - \Psi(X_{K-1}') \] \hspace{1cm} (16c)

\[0 = X^* - \sum_{k=1}^{K} b_k X_k' , \] \hspace{1cm} (16d)

Approximate the dynamics as

\[F(X^*) \approx \sum_{k=1}^{K} c_k X_k' \]

Implicit Central Difference Approximations

J. Harzer, J. De Schutter, P. Rutquist and M. Diehl
Implicit Dynamics Approximation - K Points

Solve

\[0 = X'_2 - \Psi(X'_1) \]
\[\vdots \]
\[0 = X'_K - \Psi(X'_{K-1}) \]
\[0 = X^* - \sum_{k=1}^{K} b_k X'_k, \]

Approximate the dynamics as

\[F(X^*) \approx \sum_{k=1}^{K} c_k X'_k \]
Example: $K = 4$
Implicit Central Difference Approximations of Averaged Dynamics of Oscillatory Systems
Implicit Central Difference Approximations of Averaged Dynamics of Oscillatory Systems
Highly Oscillatory Systems

- Highly Oscillatory Systems with \(\epsilon \ll 1 \)

\[
\dot{x} = f_0(x) + \epsilon f_1(x, \tau)
\]
Highly Oscillatory Systems with $\epsilon \ll 1$

$$\dot{x} = f_0(x) + \epsilon f_1(x, \tau)$$

Oscillatory Dynamics

$$\dot{x} = f_0(x)$$

with 1-periodic solution $x_0(\tau)$.
Highly Oscillatory Systems with $\epsilon \ll 1$

$$\dot{x} = f_0(x) + \epsilon f_1(x, \tau)$$

Oscillatory Dynamics

$$\dot{x} = f_0(x)$$

with 1-periodic solution $x_0(\tau)$.

Highly Oscillatory Systems
Highly Oscillatory Systems

Highly Oscillatory Systems with $\epsilon \ll 1$

$$\dot{x} = f_0(x) + \epsilon f_1(x, \tau)$$

Oscillatory Dynamics

$$\dot{x} = f_0(x)$$

with 1-periodic solution $x_0(\tau)$.

Implicit Central Difference Approximations

J. Harzer, J. De Schutter, P. Rutquist and M. Diehl
Highly Oscillatory Systems with $\epsilon \ll 1$

$$\dot{x} = f_0(x) + \epsilon f_1(x, \tau)$$

Oscillatory Dynamics

$$\dot{x} = f_0(x)$$

with 1-periodic solution $x_0(\tau)$.

The perturbed solution $x(\tau)$ and unperturbed $x_0(\tau)$ differ by

$$\|x_0(\tau) - x(\tau)\| = \mathcal{O}(\epsilon)$$

on a timescale of 1.
Averaging Methods for Highly Oscillatory Systems

\[\dot{x} = f(x) = f_0(x) + \epsilon f_1(x, t) \]
Averaging Methods for Highly Oscillatory Systems

\[\dot{x} = f(x) = f_0(x) + \epsilon f_1(x, t) \]

Averaged system on timescale \(O(1/\epsilon) \)

If \(x(0) = X(0) \) then the solution to the averaged system satisfies \(x(k) = X(k) \), \(k \in \mathbb{Z} \)

Implicit Central Difference Approximations

J. Harzer, J. De Schutter, P. Rutquist and M. Diehl

15
Averaging Methods for Highly Oscillatory Systems

\[\dot{x} = f(x) = f_0(x) + \epsilon f_1(x, t) \]

\[\dot{X} = \epsilon F_1(x) \]

If \(x(0) = X(0) \) then the solution to the averaged system satisfies
\[x(k) = X(k), k \in \mathbb{Z} \]
Averaging Methods for Highly Oscillatory Systems

\[\dot{x} = f(x) = f_0(x) + \epsilon f_1(x, t) \]

Averaging

\[\dot{X} = \epsilon F_1(x) \]

If \(x(0) = X(0) \) then the solution to the averaged system satisfies \(x(k) = X(k) \), \(k \in \mathbb{Z} \)
Averaging Methods for Highly Oscillatory Systems

\[\dot{x} = f(x) = f_0(x) + \epsilon f_1(x, t) \]

High Order Stroboscopic Averaging

\[\dot{x} = f(x) = f_0(x) + \epsilon f_1(x, t) \]

If \(x(0) = x_0(0) \) then the solution to averaged system satisfies \(x(k) = x_0(k) \), \(k \in \mathbb{Z} \)
Averaging Methods for Highly Oscillatory Systems

\[\dot{x} = f(x) = f_0(x) + \epsilon f_1(x, t) \]

High Order Stroboscopic Averaging

\[\dot{X} = F(x) = \epsilon F_1(x) + \epsilon^2 F_2(x) + \ldots \]
Averaging Methods for Highly Oscillatory Systems

\[\dot{x} = f(x) = f_0(x) + \epsilon f_1(x, t) \]

High Order Stroboscopic Averaging

\[\dot{X} = F(x) = \epsilon F_1(x) + \epsilon^2 F_2(x) + \ldots \]
Averaging Methods for Highly Oscillatory Systems

\[\dot{x} = f(x) = f_0(x) + \epsilon f_1(x, t) \]

High Order Stroboscopic Averaging

\[\dot{X} = F(x) = \epsilon F_1(x) + \epsilon^2 F_2(x) + \ldots \]

- If \(x(0) = X(0) \) then the solution to averaged system satisfies

\[x(k) = X(k), \quad k \in \mathbb{Z} \]
Averaging Methods for Highly Oscillatory Systems

\[\dot{x} = f(x) = f_0(x) + \epsilon f_1(x, t) \]

High Order Stroboscopic Averaging

\[\dot{X} = F(x) = \epsilon F_1(x) + \epsilon^2 F_2(x) + \ldots \]

- If \(x(0) = X(0) \) then the solution to averaged system satisfies
 \[x(k) = X(k), \quad k \in \mathbb{Z} \]

- Original system \(f \) on timescale \(O(1) \)

Implicit Central Difference Approximations

J. Harzer, J. De Schutter, P. Rutquist and M. Diehl
Averaging Methods for Highly Oscillatory Systems

\[\dot{x} = f(x) = f_0(x) + \epsilon f_1(x, t) \]

High Order Stroboscopic Averaging

\[\dot{X} = F(x) = \epsilon F_1(x) + \epsilon^2 F_2(x) + \ldots \]

- If \(x(0) = X(0) \) then the solution to averaged system satisfies

\[x(k) = X(k), \quad k \in \mathbb{Z} \]

- Averaged system \(F \) on timescale \(O(1/\epsilon) \)

Implicit Central Difference Approximations

J. Harzer, J. De Schutter, P. Rutquist and M. Diehl
From before:

\[\Psi(X) = \Phi^F_1(X) \]
From before:

\[\Psi(X) = \Phi^F_1(X) = \Phi^f_1(X) \]
From before:

\[\Psi(X) = \Phi^F_1(X) \]
\[= \Phi^f_1(X) \]

Micro-integration

\[\Psi(X) \approx \tilde{\Phi}^f_1(X) \]

by f.e. multiple RK steps.
From before:

\[\Psi(X) = \Phi^F_1(X) = \Phi^f_1(X) \]

Micro-integration

\[\Psi(X) \approx \tilde{\Phi}^f_1(X) \]

by f.e. multiple RK steps.

We can use this 'one-cycle' map to approximate the average dynamics!
Implicit Central Difference Approximations of Averaged Dynamics of Oscillatory Systems
Implicit Central Difference Approximations of Averaged Dynamics of Oscillatory Systems
Average Dynamics Approximation [1, 3]

\[F(X^*) \approx \frac{\Psi^1(X^*) - X^*}{1} \]

\[F(X^*) \approx \frac{\Psi^1(X^*) - \Psi^{-1}(X^*)}{2} \]
Average Dynamics Approximation \[1, 3\]

\[
F(X^*) \approx \frac{\Psi^1(X^*) - X^*}{1}
\]

\[
F(X^*) \approx \frac{\Psi^1(X^*) - \Psi^{-1}(X^*)}{2}
\]
Implicit Averaged Dynamics Approximation

Solve

\[0 = X'_{k+1} - \Psi(X'_k), \quad k = 1, \ldots, N - 1 \]

\[0 = X^* - \sum_{k=1}^{K} b_k X'_k, \]

Approximate the dynamics as

\[F(X^*) \approx \sum_{k=1}^{K} c_k X'_k \]
Implicit Averaged Dynamics Approximation

<table>
<thead>
<tr>
<th>Solve</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = X'_k + 1 - Ψ(X'_k), k = 1, ..., N - 1</td>
</tr>
<tr>
<td>0 = X^* - \sum_{k=1}^{K} b_k X'_k,</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approximate the dynamics as</th>
</tr>
</thead>
<tbody>
<tr>
<td>F(X^*) ≈ \sum_{k=1}^{K} c_k X'_k</td>
</tr>
</tbody>
</table>
Implicit Averaged Dynamics Approximation

\[\tau \ast - 1 - \tau \ast \tau \ast + 1 \]

\[X(\tau) \]
\[\Phi_f (X \ast) \]

\[x(\tau) \]
\[\tau^* - 1 \tau^* \tau^* + 1 \]

\[X'_{k+1} - \Psi(X'_k), \quad k = 1, \ldots, N - 1 \]

\[0 = X^* - \sum_{k=1}^{K} b_k X'_k, \]

\[F(X^*) \approx \sum_{k=1}^{K} c_k X'_k \]

\[\| F(X) - F_{CD,K}(X) \| = \begin{cases} O(\epsilon^{K+1}) & \text{for } K \text{ even} \\ O(\epsilon^K) & \text{for } K \text{ odd} \end{cases} \]
Implicit Central Difference Approximations

J. Harzer, J. De Schutter, P. Rutquist and M. Diehl

20
Numerical Method for Efficient Simulation [1]

At some point \((\tau^*, X^*)\):

(a) perform one or more micro-integrations
(b) approximate the averaged dynamics

Macro-integrate the averaged dynamics

Integration horizon of integer size

Three sources of error:
(a) errors in the micro-integration
(b) errors in the approximation of the dynamics
(c) errors in the macro-integration
At some point \((\tau^*, X^*)\):
At some point (τ^*, X^*):
(a) perform one or more micro-integrations to evaluate the one-cycle map
At some point \((\tau^*, X^*)\):

(a) perform one or more micro-integrations to evaluate the one-cycle map

(b) approximate the averaged dynamics
At some point \((\tau^*, X^*)\):

(a) perform one or more micro-integrations to evaluate the one-cycle map

(b) approximate the averaged dynamics

Macro-integrate the averaged dynamics
At some point \((\tau^*, X^*)\):

(a) perform one or more micro-integrations to evaluate the one-cycle map

(b) approximate the averaged dynamics

Macro-integrate the averaged dynamics

Integration horizon of integer size \(N\) cycles since

\[
x(N) = X(N)
\]
At some point (τ^*, X^*):

(a) perform one or more micro-integrations to evaluate the one-cycle map

(b) approximate the averaged dynamics

Macro-integrate the averaged dynamics

Integration horizon of integer size N cycles since

$$x(N) = X(N)$$

Three sources of error:
At some point \((\tau^*, X^*)\):

(a) perform one or more micro-integrations to evaluate the one-cycle map

(b) approximate the averaged dynamics

Macro-integrate the averaged dynamics

Integration horizon of integer size \(N\) cycles since

\[x(N) = X(N) \]

Three sources of error:

(a) errors in the micro-integration
At some point \((\tau^*, X^*)\):

(a) perform one or more micro-integrations to evaluate the one-cycle map

(b) approximate the averaged dynamics

Macro-integrate the averaged dynamics

Integration horizon of integer size \(N\) cycles since

\[
x(N) = X(N)
\]

Three sources of error:

(a) errors in the micro-integration

(b) errors in the approximation of the dynamics
At some point \((\tau^*, X^*)\):
(a) perform one or more micro-integrations to evaluate the one-cycle map
(b) approximate the averaged dynamics

Macro-integrate the averaged dynamics
Integration horizon of integer size \(N\) cycles since
\[
x(N) = X(N)
\]

Three sources of error:
(a) errors in the micro-integration
(b) errors in the approximation of the dynamics
(c) errors in the macro-integration
Integration Experiment

Linear Oscillator, $\epsilon = -10^{-3}$

$$\frac{d}{d\tau} x = \begin{bmatrix} \epsilon & -2\pi \\ 2\pi & \epsilon \end{bmatrix} x$$
Integration Experiment

- Linear Oscillator, \(\epsilon = -10^{-3} \)

\[
\frac{d}{d\tau} x = \begin{bmatrix} \epsilon & -2\pi \\ 2\pi & \epsilon \end{bmatrix} x
\]

- Integrate over interval \(\tau \in [0, 100] \)
Integration Experiment

- Linear Oscillator, $\epsilon = -10^{-3}$

 $$\frac{d}{d\tau} x = \begin{bmatrix} \epsilon & -2\pi \\ 2\pi & \epsilon \end{bmatrix} x$$

- Integrate over interval $\tau \in [0, 100]$

- Micro integrator: RK4, step size h, $O(h^4)$
Integration Experiment

- **Linear Oscillator**, $\epsilon = -10^{-3}$

\[
\frac{d}{d\tau} x = \begin{bmatrix} \epsilon & -2\pi \\ 2\pi & \epsilon \end{bmatrix} x
\]

- Integrate over interval $\tau \in [0, 100]$

- Micro integrator: RK4, step size h, $O(h^4)$

- Average dynamics Approx: $F_{CD,K}$
Integration Experiment

- Linear Oscillator, $\epsilon = -10^{-3}$

 \[
 \frac{d}{d\tau} x = \begin{bmatrix} \epsilon & -2\pi \\ 2\pi & \epsilon \end{bmatrix} x
 \]

- Integrate over interval $\tau \in [0, 100]$

- Micro integrator: RK4, step size h, $O(h^4)$

- Average dynamics Approx: $F_{CD,K}$

- Macro integrator: RK4, step size $H = 20$, $O(H^4)$
Integration Experiment

- Linear Oscillator, $\epsilon = -10^{-3}$

\[
\frac{d}{d\tau} x = \begin{bmatrix} \epsilon & -2\pi \\ 2\pi & \epsilon \end{bmatrix} x
\]

- Integrate over interval $\tau \in [0, 100]$
- Micro integrator: RK4, step size h, $O(h^4)$
- Average dynamics Approx: $F_{CD,K}$
- Macro integrator: RK4, step size $H = 20$, $O(H^4)$
Micro integration error is very dominant
Integration Experiment

- Micro integration error is very dominant
- Little sense in using high-order average dynamics approximations methods

\[\epsilon = -1 \cdot 10^{-3}, \; N = 100, \; H = 20.0 \]
Integration Experiment

- Micro integration error is very dominant
- Little sense in using high-order average dynamics approximations methods
- Gain of the implicit methods is in the reduced effort to compute the approximation
Micro integration error is very dominant

Little sense in using high-order average dynamics approximations methods

Gain of the implicit methods is in the reduced effort to compute the approximation
We derived implicit K-point methods to approximate the average dynamics.
We derived implicit K-point methods to approximate the average dynamics.
The implicit methods (K even) are just as good as the explicit ones (K odd), but require less effort.
We derived implicit K-point methods to approximate the average dynamics.

The implicit methods (K even) are just as good as the explicit ones (K odd), but require less effort.

We can integrate highly oscillatory systems very efficiently.

\[
\frac{d}{d\tau} x = f_0(x) + \epsilon f_1(x, u, \tau)
\]

(19)
Thank you for your attention!
Useful Sources

Mari Paz Calvo, Philippe Chartier, Ander Murua, and Jesús María Sanz-Serna.
A stroboscopic numerical method for highly oscillatory problems.

Bengt Fornberg.
Generation of finite difference formulas on arbitrarily spaced grids.

U. Kirchgraber.
An ode-solver based on the method of averaging.

Jan Sanders, Ferdinand Verhulst, and J.B. Murdoch.
Averaging methods in nonlinear dynamical systems, 2d ed.
01 2007.
Coefficients Implicit Approximation

<table>
<thead>
<tr>
<th>$\Delta \tau$</th>
<th>-2</th>
<th>$-\frac{3}{2}$</th>
<th>-1</th>
<th>$-\frac{1}{2}$</th>
<th>0</th>
<th>$\frac{1}{2}$</th>
<th>1</th>
<th>$\frac{3}{2}$</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K = 2$</td>
<td></td>
<td></td>
<td></td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K = 3$</td>
<td></td>
<td>0</td>
<td></td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K = 4$</td>
<td>$-\frac{1}{16}$</td>
<td>$\frac{9}{16}$</td>
<td>$\frac{9}{16}$</td>
<td>$-\frac{1}{16}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K = 5$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: Coefficients b_k to relate the stroboscopic points X'_k to the integration point $X(\tau^*)$ via the interpolating polynomial. The lighter rows correspond to the introduced implicit method, the darker rows correspond to the existing explicit method.
<table>
<thead>
<tr>
<th>$\Delta \tau$</th>
<th>-2</th>
<th>$-\frac{3}{2}$</th>
<th>-1</th>
<th>$-\frac{1}{2}$</th>
<th>0</th>
<th>$\frac{1}{2}$</th>
<th>1</th>
<th>$\frac{3}{2}$</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K' = 2$</td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K' = 3$</td>
<td></td>
<td></td>
<td>$-\frac{1}{2}$</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K' = 4$</td>
<td>$\frac{1}{24}$</td>
<td></td>
<td>$-\frac{9}{8}$</td>
<td>$\frac{9}{8}$</td>
<td>$-\frac{1}{24}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K' = 5$</td>
<td>$\frac{1}{12}$</td>
<td>$-\frac{2}{3}$</td>
<td>0</td>
<td>$\frac{2}{3}$</td>
<td>$-\frac{1}{12}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: Coefficients c_k of the (implicit) central difference approximation, c.f. [2]. The lighter rows correspond to the introduced implicit method, the darker rows correspond to the existing explicit method.