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A weird numerical phenomenon
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Motivation

▶ Minimal Example:

min
x(·), u ∈ R

1− x(1)

s.t. x(0) = 1,

ẋ(t) = −ux, ∀t ∈ [0, 1],

0 ≤ u ≤ 30

▶ Solution:

u∗ = 0

x∗(t) = e−u∗t = 1
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Motivation

▶ Discretize with single step of RK4, h = 1:

min
x0, x1, u ∈ R

1− x1

s.t. x0 = 1,

0 = GRK4(x0, x1, u),

0 ≤ u ≤ 30

▶ Initialize uinit = 10, solve with IPOPT.

▶ We find u∗
RK4 = 30.
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Motivation

▶ Discretize with single step of GL8, h = 1:

min
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Why is this happening?

ẋ(t) = −ux(t)

▶ Stiffness of dynamics is controlled by
decision variable u

▶ Larger stiffness → larger integration error

▶ A large integration error minimizes the
objective
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ẋ(t) = −ux(t)

▶ Stiffness of dynamics is controlled by
decision variable u

▶ Larger stiffness → larger integration error

▶ A large integration error minimizes the
objective

0.0 0.2 0.4 0.6 0.8 1.0

t

0.00

0.25

0.50

0.75

1.00

x

0 5 10 15 20 25 30

u

0.00

0.25

0.50

0.75

1.00

C
os

t analytical

GL8

spurios solution

RK4

Radau2A-3

Integration Error Regularization in Direct Optimal Control J. Harzer, J. De Schutter, M. Diehl 6



Betts’ Thoughts on this [1]
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What to do?

▶ more accurate discretization

▶ add guiding constraints or regularization

▶ provide a better initialization

– no compute in online setting

– problem too complex, we don’t know how

– problem too complex, we don’t know how

We propose: efficiently estimate and regularize the integration error online!
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Runge-Kutta Methods
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Runge-Kutta Methods

▶ Initial Value Problem:

x(0) = x̄0

ẋ(t) = f(x(t), u(t)), ∀t ∈ [0, tf ]

▶ N intervals, intermediate values

x0 = x̄0, x1, . . . , xN

at times 0 = t0, t1, . . . , tN−1, tN = tf .

▶ IVP over one interval:

x′(tk) = xk

ẋ′(t) = f(x′(t), u(t)), ∀t ∈ [tk, tk + h]

▶ Runge-Kutta Method with d stages:

zk,i = xk + h

d∑

j=1

ai,jkj , i = 1, . . . , d

xk+1 = xk + h
d∑

i=1

biki

with stage values zk,i ∈ Rnx at times ci
and dynamics evaluations ki = f(zk,i, uk)

▶ We write shorthand:

0 = GIRK(xk, xk+1, uk, zk)
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ẋ′(t) = f(x′(t), u(t)), ∀t ∈ [tk, tk + h]

▶ Runge-Kutta Method with d stages:

zk,i = xk + h

d∑

j=1

ai,jkj , i = 1, . . . , d

xk+1 = xk + h
d∑

i=1

biki

with stage values zk,i ∈ Rnx at times ci
and dynamics evaluations ki = f(zk,i, uk)

▶ We write shorthand:

0 = GIRK(xk, xk+1, uk, zk)

Integration Error Regularization in Direct Optimal Control J. Harzer, J. De Schutter, M. Diehl 10



Runge-Kutta Methods

▶ Initial Value Problem:

x(0) = x̄0
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Runge-Kutta Methods

▶ Butcher Tableau

c1 a1,1 a1,2 · · · a1,d

c2 a2,1 a2,2 · · · a2,d
...

...
...

. . .
...

cd ad,1 ad,2 · · · ad,d

b1 b2 · · · bd

▶ For some RK methods: Continuous
approximation x̃(t) over the interval

▶ Global error

xN − x(tf) = O(hp)

▶ Runge-Kutta Method with d stages:

zk,i = xk + h

d∑

j=1

ai,jkj , i = 1, . . . , d

xk+1 = xk + h
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Estimating the (Local) Integration Error

▶ Local error

ek = xk+1 − x′(tk + h) = O
(
hp+1

)

▶ that we would like to estimate

▶ Why estimate?

▶ Simulation: Step size control

▶ Control: Adaptive Mesh Refinement

▶ Some options:

▶ If x̃(t) available: approximate dynamics
violation [4, 5]∫ tk+1

tk

∥∥ ˙̃x(t)− f(x̃(t), uk)
∥∥ dt

▶ Compare with other integrator result:

êk = xk+1 − x̂k+1
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Embedded Runge-Kutta Methods
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Embedded Runge Kutta Methods

▶ Two Integrators that use the same stage
evaluations ki:

zk,i = xk + h

d∑

j=1

ai,jkj , i = 1, . . . , d

xk+1 = xk + h

d∑

i=1

biki

x̂k+1 = xk + h

d∑

i=1

b̂iki

with stage values zk,i ∈ Rnx at times ci
and dynamics evaluations ki = f(zk,i, uk)

▶ Order: p(p̂)

▶ Error estimate

êk = xk+1 − x̂k+1

of the lower order method.
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Embedded Runge Kutta Methods: Examples

▶ Scipys solve ivp and
Matlabs ode45: ’RK45’

0

1
5

1
5

3
10

3
40

9
40

4
5

44
45 − 56

15
32
9

8
9

19372
6561 − 25360

2187
64448
6561 − 212

729

1 9017
3168 − 355

33
46732
5247

49
176 − 5103

18656

1 35
384 0 500

1113
125
192 − 2187

6784
11
84

x1
35
384 0 500

1113
125
192 − 2187

6784
11
84 0

x̂1
5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40
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Embedded Runge Kutta Methods: Examples

▶ Implicit Methods with d stages
can be extended with lower order
method of order d [3]

▶ For example: GL8(4)

c0 0 0

c 0 A

0 b⊤

γ0 b̂⊤
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Integration Error Regularization
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Integration Error Regularization

▶ NLP from direct transcription:

min
w

J(w)

s.t. x0 = x̄0,

0 = GIRK(xk, xk+1, uk, zk), ∀k ∈ K,

0 ≤ h(xk, uk, zk), ∀k ∈ K

▶ Regularization term

ϕ(w) = ∥diag(Emax)
−1Ê(w)∥qp

▶ Error estimate

êk = x̂k+1 − xk+1 =

d∑

i=1

(b̂i − bi)ki

▶ Collect the errors in a vector

Ê(w) = [ê⊤0 , . . . , ê
⊤
N−1]

⊤ ∈ RNnx

▶ Maximum Error

Emax = [e⊤0,max, . . . , e
⊤
k,max]

⊤ ∈ RNnx
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Integration Error Regularization

▶ NLP from direct transcription:
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Intro Example, cont.

▶ Minimal Example:

min
x0, x1, z, u

1− x1 + ϕ(z)

s.t. x0 = 1,

0 = GGL8(x0, x1, z, u),

0 ≤ u ≤ 30

▶ Estimate with GL8(4), normalize and
regularize error with

emax = 20%, ϕ(z) =

∥∥∥∥
ê(z)

emax

∥∥∥∥
q

p
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Example: Hang-Glider

min
x(·), u(·), tf

− px(tf)

s.t. ẋ(t) = f(x(t), u(t)), ∀t ∈ [0, tf ],

0 ≤ u(t) ≤ 1.4, ∀t ∈ [0, tf ]

▶ with initial and terminal constraint:

px(0) = 0m

py(0) = 1000m py(tf) = 900m

vx(0) = v̄x,0 vx(tf) = v̄x,0

vy(0) = v̄y,0 vy(tf) = v̄y,0

▶ Literature optimum: p∗x(tf ) = 1248m[1]
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Example: Hang-Glider

▶ Discretize with N = 30 intervals,
piecewise constant controls

▶ and Heun-Euler of order 2(1):

0 0 0

1 1 0

1
2

1
2

1 0

▶ Estimate, normalize and
regularize error with

emax = 1%

▶ Less optimal, but more accurate
solution
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Summary

▶ We presented a ‘robustification’ method to avoid solutions with large integration error

▶ At the cost of optimality + (maybe) extra dynamics evaluations

▶ We can force bad discretizations to ‘work’.

Follow Up Work

▶ Is this really worth it? When?

▶ Adaptive Online Stepsize Control with Embedded RK Methods
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Thank you for your attention!

(and be careful when discretizing OCPs with free final time)
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Useful Sources II
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Intro Example, cont.

▶ Minimal Example:

min
x0, x1, z, u

1− x1 + ϕ(z)

s.t. x0 = 1,

0 = GGL8(x0, x1, z, u),

0 ≤ u ≤ 30

▶ Estimate with GL8(4), normalize and
regularize error with

emax = 20%, ϕ(z) =

∥∥∥∥
ê(z)

emax

∥∥∥∥
q

p
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Bonus: Biegler already did it !?
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Bonus: Matthias Gerdts’ Observation [2]
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