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Content Disclaimer

» Runge-Kutta integration methods
» A weird numerical phenomenon
» ...where it comes from

» . ..and what we can do about it
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Motivation

» Minimal Example:
min 1—z(1)
z(-),ueR
s.t. z(0) =1,
&(t) = —uzx, Vte]|0,1],
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» Minimal Example:
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» Analytical solution to IVP:

x(t) =e
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Motivation

» Discretize with single step of RK4, h = 1:

min 1—x
To,x1,u € R
s.t. zo =1,
0 = Gria(zo, v1,u),
0<u<30
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» Discretize with single step of GL8, h = 1:

min 1—2q
To,T1,2,U
s.t. Tog = 17

0= GGL8(-T053317Z7U)7
0<u<30

Integration Error Regularization in Direct Optimal Control J. Harzer, J. De Schutter, M. Diehl



Motivation

» Discretize with single step of GL8, h = 1:

min 1—2q
To,T1,2,U
s.t. Tog = 17

0= GGL8(-T053317Z’U)7
0<u<30

» Initialize uin;; = 10, solve with IPOPT.

Integration Error Regularization in Direct Optimal Control J. Harzer, J. De Schutter, M. Diehl



Motivation

» Discretize with single step of GL8, h = 1:

min 1—2q
To,T1,2,U
s.t. Tog = 17

0= GGL8(-T053317Z’U)7
0<u<30

» Initialize uin;; = 10, solve with IPOPT.

> We find ugq = 30.

Integration Error Regularization in Direct Optimal Control J. Harzer, J. De Schutter, M. Diehl



Motivation
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Why is this happening?
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» Stiffness of dynamics is controlled by
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Why is this happening?

&(t) = —ux(t)

» Stiffness of dynamics is controlled by
decision variable u

» Larger stiffness — larger integration error
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Why is this happening?

&(t) = —ux(t)

» Stiffness of dynamics is controlled by
decision variable u

» Larger stiffness — larger integration error

> A large integration error minimizes the
objective
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Why is this happening?

&(t) = —ux(t)

» Stiffness of dynamics is controlled by
decision variable u

» Larger stiffness — larger integration error

> A large integration error minimizes the
objective
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Practical Methods

for Optimal Control

and Estimation Using

Nonlinear Programming
SECOND EDITION

JohnT. Betts

Advances in Design and Control
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Betts’ Thoughts on this [1]

Practical Methods

for Optimal Control . . ; . i

and Estimation Using The methods used to solve the qifferemia.l equations and opthjnize l}_:e functions are inti-
A mately related. Furthermore design and development of the “simulation” or experimental

Norlinear Programming trial should be done with the intent to optimize. Optimization is not an afterthought. In-

SECOND EDITION deed, perhaps the most important issue needed to successfully solve a problem is the proper
formulation. And so I close with the following:

THEERUM

If there is a flaw in the problem
formulation, the optimization algorithm
will find it.!!

JohnT. Betts
The proof is left to the student.

s in Design and Control

siam.
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What to do?

THEERUM

If there is a flaw in the problem
formulation, the optimization algorithm
will find it.!!

» more accurate discretization — no compute in online setting
» add guiding constraints or regularization

» provide a better initialization
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If there is a flaw in the problem
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What to do?

THEERUM

If there is a flaw in the problem
formulation, the optimization algorithm
will find it.!!

a
» more accurate discretization — no compute in online setting
» add guiding constraints or regularization — problem too complex, we don’t know how
» provide a better initialization — problem too complex, we don't know how

We propose: efficiently estimate and regularize the integration error online!
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Runge-Kutta Methods

» Initial Value Problem:

@(t) = fx(t),ut), vt e[0,t]
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Runge-Kutta Methods

» Initial Value Problem:

ZZJ(O) = i‘o
@(t) = fx(t),ut), vt e[0,t]

» N intervals, intermediate values
To = 20,T1,..-, TN

at times 0 = tg,t1,...,tN_1,tN = tt.
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Runge-Kutta Methods

» Initial Value Problem:

ZZJ(O) = i‘o
@(t) = fx(t),ut), vt e[0,t]

» N intervals, intermediate values
To = 20,T1,..-, TN

at times 0 = tg,t1,...,tN_1,tN = tt.

» VP over one interval:

x'(ty) = o
'(t) = f(2'(t),u(t)), Vt € [ty,tr + h]
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Runge-Kutta Methods

» Initial Value Problem: » Runge-Kutta Method with d stages:
2(0) = T 4 )
x(t):f(ac(t),u(t)), Vi e [O,tf] Zk’i:xk—i_hzlai’jkj’ ’L:]_,...,d
=
> N intervals, intermediate values d
Tyl = Tp + hzbiki
To =T, L1y-.-, TN i=1

with stage values z; ; € R"* at times ¢;

at times 0 = ¢g,t1,...,tn—1,tN = L. . .
ey ’ and dynamics evaluations k; = f(zy;, ux)

» VP over one interval:

x'(ty) = o
'(t) = f(2'(t),u(t)), Vt € [ty,tr + h]

Integration Error Regularization in Direct Optimal Control J. Harzer, J. De Schutter, M. Diehl



Runge-Kutta Methods

» Initial Value Problem: » Runge-Kutta Method with d stages:
2(0) = T 4 )
x(t):f(ac(t),u(t)), Vi e [O,tf] Zk’i:xk—i_hzlai’jkj’ ’L:]_,...,d
=
> N intervals, intermediate values d
Tyl = Tp + hzbiki
To =T, L1y-.-, TN i=1

H . nI 1 .
at times 0 = f0, t1. .. tn_1.tx = L. with stage yalues z;m_e R™= at times ¢;
and dynamics evaluations k; = f(zy;, ux)

» |VP over one interval: .
» We write shorthand:

Jﬁl(tk) = xy

Z‘I(t) _ f(x’(t),u(t)), Vit e [tkytk + h] 0= GIRK(xkaxk+17ukazk>
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Runge-Kutta Methods

» Runge-Kutta Method with d stages:

d
Zk,i:xk+hg aiwjkj, i=1,...,d
j=1

d
Tyl = Tp + hzbiki

i=1

with stage values z; ; € R"* at times ¢;
and dynamics evaluations k; = f(zy;, ux)

» We write shorthand:

0 = GrK (Tks Thop1, Uk 2k)
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Runge-Kutta Methods

» Butcher Tableau » Runge-Kutta Method with d stages:
c1|a,n a2 o Gid d
Ca | @21 G2 - Q24 thi =kt by aigky, i=1,....d
j=1
d
Cd | Gd1 Qg2 - Qdd Tp41 = Tk + hz bik;
by by -+ by i=1

with stage values z; ; € R"* at times ¢;
and dynamics evaluations k; = f(zy;, ux)

» We write shorthand:

0 = GrK (Tks Thop1, Uk 2k)
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Runge-Kutta Methods

» Butcher Tableau » Runge-Kutta Method with d stages:
c1|a,n a2 o Gid d
Ca | @21 G2 - Q24 thi =kt by aigky, i=1,....d
j=1
d
Cd | Gd1 Qg2 - Qdd Tp41 = Tk + hz bik;
by by -+ by i=1

with stage values z; ; € R"* at times ¢;

» For some RK methods: Continuous and dynamics evaluations k; = f(zx.i, ux)

approximation Z(t) over the interval
» We write shorthand:

0 = GrK (Tks Thop1, Uk 2k)
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Runge-Kutta Methods

» Butcher Tableau » Runge-Kutta Method with d stages:
c1|a,n a2 o Gid d
Ca | @21 G2 - Q24 thi =kt by aigky, i=1,....d
j=1
d
Cd | Gd1 Qg2 - Qdd Tp41 = Tk + hz bik;
by by -+ by i=1

with stage values z; ; € R"* at times ¢;

» For some RK methods: Continuous and dynamics evaluations k; = f(zx.i, ux)

approximation Z(t) over the interval

» Global error

» We write shorthand:

0 = G ) ) )
e — 2(ts) = O(hP) IRK (Tk Thot1, Uk, Zk)
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Estimating the (Local) Integration Error

» Local error

er =Ty — 2 (tk +h) = O(hp'H)
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Estimating the (Local) Integration Error

» Local error
er =Ty — 2 (tk +h) = O(hp'H)

» that we would like to estimate

» Why estimate?
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Estimating the (Local) Integration Error

» Local error
er =Ty — 2 (tk +h) = O(hp'H)

» that we would like to estimate

» Why estimate?
> Simulation: Step size control
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Estimating the (Local) Integration Error

» Local error
er =Ty — 2 (tk +h) = O(hp'H)

» that we would like to estimate

» Why estimate?
> Simulation: Step size control
» Control: Adaptive Mesh Refinement
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Estimating the (Local) Integration Error

» Some options:
» Local error

er =Ty — 2 (tk +h) = O(hp'H)

» that we would like to estimate

» Why estimate?
> Simulation: Step size control
» Control: Adaptive Mesh Refinement
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Estimating the (Local) Integration Error

» Some options:

» Local error > If Z(t) available: approximate dynamics
violation [4, 5]
er =Ty — 2 (tk +h) = O(hp'H)

/k“ 156) — F(E), w)| dt

» that we would like to estimate th

» Why estimate?
> Simulation: Step size control
» Control: Adaptive Mesh Refinement
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Estimating the (Local) Integration Error

» Some options:
» Local error > If Z(t) available: approximate dynamics
violation [4, 5]
er = whyr — ' (ti + h) = O(hP*) -
. . 2(t) — f(E(), we)]| dt
» that we would like to estimate /tk H H
> Why estimate? > Compare with other integrator result:
> Simulation: Step size control

. . e =1a -z
» Control: Adaptive Mesh Refinement k ket k+l
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Embedded Runge Kutta Methods

» Two Integrators that use the same stage
evaluations k;:

d
ki =K+ h E a; ki, 1=1,...,d
j=1

d
Tp41 = T + hz bik;
i=1
d R
Tpy1r =)+ h Z bik;

i=1

with stage values z; ; € R+ at times ¢;
and dynamics evaluations k; = f(2k, ur)
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Embedded Runge Kutta Methods

» Two Integrators that use the same stage

evaluations k;: 1] a1 G122 a1,d
d Co | G211 Q22 a2.d
Zk,Z:xk—i'_h’E aika? ’lzl,...,d
j=1
d Cd | Qg1 Q4,2 ad,d
Tpy1 =Tk +h E bik;
bl b2 bd

d
Tpy1r =)+ h Z biki
=1

with stage values z; ; € R+ at times ¢;
and dynamics evaluations k; = f(2k, ur)
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Embedded Runge Kutta Methods

» Two Integrators that use the same stage

evaluations k;: olo o
d 111 0
zkyl‘:xk-l—hZai’jkj, Zzl,,d 1 1
j=1 2 2
d
Th41 = Tk + thlk}Z
i=1

d
Tpy1 = o + hzgiki

i=1

with stage values z; ; € R+ at times ¢;
and dynamics evaluations k; = f(2k, ur)
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Embedded Runge Kutta Methods

» Two Integrators that use the same stage

evaluations k;: olo o
d 11 0
Zk,i:ﬂfk+hzai7jkj, i=1,...,d 1 1
Jj=1 2 2
d 1 0
Th41 = Tk + hz bik;
i=1

d
Tpy1 = o + hzgiki

i=1

with stage values z; ; € R+ at times ¢;
and dynamics evaluations k; = f(2k, ur)
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Embedded Runge Kutta Methods

» Two Integrators that use the same stage

evaluations k;: olo o

d 11 0
Zk,i:ﬂfk+hzai7jkj, i=1,...,d 1 1

Jj=1 2 2

1 0

d
Tp41 = T + hz bik;
i=1
d » Order: p(p)
Tpy1r =)+ h Z bik;

i=1

with stage values z; ; € R+ at times ¢;
and dynamics evaluations k; = f(2k, ur)
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Embedded Runge Kutta Methods

» Two Integrators that use the same stage

evaluations k;: 0/]0 O
d 111 0
zkyi:xk-l—hZai’jkj, Zzl,,d ] 1 1
= 3 3
d 1 0
Tyl = T + hz bik;
i=1
J » Order: p(p)
Tpe1 =zK+h Z bik; » Error estimate

i=1
. . ér == -z
with stage values z; ; € R+ at times ¢; k kel kel

and dynamics evaluations k; = f(2k, ur) of the lower order method.
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Embedded Runge Kutta Methods: Examples

0
1 1
5 5
3 3 9
10 | 40 10
4| w4 _s6 32
> S . d 5 15 15 9
cipys solve_ivp an 8 | 19372 25360 64448 212
Matlabs ode45: 'RK45’ 9 | 6561 2187 6561 729
1| 917 355 46732 49 _ 5103
3168 33 5247 176 18656
1| 38 0 500 125 2187 11
384 1113 192 6784 84
35 500 125 2187 11
T1 | 384 0 1113 192 6784 s1 0
4. | 5179 0 7571 393 92007 187 1
1 | 57600 16695 640 339200 2100 40
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Embedded Runge Kutta Methods: Examples

» Implicit Methods with d stages o
can be extended with lower order

method of order d [3] —

> For example: GL8(4)

Integration Error Regularization in Direct Optimal Control J. Harzer, J. De Schutter, M. Diehl
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Integration Error Regularization
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Integration Error Regularization

» NLP from direct transcription:
in J
min (w)
s.t.  xg = Ty,

0 = GIrk (Tk, Thy1, Uk, 2), VR €K,
0 < h(xp, ug, 2k), Vk e
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Integration Error Regularization

» NLP from direct transcription:
in J
min (w)
s.t.  xg = Ty,

0 = GIrk (Tk, Thy1, Uk, 2), VR €K,
0 < h(xp, ug, 2k), Vk e

> with

w = (T0,..., TN-1,TN
20y -3 AN-1
U, - - - 7UN—1)
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Integration Error Regularization

» NLP from direct transcription: » Error estimate
min J(w) . . 2.
w €k = Th4+1 — Th41 = Z(bz —b;)k;
s.t.  xg = Ty, i=1
0= GIRK($k7$k+lyuka Zk), Vk € K,
0 < h(xp, ug, 2k), Vk e
> with

w = (T0,..., TN-1,TN
20y -3 AN-1
U, - - - 7UN—1)
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Integration Error Regularization

» NLP from direct transcription: » Error estimate
min J(w) . . 2.
w €k = Th4+1 — Th41 = Z(bz —b;)k;
s.t.  xg = Ty, i=1

0 = Gir (T, Trt1, Uk, 2k), VE €K, b Collect the errors in a vector
0 < h(xp, ug, 2k), Vk e

Ew)=1[&,...,é5_4]" € RN"=
> with

w = (T0,..., TN-1,TN
20y -3 AN-1
U, - - - 7UN—1)
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Integration Error Regularization

» NLP from direct transcription: » Error estimate
min J(w) . . 2.
w €k = Th4+1 — Th41 = Z(bz —b;)k;
s.t.  xg = Ty, i=1

0 = Gir (T, Trt1, Uk, 2k), VE €K, b Collect the errors in a vector

O<h(xk,uk,zk), Vk e
B 3 T ST T Nng
E(w)=1[éy,...,ény_1] €RY™
> with
» Maximum Error
w = (To,...,TN_1, TN . . . o
Z20y---9ZN—1 Ernax = [eO,maxv""ek,max] e R™"e
Ug, -+, UN-1)
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Integration Error Regularization

» NLP from direct transcription: » Error estimate
. d
min J(w) + ¢(w) . . 5
w €k = Tpy1 — Tht1 = Z(bz —bi)ki
s.t.  xg = Ty, i=1
0= Gri(Zk, Th1,uk: 21)s VR €K, p Collect the errors in a vector

Ogh(xk,uk,zk), Vk e K R . - - N
E(w)=1[éy,...,ény_1] €R™"*
» Regularization term
. » Maximum Error
P(w) = ||diag(Bmax) " E(w)||%

_ 1,7 T T Nn
Emax = [eO,maX7 AR 6k,max] e R
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Intro Example, cont.

» Minimal Example:
. 1_
oo B 1T THOE)
s.t. ro =1,
0= GGLS(SEO,JIl,Z,u),
0<u<30
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Intro Example, cont.

» Minimal Example:
. 1_
oo B 1T THOE)
s.t. ro =1,
0= GGLS(SEO,JIl,Z,u),
0<u<30

> Estimate with GL8(4), normalize and
regularize error with

emax = 20 %, o(z) =
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Intro Example, cont.

» Minimal Example:

min 1—x1 + ¢(2)

Loy T1y2,U
s.t. ro =1,
0= GGLS(xO,l'l,Z,u),
0<u<30

> Estimate with GL8(4), normalize and
regularize error with

emax = 20 %, o(z) =

2.5

2.0 1

Cost

~_————

analytical

GLS - unreg.
GLS, reg., q = 2
GLS8, reg., q = 4
GLS, reg., q = 20
GLS8 solution
ana./reg. solution

J. Harzer, J. De Schutter, M. Diehl
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Example: Hang-Glider
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Example: Hang-Glider

o
s.t. z(t) = fz(t),u(t)), vt € [0, tg],
0<wu(t) <14, vt € [0, tg]
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Example: Hang-Glider

o
s.t. z(t) = fz(t),u(t)), vt € [0, tg],
0<wu(t) <14, vt € [0, tg]

pz(0) =0m

py(0) = 1000 m py(te) =900m
v5(0) = Ty, vy (tf) = Tg.0
vy (0) = vy, vy (tr) = Uy0
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Example: Hang-Glider

oty P
sto #(0) = S, Ve
0<u(t) <14, vt e [0,

p2(0) = 0m

py(0) = 1000 m py(te) =900m
05(0) = Vg, vy (tr) = Uz 0
vy (0) = vy, vy (tr) = Uy,0

> Literature optimum: p%(ty) = 1248 m[1]

Integration Error Regularization in Direct Optimal Control
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Example: Hang-Glider

3 4= p2(t)
min — Pz (tf) E 1000 pap(t) (sim)
2()su() 2o
. Sy
st @) = fla ), Vee[oh) N
0<u(t) <14, vt € [0, t¢] 0 20 40 60 80 100
1000
g — py(t)
> with initial and terminal constraint = o5 py(t) (sim)
£
P(0) =0m o004 . . : : :
py (O) — 1 00 m py(tf) — 900 m 0 20 40 60 80 100
Vg (0) = Ug, Uy (tf) = Vg0 1.0 - — u =0
vy(0) = vy, vy(te) = Tyo S
> Literature optimum: p%(ty) = 1248 m[1] 0o - T - - -

tins
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Example: Hang-Glider

» Discretize with N = 30 intervals,
piecewise constant controls
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Example: Hang-Glider

» Discretize with N = 30 intervals,
piecewise constant controls

» and Heun-Euler of order 2(1):

0lo o
111 0
I
2 2
10
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Example: Hang-Glider

> Discretize with N = 30 intervals, 1000 { = g
piecewise constant controls
3000 4
» and Heun-Euler of order 2(1): g
£ 2000
010 0 1000
1110 o1 : : : : : : : :
—_— 0 20 40 60 80 100 120 140 160
1 1
2 2 1000 W/\/\/\/\/\/\/\N\__
1 0 800
2 600
é 400
200 4
04 —— Unregularized
l'] 2’0 4'0 6"0 8’0 l(')U l‘;U léllU l('iU
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Example: Hang-Glider

» Discretize with N = 30 intervals,
piecewise constant controls

» and Heun-Euler of order 2(1):

o
= O
o O

= N
(=N

tion in Direct Optimal Control

py inm

4000 4

3000

—— Unregularized
—— Unregularized (sim.)

1000
0
T T T T T T T T T
0 20 40 60 80 100 120 140 160
1000 WJW\/\/\/\/\/V\__
SN
800 \
\
\
600 ATV
400
\
\r-
200 N
—— Unregularized "“\\
04 == Unregularized (sim.) ey
T T T T T T T T T
0 20 40 60 80 100 120 140 160
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Example: Hang-Glider

Unregularized

]

» Discretize with N = 30 intervals, 1ad
piecewise constant controls 121

» and Heun-Euler of order 2(1): ;:
© 0.6

0[]0 O 044

0.2

111 0 o

= N
(=N

J. Harzer, J. De Schutter, M. Diehl
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Example: Hang-Glider

» Discretize with N = 30 intervals,
piecewise constant controls

» and Heun-Euler of order 2(1):

0lo o
111 0
I
2 2
10

» Estimate, normalize and
regularize error with

€max — 1 %
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Example: Hang-Glider

» Discretize with N = 30 intervals,

1200 4 emax = 1072
piecewise constant controls 1000 | T emex = 1072 (sim)
» and Heun-Euler of order 2(1): =
2600 o
= 400 4
0[]0 O
200 4
1110 g . : . .
—_— 0 20 40 60 80
11
2 2 1000 7 — = 1072
== emax = 1072 (sim.)
1 O 980 4
2 960 4
» Estimate, normalize and 2 o]
regularize error with !
920 4
J— 900
emax = 1 % ; . - A =
tins
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Example: Hang-Glider

» Discretize with N = 30 intervals,
piecewise constant controls

» and Heun-Euler of order 2(1): 1

0
1

—_— 0 20 40 60 80

emax = 1072

= O
o O
o

= N
(=N
5
L

» Estimate, normalize and

Local Error
g

el

regularize error with 10+ ] -
emasx = 1072 (est.)
% 5 “== emax = 10~2(sim.)
- 1077 4 |
max = 1A ) - p p 5
tins
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Summary

» We presented a ‘robustification’ method to avoid solutions with large integration error
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Summary

» We presented a ‘robustification’ method to avoid solutions with large integration error

> At the cost of optimality + (maybe) extra dynamics evaluations
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Summary

» We presented a ‘robustification’ method to avoid solutions with large integration error
> At the cost of optimality + (maybe) extra dynamics evaluations

» We can force bad discretizations to ‘work’.
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Summary

» We presented a ‘robustification’ method to avoid solutions with large integration error
> At the cost of optimality + (maybe) extra dynamics evaluations

» We can force bad discretizations to ‘work’.

Follow Up Work
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Summary

» We presented a ‘robustification’ method to avoid solutions with large integration error
> At the cost of optimality + (maybe) extra dynamics evaluations

» We can force bad discretizations to ‘work’.

Follow Up Work

» Is this really worth it? When?
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Summary

» We presented a ‘robustification’ method to avoid solutions with large integration error
> At the cost of optimality + (maybe) extra dynamics evaluations

» We can force bad discretizations to ‘work’.

Follow Up Work
» Is this really worth it? When?
» Adaptive Online Stepsize Control with Embedded RK Methods

Integration Error Regularization in Direct Optimal Control J. Harzer, J. De Schutter, M. Diehl



Thank you for your attention!

(and be careful when discretizing OCPs with free final time)
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Useful Sources |

[1] John T. Betts.
Practical Methods for Optimal Control and Estimation Using Nonlinear Programming,
Second Edition.
Society for Industrial and Applied Mathematics, second edition, 2010.

[2] Matthias Gerdts.
Optimal Control of ODEs and DAEs.
De Gruyter, Berlin, Boston, 2012.

[3] E. Hairer, S.P. Ngrsett, and G. Wanner.
Solving Ordinary Differential Equations |: Nonstiff Problems.
Springer Series in Computational Mathematics. Springer Berlin Heidelberg, 2008.

[4] Martin P. Neuenhofen and Eric C. Kerrigan.
An integral penalty-barrier direct transcription method for optimal control.
In 2020 59th IEEE Conference on Decision and Control (CDC), pages 456—-463, 2020.

Integration Error Regularization in Direct Optimal Control J. Harzer, J. De Schutter, M. Diehl



Useful Sources Il

[5] Martin P. Neuenhofen and Eric C. Kerrigan.
Dynamic optimization with convergence guarantees, 2021.
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Intro Example, cont.

» Minimal Example:
. 1_
oo B 1T THOE)
s.t. ro =1,
0= GGLS(SEO,JIl,Z,u),
0<u<30

> Estimate with GL8(4), normalize and
regularize error with

emax = 20 %, o(z) =
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Intro Example, cont.

» Minimal Example:
. 1_
oo B 1T THOE)
s.t. ro =1,
0= GGLS(SEO,JIl,Z,u),
0<u<30

> Estimate with GL8(4), normalize and
regularize error with

emax = 20 %, o(z) =
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Integration Error Regulai

Intro Example, cont.

» Minimal Example:

. -
20, B,y 1701 H90)
s.t. ro =1,

0= GGLS(SEO,JIl,Z,u),
0<u<30

> Estimate with GL8(4), normalize and
regularize error with

€max = 20 %7

imal Control

Endpoint

1.0
0.5 4
0.0 4 T T T st e
—=__
~
0.5 1 RN
S
2(1) - analytical ‘~\\
—1.0 1 1 - GL8 (order 8) S~
~
&1 - embedded (order 4) S
—1.5 1 LS
T T T T T T
5 10 15 20 25 30
2.0 A . s
e| - actual (Analytical vs. embedded) -
é] - estimated (GL8 vs. embedded) e
4 .
L5 * emax = 0.2 s
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Intro Example, cont.

» Minimal Example:

min 1—x1 + ¢(2)

Loy T1y2,U
s.t. ro =1,
0= GGLS(xO,l'l,Z,u),
0<u<30

> Estimate with GL8(4), normalize and
regularize error with

emax = 20 %, o(z) =

2.5

2.0 1

Cost

~_————

analytical

GLS - unreg.
GLS, reg., q = 2
GLS8, reg., q = 4
GLS, reg., q = 20
GLS8 solution
ana./reg. solution

J. Harzer, J. De Schutter, M. Diehl
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Bonus: Biegler already did it !7?

NONLINEAR

PROG RAMMING With this estimate, N sufficiently large, and a user-specified error tolerance €, appro-
riate values of /; can be determined by adding the constraints
Concepts, Algorithms, and P ' Y e

Any ch /P N
s o S hi=t;, hiz0, (10.21a)
ClITi(to)ll < € (1021b)
- to (10.19). This extended formulation has been developed in [396] and demonstrated
on anumber of challenging reactor opti blems. In particular, this approach

allows variable finite elements to track and adapl to steep profiles encountered over
the course of an optimization problem.

[396] S. Vasantharajan and L. T. Biegler. Simultaneous Strategies for Parameter Optimiza-
tion and Accurate Solution of Differential-Algebraic Systems. Comput. Chem. Eng.,
14:1083, 1990.
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Bonus: Matthias Gerdts' Observation [2]

. . . Table 5.2 shows the error in z in the norm || + || for modified Euler’s method, if
Example 5.1.7 ([146, p. 272]). Consider the foll timal control problem: b
P ( P D- Consider the following optimal control problem the control is discretized at #; and #; + &/2 with independent optimization variables
Minimize uj and u;41/3.
1 ! N ‘ Error in z ‘ Order
3 / u(t)? + 2z(t)%dt 10 | 0.4254224673693650E + 00 -
0

20 | 0.4258159920666613E + 00 | —0.0013339
40 | 0.4260329453139864E + 00 | —0.0007349

subject to the constraints
80 | 0.4260267362368171E + 00 0.0000210

IO | 0) =1 160 | 0.4261445411996390E + 00 | —0.0003989

0= Ez(l) +tu@®, =1 320 | 0.4260148465889140E + 00 | 0.0004391
Table 5.2. Error for modified Euler method with independent optimization variables at #; and

The optimal solution is tiv1/2-
20) 2exp(3t) + exp(3) i) 2(exp(3t) — exp(3)) There is no con\.fergencc at all. Figure 5.2 shows lh; numerical soll.nicn forN = A;IOA
W)= — = - . _
xp(3t/2)2 + exp(3) U xp(3t/2)2 + exp(3) :"h: control u oscillates strongly between 0 at #; + h/2 and approximately —1/(2h)
i

‘We consider the modified Euler method (5.23) and Heun’s method defined by

000 o[o o
1/2]1/2 0 11 o0
0 1 172 1/2
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