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Airborne Wind Energy

Image from Skysails Power Image from Makani Power
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Single vs Dual Kite Systems
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Model

↭ High-Fidelity 6-DOF model of the plane [5]

↭ System Dynamics (Index-1 DAE)

f(x, u, z) = 0

with x → R23, u → R4, z → R1, based on
index-reduced Lagrangian dynamics
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Trajectory Optimization

↭ Optimize a single pumping cycle of a single-kite
AWE system

↭ Formulate OCP

↭ Very large, complicated nonlinear problem, need
good strategy and initialization to solve

↭ Software Packages such as the AWEBox[2]
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Trajectory Optimization

↭ Optimize a single pumping cycle of a single-kite
AWE system

↭ Formulate OCP

max
x(·),u(·),

z(·),tf

Pgen(x, u, z, tf)

s.t. 0 = f(ẋ(t), x(t), u(t), z(t)), ↑t → [0, tf ],

0 ↓ h(ẋ(t), x(t), u(t), z(t)), ↑t → [0, tf ],

0 = p(x(0), x(tf)

↭ Very large, complicated nonlinear problem, need
good strategy and initialization to solve

↭ Software Packages such as the AWEBox[2]
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min
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0 ↓ H(w)
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[IPOPT Video]
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Some Observations from Real Data
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↭ Up to now: practically impossible
to solve problems with many
subcycles

↭ In the reel-out phase, the
subcycles look similar

↭ There is some ’slow’ or ’average’
mode of the trajectory
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↭ Up to now: practically impossible
to solve problems with many
subcycles

↭ In the reel-out phase, the
subcycles look similar

↭ There is some ’slow’ or ’average’
mode of the trajectory

Strong Assumption

In the reel-out phase, the power
optimal trajectory x

→(t) and the
corresponding control u

→(t) consist of
many similar, slowly changing cycles.
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Highly Oscillatory Systems
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Averaging Methods for Highly Oscillatory Systems
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⌧
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Unperturbed Solution x0(⌧)

Perturbed Solution x(⌧)
ẋ = f(x)

High Order Stroboscopic Averaging

Ẋ = F (x)

↭ If x(0) = X(0) then the solution to
averaged system satisfies

x(k) = X(k), k → Z

↭ Averaged system F on slow timescale
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Stroboscopic Average Method (SAM)
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OCP Timescaling

↭ Conceptually divide the trajectory into
N + 1 section

↭ Of duration T1, . . . , TN , TN+1

↭ Now: Numerical time ω → [0, N + 1]

min
x(·),u(·),z(·)
T1,...,TN+1

∫ N+1

0
l(x(ω), u(ω), z(ω)) dω

s.t. 0 = f

(
1

T (ω)

dx(ω)

dω
, x(ω), u(ω), z(ω)

)
,

0 ↓ h (x(ω), u(ω), z(ω)) ,

0 = x(0) ↗ x(N + 1)
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Stroboscopic Averaging for AWE System
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Stroboscopic Averaging for AWE System
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Stroboscopic Averaging for AWE System
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Regularization

Strong Assumption

In the reel-out phase, the power optimal
trajectory x

→(t) and the corresponding control
u

→(t) consist of many similar, slowly changing
cycles.

Enforce via Regularization:

1) The micro-integrations should be similar

2) The change over a single cycle should be
small

3) The high-order derivatives of the average
state trajectory should be small

↭ Keeps the errors small

↭ Strong geometric assumption!
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Stroboscopic Averaging for AWE System (cont.)

Found NLP Solution
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Stroboscopic Averaging for AWE System (cont.)

Found NLP Solution
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Reconstruction of the Full Trajectory
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Stroboscopic Averaging for AWE System (cont.)

Found NLP Solution
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Verification using a Tracking MPC
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Results 1 - Computational E!ciency
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Results 2 - Generated Power
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Wrap Up

↭ SAM enables us to optimize trajectories of AWE systems with many subcycles in the
reel-out phase

↭ ... but is based on a strong geometric assumption that we need to guarantee.

Open Problems:

↭ How do we know the ‘optimal’ number of subcycles?

↭ ...
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Thank you for your attention!
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