

Numerical Trajectory Optimization of Airborne Wind Energy Systems with Stroboscopic Averaging Methods

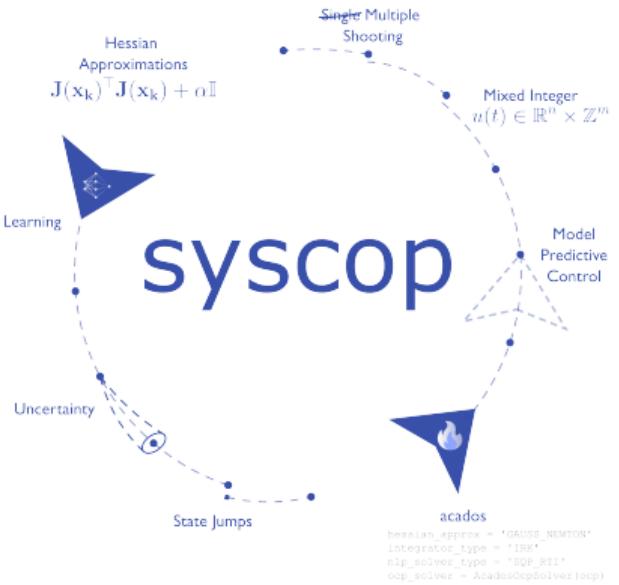
Jakob Harzer, Jochem De Schutter, Moritz Diehl

Conference for Decision And Control 2025

November 21, 2025

universität freiburg

Systems Control and Optimization Laboratory



universität freiburg

Systems Control and Optimization Laboratory

Numerical Trajectory Optimization of Airborne Wind Energy Systems with Stroboscopic Averaging Methods

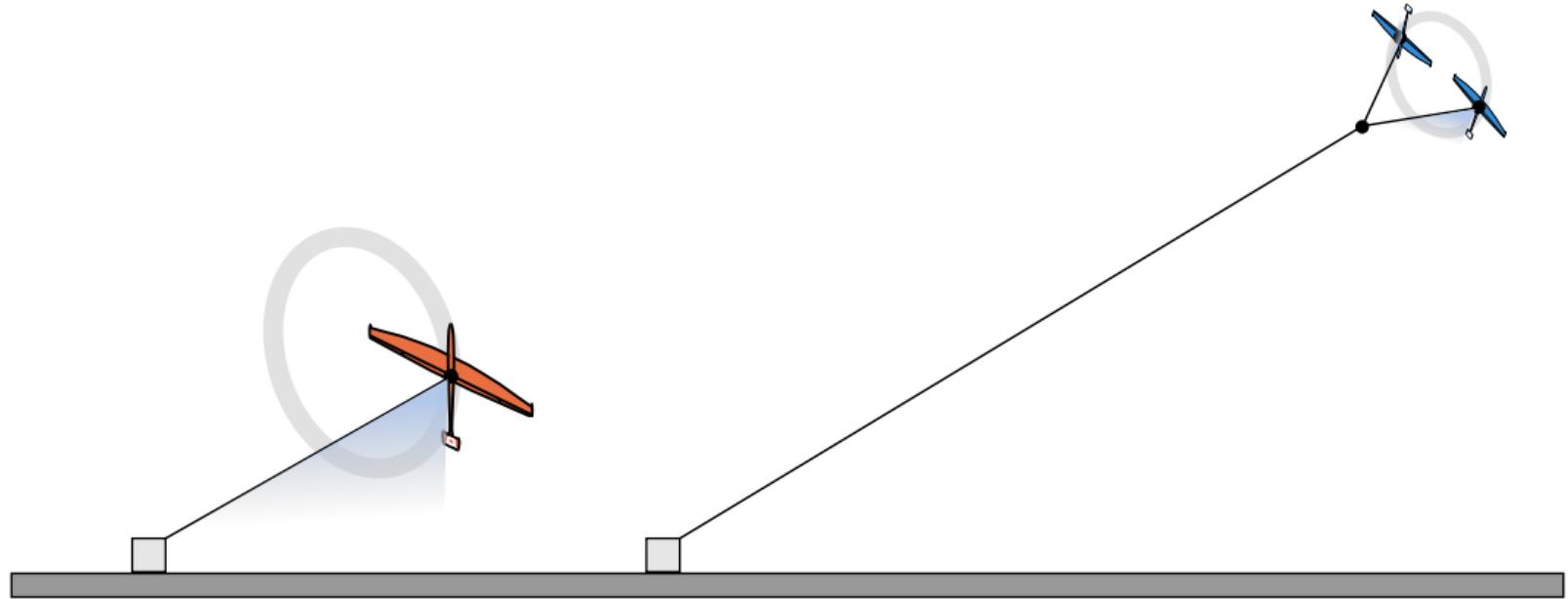
Numerical Trajectory Optimization of Airborne Wind Energy Systems with Stroboscopic Averaging Methods

Airborne Wind Energy

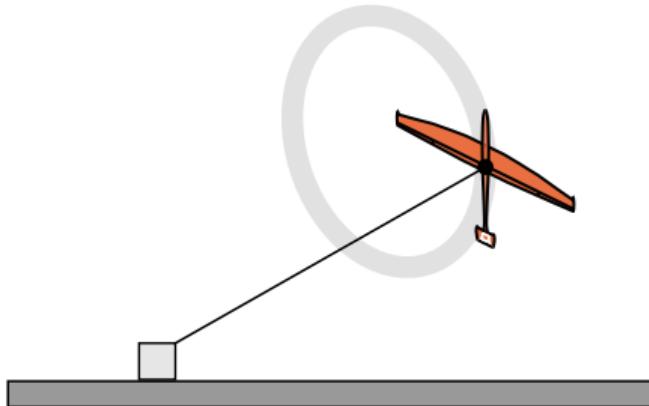
Image from Skysails Power

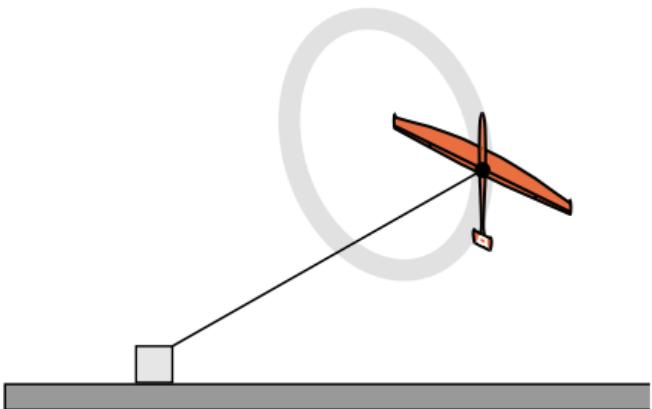
Image from Makani Power

Single vs Dual Kite Systems



- ▶ High-Fidelity 6-DOF model of the plane [5]



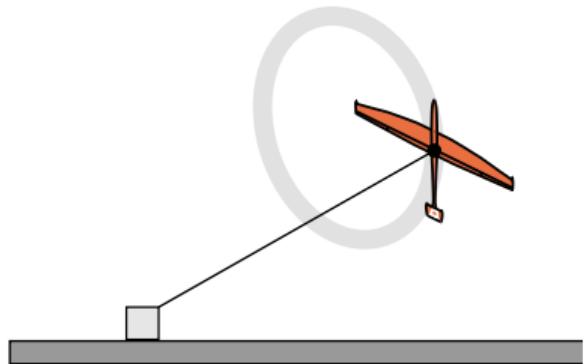


- ▶ High-Fidelity 6-DOF model of the plane [5]
- ▶ System Dynamics (Index-1 DAE)

$$f(x, u, z) = 0$$

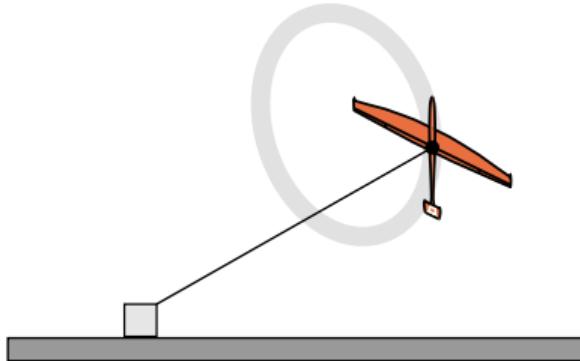
with $x \in \mathbb{R}^{23}$, $u \in \mathbb{R}^4$, $z \in \mathbb{R}^1$, based on index-reduced Lagrangian dynamics

Trajectory Optimization



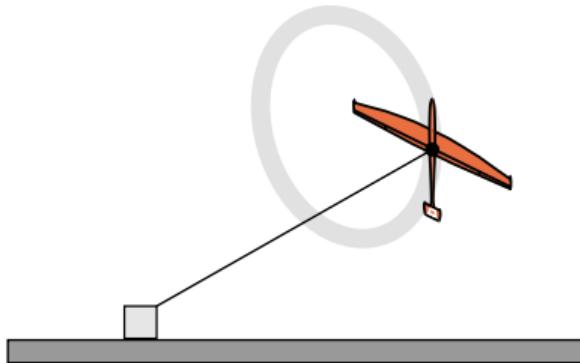
Trajectory Optimization

- ▶ Optimize a single pumping cycle of a single-kite AWE system



Trajectory Optimization

- ▶ Optimize a single pumping cycle of a single-kite AWE system
- ▶ Formulate OCP



Trajectory Optimization

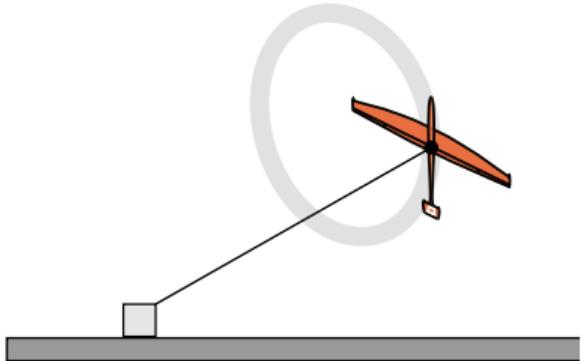
- ▶ Optimize a single pumping cycle of a single-kite AWE system
- ▶ Formulate OCP

$$\max_{\substack{x(\cdot), u(\cdot), \\ z(\cdot), t_f}} P_{\text{gen}}(x, u, z, t_f)$$

$$\text{s.t.} \quad 0 = f(\dot{x}(t), x(t), u(t), z(t)), \quad \forall t \in [0, t_f],$$

$$0 \leq h(\dot{x}(t), x(t), u(t), z(t)), \quad \forall t \in [0, t_f],$$

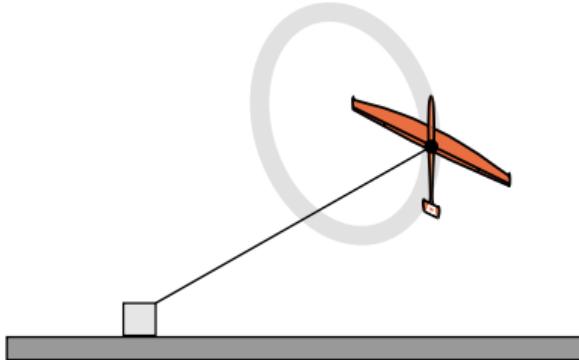
$$0 = p(x(0), x(t_f))$$



Trajectory Optimization

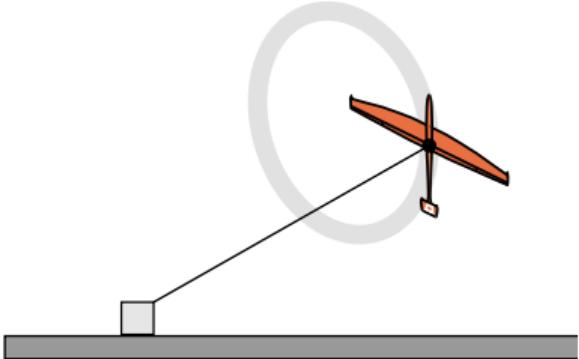
- ▶ Optimize a single pumping cycle of a single-kite AWE system
- ▶ Formulate OCP → discretize to NLP

$$\begin{aligned} \min_w \quad & F(w) \\ \text{s.t.} \quad & 0 = G(w), \\ & 0 \leq H(w) \end{aligned}$$



Trajectory Optimization

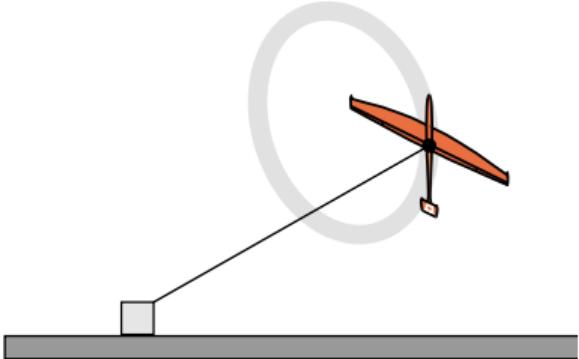
- ▶ Optimize a single pumping cycle of a single-kite AWE system
- ▶ Formulate OCP → discretize to NLP


$$\begin{aligned} \min_w \quad & F(w) \\ \text{s.t.} \quad & 0 = G(w), \\ & 0 \leq H(w) \end{aligned}$$

- ▶ Very large, complicated nonlinear problem, need good strategy and initialization to solve

Trajectory Optimization

- ▶ Optimize a single pumping cycle of a single-kite AWE system
- ▶ Formulate OCP → discretize to NLP

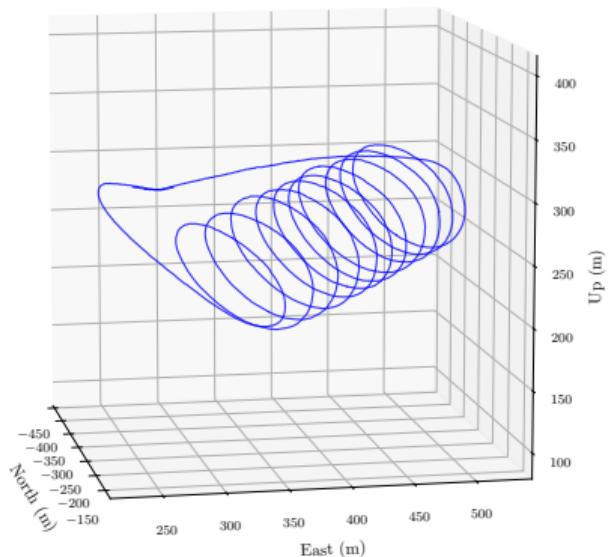


$$\begin{aligned} \min_w \quad & F(w) \\ \text{s.t.} \quad & 0 = G(w), \\ & 0 \leq H(w) \end{aligned}$$

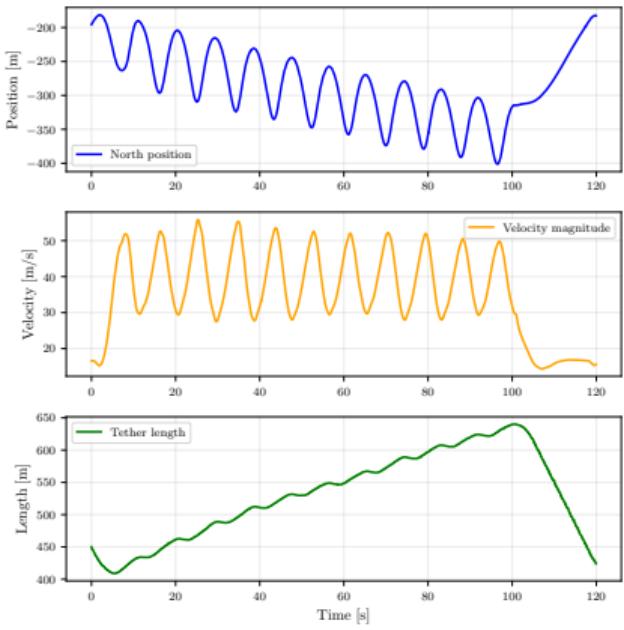
- ▶ Very large, complicated nonlinear problem, need good strategy and initialization to solve
- ▶ Software Packages such as the AWEBox[2]

[IPOPT Video]

Some Observations from Real Data

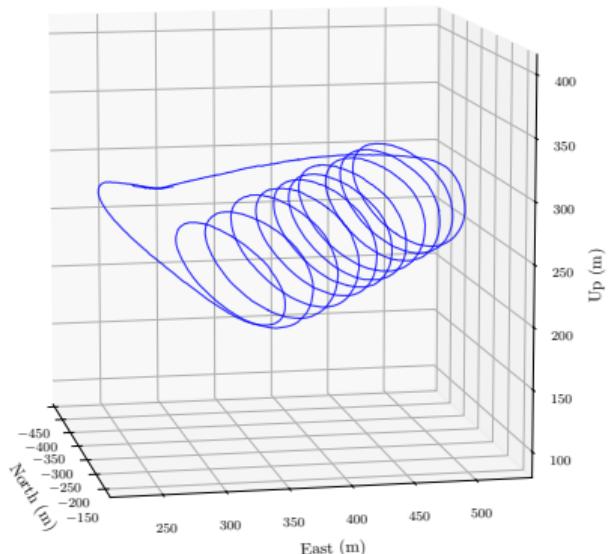


Produced from <https://github.com/kitemill/Flight-log>



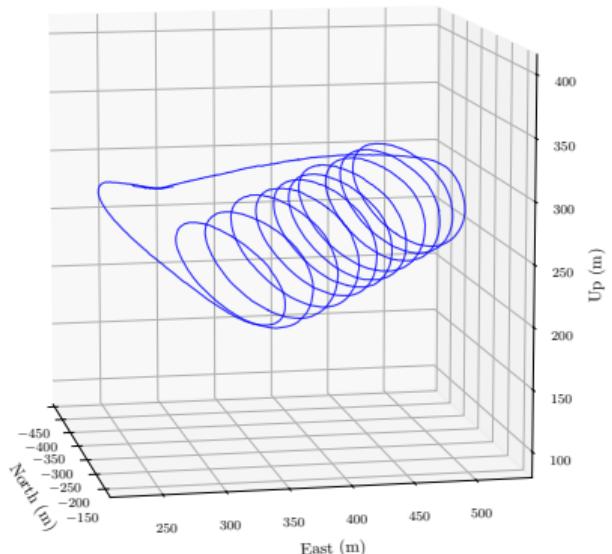
Some Observations from Real Data

- ▶ Up to now: practically impossible to solve problems with many subcycles



Produced from <https://github.com/kitemill/Flight-log>

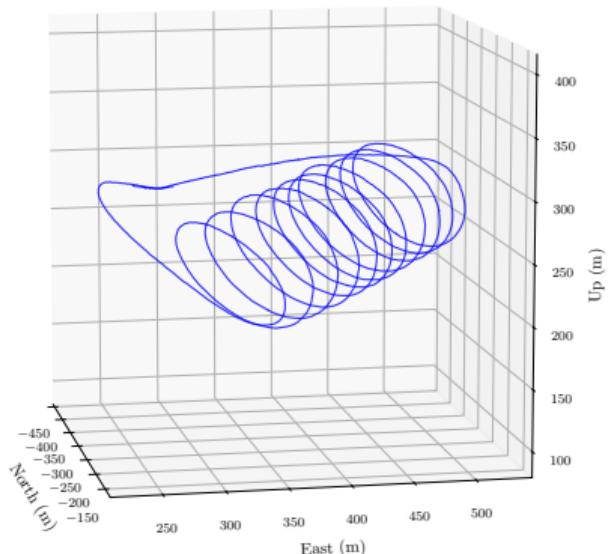
Some Observations from Real Data



- ▶ Up to now: practically impossible to solve problems with many subcycles
- ▶ In the reel-out phase, the subcycles look similar

Produced from <https://github.com/kitemill/Flight-log>

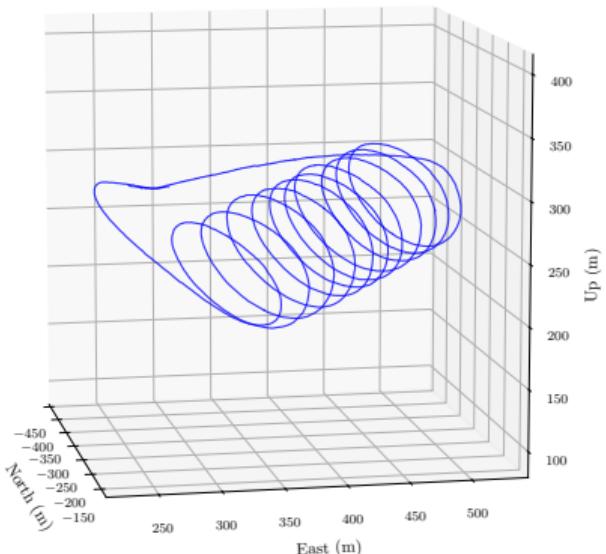
Some Observations from Real Data



- ▶ Up to now: practically impossible to solve problems with many subcycles
- ▶ In the reel-out phase, the subcycles look similar
- ▶ There is some 'slow' or 'average' mode of the trajectory

Produced from <https://github.com/kitemill/Flight-log>

Some Observations from Real Data



Produced from <https://github.com/kitemill/Flight-log>

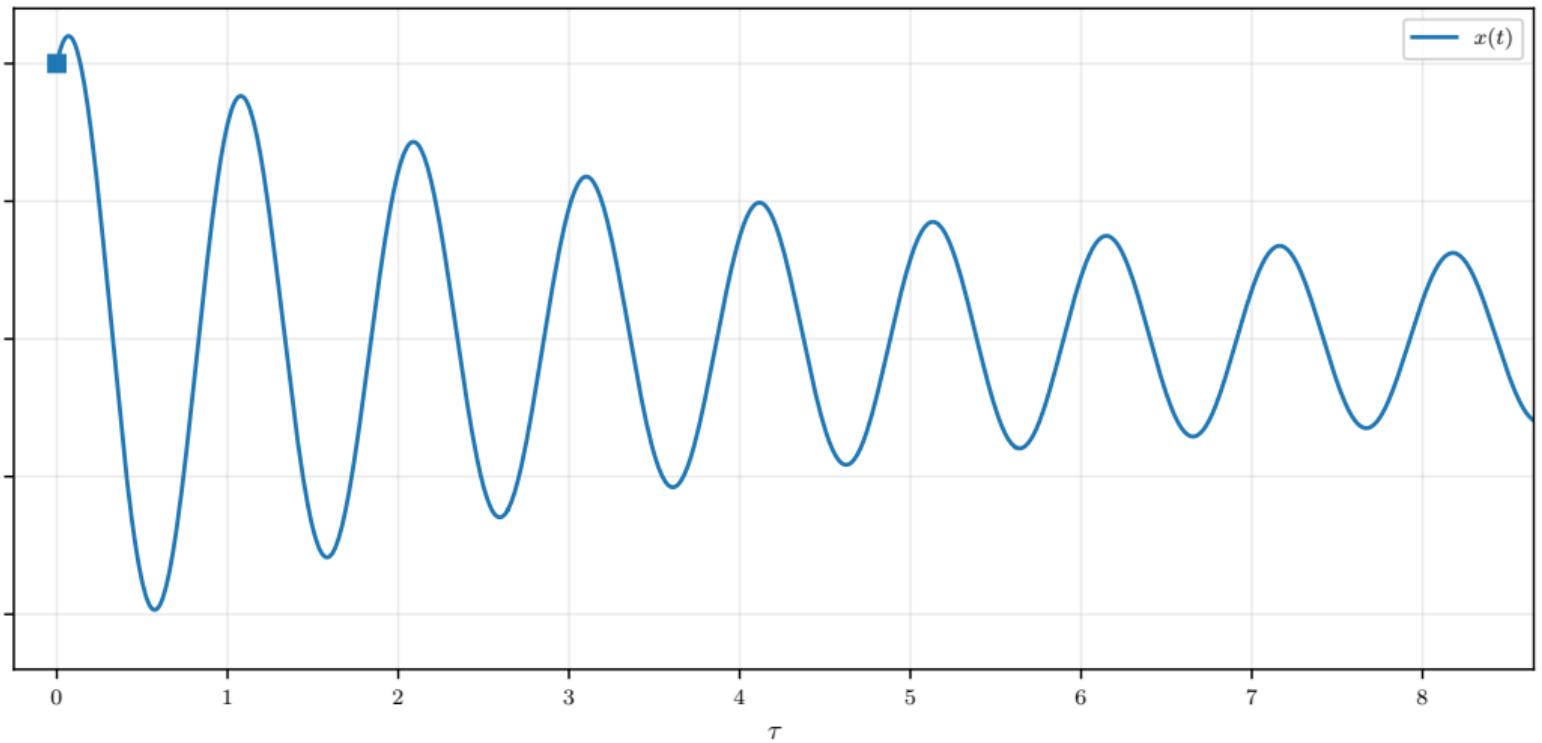
- ▶ Up to now: practically impossible to solve problems with many subcycles
- ▶ In the reel-out phase, the subcycles look similar
- ▶ There is some 'slow' or 'average' mode of the trajectory

Strong Assumption

In the reel-out phase, the power optimal trajectory $x^*(t)$ and the corresponding control $u^*(t)$ consist of many similar, slowly changing cycles.

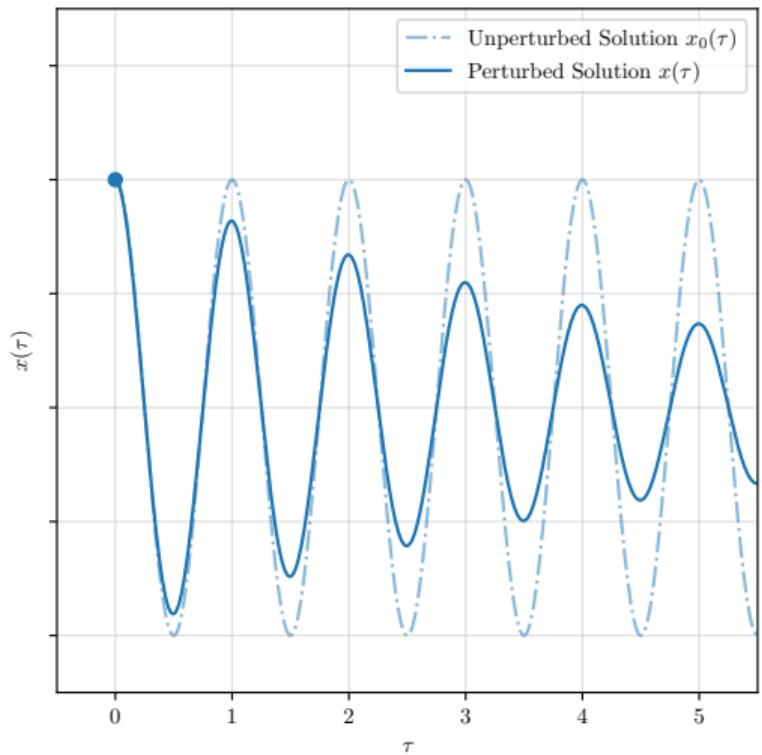
Numerical Trajectory Optimization of Airborne Wind Energy Systems with Stroboscopic Averaging Methods

Highly Oscillatory Systems

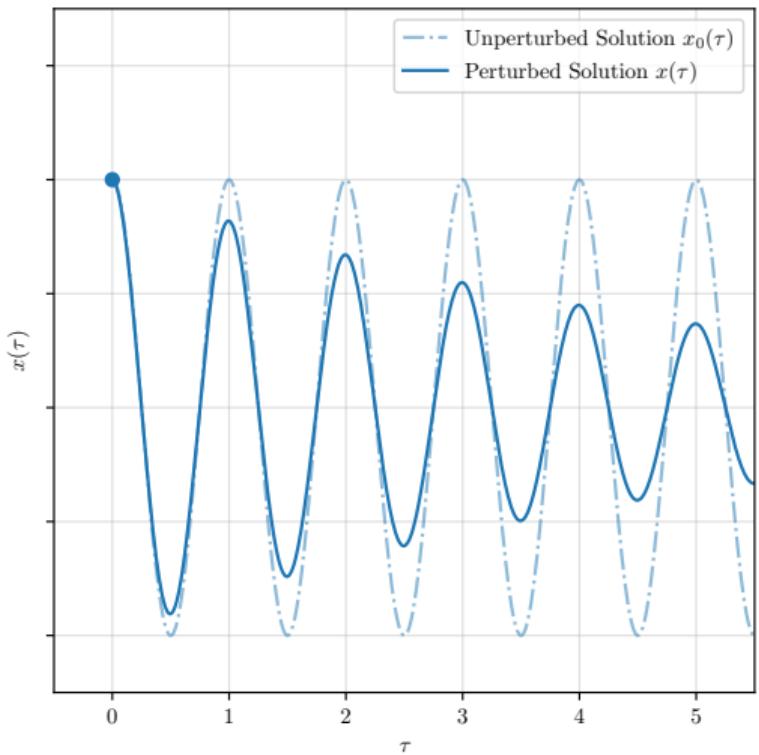
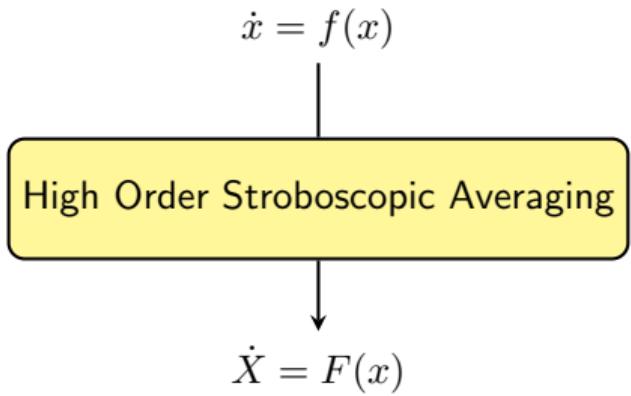


Averaging Methods for Highly Oscillatory Systems

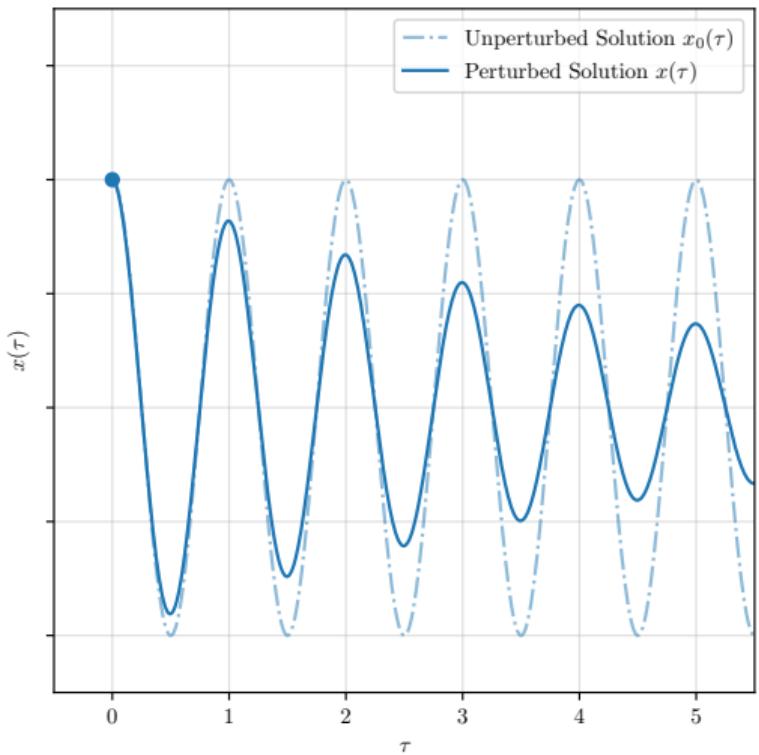
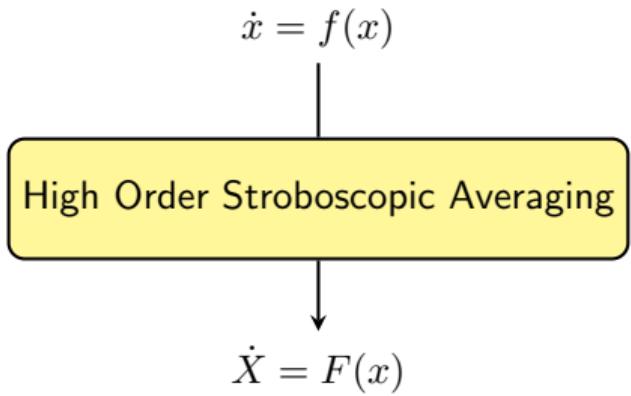
$$\dot{x} = f(x)$$



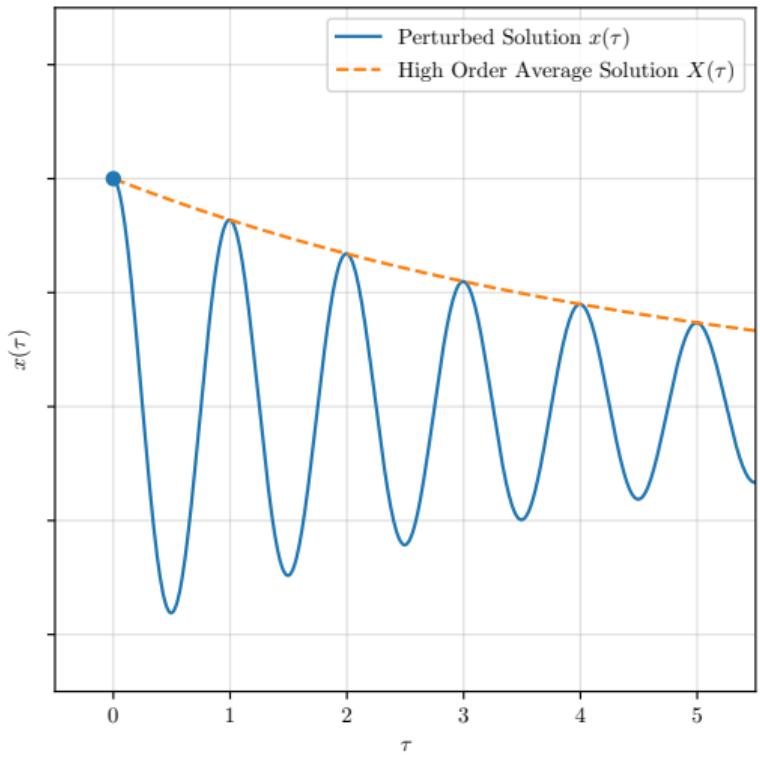
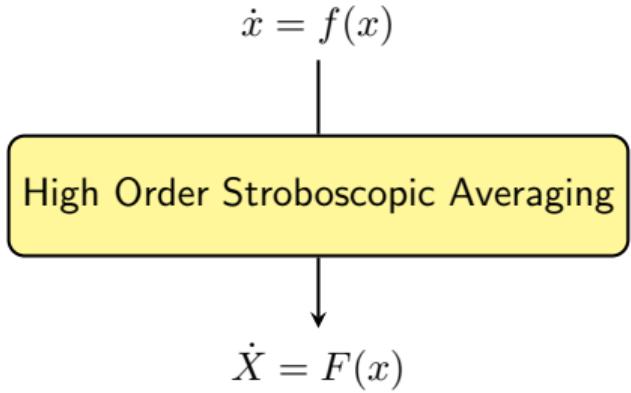
Averaging Methods for Highly Oscillatory Systems



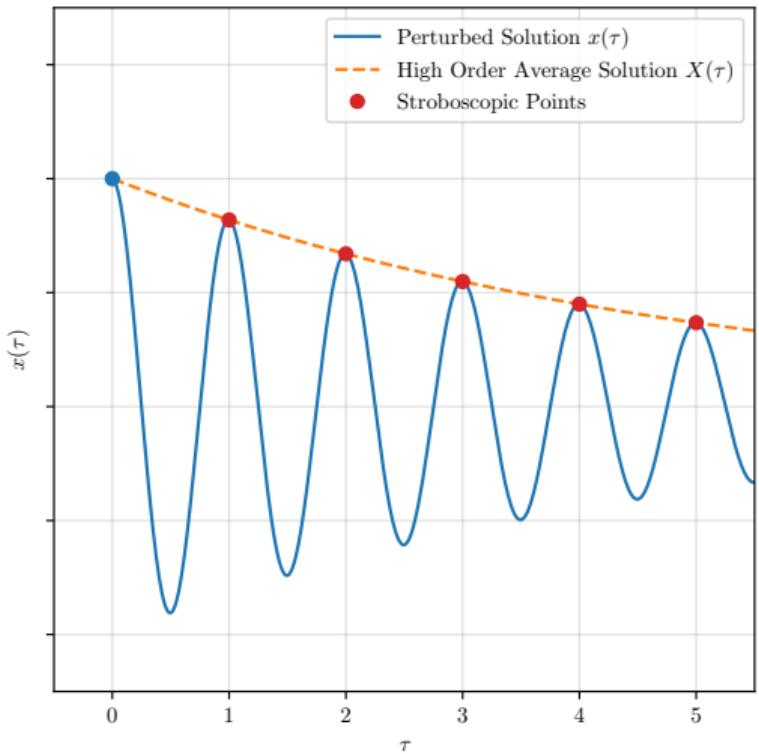
Averaging Methods for Highly Oscillatory Systems



Averaging Methods for Highly Oscillatory Systems



Averaging Methods for Highly Oscillatory Systems



$$\dot{x} = f(x)$$

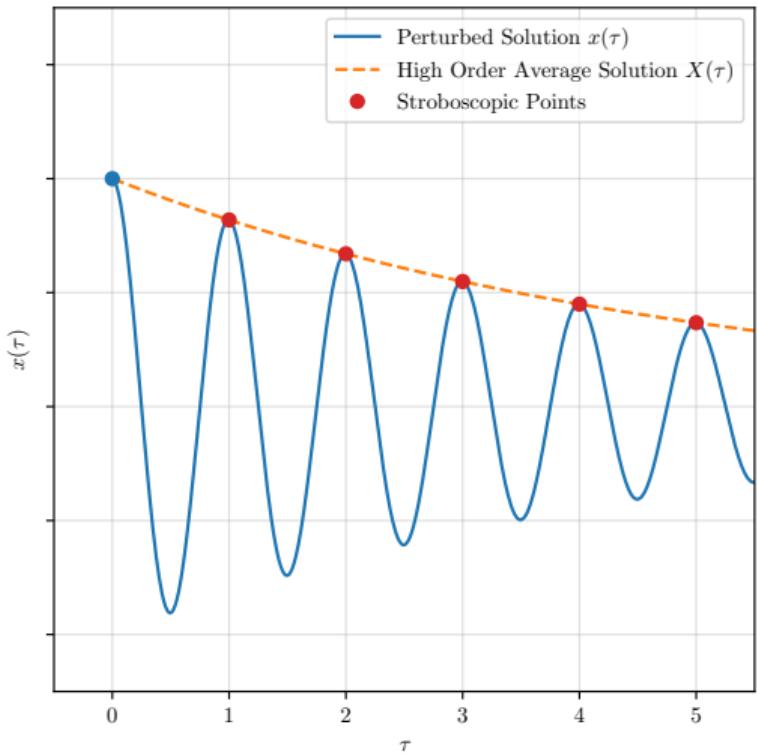
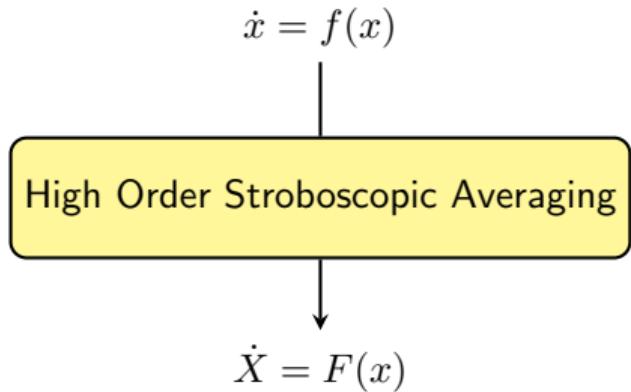
High Order Stroboscopic Averaging

$$\dot{X} = F(x)$$

- ▶ If $x(0) = X(0)$ then the solution to averaged system satisfies

$$x(k) = X(k), \quad k \in \mathbb{Z}$$

Averaging Methods for Highly Oscillatory Systems

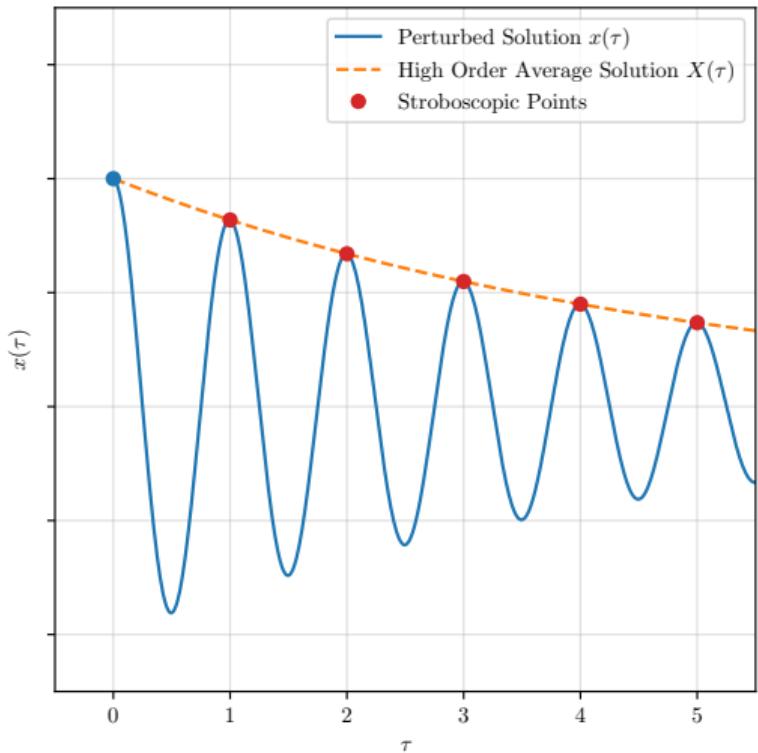
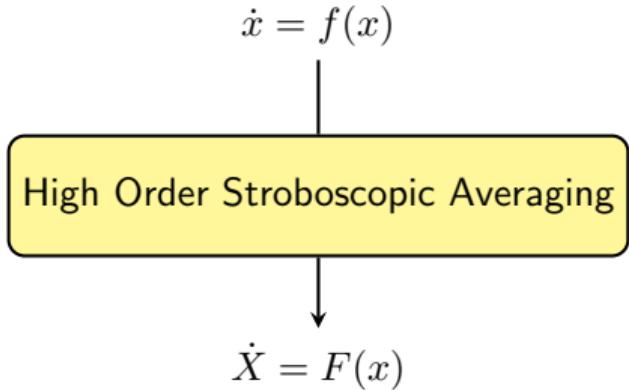


- ▶ If $x(0) = X(0)$ then the solution to averaged system satisfies

$$x(k) = X(k), \quad k \in \mathbb{Z}$$

- ▶ Original system f on a fast timescale

Averaging Methods for Highly Oscillatory Systems

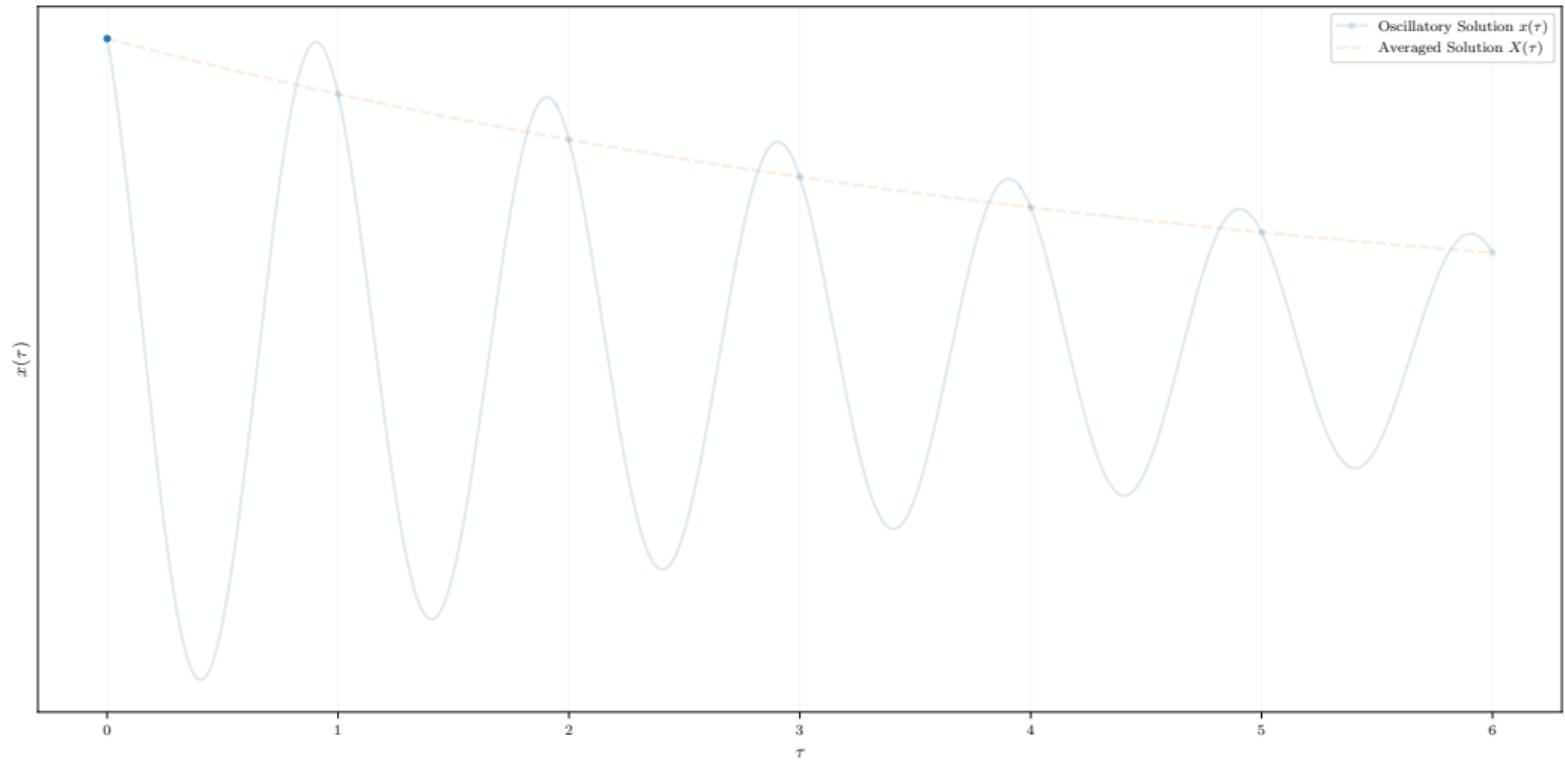


- ▶ If $x(0) = X(0)$ then the solution to averaged system satisfies

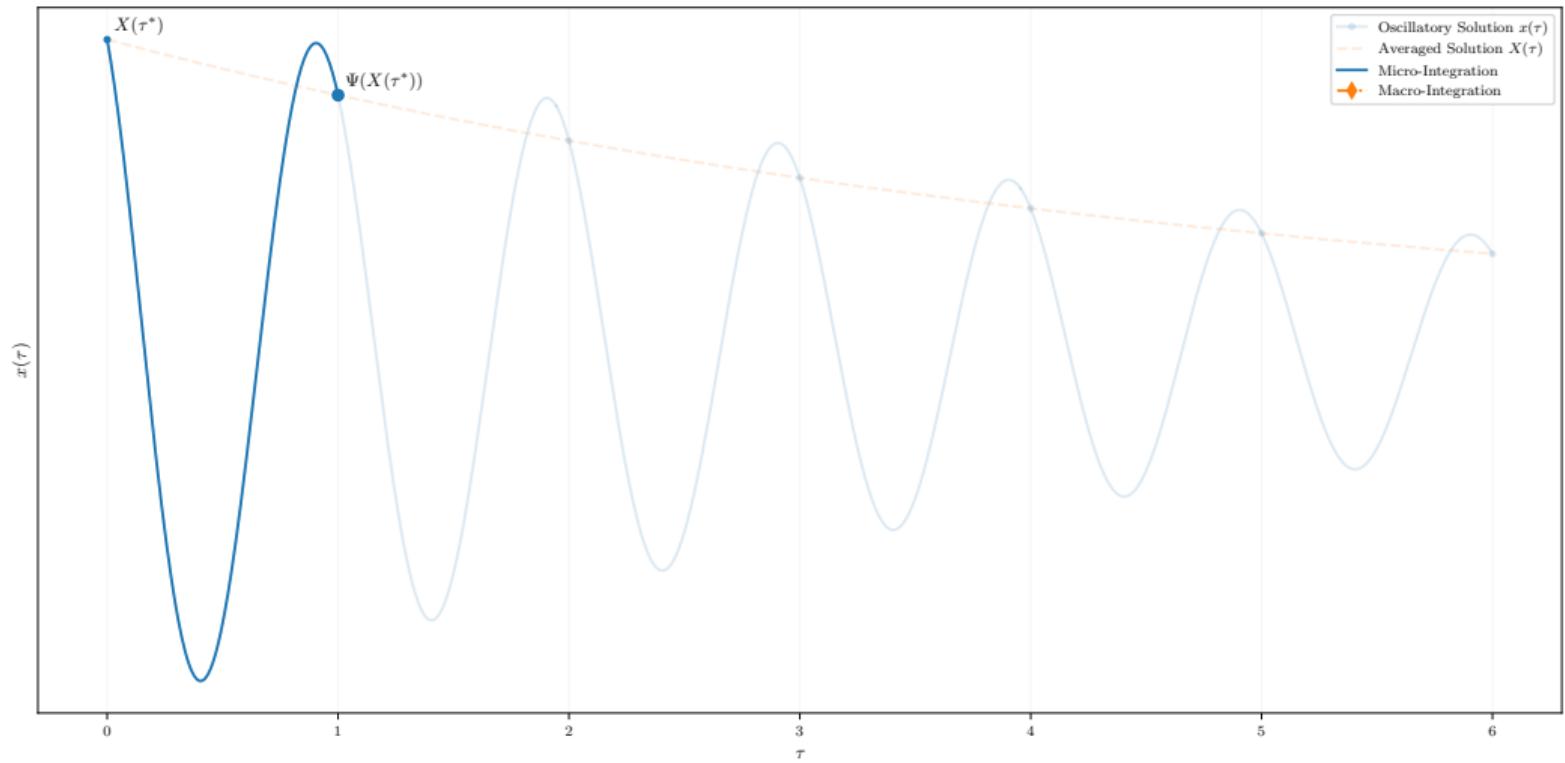
$$x(k) = X(k), \quad k \in \mathbb{Z}$$

- ▶ Averaged system F on slow timescale

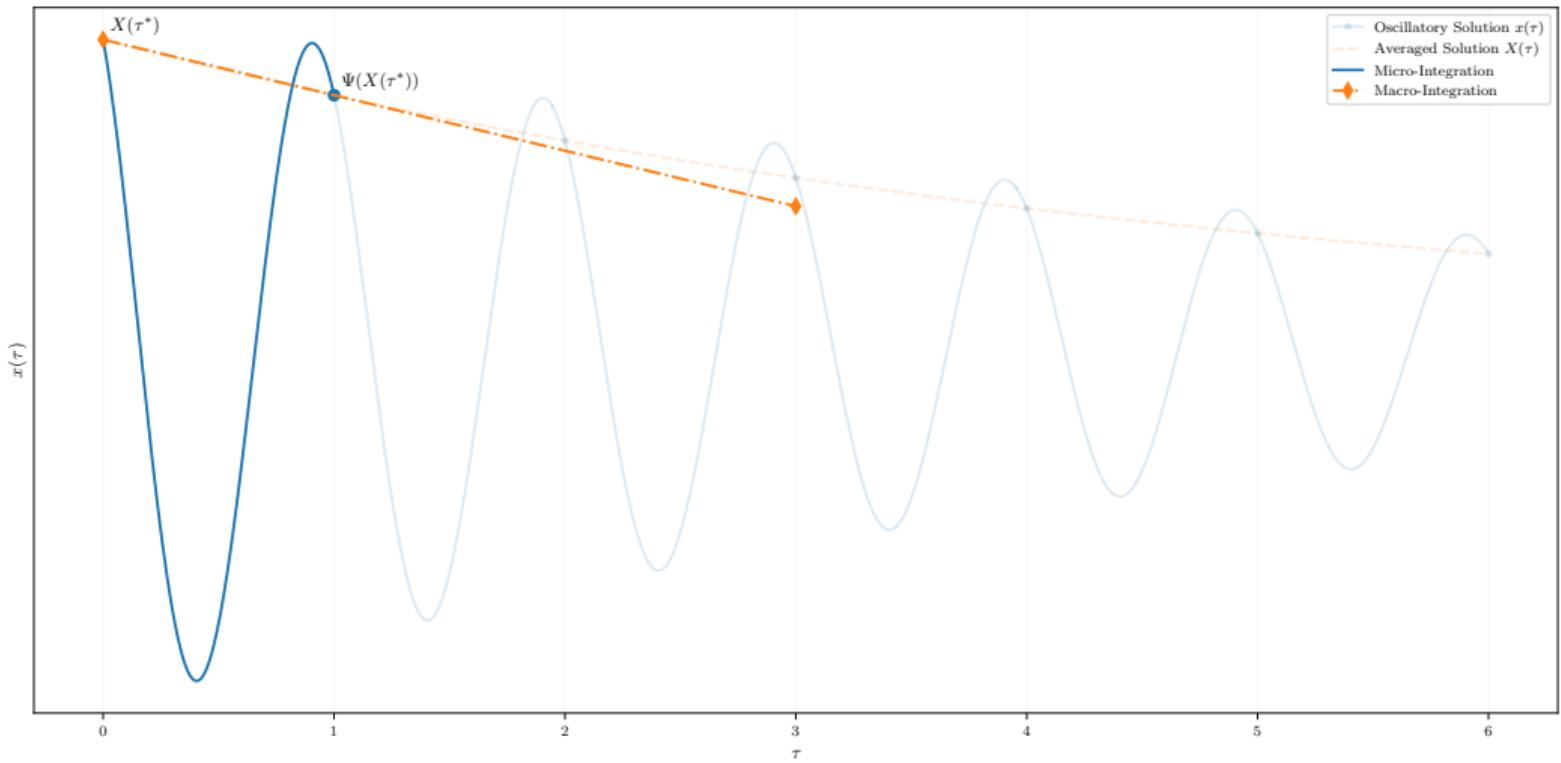
Stroboscopic Average Method (SAM)



Stroboscopic Average Method (SAM)



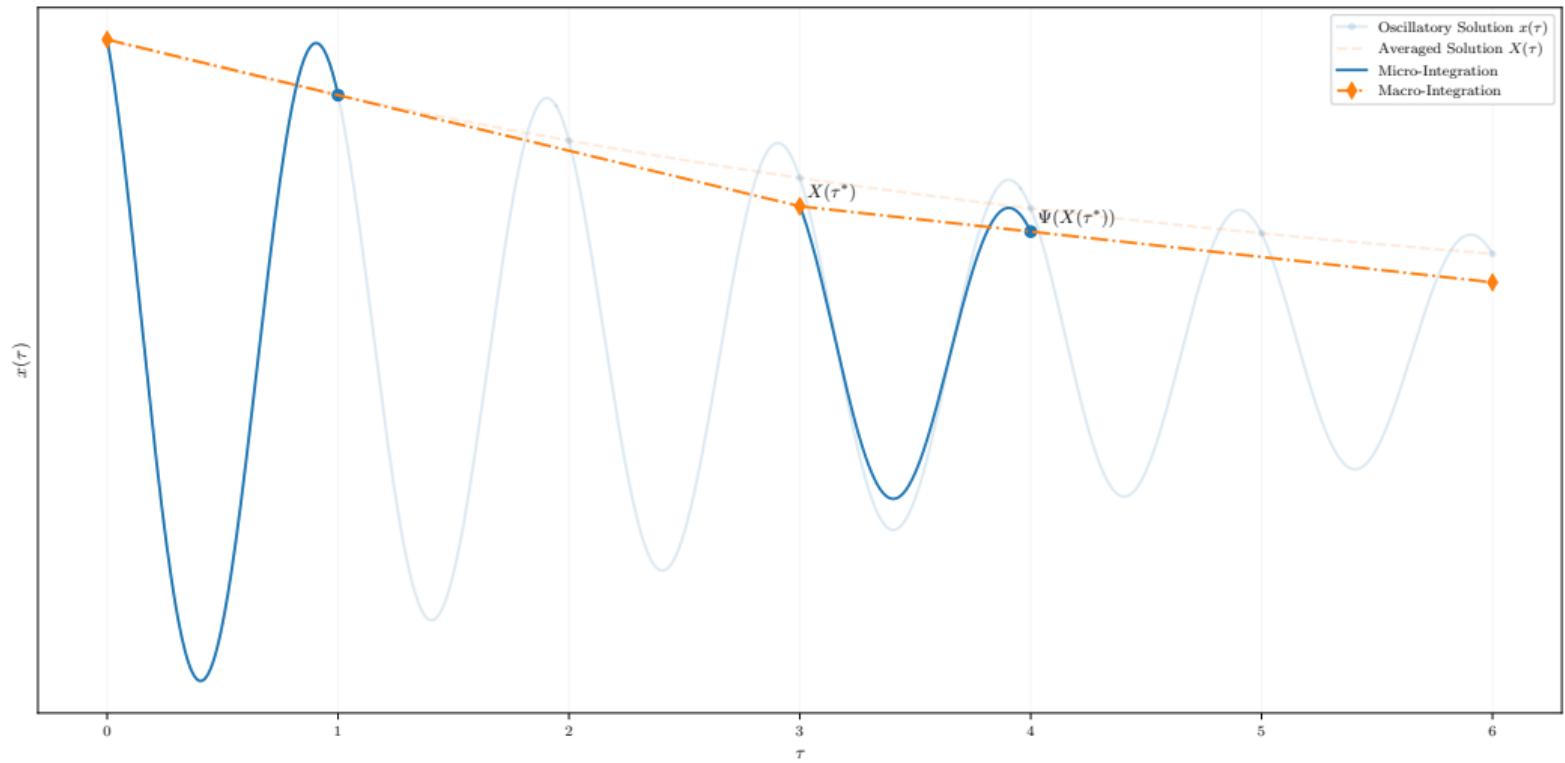
Stroboscopic Average Method (SAM)



Stroboscopic Average Method (SAM)



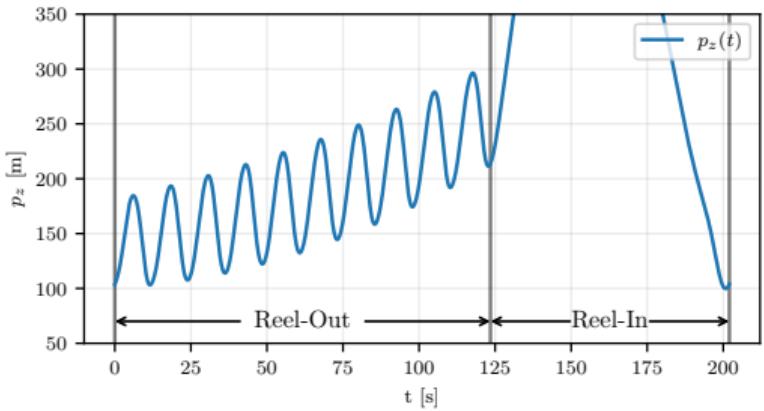
Stroboscopic Average Method (SAM)



Numerical Trajectory Optimization of Airborne Wind Energy Systems with Stroboscopic Averaging Methods

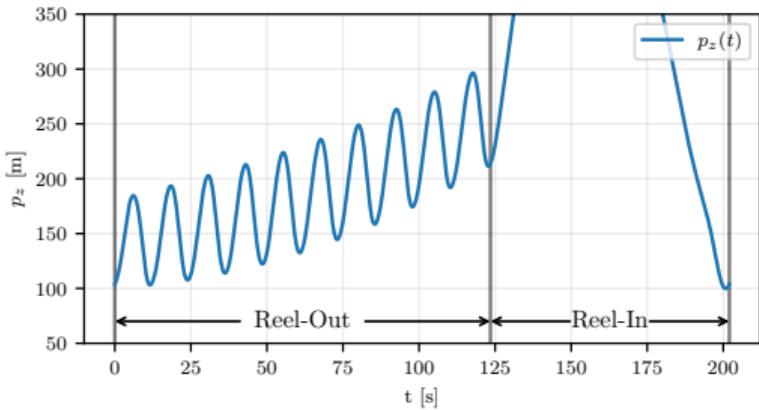
Numerical Trajectory Optimization of Airborne Wind Energy Systems with Stroboscopic Averaging Methods

OCP Timescaling



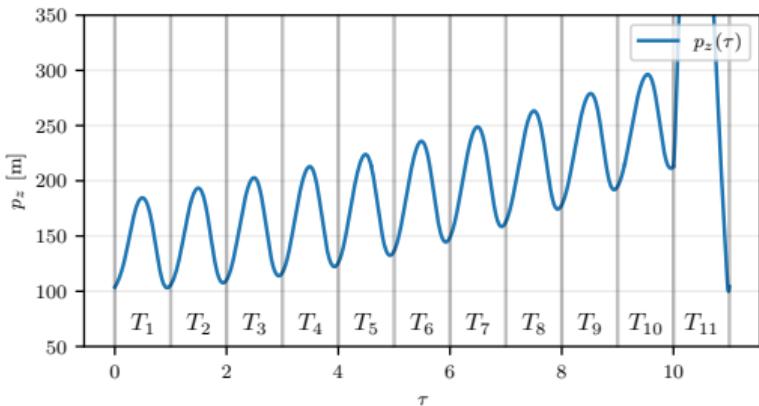
OCP Timescaling

- ▶ Conceptually divide the trajectory into $N + 1$ section



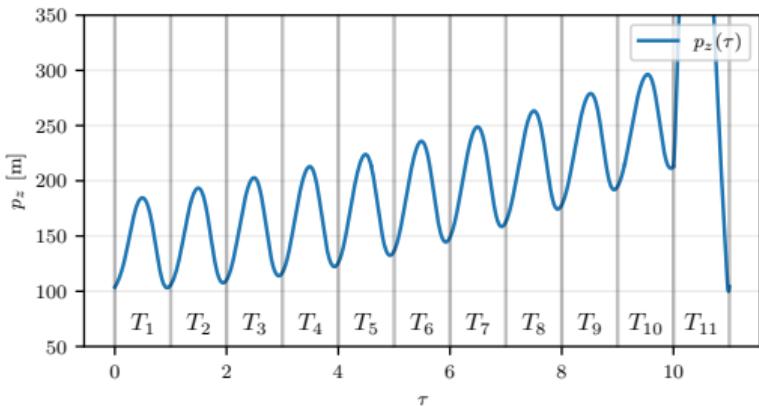
OCP Timescaling

- ▶ Conceptually divide the trajectory into $N + 1$ sections



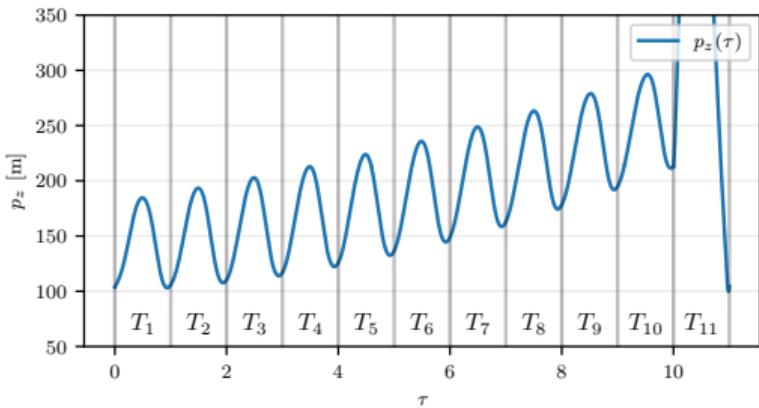
OCP Timescaling

- ▶ Conceptually divide the trajectory into $N + 1$ sections
- ▶ Of duration T_1, \dots, T_N, T_{N+1}



OCP Timescaling

- ▶ Conceptually divide the trajectory into $N + 1$ sections
- ▶ Of duration T_1, \dots, T_N, T_{N+1}
- ▶ Now: Numerical time $\tau \in [0, N + 1]$



OCP Timescaling

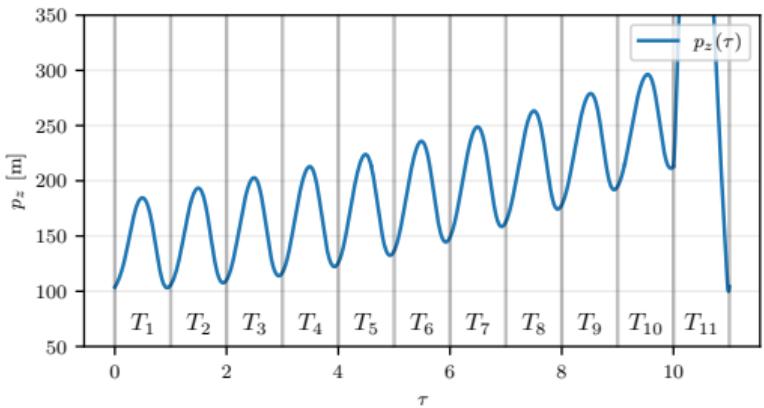
- ▶ Conceptually divide the trajectory into $N + 1$ sections
- ▶ Of duration T_1, \dots, T_N, T_{N+1}
- ▶ Now: Numerical time $\tau \in [0, N + 1]$

$$\min_{\substack{x(\cdot), u(\cdot), z(\cdot) \\ T_1, \dots, T_{N+1}}} \int_0^{N+1} l(x(\tau), u(\tau), z(\tau)) \, d\tau$$

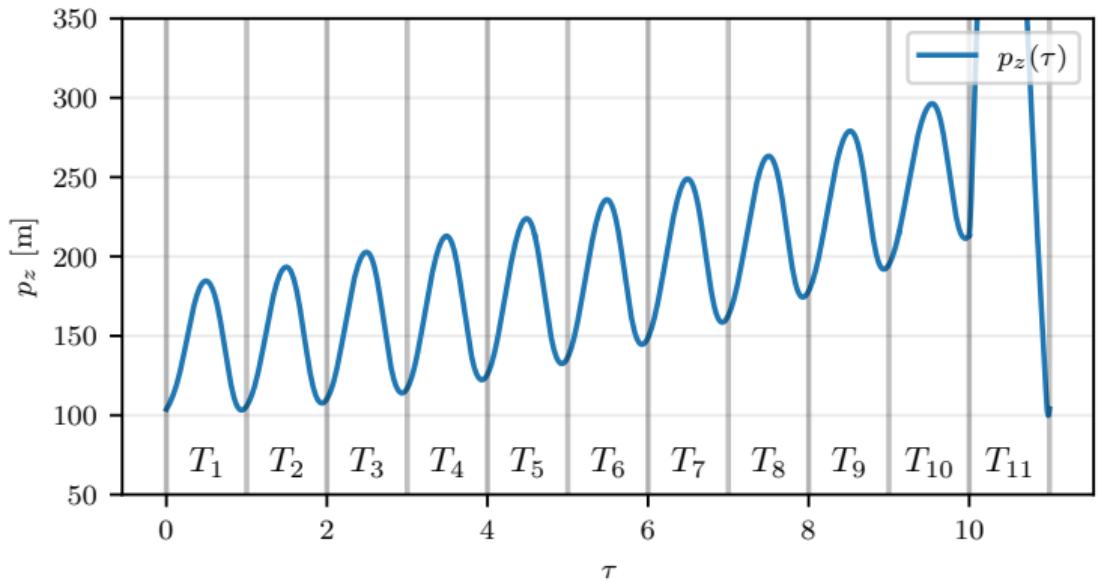
$$\text{s.t.} \quad 0 = f\left(\frac{1}{T(\tau)} \frac{dx(\tau)}{d\tau}, x(\tau), u(\tau), z(\tau)\right),$$

$$0 \leq h(x(\tau), u(\tau), z(\tau)),$$

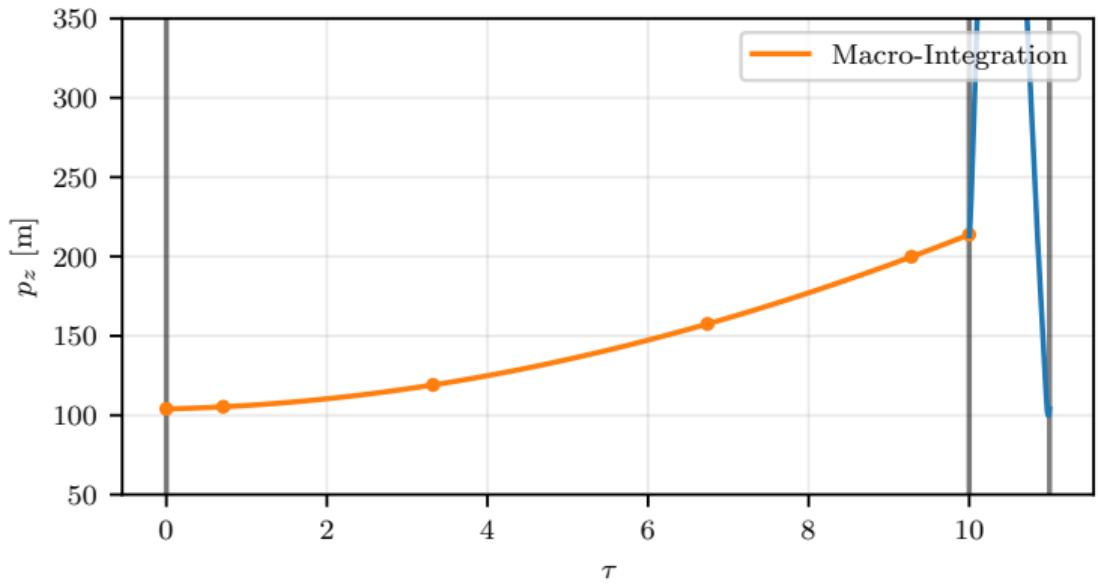
$$0 = x(0) - x(N + 1)$$



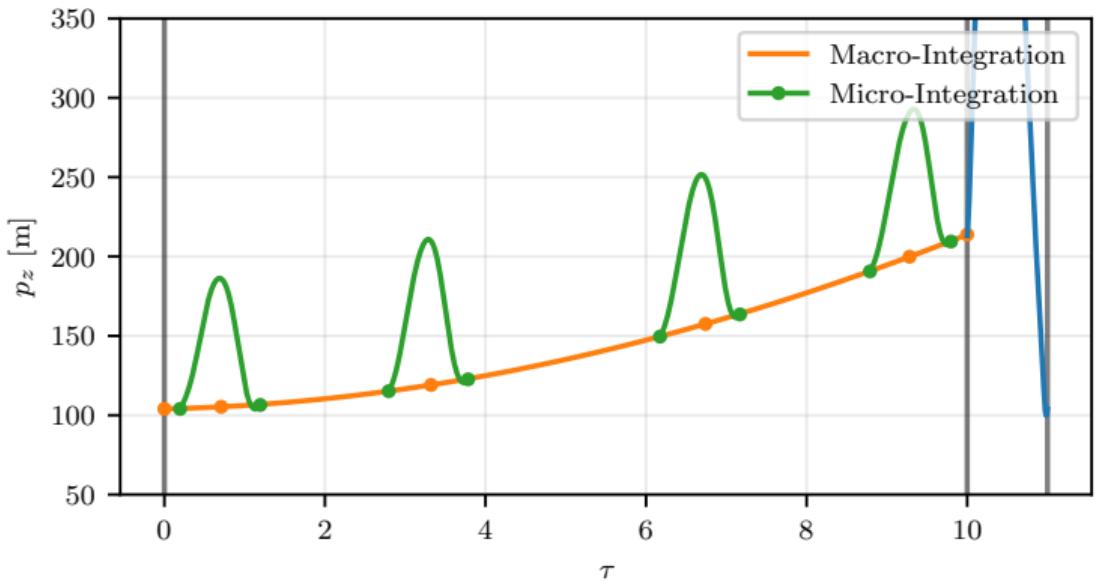
Stroboscopic Averaging for AWE System



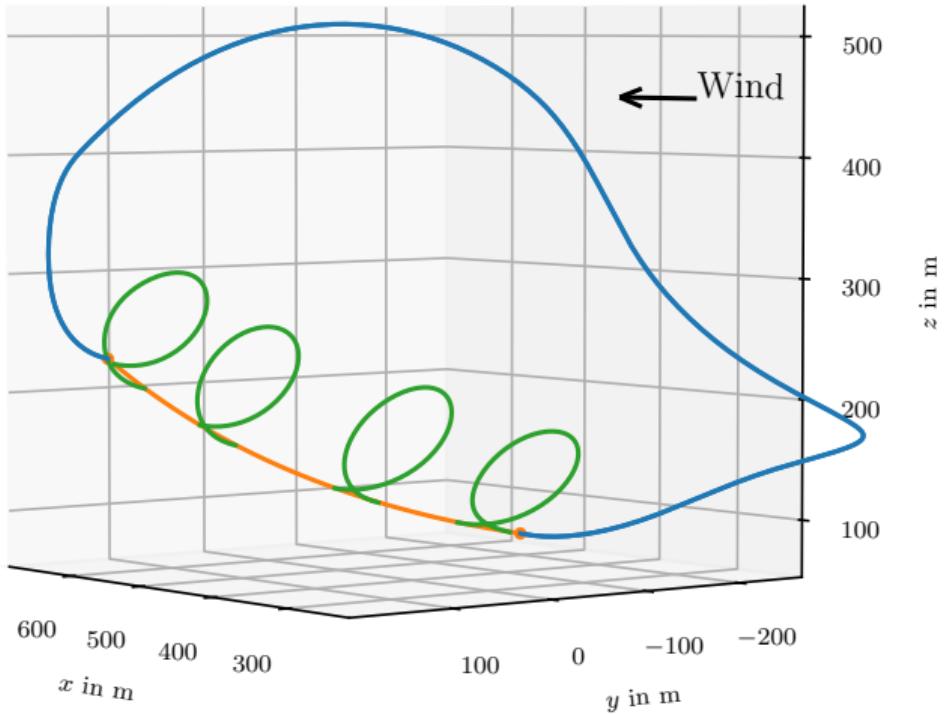
Stroboscopic Averaging for AWE System



Stroboscopic Averaging for AWE System



Stroboscopic Averaging for AWE System

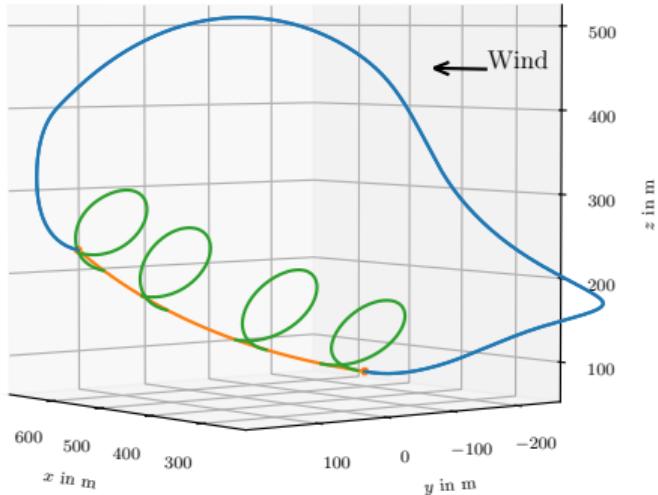


Regularization

Regularization

Strong Assumption

In the reel-out phase, the power optimal trajectory $x^*(t)$ and the corresponding control $u^*(t)$ consist of many similar, slowly changing cycles.

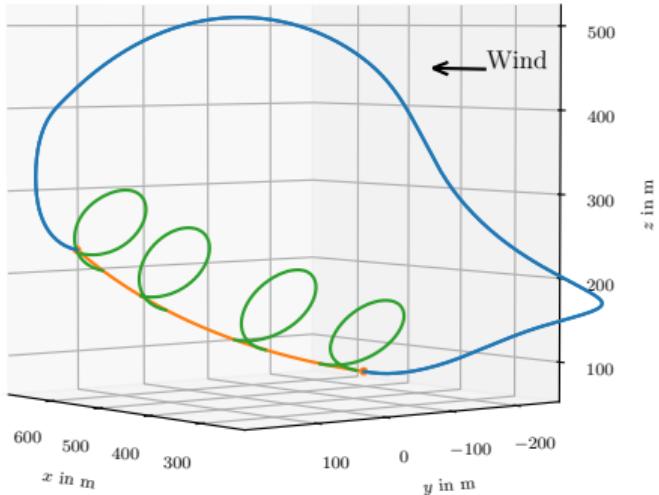


Regularization

Strong Assumption

In the reel-out phase, the power optimal trajectory $x^*(t)$ and the corresponding control $u^*(t)$ consist of many similar, slowly changing cycles.

Enforce via Regularization:



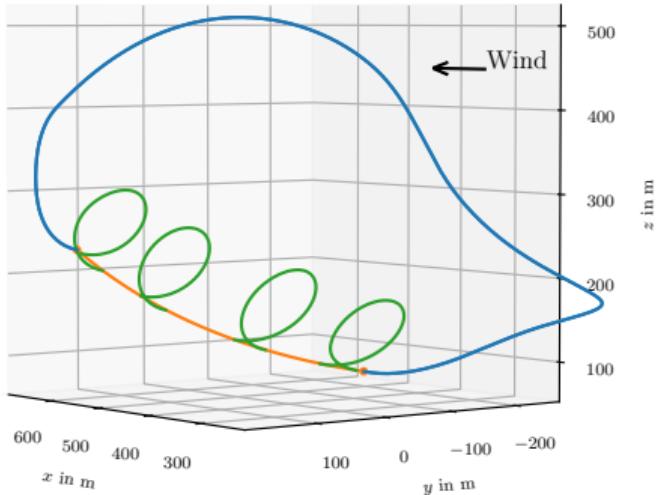
Regularization

Strong Assumption

In the reel-out phase, the power optimal trajectory $x^*(t)$ and the corresponding control $u^*(t)$ consist of many similar, slowly changing cycles.

Enforce via Regularization:

- 1) The micro-integrations should be similar



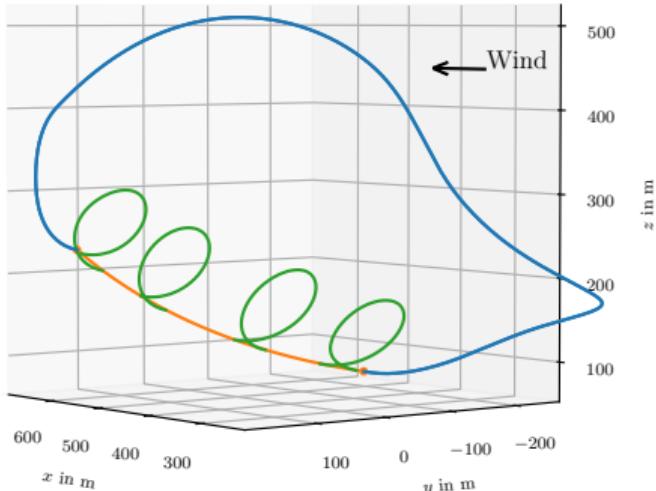
Regularization

Strong Assumption

In the reel-out phase, the power optimal trajectory $x^*(t)$ and the corresponding control $u^*(t)$ consist of many similar, slowly changing cycles.

Enforce via Regularization:

- 1) The micro-integrations should be similar
- 2) The change over a single cycle should be small



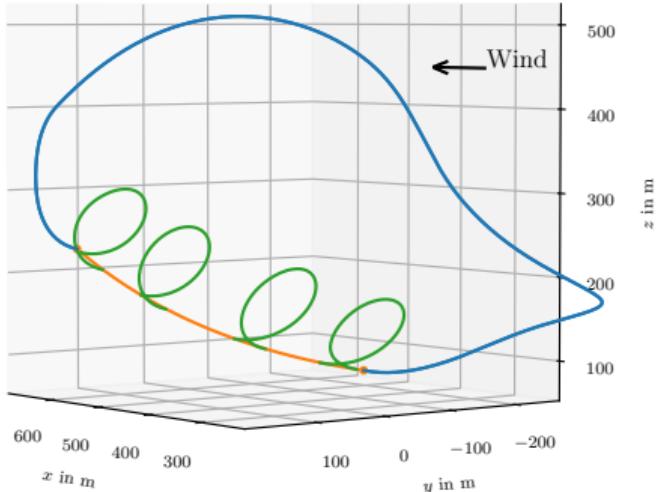
Regularization

Strong Assumption

In the reel-out phase, the power optimal trajectory $x^*(t)$ and the corresponding control $u^*(t)$ consist of many similar, slowly changing cycles.

Enforce via Regularization:

- 1) The micro-integrations should be similar
- 2) The change over a single cycle should be small
- 3) The high-order derivatives of the average state trajectory should be small



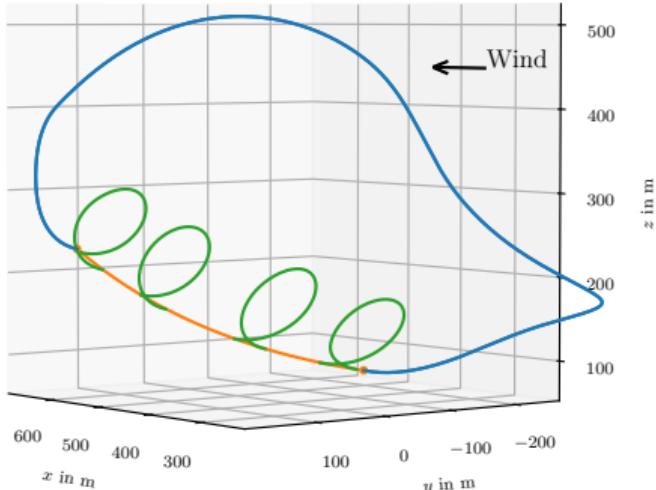
Regularization

Strong Assumption

In the reel-out phase, the power optimal trajectory $x^*(t)$ and the corresponding control $u^*(t)$ consist of many similar, slowly changing cycles.

Enforce via Regularization:

- 1) The micro-integrations should be similar
- 2) The change over a single cycle should be small
- 3) The high-order derivatives of the average state trajectory should be small



- ▶ Keeps the errors small

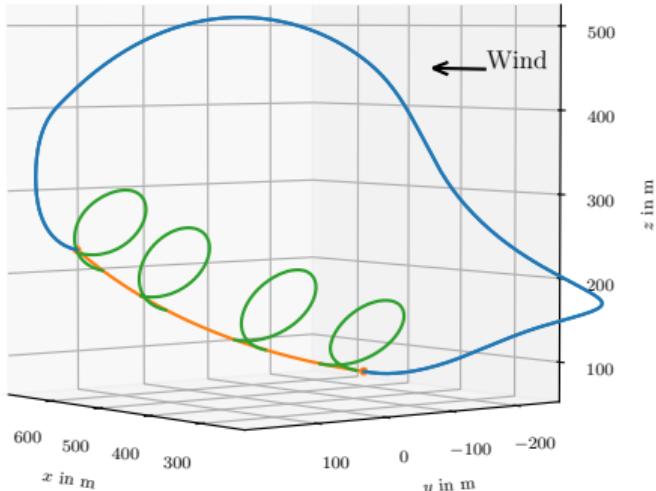
Regularization

Strong Assumption

In the reel-out phase, the power optimal trajectory $x^*(t)$ and the corresponding control $u^*(t)$ consist of many similar, slowly changing cycles.

Enforce via Regularization:

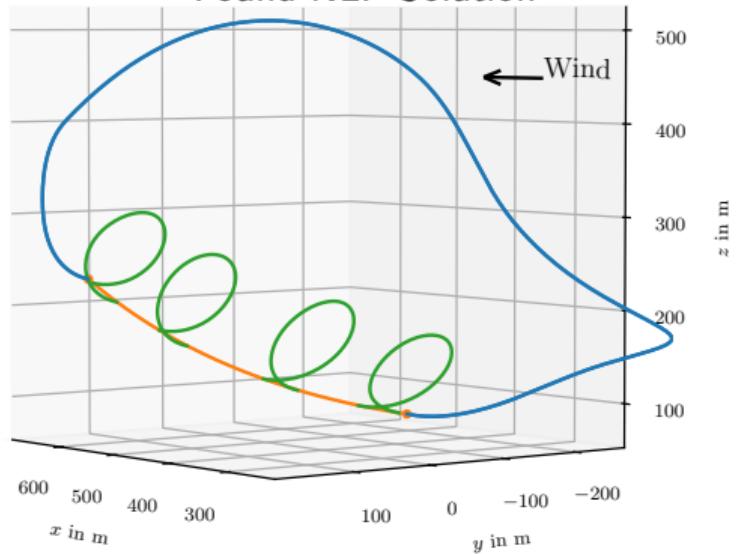
- 1) The micro-integrations should be similar
- 2) The change over a single cycle should be small
- 3) The high-order derivatives of the average state trajectory should be small



- ▶ Keeps the errors small
- ▶ Strong geometric assumption!

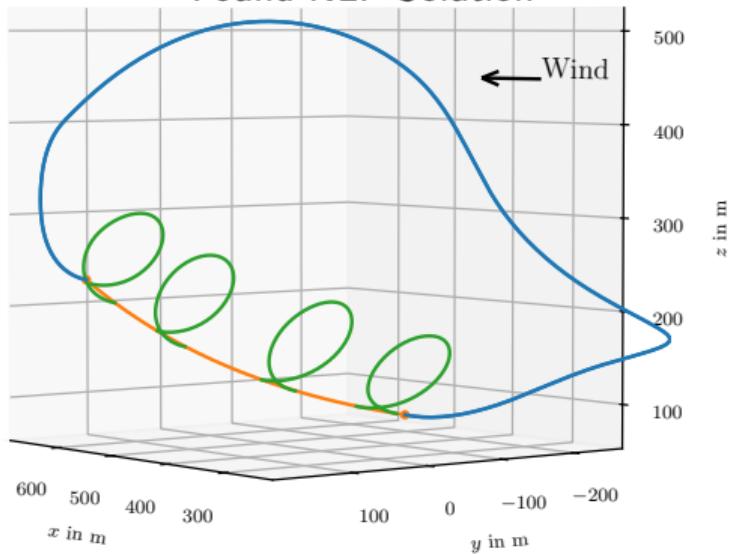
Stroboscopic Averaging for AWE System (cont.)

Found NLP Solution

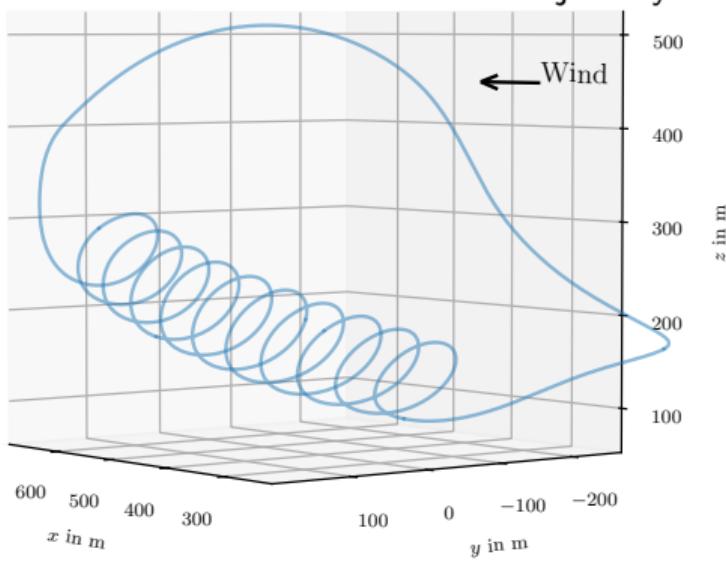


Stroboscopic Averaging for AWE System (cont.)

Found NLP Solution

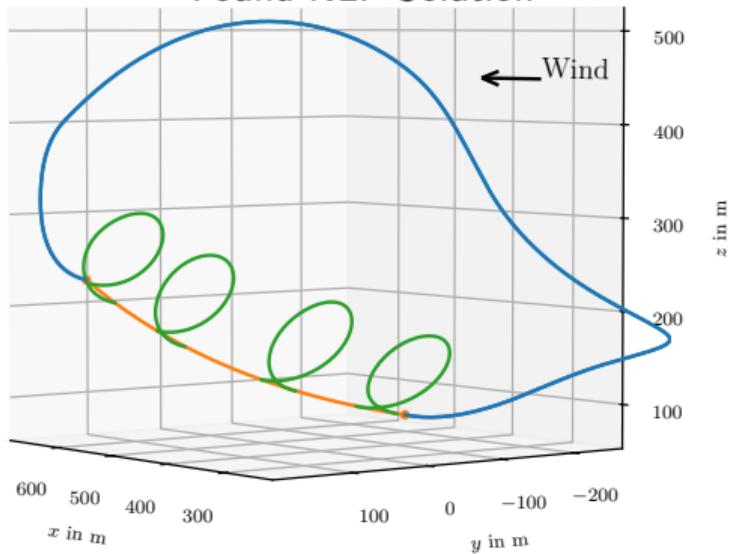


Reconstruction of the Full Trajectory

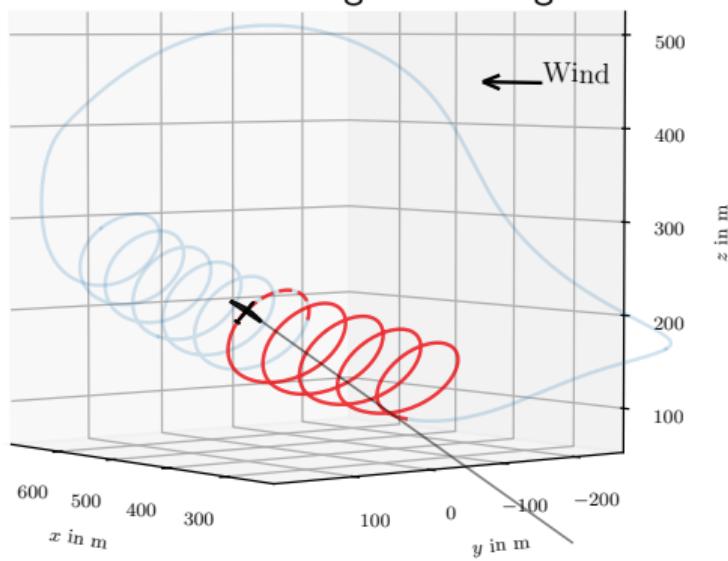


Stroboscopic Averaging for AWE System (cont.)

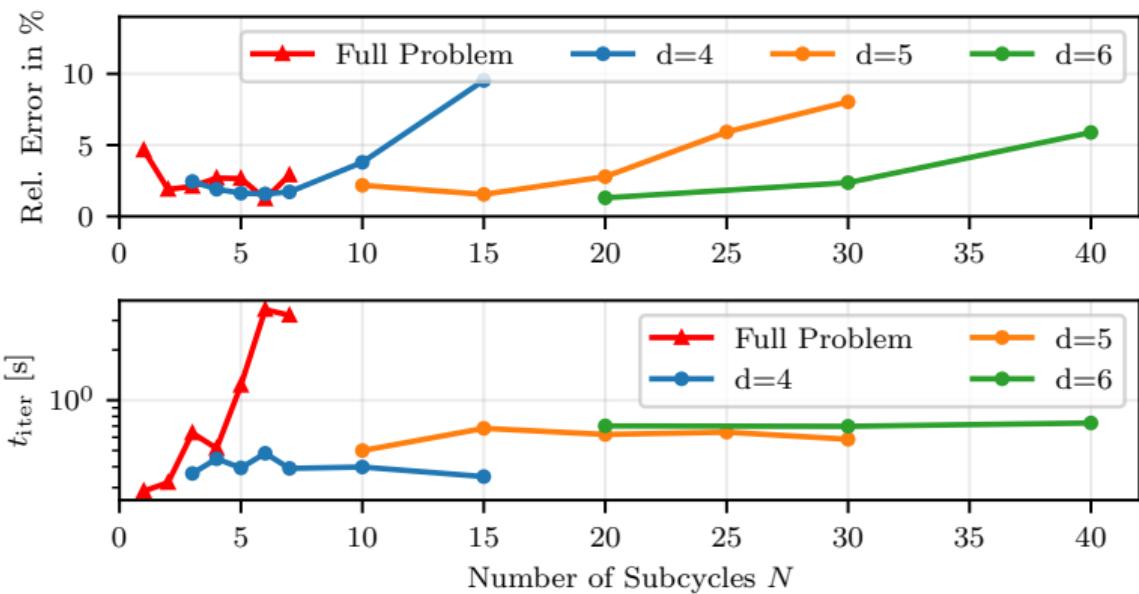
Found NLP Solution



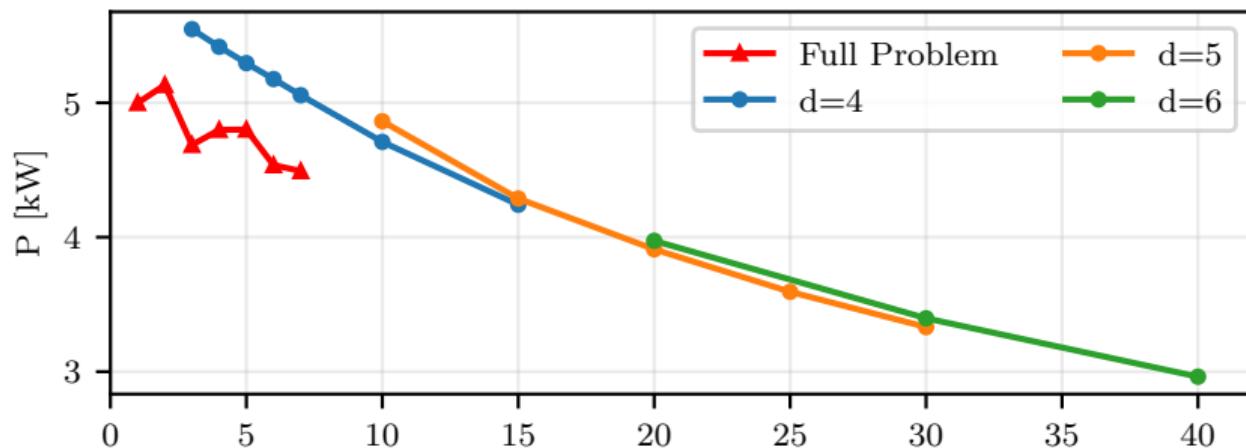
Verification using a Tracking MPC



Results 1 - Computational Efficiency



Results 2 - Generated Power



Wrap Up

- ▶ SAM enables us to optimize trajectories of AWE systems with many subcycles in the reel-out phase

Wrap Up

- ▶ SAM enables us to optimize trajectories of AWE systems with many subcycles in the reel-out phase
- ▶ ... but is based on a strong geometric assumption that we need to guarantee.

- ▶ SAM enables us to optimize trajectories of AWE systems with many subcycles in the reel-out phase
- ▶ ... but is based on a strong geometric assumption that we need to guarantee.

Open Problems:

- ▶ SAM enables us to optimize trajectories of AWE systems with many subcycles in the reel-out phase
- ▶ ... but is based on a strong geometric assumption that we need to guarantee.

Open Problems:

- ▶ How do we know the 'optimal' number of subcycles?

- ▶ SAM enables us to optimize trajectories of AWE systems with many subcycles in the reel-out phase
- ▶ ... but is based on a strong geometric assumption that we need to guarantee.

Open Problems:

- ▶ How do we know the 'optimal' number of subcycles?
- ▶ ...

Thank you for your attention!

Useful Sources

- **Mari Paz Calvo, Philippe Chartier, Ander Murua, and Jesús María Sanz-Serna.**
A stroboscopic numerical method for highly oscillatory problems.
In Björn Engquist, Olof Runborg, and Yen-Hsi R. Tsai, editors, Numerical Analysis of Multiscale Computations, pages 71–85. Springer Berlin Heidelberg, 2012.
- **J. De Schutter, R. Leuthold, T. Bronnenmeyer, E. Malz, S Gros, and M. Diehl.**
AWEbox: An optimal control framework for single- and multi-aircraft airborne wind energy systems.
Energies, 16(4):1900, 2023.
- **Jakob Harzer, Jochem De Schutter, and Moritz Diehl.**
Efficient numerical optimal control for highly oscillatory systems.
IEEE Control Systems Letters, 6:2719–2724, 2022.
- **U. Kirchgraber.**
An ODE-solver based on the method of averaging.
Numerische Mathematik, 53:621–652, 1988.