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Single vs Dual Kite Systems
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» High-Fidelity 6-DOF model of the plane [5]
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» High-Fidelity 6-DOF model of the plane [5]
> System Dynamics (Index-1 DAE)

f(:r7u’z) :O

with z € R?, w € R%, 2 € R!, based on
index-reduced Lagrangian dynamics



Trajectory Optimization
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Trajectory Optimization

» Optimize a single pumping cycle of a single-kite
AWE system
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max  Pyen(x,u, 2, t;
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Trajectory Optimization

» Optimize a single pumping cycle of a single-kite
AWE system

» Formulate OCP — discretize to NLP
min F(w)

st. 0=G(w),
0 < H(w)
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Trajectory Optimization

» Optimize a single pumping cycle of a single-kite
AWE system

» Formulate OCP — discretize to NLP
min F(w)

st. 0=G(w),
0 < H(w)

» Very large, complicated nonlinear problem, need
good strategy and initialization to solve
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Trajectory Optimization

v

Optimize a single pumping cycle of a single-kite
AWE system

Formulate OCP — discretize to NLP

v

%n F(w)
st. 0=G(w),
0 < H(w)

v

Very large, complicated nonlinear problem, need
good strategy and initialization to solve

Software Packages such as the AWEBox[2]

v
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Some Observations from Real Data
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Some Observations from Real Data

» Up to now: practically impossible
to solve problems with many
subcycles
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Some Observations from Real Data

» Up to now: practically impossible
to solve problems with many
subcycles

» In the reel-out phase, the
subcycles look similar

Up (m)

200

150

100

350
East (m)

250 300

Produced from https://github.com/kitemill/Flight-log

Trajectory Optimization of AWE Systems with Stroboscopic Averaging J. Harzer



Some Observations from Real Data

» Up to now: practically impossible
to solve problems with many
subcycles

» In the reel-out phase, the
subcycles look similar

0 » There is some 'slow’ or 'average’
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Some Observations from Real Data

» Up to now: practically impossible
to solve problems with many
subcycles

» In the reel-out phase, the
subcycles look similar

- P> There is some 'slow’ or 'average’
mode of the trajectory
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optimal trajectory z*(¢) and the
corresponding control u*(t) consist of
many similar, slowly changing cycles.
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Stroboscopic Averaging Methods
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Highly Oscillatory Systems

— 1)

Trajectory Optimization of AWE Systems with Stroboscopic Averaging

J. Harzer




Averaging Methods for Highly Oscillatory Systems

Unperturbed Solution 2q(7) x = f(x)
Perturbed Solution (1)
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Averaging Methods for Highly Oscillatory Systems

Perturbed Solution z(7) T = f(x)
— == High Order Average Solution X (7)
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Averaging Methods for Highly Oscillatory Systems

Perturbed Solution z(7)
— == High Order Average Solution X (7)
®  Stroboscopic Points
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i = |f(fv)

{High Order Stroboscopic Averaging}

l

X = F(x)

» If 2(0) = X(0) then the solution to
averaged system satisfies




Averaging Methods for Highly Oscillatory Systems

Perturbed Solution z(7) T = f(x)
— == High Order Average Solution X (7)
®  Stroboscopic Points |

{High Order Stroboscopic Averaging}

l

X = F(x)

» If 2(0) = X(0) then the solution to
averaged system satisfies

- » Original system f on a fast timescale
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Averaging Methods for Highly Oscillatory Systems

Perturbed Solution z(7) T = f(x)
— == High Order Average Solution X (7)
®  Stroboscopic Points |

{High Order Stroboscopic Averaging}

l

X = F(x)

» If 2(0) = X(0) then the solution to
averaged system satisfies

- » Averaged system F' on slow timescale
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hod (SAM)

Oscillatory Solution z(7)
Averaged Solution X (r)
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hod (SAM)
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Oscillatory Solution #(7)
Averaged Solution X (7)

—— Micro-Integration

~#-  Macro-Integration
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Oscillatory Solution #(7)
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OCP Timescaling
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OCP Timescaling

» Conceptually divide the trajectory into 350 —
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OCP Timescaling

» Conceptually divide the trajectory into 350 35
N + 1 section 300 1 "

p= [m]
»
8
(=]
:

100 -

T T T3 Ty T5 T | Tr  Ts | To | Tio | T
50 T T T T T T
0 2 4 6 8 10

ion of AWE Systems with Stroboscopic Averaging J. Harzer



OCP Timescaling

» Conceptually divide the trajectory into 350
N + 1 section 300 - i

» Of duration T1,..., TN, TN+1 250 1
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OCP Timescaling

» Conceptually divide the trajectory into 350 )
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OCP Timescaling

» Conceptually divide the trajectory into 350 =i
N + 1 section 300 "
» Of duration T1,..., TN, TN+1 B
E 500 4
» Now: Numerical time 7 € [0, N + 1] 2
150 A
N+1 100 -
min / l(x(T),U(T)’Z(T)) dr w0 'Tl T2'T3 T4'T5 TB'T7 Tg'Tg T10'T11
aag):u(qzvz() 0 0 2 4 6 8 10
1seeesd N41 T
1 d
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< h(@(r),u(r),2(7)),
(0) —z(N+1)

Trajectory Optimization of AWE Systems with Stroboscopic Averaging J. Harzer



Stroboscopic Averaging for AWE System
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Stroboscopic Averaging for AWE System
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Stroboscopic Averaging for AWE System
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boscopic Averaging for AWE System
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Regularization

Assumption <«—Wind

In the reel-out phase, the power optimal 100
trajectory *(t) and the corresponding control
u*(t) consist of many similar, slowly changing

cycles. Bﬂ
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Regularization

Assumption <«—Wind

In the reel-out phase, the power optimal 100
trajectory *(t) and the corresponding control
u*(t) consist of many similar, slowly changing
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Regularization
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Regularization

[ 500

Assumpti <«—Wind

In the reel-out phase, the power optimal 100
trajectory *(t) and the corresponding control
u*(t) consist of many similar, slowly changing

cycles. Bn

Enforce via Regularization: 100

\\\/’/

1) The micro-integrations should be similar 0 s o 200
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2) The change over a single cycle should be
small

Trajectory Optimization of AWE Systems with Stroboscopic Averaging J. Harzer



Regularization

[ 500

Assumpti <«—Wind

400

In the reel-out phase, the power optimal
trajectory *(t) and the corresponding control
u*(t) consist of many similar, slowly changing

cycles. Bn

300
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Enforce via Regularization:
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1) The micro-integrations should be similar 0 s o 200
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300 100 0
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2) The change over a single cycle should be
small

3) The high-order derivatives of the average
state trajectory should be small
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Regularization

X [ 500
S Assumption <« Wind

In the reel-out phase, the power optimal 100
trajectory *(t) and the corresponding control
u*(t) consist of many similar, slowly changing

cycles. Bn

300

zin m

Enforce via Regularization: 100
1) The micro-integrations should be similar m
2) The change over a single cycle should be i yinm
small
3) The high-order derivatives of the average > Keeps the errors small

state trajectory should be small
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Regularization

X [ 500
Strong Assumption <« Wind

In the reel-out phase, the power optimal 100
trajectory *(t) and the corresponding control
u*(t) consist of many similar, slowly changing

cycles. Bn

Enforce via Regularization: 100

\\\/’/

1) The micro-integrations should be similar 0 s R

Zinm

300

zin m

300 100
yinm

2) The change over a single cycle should be
small

3) The high-order derivatives of the average > Keeps the errors small

state trajectory should be small > Strong geometric assumption!
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Stroboscopic Averaging for AWE System (cont.)

Found NLP Solution

500

400

300

zinm

\\\\////J "

600 -
500 _100 200
400 309 100 0

“inm yinm

Trajectory Optimization of AWE Systems with Stroboscopic Averaging J. Harzer



Stroboscopic Averaging for AWE System (cont

Found NLP Solution
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Reconstruction of the Full Traject
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Stroboscopic Averaging for AWE System (cont

Found NLP Solution Verification using a Tracking MPC
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Results 1 - Computational Efficiency
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Results 2 - Generated Power
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» SAM enables us to optimize trajectories of AWE systems with many subcycles in the
reel-out phase
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reel-out phase

> ... but is based on a strong geometric assumption that we need to guarantee.
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» SAM enables us to optimize trajectories of AWE systems with many subcycles in the
reel-out phase

> ... but is based on a strong geometric assumption that we need to guarantee.

Open Problems:
» How do we know the ‘optimal’ number of subcycles?

> .
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Thank you for your attention!
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