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Time-optimal control
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Time-optimal control formulation

Go from A to B in the shortest time
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Time-optimal control formulation

Go from A to B in the shortest time

T
minimize / 1dt
t

z(),u(-)  Ji=o

subject to dzgf) = f(z(t),u(t)), Vtel0,T],
z(0) = A,
z(T) = B,
c(z(t),u(t)) <0, Yt € [0,T].
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Time-optimal control formulation

Go from A to B in the shortest time

O)
minimize / 1dt
t=0

(), ul()

subject to dz(tt) = f(z(t),u(t)), Vtel0,T],
z(0) = A,
(D) = B,
c(x(t),u(t)) <0, vt € [0,T].
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Standard trick for time-optimal problems

Introduce a ‘pseudo-time’ 7:=1¢/T.
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Standard trick for time-optimal problems

Introduce a ‘pseudo-time’ 7:=1¢/T.

s

subject to

Stabilizing time-optimal NMPC

Tdt

1
/7':0

dz(T)

dr
(0)

xz(1) =
(

c(x

= f(a(r),u(r)) - T,
A,
B

)

7),u(r)) <0,

IS

R. Verschueren

vr € [0,1],

vr € [0,1].



Discretize...

Now perform a standard multiple shooting discretization.

minimize T = IS I (1a)

o N, =N

Toy, T 1

subject to xgy1 = fr(vg, uk, Tg), k=0,...,N—1, (1b)
xo = A, (1)
ry =B, (1d)
c(xg, ug) <0, k=0,...,N—1, (1e)
Ty = Thpr, k=0,...,N -2, (1f)
0< Ty, k=0,...,N—1, (1g)
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Discretize...

Now perform a standard multiple shooting discretization.

minimize T = IS I (1a)

o N, =N

Toy, T 1

subject to xgy1 = fr(vg, uk, Tg), k=0,...,N—1, (1b)
xo = A, (1)
ry =B, (1d)
c(xg, ug) <0, k=0,...,N—1, (1e)
Ty = Thpr, k=0,...,N -2, (1f)
0< Ty, k=0,...,N—1, (1g)

With T' as a control, sparsity pattern is preserved!
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One big problem

When used in NMPC, difficult to prove stability
> because time might shrink and expand
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One big problem

When used in NMPC, difficult to prove stability
> because time might shrink and expand

Solution?
» Other scheme — This talk
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Let's take a step back

What is a time-optimal solution in discrete time?

min N
N,zg,....,TN,
UQs-e oy UN—1

s.t. Te+1 = fd(xk,uk), k:O,...,Nf 1,
e (2
0=17,
TN :0,
c(zg,ur) <0, k=0,...,N—1.

Definition

We define a time-optimal solution subject to discrete dynamical system
Zg+1 = fa(zgk,ur) as any solution to (2) that brings the system from T
to the origin in N*(Z) steps, where N*(Z) is the solution to (2).
Furthermore, let Xy« denote the set of states T such that the optimal
value of (2) is smaller than or equal to N* (7).
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The crux

We want to get ‘as fast as possible’ from T to 0.
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The crux

We want to get ‘as fast as possible’ from T to 0.

> Due to Definition 1, this is a feasibility problem.

min 0 3a
wo iy 3)
s.t. Tpt1 = falzr,ug), k=0,...,N* =1, (3b)

xo = T, (3¢)

zy+ =0, (3d)

c(xg,ug) <0, k=0,...,N* =1 (3e)
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Did we shoot ourselves in the foot again?

Yes. But we can solve that!
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Did we shoot ourselves in the foot again?

Yes. But we can solve that!
» We assume N > N*.
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Did we shoot ourselves in the foot again?

Yes. But we can solve that!
» We assume N > N*.

N-1
min ok 4
ol kz_o B2y (42)
s.t. Th+1 :fd(xk,uk), kZO,...,N—]., (4b)
Ty =T, (4c)
TN = O, (4d)
c(xg,ug) <0, k=0,...,N—1 (4e)
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Did we shoot ourselves in the foot again?

Yes. But we can solve that!
» We assume N > N*.

N-1
min 0|z 4a
ol kz_o [zl (4a)
s.t. Th+1 :fd(xk,uk), kZO,...,N—]., (4b)
Ty =T, (4c)
TN = O, (4d)
c(xg,ug) <0, k=0,...,N—1 (4e)

Exponential weighting is important here!
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Some motivation

» We know the following from Augmented Lagrangian theory:

Iy Penalty

Consider

w* = arg min  ¢(w)
w

subject to g(w)=0 | A
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Some motivation

» We know the following from Augmented Lagrangian theory:

Iy Penalty

Consider
w* = arg min  ¢(w)
w
subject to g(w)=0 | A
Then w* is a local minimizer of

minimize ¢y (w) = d(w) + 1 [|g(w)]x

where 1 > [|A*||o-
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Time-optimal OCP scheme

Let's apply that to our scheme.

s, 2)
s.t. Tpr1 = fa(zp,ug), k=0,...,N —1, (5b)
To =T, (5¢)

xy =0, (5d)

zy =0, (5e)

e(xg,ug) <0, k=0,...,N—1. (5f)
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Time-optimal OCP scheme

Remove z -+ = 0:

P )
s.t. Tpt1 = fa(zp,ug), k=0,...,N —1, (6b)
o =17, (6C)

N = 0, (6d)

c(xg,ug) <0, k=0,...,.N—1. (6e)
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Time-optimal OCP scheme

Add penalty:
N—-1
omin 0 (7a)
UQyeery W N —1 k=0
s.t. Tr+1 :fd(xkauk‘)v k:Oa"'aN_la (7b)
o =17, (7C)
IN = 0, (7d)
c(xg,ug) <0, k=0,...,.N—1. (7e)
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Two proofs

We need to prove two things before this is useful:
» That our scheme induces time-optimal solutions (OCP)
Basically, that 67" > [|A*[| oo
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Two proofs

We need to prove two things before this is useful:
» That our scheme induces time-optimal solutions (OCP)
Basically, that 67" > [|A*[| oo
» That it is stable (NMPC)
Standard Lyapunov-based proof.
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Two proofs

We need to prove two things before this is useful:
» That our scheme induces time-optimal solutions (OCP)
Basically, that 67" > [|A*[| oo
» That it is stable (NMPC)
Standard Lyapunov-based proof.

— see CDC2017 paper
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Some illustrations

Toy example with a model from Chen1998:

p=q+u(p+(1-p)p),
g=p+ulp—41—p)q).
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Hanging pendulum with varying length

Pendulum has a trolley (subscript ‘t') and a cable (subscript ‘c’).

Ty =g, Up = Gy, (8a)

jtc = Vg, 'Oc = Qc, (8b)

P =w, (8¢)

Yo —(2wve + ag cos(p) + gsin(p)) . (8d)
Te
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Hanging pendulum with varying length

Optimal control result, compared with the ‘scaling’ method:
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Figure: Black: exponential weighting, gray: time scaling
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Hanging pendulum with varying length

Optimal control result, compared with the ‘scaling’ method:
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Figure: Black: exponential weighting, gray: time scaling
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Hanging pendulum with varying length

NMPC with Hardware-In-the-Loop (ABB AC 800PEC, used for time- and
safety-critical applications)
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Figure: Upper: cpu time, lower: QP iterations

Stabilizing time-optimal NMPC R. Verschueren 19



Conclusion

We found a new time-optimal control formulation which
> does not use time scaling,
» and so facilitates a stability proof,

» and is useful in practice.
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That was it!
Questions?
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