
A stabilizing NMPC scheme for
time-optimal point-to-point

motions

Robin Verschueren, Joachim Ferreau, Alessandro Zanarini,
Mehmet Merçangöz and Moritz Diehl

Systems Control and Optimization laboratory

Time-optimal control

Stabilizing time-optimal NMPC R. Verschueren 1

Time-optimal control formulation

Go from A to B in the shortest time

minimize
x(·), u(·)

∫ T

t=0

1 dt

subject to
dx(t)

dt
= f(x(t), u(t)), ∀t ∈ [0, T],

x(0) = A,

x(T) = B,

c(x(t), u(t)) ≤ 0, ∀t ∈ [0, T].

Stabilizing time-optimal NMPC R. Verschueren 2

Time-optimal control formulation

Go from A to B in the shortest time

minimize
x(·), u(·)

∫ T

t=0

1 dt

subject to
dx(t)

dt
= f(x(t), u(t)), ∀t ∈ [0, T],

x(0) = A,

x(T) = B,

c(x(t), u(t)) ≤ 0, ∀t ∈ [0, T].

Stabilizing time-optimal NMPC R. Verschueren 2

Time-optimal control formulation

Go from A to B in the shortest time

minimize
x(·), u(·)

∫ T

t=0

1 dt

subject to
dx(t)

dt
= f(x(t), u(t)), ∀t ∈ [0, T],

x(0) = A,

x(T) = B,

c(x(t), u(t)) ≤ 0, ∀t ∈ [0, T].

Stabilizing time-optimal NMPC R. Verschueren 3

Standard trick for time-optimal problems

Introduce a ‘pseudo-time’ τ := t/T .

minimize
x(·), u(·)

∫ 1

τ=0

T dt

subject to
dx(τ)

dτ
= f(x(τ), u(τ)) · T, ∀τ ∈ [0, 1],

x(0) = A,

x(1) = B,

c(x(τ), u(τ)) ≤ 0, ∀τ ∈ [0, 1].

Stabilizing time-optimal NMPC R. Verschueren 4

Standard trick for time-optimal problems

Introduce a ‘pseudo-time’ τ := t/T .

minimize
x(·), u(·)

∫ 1

τ=0

T dt

subject to
dx(τ)

dτ
= f(x(τ), u(τ)) · T, ∀τ ∈ [0, 1],

x(0) = A,

x(1) = B,

c(x(τ), u(τ)) ≤ 0, ∀τ ∈ [0, 1].

Stabilizing time-optimal NMPC R. Verschueren 4

Discretize...

Now perform a standard multiple shooting discretization.

minimize
x0,...,xN ,
u0,...,uN−1,
T0,...,TN−1

T =

N−1∑
k=0

Tk
N

(1a)

subject to xk+1 = fT (xk, uk, Tk), k = 0, . . . , N − 1, (1b)

x0 = A, (1c)

xN = B, (1d)

c(xk, uk) ≤ 0, k = 0, . . . , N − 1, (1e)

Tk = Tk+1, k = 0, . . . , N − 2, (1f)

0 ≤ Tk, k = 0, . . . , N − 1, (1g)

With T as a control, sparsity pattern is preserved!

Stabilizing time-optimal NMPC R. Verschueren 5

Discretize...

Now perform a standard multiple shooting discretization.

minimize
x0,...,xN ,
u0,...,uN−1,
T0,...,TN−1

T =

N−1∑
k=0

Tk
N

(1a)

subject to xk+1 = fT (xk, uk, Tk), k = 0, . . . , N − 1, (1b)

x0 = A, (1c)

xN = B, (1d)

c(xk, uk) ≤ 0, k = 0, . . . , N − 1, (1e)

Tk = Tk+1, k = 0, . . . , N − 2, (1f)

0 ≤ Tk, k = 0, . . . , N − 1, (1g)

With T as a control, sparsity pattern is preserved!

Stabilizing time-optimal NMPC R. Verschueren 5

One big problem

When used in NMPC, difficult to prove stability

I because time might shrink and expand

Solution?

I Other scheme → This talk

Stabilizing time-optimal NMPC R. Verschueren 6

One big problem

When used in NMPC, difficult to prove stability

I because time might shrink and expand

Solution?

I Other scheme → This talk

Stabilizing time-optimal NMPC R. Verschueren 6

Let’s take a step back

What is a time-optimal solution in discrete time?

min
N,x0,...,xN ,
u0,...,uN−1

N

s.t. xk+1 = fd(xk, uk), k = 0, . . . , N − 1,

x0 = x,

xN = 0,

c(xk, uk) ≤ 0, k = 0, . . . , N − 1.

(2)

Definition

We define a time-optimal solution subject to discrete dynamical system
xk+1 = fd(xk, uk) as any solution to (2) that brings the system from x
to the origin in N?(x) steps, where N?(x) is the solution to (2).
Furthermore, let XN? denote the set of states x such that the optimal
value of (2) is smaller than or equal to N?(x).

Stabilizing time-optimal NMPC R. Verschueren 7

The crux

We want to get ‘as fast as possible’ from x0 to 0.

I Due to Definition 1, this is a feasibility problem.

min
x0,...,xN? ,
u0,...,uN?−1

0 (3a)

s.t. xk+1 = fd(xk, uk), k = 0, . . . , N? − 1, (3b)

x0 = x, (3c)

xN? = 0, (3d)

c(xk, uk) ≤ 0, k = 0, . . . , N? − 1 (3e)

Stabilizing time-optimal NMPC R. Verschueren 8

The crux

We want to get ‘as fast as possible’ from x0 to 0.

I Due to Definition 1, this is a feasibility problem.

min
x0,...,xN? ,
u0,...,uN?−1

0 (3a)

s.t. xk+1 = fd(xk, uk), k = 0, . . . , N? − 1, (3b)

x0 = x, (3c)

xN? = 0, (3d)

c(xk, uk) ≤ 0, k = 0, . . . , N? − 1 (3e)

Stabilizing time-optimal NMPC R. Verschueren 8

Did we shoot ourselves in the foot again?

Yes. But we can solve that!

I We assume N > N?.

min
x0,...,xN ,
u0,...,uN−1

N−1∑
k=0

θk‖xk‖1 (4a)

s.t. xk+1 = fd(xk, uk), k = 0, . . . , N − 1, (4b)

x0 = x, (4c)

xN = 0, (4d)

c(xk, uk) ≤ 0, k = 0, . . . , N − 1. (4e)

Exponential weighting is important here!

Stabilizing time-optimal NMPC R. Verschueren 9

Did we shoot ourselves in the foot again?

Yes. But we can solve that!

I We assume N > N?.

min
x0,...,xN ,
u0,...,uN−1

N−1∑
k=0

θk‖xk‖1 (4a)

s.t. xk+1 = fd(xk, uk), k = 0, . . . , N − 1, (4b)

x0 = x, (4c)

xN = 0, (4d)

c(xk, uk) ≤ 0, k = 0, . . . , N − 1. (4e)

Exponential weighting is important here!

Stabilizing time-optimal NMPC R. Verschueren 9

Did we shoot ourselves in the foot again?

Yes. But we can solve that!

I We assume N > N?.

min
x0,...,xN ,
u0,...,uN−1

N−1∑
k=0

θk‖xk‖1 (4a)

s.t. xk+1 = fd(xk, uk), k = 0, . . . , N − 1, (4b)

x0 = x, (4c)

xN = 0, (4d)

c(xk, uk) ≤ 0, k = 0, . . . , N − 1. (4e)

Exponential weighting is important here!

Stabilizing time-optimal NMPC R. Verschueren 9

Did we shoot ourselves in the foot again?

Yes. But we can solve that!

I We assume N > N?.

min
x0,...,xN ,
u0,...,uN−1

N−1∑
k=0

θk‖xk‖1 (4a)

s.t. xk+1 = fd(xk, uk), k = 0, . . . , N − 1, (4b)

x0 = x, (4c)

xN = 0, (4d)

c(xk, uk) ≤ 0, k = 0, . . . , N − 1. (4e)

Exponential weighting is important here!

Stabilizing time-optimal NMPC R. Verschueren 9

Some motivation

I We know the following from Augmented Lagrangian theory:

l1 Penalty

Consider

w? := arg min
w

φ(w)

subject to g(w) = 0 | λ

Then w? is a local minimizer of

minimize
w

φ1(w) := φ(w) + µ ‖g(w)‖1

where µ > ‖λ?‖∞.

Stabilizing time-optimal NMPC R. Verschueren 10

Some motivation

I We know the following from Augmented Lagrangian theory:

l1 Penalty

Consider

w? := arg min
w

φ(w)

subject to g(w) = 0 | λ

Then w? is a local minimizer of

minimize
w

φ1(w) := φ(w) + µ ‖g(w)‖1

where µ > ‖λ?‖∞.

Stabilizing time-optimal NMPC R. Verschueren 10

Time-optimal OCP scheme

Let’s apply that to our scheme.

min
x0,...,xN ,
u0,...,uN−1

0 (5a)

s.t. xk+1 = fd(xk, uk), k = 0, . . . , N − 1, (5b)

x0 = x, (5c)

x?N = 0, (5d)

xN = 0, (5e)

c(xk, uk) ≤ 0, k = 0, . . . , N − 1. (5f)

Stabilizing time-optimal NMPC R. Verschueren 11

Time-optimal OCP scheme

Remove xN? = 0:

min
x0,...,xN ,
u0,...,uN−1

0 (6a)

s.t. xk+1 = fd(xk, uk), k = 0, . . . , N − 1, (6b)

x0 = x, (6c)

xN = 0, (6d)

c(xk, uk) ≤ 0, k = 0, . . . , N − 1. (6e)

Stabilizing time-optimal NMPC R. Verschueren 12

Time-optimal OCP scheme

Add penalty:

min
x0,...,xN ,
u0,...,uN−1

N−1∑
k=0

θk‖xk‖1 (7a)

s.t. xk+1 = fd(xk, uk), k = 0, . . . , N − 1, (7b)

x0 = x, (7c)

xN = 0, (7d)

c(xk, uk) ≤ 0, k = 0, . . . , N − 1. (7e)

Stabilizing time-optimal NMPC R. Verschueren 13

Two proofs

We need to prove two things before this is useful:

I That our scheme induces time-optimal solutions (OCP)

I Basically, that θN
?

> ‖λ?‖∞

I That it is stable (NMPC)
I Standard Lyapunov-based proof.

→ see CDC2017 paper

Stabilizing time-optimal NMPC R. Verschueren 14

Two proofs

We need to prove two things before this is useful:

I That our scheme induces time-optimal solutions (OCP)

I Basically, that θN
?

> ‖λ?‖∞
I That it is stable (NMPC)

I Standard Lyapunov-based proof.

→ see CDC2017 paper

Stabilizing time-optimal NMPC R. Verschueren 14

Two proofs

We need to prove two things before this is useful:

I That our scheme induces time-optimal solutions (OCP)

I Basically, that θN
?

> ‖λ?‖∞
I That it is stable (NMPC)

I Standard Lyapunov-based proof.

→ see CDC2017 paper

Stabilizing time-optimal NMPC R. Verschueren 14

Some illustrations

Toy example with a model from Chen1998:

ṗ = q + u(µ+ (1− µ)p),
q̇ = p+ u(µ− 4(1− µ)q).

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

1

2

3

4

5

6

m
ax
|x
k
|

0.0 0.2 0.4 0.6 0.8 1.0 1.2
k
N?

−10

−5

0

5

10

u
k

Figure: Time-optimal trajectories for the Chen model from different starting
points to 0.

Stabilizing time-optimal NMPC R. Verschueren 15

Hanging pendulum with varying length

Pendulum has a trolley (subscript ‘t’) and a cable (subscript ‘c’).

ẋt = vt, v̇t = at, (8a)

ẋc = vc, v̇c = ac, (8b)

ϕ̇ = ω, (8c)

ω̇ =
−(2ωvc + at cos(ϕ) + g sin(ϕ))

xc
. (8d)

Stabilizing time-optimal NMPC R. Verschueren 16

Hanging pendulum with varying length

Optimal control result, compared with the ‘scaling’ method:

0.0 0.2 0.4 0.6 0.8 1.0

X[m]

0.0

0.1

0.2

0.3

0.4

0.5

Y
[m

]

Figure: Black: exponential weighting, gray: time scaling

Stabilizing time-optimal NMPC R. Verschueren 17

Hanging pendulum with varying length

Optimal control result, compared with the ‘scaling’ method:

0.0 0.5 1.0 1.5 2.0 2.5

time [s]

0.0

0.8

x
t
[m

]

0.0 0.5 1.0 1.5 2.0 2.5

time [s]

0.0

0.4

0.8

v t
[m
/s

]

0.0 0.5 1.0 1.5 2.0 2.5

time [s]

0.05

0.25

0.45

x
c
[m

]

0.0 0.5 1.0 1.5 2.0 2.5

time [s]

−0.8

0.0

0.8

v c
[m
/s

]
0.0 0.5 1.0 1.5 2.0 2.5

time [s]

−0.4

0.0

0.4

ϕ
[r

ad
]

0.0 0.5 1.0 1.5 2.0 2.5

time [s]

−4

0

ω
[r

ad
/s

]

0.0 0.5 1.0 1.5 2.0 2.5

time [s]

−1

1

a
t
[m
/s

2
]

0.0 0.5 1.0 1.5 2.0 2.5

time [s]

−1

1

a
c
[m
/s

2
]

Figure: Black: exponential weighting, gray: time scaling

Stabilizing time-optimal NMPC R. Verschueren 18

Hanging pendulum with varying length

NMPC with Hardware-In-the-Loop (ABB AC 800PEC, used for time- and
safety-critical applications)

0 10 20 30 40 50

NMPC step [−]

0

200

400

600

800

−
cp
u
ti
m
e
[m

s]

0

50

100

150

200

−
−
Q
P

it
er
at
io
n
s
[−

]

Figure: Upper: cpu time, lower: QP iterations

Stabilizing time-optimal NMPC R. Verschueren 19

Conclusion

We found a new time-optimal control formulation which

I does not use time scaling,

I and so facilitates a stability proof,

I and is useful in practice.

Stabilizing time-optimal NMPC R. Verschueren 20

That was it!
Questions?

Stabilizing time-optimal NMPC R. Verschueren 21

