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Time-optimal control
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Time-optimal control formulation

Go from A to B in the shortest time

minimize
x(·), u(·)

∫ T

t=0

1 dt

subject to
dx(t)

dt
= f(x(t), u(t)), ∀t ∈ [0, T ],

x(0) = A,

x(T ) = B,

c(x(t), u(t)) ≤ 0, ∀t ∈ [0, T ].
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Standard trick for time-optimal problems

Introduce a ‘pseudo-time’ τ := t/T .

minimize
x(·), u(·)

∫ 1

τ=0

T dt

subject to
dx(τ)

dτ
= f(x(τ), u(τ)) · T, ∀τ ∈ [0, 1],

x(0) = A,

x(1) = B,

c(x(τ), u(τ)) ≤ 0, ∀τ ∈ [0, 1].
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Discretize...

Now perform a standard multiple shooting discretization.

minimize
x0,...,xN ,
u0,...,uN−1,
T0,...,TN−1

T =

N−1∑
k=0

Tk
N

(1a)

subject to xk+1 = fT (xk, uk, Tk), k = 0, . . . , N − 1, (1b)

x0 = A, (1c)

xN = B, (1d)

c(xk, uk) ≤ 0, k = 0, . . . , N − 1, (1e)

Tk = Tk+1, k = 0, . . . , N − 2, (1f)

0 ≤ Tk, k = 0, . . . , N − 1, (1g)

With T as a control, sparsity pattern is preserved!
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One big problem

When used in NMPC, difficult to prove stability

I because time might shrink and expand

Solution?

I Other scheme → This talk

Stabilizing time-optimal NMPC R. Verschueren 6



One big problem

When used in NMPC, difficult to prove stability

I because time might shrink and expand

Solution?

I Other scheme → This talk

Stabilizing time-optimal NMPC R. Verschueren 6



Let’s take a step back

What is a time-optimal solution in discrete time?

min
N,x0,...,xN ,
u0,...,uN−1

N

s.t. xk+1 = fd(xk, uk), k = 0, . . . , N − 1,

x0 = x,

xN = 0,

c(xk, uk) ≤ 0, k = 0, . . . , N − 1.

(2)

Definition

We define a time-optimal solution subject to discrete dynamical system
xk+1 = fd(xk, uk) as any solution to (2) that brings the system from x
to the origin in N?(x) steps, where N?(x) is the solution to (2).
Furthermore, let XN? denote the set of states x such that the optimal
value of (2) is smaller than or equal to N?(x).
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The crux

We want to get ‘as fast as possible’ from x0 to 0.

I Due to Definition 1, this is a feasibility problem.

min
x0,...,xN? ,
u0,...,uN?−1

0 (3a)

s.t. xk+1 = fd(xk, uk), k = 0, . . . , N? − 1, (3b)

x0 = x, (3c)

xN? = 0, (3d)

c(xk, uk) ≤ 0, k = 0, . . . , N? − 1 (3e)
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Did we shoot ourselves in the foot again?

Yes. But we can solve that!

I We assume N > N?.

min
x0,...,xN ,
u0,...,uN−1

N−1∑
k=0

θk‖xk‖1 (4a)

s.t. xk+1 = fd(xk, uk), k = 0, . . . , N − 1, (4b)

x0 = x, (4c)

xN = 0, (4d)

c(xk, uk) ≤ 0, k = 0, . . . , N − 1. (4e)

Exponential weighting is important here!
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Some motivation

I We know the following from Augmented Lagrangian theory:

l1 Penalty

Consider

w? := arg min
w

φ(w)

subject to g(w) = 0 | λ

Then w? is a local minimizer of

minimize
w

φ1(w) := φ(w) + µ ‖g(w)‖1

where µ > ‖λ?‖∞.
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Time-optimal OCP scheme

Let’s apply that to our scheme.

min
x0,...,xN ,
u0,...,uN−1

0 (5a)

s.t. xk+1 = fd(xk, uk), k = 0, . . . , N − 1, (5b)

x0 = x, (5c)

x?N = 0, (5d)

xN = 0, (5e)

c(xk, uk) ≤ 0, k = 0, . . . , N − 1. (5f)
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Time-optimal OCP scheme

Remove xN? = 0:

min
x0,...,xN ,
u0,...,uN−1

0 (6a)

s.t. xk+1 = fd(xk, uk), k = 0, . . . , N − 1, (6b)

x0 = x, (6c)

xN = 0, (6d)

c(xk, uk) ≤ 0, k = 0, . . . , N − 1. (6e)
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Time-optimal OCP scheme

Add penalty:

min
x0,...,xN ,
u0,...,uN−1

N−1∑
k=0

θk‖xk‖1 (7a)

s.t. xk+1 = fd(xk, uk), k = 0, . . . , N − 1, (7b)

x0 = x, (7c)

xN = 0, (7d)

c(xk, uk) ≤ 0, k = 0, . . . , N − 1. (7e)
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Two proofs

We need to prove two things before this is useful:

I That our scheme induces time-optimal solutions (OCP)

I Basically, that θN
?

> ‖λ?‖∞

I That it is stable (NMPC)
I Standard Lyapunov-based proof.

→ see CDC2017 paper

Stabilizing time-optimal NMPC R. Verschueren 14



Two proofs

We need to prove two things before this is useful:

I That our scheme induces time-optimal solutions (OCP)

I Basically, that θN
?

> ‖λ?‖∞
I That it is stable (NMPC)

I Standard Lyapunov-based proof.

→ see CDC2017 paper

Stabilizing time-optimal NMPC R. Verschueren 14



Two proofs

We need to prove two things before this is useful:

I That our scheme induces time-optimal solutions (OCP)

I Basically, that θN
?

> ‖λ?‖∞
I That it is stable (NMPC)

I Standard Lyapunov-based proof.

→ see CDC2017 paper

Stabilizing time-optimal NMPC R. Verschueren 14



Some illustrations

Toy example with a model from Chen1998:

ṗ = q + u(µ+ (1− µ)p),
q̇ = p+ u(µ− 4(1− µ)q).
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Figure: Time-optimal trajectories for the Chen model from different starting
points to 0.
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Hanging pendulum with varying length

Pendulum has a trolley (subscript ‘t’) and a cable (subscript ‘c’).

ẋt = vt, v̇t = at, (8a)

ẋc = vc, v̇c = ac, (8b)

ϕ̇ = ω, (8c)

ω̇ =
−(2ωvc + at cos(ϕ) + g sin(ϕ))

xc
. (8d)
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Hanging pendulum with varying length

Optimal control result, compared with the ‘scaling’ method:
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Figure: Black: exponential weighting, gray: time scaling
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Figure: Black: exponential weighting, gray: time scaling
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Hanging pendulum with varying length

NMPC with Hardware-In-the-Loop (ABB AC 800PEC, used for time- and
safety-critical applications)
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Figure: Upper: cpu time, lower: QP iterations
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Conclusion

We found a new time-optimal control formulation which

I does not use time scaling,

I and so facilitates a stability proof,

I and is useful in practice.
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That was it!
Questions?
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