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Brief Introduction of tmpc

tmpc is a C ++ library for MPC that:

I provides you with ingredients to build your MPC controller;

I allows you to make your own recipe (does not enforce the way the ingredients are
combined);

I tries to be convenient;

I tries to be efficient.
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The Ingredients Provided by tmpc

I Defining system dynamics and sensitivities

I Integrators

I Quadratic Programming

I Sequential Quadratic Programming (SQP)

I Other Nonlinear Programming (NLP)

I Realtime Iteration Scheme (RTI)

I . . .
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Design Objectives

I Modularity

I Easy to replace a component with a different one without affecting the rest of the system

I Extensibility

I Easy to implement a new component which can interact with other components

I Maintainability

I The code is human-readable and allows testing, debugging and modification

I Performance

I Efficient matrix arithmetics
I No unnecessary memory copying
I No unnecessary dynamic memory allocation
I No unnecessary dynamic polymorphism

I Robustness

I Minimize possibility of resource leaks
I Minimize possibility of memory access violations
I Minimize possibility of ignoring an error
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Cool Features of tmpc

I tmpc widely uses static polymorphism. Therefore, it can be seen as a code-generation
tool, with the code-generation done by a C ++ compiler.

I tmpc does not rely on a specific matrix arithmetics implementation. Algorithms1 are
parameterized by a class that defines an implementation of matrix arithmetics.

1Currently only some of them.
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Current Status

I Defining system dynamics and sensitivities

I Implemented a convenient interface to CasADi-generated functions
I Integrators

I Several variations of the RK4 integrator implemented
I Petr Listov is trying to implement collocation (pseudospectral) methods
I It is not clear how a good integrators interface should look like

I Quadratic Programming

I qpOASES interface is ready
I HPMPC interface is ready
I HPIPM interface is ready
I Variable stage size supported
I Soft constraints support not ready but in progress
I O3 condensing implemented
I QP output to MATLAB
I Other useful functions

I Sequential Quadratic Programming (SQP)

I Implemented in the context of RTI.

I Realtime Iteration Scheme (RTI)

I Implemented, but I don’t like how I did it.
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Definition of OCP QP

The OCP QP is a QP in the form2

minimize
x, u

N∑
n=0

1

2

xk

uk

1

>
Qk Sk qk
S>k Rk rk
q>k r>k 0


xk

uk

1


subject to xk+1 = Akxk + Bkuk + bk, n = 0, . . . , N − 1,[

xk

uk

]
≤
[
xk

uk

]
≤
[
xk

uk

]
, n = 0, . . . , N,

dk ≤
[
Ck Dk

] [xk

uk

]
≤ dk, n = 0, . . . , N

where uk are the control inputs, xk are the states.

2Slightly changed Gianluca’s notation; x comes before u.
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Definition of OCP QP Stage

I The OCP QP consists of 16 elements: Q, R, S, q, r, A, B, b, x, u, x, u, C, D, d, d.

I Each of the elements has a time index k which runs from 0 to N or to N − 1.

Definition (QP stage)

A OCP QP stage is a combination of elements corresponding to the same time index k:

Sk = (Qk, Rk, Sk, qk, rk, Ak, Bk, bk, xk, uk, xk, uk, Ck, Dk, dk, dk) .
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Definition of OCP QP Stage Size

Within one stage, matrices and vectors have consistent dimensions:

Qk ∈ Rnx,k×nx,k , R ∈ Rnu,k×nu,k , S ∈ Rnx,k×nu,k , q ∈ Rnx,k , r ∈ Rnu,k ,

A ∈ Rnx,k+1×nx,k , B ∈ Rnx,k+1×nu,k , b ∈ Rnx,k+1 , x, x ∈ Rxk , u, u ∈ Ruk ,

C ∈ Rnc,k×nx,k , D ∈ Rnc,k×nu,k , d, d ∈ Rnc,k (1)

Definition (stage size)

The k-th stage size is
Nk = (nx,k, nu,k, nc,k, nx,k+1) .
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QP Stage Sequence Operations

I An OCP QP can be seen as a collection of stages:

QP = (S0,S1, . . . ,SN ) .

I Any stage subsequence (Sm,Sm+1, . . . ,Sn), 0 ≤ m < n ≤ N of a QP is also a QP.

I Note that AN ,BN ,bN do not enter the minimization problem formulation. . .

I . . . but they are useful if you concatenate two QPs:

(QP(1),QP(2)) = (S(1)0 ,S(1)1 , . . . ,S(1)N ,S(2)0 ,S(2)1 , . . . ,S(2)N )

provided that the matrix sizes are consistent, i.e. the number of rows in A
(1)
N , B

(1)
N , b

(1)
N is

equal to n
(2)
x,0.

I By eliminating the equality constraints and intermediate state variables (condensing), a
new QP can be obtained, which consists of a single stage of sizenx,0,

N∑
k=0

nu,k,

N∑
k=0

nd,k, n+,N

 .
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Constructing and Initializing a QP Stage

// Declare matrix math kernel type
using Kernel = BlazeKernel<double>;

// Construct a QpStage object with specified dimensions
QpStage<Kernel> stage {QpSize {3, 2, 0}, 0};

// Fill the values
stage
.Q({

{1., 0., 0.},
{0., 2., 0.},
{0., 0., 3.}

})
.R({

{5., 0.},
{0., 6.}

})
.S({

{7., 8.},
{9., 10.},
{11., 12.}

})
.q({13., 14., 15.})
.r({16., 17.}); // ... A, B, b, lx, lu, ux, uu and so on
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Constructing a Multiple Stage OCP QP

// An alias for QpStage<Kernel>
using Stage = QpStage<Kernel>;

// Init stages
Stage stage0 = createStage0();
Stage stage1 = createStage1();
Stage stage2 = createStage2();

// An OCP QP is just a collection of QpStage
std::vector<Stage> qp;
qp.push_back(stage0);
qp.push_back(stage1);
qp.push_back(stage2);
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Using C++ Standard Algorithms on QP Stage Sequences

I In C ++, OCP QPs can be treated as stage iterator ranges.

I This allows applying standard algorithms (e.g. std::copy, std::find_if,
std::transform) to OCP QPs.

Example 1: print all stages of a QP

std::copy(qp.begin(), qp.end(), std::ostream_iterator<Stage>(std::cout, "\n"));

Example 2: find a stage with a Hessian which is not positive-definite

auto bad_stage = std::find_if(qp.begin(), qp.end(),
[] (Stage const& s) { return !s.isPositiveDefinite(); });
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More Fancy Operations: Gauss-Newton Approximation

I Consider the Gauss-Newton cost Hessian approximation of a quadratic cost function

H =
[
Jyx Jyu

]> [
Jyx Jyu

]
=

[
J>yxJyx J>yxJyu
J>yuJyx J>yuJyu

]
=

[
Q S
S> R

]
and the cost gradient

g =
[
Jyx Jyu

]>
y =

[
J>yxy
J>yuy

]
=

[
q
r

]
,

where Jyx = dy
dx , Jyu = dy

du and y is the residual.

I This corresponds to setting elements of a QP stage like following:

procedure GaussNewtonCostApproximation(y, Jyx, Jyu)
Q← J>yxJyx
R← J>yuJyu
S ← J>yxJyu
q ← J>yxy

r ← J>yuy
end procedure
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More Fancy Operations: Linearized Shooting Equality

I Consider the shooting constraint of the form

xk+1 = f(xk, uk)

and its linearized version

∆xk+1 =
df

dx
(xk, uk)︸ ︷︷ ︸
Ak

∆xk +
df

du
(xk, uk)︸ ︷︷ ︸
Bk

∆uk + f(xk, uk)− xk+1︸ ︷︷ ︸
bk

I procedure LinearizedShootingEquality(f, Jfx, Jfu, x
+)

A← Jfx
B ← Jfu
b← f − x+

end procedure
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More Fancy Operations: Linearized General Constraints

I Consider general constraints of the form

g ≤ g(xk, uk) ≤ g

and its linearized version

g − g(xk, uk)︸ ︷︷ ︸
dk

≤ dg

dx
(xk, uk)︸ ︷︷ ︸
Ck

∆xk +
dg

du
(xk, uk)︸ ︷︷ ︸
Dk

∆uk ≤ g − g(xk, uk)︸ ︷︷ ︸
dk

I procedure LinearizedGeneralConstraints(g, Jgx, Jgu, g, g)
C ← Jgx
D ← Jgu
d← g − g

d← g − g
end procedure
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More Fancy Operations: Initial Value Embedding

I Consider the initial value constraint

x0 = x̃0 ⇔ ∆x0 = x̃0 − x0 .

I Substituting it into the linearized shooting equality and the linearized general equalities
gives

∆x1 =
df

du
(x0, u0)︸ ︷︷ ︸
B0

∆u0 + f(x0, u0)− x1 +
df

dx
(x0, u0)(x̃0 − x0)︸ ︷︷ ︸

b0

g − g(x0, u0)− dg

dx
(x0, u0)(x̃0 − x0)︸ ︷︷ ︸

d0

≤ dg

du
(x0, u0)︸ ︷︷ ︸
D0

∆u0

≤ g − g(x0, u0)− dg

dx
(x0, u0)(x̃0 − x0)︸ ︷︷ ︸

d0
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More Fancy Operations: Initial Value Embedding

procedure InitialValueEmbedding(x̃0, x0, x1, f, Jfx, Jfu, g, Jgx, Jgu, gl, gu)
Require: nx,0 = 0

B0 ← Jfu
b0 ← f − x1 + Jfx(x̃0 − x0)
D0 ← Jgu
d0 ← gl − g − Jgx(x̃0 − x0)
d0 ← gu − g − Jgx(x̃0 − x0)

end procedure
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More Fancy Operations: Relative Bounds

I Consider the bound constraints [
x
k

u
k

]
≤
[
xk

uk

]
≤
[
xk

uk

]
which in the case of SQP transforms to[

x
k
− xk

u
k
− uk

]
︸ ︷︷ ︸xk

uk



≤
[
∆xk

∆uk

]
≤
[
xk − xk

uk − uk

]
︸ ︷︷ ︸xk

uk



I procedure RelativeBounds(x, u, xl, ul, xu, uu)
x← xl − x
u← ul − u
x← xu − x
u← uu − u

end procedure
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Code Example: Setting Up an OCP QP Stage

// Alias for the matrix math kernel
using K = BlazeKernel<double>;

// Construct the QpStage
QpStage<K> stage { QpSize {NX, NU, 0}, NX };

// Variables
extern K::StaticVector lx, ux; // absolute state bounds
extern K::StaticVector lu, uu; // absolute control bounds
K::StaticVector<NX> x, x_plus, f; // current state, next state, next calculated state
K::StaticVector<NU> u; // current input
K::StaticVector<NY> y; // residual (the cost function is y^T * y)
K::StaticMatrix<NX, NX> df_dx; // sensitivities
K::StaticMatrix<NX, NU> df_du;
K::StaticMatrix<NY, NX> dy_dx;
K::StaticMatrix<NY, NU> dy_du;

// Set x and u, calculate x_plus, y and the corresponding sensitivities:
//
// ...

// Set up the QP stage. Isn't it expressive?
stage.gaussNewtonCostApproximation(y, dy_dx, dy_du);
stage.linearizedShootingEquality(f, df_dx, df_du, x_plus);
stage.relativeBounds(x, u, lx, lu, ux, uu);
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Solving an OCP QP: the Holy Trinity

I This is all nice, but what about solving a
QP?

I Well, you need two more entities: a
solution and a solver.

I External solvers (e.g. qpOASES, HPMPC,
HPIPM) have different requirements on
how the problem and solution data should
be organized.

I The dimensions of a problem, a solution
and a solver must match.

I This creates tight coupling between a
problem, a solution and a solver, making a
new entity called QP Workspace.

Workspace

+solve()

Problem

+begin()
+end()

Solution

+begin()
+end()

Solver

+problem +solution

+solver

Manages all
necessary
resources for
Problem,
Solution and
Solver.
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Code Example: Solving a QP

// A type to use for real numbers
using Real = double;
// Alias for Workspace. Want qpOASES? Just change to QpOasesWorkspace!
using Workspace = HpmpcWorkspace<Real>;

// Create a QP Workspace for 2 stages with specified dimensions.
// All the data structures for the solver will be created here.
Workspace workspace {QpSize {3, 0, 0}, QpSize {0, 0, 0}};
// Reference to stage 0. It is not a QpStage object, although it has the same interface.
// Modifiers will write directly to solver data structures - no memory overhead!
auto& stage0 = workspace.problem()[0];

// Set cost
stage0.gaussNewtonCostApproximation(

DynamicVector<Real> {1., 2., 42.},
IdentityMatrix<Real> {3u},
DynamicMatrix<Real> {3u, 0u}

);
// Set bounds
stage0.bounds(-infinity<Real>(), -infinity<Real>(), infinity<Real>(), infinity<Real>());

// Solve the problem
workspace.solve();
// Output the solution
std::cout << workspace.solution()[0].x() << std::endl;

What will it print
out?

-1

-2

-42
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Summary

I OCP QP is represented as an ordered collection of objects called stages.

I OCP QPs can be represented as C ++ iterator ranges.
I Algorithms from the C ++ standard library (e.g. std::copy, std::find_if,

std::transform) can be applied to OCP QPs.
I Can this approach be extended to scenario trees?

The same applies to solution.

I Problem formulation is separated from its solving. A problem can be

I . . . set up in one place and solved in other place;
I . . . saved, loaded or copied.
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Final Slide

Questions? Comments?
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