
Object-Oriented Interface to OCP QPs in
tmpc

Mikhail Katliar

Max Planck Institute for Biological Cybernetics
& Systems Control and Optimization Laboratory,

University of Freiburg

Syscop Group Retreat
September 18, 2017



Table of Contents

1 Introduction to tmpc

2 Obect-Oriented Interface to OCP QPs

OCP QP Interface in tmpc M. Katliar 1



Brief Introduction of tmpc

tmpc is a C ++ library for MPC that:

I provides you with ingredients to build your MPC controller;

I allows you to make your own recipe (does not enforce the way the ingredients are
combined);

I tries to be convenient;

I tries to be efficient.

OCP QP Interface in tmpc M. Katliar 2



Brief Introduction of tmpc

tmpc is a C ++ library for MPC that:

I provides you with ingredients to build your MPC controller;

I allows you to make your own recipe (does not enforce the way the ingredients are
combined);

I tries to be convenient;

I tries to be efficient.

OCP QP Interface in tmpc M. Katliar 2



Brief Introduction of tmpc

tmpc is a C ++ library for MPC that:

I provides you with ingredients to build your MPC controller;

I allows you to make your own recipe (does not enforce the way the ingredients are
combined);

I tries to be convenient;

I tries to be efficient.

OCP QP Interface in tmpc M. Katliar 2



Brief Introduction of tmpc

tmpc is a C ++ library for MPC that:

I provides you with ingredients to build your MPC controller;

I allows you to make your own recipe (does not enforce the way the ingredients are
combined);

I tries to be convenient;

I tries to be efficient.

OCP QP Interface in tmpc M. Katliar 2



The Ingredients Provided by tmpc

I Defining system dynamics and sensitivities

I Integrators

I Quadratic Programming

I Sequential Quadratic Programming (SQP)

I Other Nonlinear Programming (NLP)

I Realtime Iteration Scheme (RTI)

I . . .

OCP QP Interface in tmpc M. Katliar 3



The Ingredients Provided by tmpc

I Defining system dynamics and sensitivities

I Integrators

I Quadratic Programming

I Sequential Quadratic Programming (SQP)

I Other Nonlinear Programming (NLP)

I Realtime Iteration Scheme (RTI)

I . . .

OCP QP Interface in tmpc M. Katliar 3



The Ingredients Provided by tmpc

I Defining system dynamics and sensitivities

I Integrators

I Quadratic Programming

I Sequential Quadratic Programming (SQP)

I Other Nonlinear Programming (NLP)

I Realtime Iteration Scheme (RTI)

I . . .

OCP QP Interface in tmpc M. Katliar 3



The Ingredients Provided by tmpc

I Defining system dynamics and sensitivities

I Integrators

I Quadratic Programming

I Sequential Quadratic Programming (SQP)

I Other Nonlinear Programming (NLP)

I Realtime Iteration Scheme (RTI)

I . . .

OCP QP Interface in tmpc M. Katliar 3



The Ingredients Provided by tmpc

I Defining system dynamics and sensitivities

I Integrators

I Quadratic Programming

I Sequential Quadratic Programming (SQP)

I Other Nonlinear Programming (NLP)

I Realtime Iteration Scheme (RTI)

I . . .

OCP QP Interface in tmpc M. Katliar 3



The Ingredients Provided by tmpc

I Defining system dynamics and sensitivities

I Integrators

I Quadratic Programming

I Sequential Quadratic Programming (SQP)

I Other Nonlinear Programming (NLP)

I Realtime Iteration Scheme (RTI)

I . . .

OCP QP Interface in tmpc M. Katliar 3



The Ingredients Provided by tmpc

I Defining system dynamics and sensitivities

I Integrators

I Quadratic Programming

I Sequential Quadratic Programming (SQP)

I Other Nonlinear Programming (NLP)

I Realtime Iteration Scheme (RTI)

I . . .

OCP QP Interface in tmpc M. Katliar 3



Design Objectives

I Modularity

I Easy to replace a component with a different one without affecting the rest of the system

I Extensibility

I Easy to implement a new component which can interact with other components

I Maintainability

I The code is human-readable and allows testing, debugging and modification

I Performance

I Efficient matrix arithmetics
I No unnecessary memory copying
I No unnecessary dynamic memory allocation
I No unnecessary dynamic polymorphism

I Robustness

I Minimize possibility of resource leaks
I Minimize possibility of memory access violations
I Minimize possibility of ignoring an error

OCP QP Interface in tmpc M. Katliar 4



Design Objectives

I Modularity
I Easy to replace a component with a different one without affecting the rest of the system

I Extensibility

I Easy to implement a new component which can interact with other components

I Maintainability

I The code is human-readable and allows testing, debugging and modification

I Performance

I Efficient matrix arithmetics
I No unnecessary memory copying
I No unnecessary dynamic memory allocation
I No unnecessary dynamic polymorphism

I Robustness

I Minimize possibility of resource leaks
I Minimize possibility of memory access violations
I Minimize possibility of ignoring an error

OCP QP Interface in tmpc M. Katliar 4



Design Objectives

I Modularity
I Easy to replace a component with a different one without affecting the rest of the system

I Extensibility

I Easy to implement a new component which can interact with other components

I Maintainability

I The code is human-readable and allows testing, debugging and modification

I Performance

I Efficient matrix arithmetics
I No unnecessary memory copying
I No unnecessary dynamic memory allocation
I No unnecessary dynamic polymorphism

I Robustness

I Minimize possibility of resource leaks
I Minimize possibility of memory access violations
I Minimize possibility of ignoring an error

OCP QP Interface in tmpc M. Katliar 4



Design Objectives

I Modularity
I Easy to replace a component with a different one without affecting the rest of the system

I Extensibility
I Easy to implement a new component which can interact with other components

I Maintainability

I The code is human-readable and allows testing, debugging and modification

I Performance

I Efficient matrix arithmetics
I No unnecessary memory copying
I No unnecessary dynamic memory allocation
I No unnecessary dynamic polymorphism

I Robustness

I Minimize possibility of resource leaks
I Minimize possibility of memory access violations
I Minimize possibility of ignoring an error

OCP QP Interface in tmpc M. Katliar 4



Design Objectives

I Modularity
I Easy to replace a component with a different one without affecting the rest of the system

I Extensibility
I Easy to implement a new component which can interact with other components

I Maintainability

I The code is human-readable and allows testing, debugging and modification

I Performance

I Efficient matrix arithmetics
I No unnecessary memory copying
I No unnecessary dynamic memory allocation
I No unnecessary dynamic polymorphism

I Robustness

I Minimize possibility of resource leaks
I Minimize possibility of memory access violations
I Minimize possibility of ignoring an error

OCP QP Interface in tmpc M. Katliar 4



Design Objectives

I Modularity
I Easy to replace a component with a different one without affecting the rest of the system

I Extensibility
I Easy to implement a new component which can interact with other components

I Maintainability
I The code is human-readable and allows testing, debugging and modification

I Performance

I Efficient matrix arithmetics
I No unnecessary memory copying
I No unnecessary dynamic memory allocation
I No unnecessary dynamic polymorphism

I Robustness

I Minimize possibility of resource leaks
I Minimize possibility of memory access violations
I Minimize possibility of ignoring an error

OCP QP Interface in tmpc M. Katliar 4



Design Objectives

I Modularity
I Easy to replace a component with a different one without affecting the rest of the system

I Extensibility
I Easy to implement a new component which can interact with other components

I Maintainability
I The code is human-readable and allows testing, debugging and modification

I Performance

I Efficient matrix arithmetics
I No unnecessary memory copying
I No unnecessary dynamic memory allocation
I No unnecessary dynamic polymorphism

I Robustness

I Minimize possibility of resource leaks
I Minimize possibility of memory access violations
I Minimize possibility of ignoring an error

OCP QP Interface in tmpc M. Katliar 4



Design Objectives

I Modularity
I Easy to replace a component with a different one without affecting the rest of the system

I Extensibility
I Easy to implement a new component which can interact with other components

I Maintainability
I The code is human-readable and allows testing, debugging and modification

I Performance
I Efficient matrix arithmetics

I No unnecessary memory copying
I No unnecessary dynamic memory allocation
I No unnecessary dynamic polymorphism

I Robustness

I Minimize possibility of resource leaks
I Minimize possibility of memory access violations
I Minimize possibility of ignoring an error

OCP QP Interface in tmpc M. Katliar 4



Design Objectives

I Modularity
I Easy to replace a component with a different one without affecting the rest of the system

I Extensibility
I Easy to implement a new component which can interact with other components

I Maintainability
I The code is human-readable and allows testing, debugging and modification

I Performance
I Efficient matrix arithmetics
I No unnecessary memory copying

I No unnecessary dynamic memory allocation
I No unnecessary dynamic polymorphism

I Robustness

I Minimize possibility of resource leaks
I Minimize possibility of memory access violations
I Minimize possibility of ignoring an error

OCP QP Interface in tmpc M. Katliar 4



Design Objectives

I Modularity
I Easy to replace a component with a different one without affecting the rest of the system

I Extensibility
I Easy to implement a new component which can interact with other components

I Maintainability
I The code is human-readable and allows testing, debugging and modification

I Performance
I Efficient matrix arithmetics
I No unnecessary memory copying
I No unnecessary dynamic memory allocation

I No unnecessary dynamic polymorphism

I Robustness

I Minimize possibility of resource leaks
I Minimize possibility of memory access violations
I Minimize possibility of ignoring an error

OCP QP Interface in tmpc M. Katliar 4



Design Objectives

I Modularity
I Easy to replace a component with a different one without affecting the rest of the system

I Extensibility
I Easy to implement a new component which can interact with other components

I Maintainability
I The code is human-readable and allows testing, debugging and modification

I Performance
I Efficient matrix arithmetics
I No unnecessary memory copying
I No unnecessary dynamic memory allocation
I No unnecessary dynamic polymorphism

I Robustness

I Minimize possibility of resource leaks
I Minimize possibility of memory access violations
I Minimize possibility of ignoring an error

OCP QP Interface in tmpc M. Katliar 4



Design Objectives

I Modularity
I Easy to replace a component with a different one without affecting the rest of the system

I Extensibility
I Easy to implement a new component which can interact with other components

I Maintainability
I The code is human-readable and allows testing, debugging and modification

I Performance
I Efficient matrix arithmetics
I No unnecessary memory copying
I No unnecessary dynamic memory allocation
I No unnecessary dynamic polymorphism

I Robustness

I Minimize possibility of resource leaks
I Minimize possibility of memory access violations
I Minimize possibility of ignoring an error

OCP QP Interface in tmpc M. Katliar 4



Design Objectives

I Modularity
I Easy to replace a component with a different one without affecting the rest of the system

I Extensibility
I Easy to implement a new component which can interact with other components

I Maintainability
I The code is human-readable and allows testing, debugging and modification

I Performance
I Efficient matrix arithmetics
I No unnecessary memory copying
I No unnecessary dynamic memory allocation
I No unnecessary dynamic polymorphism

I Robustness
I Minimize possibility of resource leaks

I Minimize possibility of memory access violations
I Minimize possibility of ignoring an error

OCP QP Interface in tmpc M. Katliar 4



Design Objectives

I Modularity
I Easy to replace a component with a different one without affecting the rest of the system

I Extensibility
I Easy to implement a new component which can interact with other components

I Maintainability
I The code is human-readable and allows testing, debugging and modification

I Performance
I Efficient matrix arithmetics
I No unnecessary memory copying
I No unnecessary dynamic memory allocation
I No unnecessary dynamic polymorphism

I Robustness
I Minimize possibility of resource leaks
I Minimize possibility of memory access violations

I Minimize possibility of ignoring an error

OCP QP Interface in tmpc M. Katliar 4



Design Objectives

I Modularity
I Easy to replace a component with a different one without affecting the rest of the system

I Extensibility
I Easy to implement a new component which can interact with other components

I Maintainability
I The code is human-readable and allows testing, debugging and modification

I Performance
I Efficient matrix arithmetics
I No unnecessary memory copying
I No unnecessary dynamic memory allocation
I No unnecessary dynamic polymorphism

I Robustness
I Minimize possibility of resource leaks
I Minimize possibility of memory access violations
I Minimize possibility of ignoring an error

OCP QP Interface in tmpc M. Katliar 4



Cool Features of tmpc

I tmpc widely uses static polymorphism. Therefore, it can be seen as a code-generation
tool, with the code-generation done by a C ++ compiler.

I tmpc does not rely on a specific matrix arithmetics implementation. Algorithms1 are
parameterized by a class that defines an implementation of matrix arithmetics.

1Currently only some of them.
OCP QP Interface in tmpc M. Katliar 5



Cool Features of tmpc

I tmpc widely uses static polymorphism. Therefore, it can be seen as a code-generation
tool, with the code-generation done by a C ++ compiler.

I tmpc does not rely on a specific matrix arithmetics implementation. Algorithms1 are
parameterized by a class that defines an implementation of matrix arithmetics.

1Currently only some of them.
OCP QP Interface in tmpc M. Katliar 5



Current Status

I Defining system dynamics and sensitivities

I Implemented a convenient interface to CasADi-generated functions
I Integrators

I Several variations of the RK4 integrator implemented
I Petr Listov is trying to implement collocation (pseudospectral) methods
I It is not clear how a good integrators interface should look like

I Quadratic Programming

I qpOASES interface is ready
I HPMPC interface is ready
I HPIPM interface is ready
I Variable stage size supported
I Soft constraints support not ready but in progress
I O3 condensing implemented
I QP output to MATLAB
I Other useful functions

I Sequential Quadratic Programming (SQP)

I Implemented in the context of RTI.

I Realtime Iteration Scheme (RTI)

I Implemented, but I don’t like how I did it.

OCP QP Interface in tmpc M. Katliar 6



Current Status

I Defining system dynamics and sensitivities
I Implemented a convenient interface to CasADi-generated functions

I Integrators

I Several variations of the RK4 integrator implemented
I Petr Listov is trying to implement collocation (pseudospectral) methods
I It is not clear how a good integrators interface should look like

I Quadratic Programming

I qpOASES interface is ready
I HPMPC interface is ready
I HPIPM interface is ready
I Variable stage size supported
I Soft constraints support not ready but in progress
I O3 condensing implemented
I QP output to MATLAB
I Other useful functions

I Sequential Quadratic Programming (SQP)

I Implemented in the context of RTI.

I Realtime Iteration Scheme (RTI)

I Implemented, but I don’t like how I did it.

OCP QP Interface in tmpc M. Katliar 6



Current Status

I Defining system dynamics and sensitivities
I Implemented a convenient interface to CasADi-generated functions

I Integrators

I Several variations of the RK4 integrator implemented
I Petr Listov is trying to implement collocation (pseudospectral) methods
I It is not clear how a good integrators interface should look like

I Quadratic Programming

I qpOASES interface is ready
I HPMPC interface is ready
I HPIPM interface is ready
I Variable stage size supported
I Soft constraints support not ready but in progress
I O3 condensing implemented
I QP output to MATLAB
I Other useful functions

I Sequential Quadratic Programming (SQP)

I Implemented in the context of RTI.

I Realtime Iteration Scheme (RTI)

I Implemented, but I don’t like how I did it.

OCP QP Interface in tmpc M. Katliar 6



Current Status

I Defining system dynamics and sensitivities
I Implemented a convenient interface to CasADi-generated functions

I Integrators
I Several variations of the RK4 integrator implemented

I Petr Listov is trying to implement collocation (pseudospectral) methods
I It is not clear how a good integrators interface should look like

I Quadratic Programming

I qpOASES interface is ready
I HPMPC interface is ready
I HPIPM interface is ready
I Variable stage size supported
I Soft constraints support not ready but in progress
I O3 condensing implemented
I QP output to MATLAB
I Other useful functions

I Sequential Quadratic Programming (SQP)

I Implemented in the context of RTI.

I Realtime Iteration Scheme (RTI)

I Implemented, but I don’t like how I did it.

OCP QP Interface in tmpc M. Katliar 6



Current Status

I Defining system dynamics and sensitivities
I Implemented a convenient interface to CasADi-generated functions

I Integrators
I Several variations of the RK4 integrator implemented
I Petr Listov is trying to implement collocation (pseudospectral) methods

I It is not clear how a good integrators interface should look like
I Quadratic Programming

I qpOASES interface is ready
I HPMPC interface is ready
I HPIPM interface is ready
I Variable stage size supported
I Soft constraints support not ready but in progress
I O3 condensing implemented
I QP output to MATLAB
I Other useful functions

I Sequential Quadratic Programming (SQP)

I Implemented in the context of RTI.

I Realtime Iteration Scheme (RTI)

I Implemented, but I don’t like how I did it.

OCP QP Interface in tmpc M. Katliar 6



Current Status

I Defining system dynamics and sensitivities
I Implemented a convenient interface to CasADi-generated functions

I Integrators
I Several variations of the RK4 integrator implemented
I Petr Listov is trying to implement collocation (pseudospectral) methods
I It is not clear how a good integrators interface should look like

I Quadratic Programming

I qpOASES interface is ready
I HPMPC interface is ready
I HPIPM interface is ready
I Variable stage size supported
I Soft constraints support not ready but in progress
I O3 condensing implemented
I QP output to MATLAB
I Other useful functions

I Sequential Quadratic Programming (SQP)

I Implemented in the context of RTI.

I Realtime Iteration Scheme (RTI)

I Implemented, but I don’t like how I did it.

OCP QP Interface in tmpc M. Katliar 6



Current Status

I Defining system dynamics and sensitivities
I Implemented a convenient interface to CasADi-generated functions

I Integrators
I Several variations of the RK4 integrator implemented
I Petr Listov is trying to implement collocation (pseudospectral) methods
I It is not clear how a good integrators interface should look like

I Quadratic Programming

I qpOASES interface is ready
I HPMPC interface is ready
I HPIPM interface is ready
I Variable stage size supported
I Soft constraints support not ready but in progress
I O3 condensing implemented
I QP output to MATLAB
I Other useful functions

I Sequential Quadratic Programming (SQP)

I Implemented in the context of RTI.

I Realtime Iteration Scheme (RTI)

I Implemented, but I don’t like how I did it.

OCP QP Interface in tmpc M. Katliar 6



Current Status

I Defining system dynamics and sensitivities
I Implemented a convenient interface to CasADi-generated functions

I Integrators
I Several variations of the RK4 integrator implemented
I Petr Listov is trying to implement collocation (pseudospectral) methods
I It is not clear how a good integrators interface should look like

I Quadratic Programming
I qpOASES interface is ready

I HPMPC interface is ready
I HPIPM interface is ready
I Variable stage size supported
I Soft constraints support not ready but in progress
I O3 condensing implemented
I QP output to MATLAB
I Other useful functions

I Sequential Quadratic Programming (SQP)

I Implemented in the context of RTI.

I Realtime Iteration Scheme (RTI)

I Implemented, but I don’t like how I did it.

OCP QP Interface in tmpc M. Katliar 6



Current Status

I Defining system dynamics and sensitivities
I Implemented a convenient interface to CasADi-generated functions

I Integrators
I Several variations of the RK4 integrator implemented
I Petr Listov is trying to implement collocation (pseudospectral) methods
I It is not clear how a good integrators interface should look like

I Quadratic Programming
I qpOASES interface is ready
I HPMPC interface is ready

I HPIPM interface is ready
I Variable stage size supported
I Soft constraints support not ready but in progress
I O3 condensing implemented
I QP output to MATLAB
I Other useful functions

I Sequential Quadratic Programming (SQP)

I Implemented in the context of RTI.

I Realtime Iteration Scheme (RTI)

I Implemented, but I don’t like how I did it.

OCP QP Interface in tmpc M. Katliar 6



Current Status

I Defining system dynamics and sensitivities
I Implemented a convenient interface to CasADi-generated functions

I Integrators
I Several variations of the RK4 integrator implemented
I Petr Listov is trying to implement collocation (pseudospectral) methods
I It is not clear how a good integrators interface should look like

I Quadratic Programming
I qpOASES interface is ready
I HPMPC interface is ready
I HPIPM interface is ready

I Variable stage size supported
I Soft constraints support not ready but in progress
I O3 condensing implemented
I QP output to MATLAB
I Other useful functions

I Sequential Quadratic Programming (SQP)

I Implemented in the context of RTI.

I Realtime Iteration Scheme (RTI)

I Implemented, but I don’t like how I did it.

OCP QP Interface in tmpc M. Katliar 6



Current Status

I Defining system dynamics and sensitivities
I Implemented a convenient interface to CasADi-generated functions

I Integrators
I Several variations of the RK4 integrator implemented
I Petr Listov is trying to implement collocation (pseudospectral) methods
I It is not clear how a good integrators interface should look like

I Quadratic Programming
I qpOASES interface is ready
I HPMPC interface is ready
I HPIPM interface is ready
I Variable stage size supported

I Soft constraints support not ready but in progress
I O3 condensing implemented
I QP output to MATLAB
I Other useful functions

I Sequential Quadratic Programming (SQP)

I Implemented in the context of RTI.

I Realtime Iteration Scheme (RTI)

I Implemented, but I don’t like how I did it.

OCP QP Interface in tmpc M. Katliar 6



Current Status

I Defining system dynamics and sensitivities
I Implemented a convenient interface to CasADi-generated functions

I Integrators
I Several variations of the RK4 integrator implemented
I Petr Listov is trying to implement collocation (pseudospectral) methods
I It is not clear how a good integrators interface should look like

I Quadratic Programming
I qpOASES interface is ready
I HPMPC interface is ready
I HPIPM interface is ready
I Variable stage size supported
I Soft constraints support not ready but in progress

I O3 condensing implemented
I QP output to MATLAB
I Other useful functions

I Sequential Quadratic Programming (SQP)

I Implemented in the context of RTI.

I Realtime Iteration Scheme (RTI)

I Implemented, but I don’t like how I did it.

OCP QP Interface in tmpc M. Katliar 6



Current Status

I Defining system dynamics and sensitivities
I Implemented a convenient interface to CasADi-generated functions

I Integrators
I Several variations of the RK4 integrator implemented
I Petr Listov is trying to implement collocation (pseudospectral) methods
I It is not clear how a good integrators interface should look like

I Quadratic Programming
I qpOASES interface is ready
I HPMPC interface is ready
I HPIPM interface is ready
I Variable stage size supported
I Soft constraints support not ready but in progress
I O3 condensing implemented

I QP output to MATLAB
I Other useful functions

I Sequential Quadratic Programming (SQP)

I Implemented in the context of RTI.

I Realtime Iteration Scheme (RTI)

I Implemented, but I don’t like how I did it.

OCP QP Interface in tmpc M. Katliar 6



Current Status

I Defining system dynamics and sensitivities
I Implemented a convenient interface to CasADi-generated functions

I Integrators
I Several variations of the RK4 integrator implemented
I Petr Listov is trying to implement collocation (pseudospectral) methods
I It is not clear how a good integrators interface should look like

I Quadratic Programming
I qpOASES interface is ready
I HPMPC interface is ready
I HPIPM interface is ready
I Variable stage size supported
I Soft constraints support not ready but in progress
I O3 condensing implemented
I QP output to MATLAB

I Other useful functions
I Sequential Quadratic Programming (SQP)

I Implemented in the context of RTI.

I Realtime Iteration Scheme (RTI)

I Implemented, but I don’t like how I did it.

OCP QP Interface in tmpc M. Katliar 6



Current Status

I Defining system dynamics and sensitivities
I Implemented a convenient interface to CasADi-generated functions

I Integrators
I Several variations of the RK4 integrator implemented
I Petr Listov is trying to implement collocation (pseudospectral) methods
I It is not clear how a good integrators interface should look like

I Quadratic Programming
I qpOASES interface is ready
I HPMPC interface is ready
I HPIPM interface is ready
I Variable stage size supported
I Soft constraints support not ready but in progress
I O3 condensing implemented
I QP output to MATLAB
I Other useful functions

I Sequential Quadratic Programming (SQP)

I Implemented in the context of RTI.

I Realtime Iteration Scheme (RTI)

I Implemented, but I don’t like how I did it.

OCP QP Interface in tmpc M. Katliar 6



Current Status

I Defining system dynamics and sensitivities
I Implemented a convenient interface to CasADi-generated functions

I Integrators
I Several variations of the RK4 integrator implemented
I Petr Listov is trying to implement collocation (pseudospectral) methods
I It is not clear how a good integrators interface should look like

I Quadratic Programming
I qpOASES interface is ready
I HPMPC interface is ready
I HPIPM interface is ready
I Variable stage size supported
I Soft constraints support not ready but in progress
I O3 condensing implemented
I QP output to MATLAB
I Other useful functions

I Sequential Quadratic Programming (SQP)

I Implemented in the context of RTI.
I Realtime Iteration Scheme (RTI)

I Implemented, but I don’t like how I did it.

OCP QP Interface in tmpc M. Katliar 6



Current Status

I Defining system dynamics and sensitivities
I Implemented a convenient interface to CasADi-generated functions

I Integrators
I Several variations of the RK4 integrator implemented
I Petr Listov is trying to implement collocation (pseudospectral) methods
I It is not clear how a good integrators interface should look like

I Quadratic Programming
I qpOASES interface is ready
I HPMPC interface is ready
I HPIPM interface is ready
I Variable stage size supported
I Soft constraints support not ready but in progress
I O3 condensing implemented
I QP output to MATLAB
I Other useful functions

I Sequential Quadratic Programming (SQP)
I Implemented in the context of RTI.

I Realtime Iteration Scheme (RTI)

I Implemented, but I don’t like how I did it.

OCP QP Interface in tmpc M. Katliar 6



Current Status

I Defining system dynamics and sensitivities
I Implemented a convenient interface to CasADi-generated functions

I Integrators
I Several variations of the RK4 integrator implemented
I Petr Listov is trying to implement collocation (pseudospectral) methods
I It is not clear how a good integrators interface should look like

I Quadratic Programming
I qpOASES interface is ready
I HPMPC interface is ready
I HPIPM interface is ready
I Variable stage size supported
I Soft constraints support not ready but in progress
I O3 condensing implemented
I QP output to MATLAB
I Other useful functions

I Sequential Quadratic Programming (SQP)
I Implemented in the context of RTI.

I Realtime Iteration Scheme (RTI)

I Implemented, but I don’t like how I did it.

OCP QP Interface in tmpc M. Katliar 6



Current Status

I Defining system dynamics and sensitivities
I Implemented a convenient interface to CasADi-generated functions

I Integrators
I Several variations of the RK4 integrator implemented
I Petr Listov is trying to implement collocation (pseudospectral) methods
I It is not clear how a good integrators interface should look like

I Quadratic Programming
I qpOASES interface is ready
I HPMPC interface is ready
I HPIPM interface is ready
I Variable stage size supported
I Soft constraints support not ready but in progress
I O3 condensing implemented
I QP output to MATLAB
I Other useful functions

I Sequential Quadratic Programming (SQP)
I Implemented in the context of RTI.

I Realtime Iteration Scheme (RTI)
I Implemented, but I don’t like how I did it.

OCP QP Interface in tmpc M. Katliar 6



Table of Contents

1 Introduction to tmpc

2 Obect-Oriented Interface to OCP QPs

OCP QP Interface in tmpc M. Katliar 7



Definition of OCP QP

The OCP QP is a QP in the form2

minimize
x, u

N∑
n=0

1

2

xk

uk

1

>
Qk Sk qk
S>k Rk rk
q>k r>k 0


xk

uk

1


subject to xk+1 = Akxk + Bkuk + bk, n = 0, . . . , N − 1,[

xk

uk

]
≤
[
xk

uk

]
≤
[
xk

uk

]
, n = 0, . . . , N,

dk ≤
[
Ck Dk

] [xk

uk

]
≤ dk, n = 0, . . . , N

where uk are the control inputs, xk are the states.

2Slightly changed Gianluca’s notation; x comes before u.
OCP QP Interface in tmpc M. Katliar 8



Definition of OCP QP Stage

I The OCP QP consists of 16 elements: Q, R, S, q, r, A, B, b, x, u, x, u, C, D, d, d.

I Each of the elements has a time index k which runs from 0 to N or to N − 1.

Definition (QP stage)

A OCP QP stage is a combination of elements corresponding to the same time index k:

Sk = (Qk, Rk, Sk, qk, rk, Ak, Bk, bk, xk, uk, xk, uk, Ck, Dk, dk, dk) .

OCP QP Interface in tmpc M. Katliar 9



Definition of OCP QP Stage

I The OCP QP consists of 16 elements: Q, R, S, q, r, A, B, b, x, u, x, u, C, D, d, d.

I Each of the elements has a time index k which runs from 0 to N or to N − 1.

Definition (QP stage)

A OCP QP stage is a combination of elements corresponding to the same time index k:

Sk = (Qk, Rk, Sk, qk, rk, Ak, Bk, bk, xk, uk, xk, uk, Ck, Dk, dk, dk) .

OCP QP Interface in tmpc M. Katliar 9



Definition of OCP QP Stage

I The OCP QP consists of 16 elements: Q, R, S, q, r, A, B, b, x, u, x, u, C, D, d, d.

I Each of the elements has a time index k which runs from 0 to N or to N − 1.

Definition (QP stage)

A OCP QP stage is a combination of elements corresponding to the same time index k:

Sk = (Qk, Rk, Sk, qk, rk, Ak, Bk, bk, xk, uk, xk, uk, Ck, Dk, dk, dk) .

OCP QP Interface in tmpc M. Katliar 9



Definition of OCP QP Stage Size

Within one stage, matrices and vectors have consistent dimensions:

Qk ∈ Rnx,k×nx,k , R ∈ Rnu,k×nu,k , S ∈ Rnx,k×nu,k , q ∈ Rnx,k , r ∈ Rnu,k ,

A ∈ Rnx,k+1×nx,k , B ∈ Rnx,k+1×nu,k , b ∈ Rnx,k+1 , x, x ∈ Rxk , u, u ∈ Ruk ,

C ∈ Rnc,k×nx,k , D ∈ Rnc,k×nu,k , d, d ∈ Rnc,k (1)

Definition (stage size)

The k-th stage size is
Nk = (nx,k, nu,k, nc,k, nx,k+1) .

OCP QP Interface in tmpc M. Katliar 10



QP Stage Sequence Operations

I An OCP QP can be seen as a collection of stages:

QP = (S0,S1, . . . ,SN ) .

I Any stage subsequence (Sm,Sm+1, . . . ,Sn), 0 ≤ m < n ≤ N of a QP is also a QP.

I Note that AN ,BN ,bN do not enter the minimization problem formulation. . .

I . . . but they are useful if you concatenate two QPs:

(QP(1),QP(2)) = (S(1)0 ,S(1)1 , . . . ,S(1)N ,S(2)0 ,S(2)1 , . . . ,S(2)N )

provided that the matrix sizes are consistent, i.e. the number of rows in A
(1)
N , B

(1)
N , b

(1)
N is

equal to n
(2)
x,0.

I By eliminating the equality constraints and intermediate state variables (condensing), a
new QP can be obtained, which consists of a single stage of sizenx,0,

N∑
k=0

nu,k,

N∑
k=0

nd,k, n+,N

 .

OCP QP Interface in tmpc M. Katliar 11



Constructing and Initializing a QP Stage

// Declare matrix math kernel type
using Kernel = BlazeKernel<double>;

// Construct a QpStage object with specified dimensions
QpStage<Kernel> stage {QpSize {3, 2, 0}, 0};

// Fill the values
stage
.Q({

{1., 0., 0.},
{0., 2., 0.},
{0., 0., 3.}

})
.R({

{5., 0.},
{0., 6.}

})
.S({

{7., 8.},
{9., 10.},
{11., 12.}

})
.q({13., 14., 15.})
.r({16., 17.}); // ... A, B, b, lx, lu, ux, uu and so on

OCP QP Interface in tmpc M. Katliar 12



Constructing a Multiple Stage OCP QP

// An alias for QpStage<Kernel>
using Stage = QpStage<Kernel>;

// Init stages
Stage stage0 = createStage0();
Stage stage1 = createStage1();
Stage stage2 = createStage2();

// An OCP QP is just a collection of QpStage
std::vector<Stage> qp;
qp.push_back(stage0);
qp.push_back(stage1);
qp.push_back(stage2);

OCP QP Interface in tmpc M. Katliar 13



Using C++ Standard Algorithms on QP Stage Sequences

I In C ++, OCP QPs can be treated as stage iterator ranges.

I This allows applying standard algorithms (e.g. std::copy, std::find_if,
std::transform) to OCP QPs.

Example 1: print all stages of a QP

std::copy(qp.begin(), qp.end(), std::ostream_iterator<Stage>(std::cout, "\n"));

Example 2: find a stage with a Hessian which is not positive-definite

auto bad_stage = std::find_if(qp.begin(), qp.end(),
[] (Stage const& s) { return !s.isPositiveDefinite(); });

OCP QP Interface in tmpc M. Katliar 14



Using C++ Standard Algorithms on QP Stage Sequences

I In C ++, OCP QPs can be treated as stage iterator ranges.

I This allows applying standard algorithms (e.g. std::copy, std::find_if,
std::transform) to OCP QPs.

Example 1: print all stages of a QP

std::copy(qp.begin(), qp.end(), std::ostream_iterator<Stage>(std::cout, "\n"));

Example 2: find a stage with a Hessian which is not positive-definite

auto bad_stage = std::find_if(qp.begin(), qp.end(),
[] (Stage const& s) { return !s.isPositiveDefinite(); });

OCP QP Interface in tmpc M. Katliar 14



Using C++ Standard Algorithms on QP Stage Sequences

I In C ++, OCP QPs can be treated as stage iterator ranges.

I This allows applying standard algorithms (e.g. std::copy, std::find_if,
std::transform) to OCP QPs.

Example 1: print all stages of a QP

std::copy(qp.begin(), qp.end(), std::ostream_iterator<Stage>(std::cout, "\n"));

Example 2: find a stage with a Hessian which is not positive-definite

auto bad_stage = std::find_if(qp.begin(), qp.end(),
[] (Stage const& s) { return !s.isPositiveDefinite(); });

OCP QP Interface in tmpc M. Katliar 14



Using C++ Standard Algorithms on QP Stage Sequences

I In C ++, OCP QPs can be treated as stage iterator ranges.

I This allows applying standard algorithms (e.g. std::copy, std::find_if,
std::transform) to OCP QPs.

Example 1: print all stages of a QP

std::copy(qp.begin(), qp.end(), std::ostream_iterator<Stage>(std::cout, "\n"));

Example 2: find a stage with a Hessian which is not positive-definite

auto bad_stage = std::find_if(qp.begin(), qp.end(),
[] (Stage const& s) { return !s.isPositiveDefinite(); });

OCP QP Interface in tmpc M. Katliar 14



More Fancy Operations: Gauss-Newton Approximation

I Consider the Gauss-Newton cost Hessian approximation of a quadratic cost function

H =
[
Jyx Jyu

]> [
Jyx Jyu

]
=

[
J>yxJyx J>yxJyu
J>yuJyx J>yuJyu

]
=

[
Q S
S> R

]
and the cost gradient

g =
[
Jyx Jyu

]>
y =

[
J>yxy
J>yuy

]
=

[
q
r

]
,

where Jyx = dy
dx , Jyu = dy

du and y is the residual.

I This corresponds to setting elements of a QP stage like following:

procedure GaussNewtonCostApproximation(y, Jyx, Jyu)
Q← J>yxJyx
R← J>yuJyu
S ← J>yxJyu
q ← J>yxy

r ← J>yuy
end procedure

OCP QP Interface in tmpc M. Katliar 15



More Fancy Operations: Gauss-Newton Approximation

I Consider the Gauss-Newton cost Hessian approximation of a quadratic cost function

H =
[
Jyx Jyu

]> [
Jyx Jyu

]
=

[
J>yxJyx J>yxJyu
J>yuJyx J>yuJyu

]
=

[
Q S
S> R

]
and the cost gradient

g =
[
Jyx Jyu

]>
y =

[
J>yxy
J>yuy

]
=

[
q
r

]
,

where Jyx = dy
dx , Jyu = dy

du and y is the residual.
I This corresponds to setting elements of a QP stage like following:

procedure GaussNewtonCostApproximation(y, Jyx, Jyu)
Q← J>yxJyx
R← J>yuJyu
S ← J>yxJyu
q ← J>yxy

r ← J>yuy
end procedure

OCP QP Interface in tmpc M. Katliar 15



More Fancy Operations: Linearized Shooting Equality

I Consider the shooting constraint of the form

xk+1 = f(xk, uk)

and its linearized version

∆xk+1 =
df

dx
(xk, uk)︸ ︷︷ ︸
Ak

∆xk +
df

du
(xk, uk)︸ ︷︷ ︸
Bk

∆uk + f(xk, uk)− xk+1︸ ︷︷ ︸
bk

I procedure LinearizedShootingEquality(f, Jfx, Jfu, x
+)

A← Jfx
B ← Jfu
b← f − x+

end procedure

OCP QP Interface in tmpc M. Katliar 16



More Fancy Operations: Linearized Shooting Equality

I Consider the shooting constraint of the form

xk+1 = f(xk, uk)

and its linearized version

∆xk+1 =
df

dx
(xk, uk)︸ ︷︷ ︸
Ak

∆xk +
df

du
(xk, uk)︸ ︷︷ ︸
Bk

∆uk + f(xk, uk)− xk+1︸ ︷︷ ︸
bk

I procedure LinearizedShootingEquality(f, Jfx, Jfu, x
+)

A← Jfx
B ← Jfu
b← f − x+

end procedure

OCP QP Interface in tmpc M. Katliar 16



More Fancy Operations: Linearized General Constraints

I Consider general constraints of the form

g ≤ g(xk, uk) ≤ g

and its linearized version

g − g(xk, uk)︸ ︷︷ ︸
dk

≤ dg

dx
(xk, uk)︸ ︷︷ ︸
Ck

∆xk +
dg

du
(xk, uk)︸ ︷︷ ︸
Dk

∆uk ≤ g − g(xk, uk)︸ ︷︷ ︸
dk

I procedure LinearizedGeneralConstraints(g, Jgx, Jgu, g, g)
C ← Jgx
D ← Jgu
d← g − g

d← g − g
end procedure

OCP QP Interface in tmpc M. Katliar 17



More Fancy Operations: Linearized General Constraints

I Consider general constraints of the form

g ≤ g(xk, uk) ≤ g

and its linearized version

g − g(xk, uk)︸ ︷︷ ︸
dk

≤ dg

dx
(xk, uk)︸ ︷︷ ︸
Ck

∆xk +
dg

du
(xk, uk)︸ ︷︷ ︸
Dk

∆uk ≤ g − g(xk, uk)︸ ︷︷ ︸
dk

I procedure LinearizedGeneralConstraints(g, Jgx, Jgu, g, g)
C ← Jgx
D ← Jgu
d← g − g

d← g − g
end procedure

OCP QP Interface in tmpc M. Katliar 17



More Fancy Operations: Initial Value Embedding

I Consider the initial value constraint

x0 = x̃0 ⇔ ∆x0 = x̃0 − x0 .

I Substituting it into the linearized shooting equality and the linearized general equalities
gives

∆x1 =
df

du
(x0, u0)︸ ︷︷ ︸
B0

∆u0 + f(x0, u0)− x1 +
df

dx
(x0, u0)(x̃0 − x0)︸ ︷︷ ︸

b0

g − g(x0, u0)− dg

dx
(x0, u0)(x̃0 − x0)︸ ︷︷ ︸

d0

≤ dg

du
(x0, u0)︸ ︷︷ ︸
D0

∆u0

≤ g − g(x0, u0)− dg

dx
(x0, u0)(x̃0 − x0)︸ ︷︷ ︸

d0

OCP QP Interface in tmpc M. Katliar 18



More Fancy Operations: Initial Value Embedding

I Consider the initial value constraint

x0 = x̃0 ⇔ ∆x0 = x̃0 − x0 .

I Substituting it into the linearized shooting equality and the linearized general equalities
gives

∆x1 =
df

du
(x0, u0)︸ ︷︷ ︸
B0

∆u0 + f(x0, u0)− x1 +
df

dx
(x0, u0)(x̃0 − x0)︸ ︷︷ ︸

b0

g − g(x0, u0)− dg

dx
(x0, u0)(x̃0 − x0)︸ ︷︷ ︸

d0

≤ dg

du
(x0, u0)︸ ︷︷ ︸
D0

∆u0

≤ g − g(x0, u0)− dg

dx
(x0, u0)(x̃0 − x0)︸ ︷︷ ︸

d0

OCP QP Interface in tmpc M. Katliar 18



More Fancy Operations: Initial Value Embedding

procedure InitialValueEmbedding(x̃0, x0, x1, f, Jfx, Jfu, g, Jgx, Jgu, gl, gu)
Require: nx,0 = 0

B0 ← Jfu
b0 ← f − x1 + Jfx(x̃0 − x0)
D0 ← Jgu
d0 ← gl − g − Jgx(x̃0 − x0)
d0 ← gu − g − Jgx(x̃0 − x0)

end procedure

OCP QP Interface in tmpc M. Katliar 19



More Fancy Operations: Relative Bounds

I Consider the bound constraints [
x
k

u
k

]
≤
[
xk

uk

]
≤
[
xk

uk

]
which in the case of SQP transforms to[

x
k
− xk

u
k
− uk

]
︸ ︷︷ ︸xk

uk



≤
[
∆xk

∆uk

]
≤
[
xk − xk

uk − uk

]
︸ ︷︷ ︸xk

uk



I procedure RelativeBounds(x, u, xl, ul, xu, uu)
x← xl − x
u← ul − u
x← xu − x
u← uu − u

end procedure

OCP QP Interface in tmpc M. Katliar 20



More Fancy Operations: Relative Bounds

I Consider the bound constraints [
x
k

u
k

]
≤
[
xk

uk

]
≤
[
xk

uk

]
which in the case of SQP transforms to[

x
k
− xk

u
k
− uk

]
︸ ︷︷ ︸xk

uk



≤
[
∆xk

∆uk

]
≤
[
xk − xk

uk − uk

]
︸ ︷︷ ︸xk

uk


I procedure RelativeBounds(x, u, xl, ul, xu, uu)

x← xl − x
u← ul − u
x← xu − x
u← uu − u

end procedure

OCP QP Interface in tmpc M. Katliar 20



Code Example: Setting Up an OCP QP Stage

// Alias for the matrix math kernel
using K = BlazeKernel<double>;

// Construct the QpStage
QpStage<K> stage { QpSize {NX, NU, 0}, NX };

// Variables
extern K::StaticVector lx, ux; // absolute state bounds
extern K::StaticVector lu, uu; // absolute control bounds
K::StaticVector<NX> x, x_plus, f; // current state, next state, next calculated state
K::StaticVector<NU> u; // current input
K::StaticVector<NY> y; // residual (the cost function is y^T * y)
K::StaticMatrix<NX, NX> df_dx; // sensitivities
K::StaticMatrix<NX, NU> df_du;
K::StaticMatrix<NY, NX> dy_dx;
K::StaticMatrix<NY, NU> dy_du;

// Set x and u, calculate x_plus, y and the corresponding sensitivities:
//
// ...

// Set up the QP stage. Isn't it expressive?
stage.gaussNewtonCostApproximation(y, dy_dx, dy_du);
stage.linearizedShootingEquality(f, df_dx, df_du, x_plus);
stage.relativeBounds(x, u, lx, lu, ux, uu);

OCP QP Interface in tmpc M. Katliar 21



Solving an OCP QP: the Holy Trinity

I This is all nice, but what about solving a
QP?

I Well, you need two more entities: a
solution and a solver.

I External solvers (e.g. qpOASES, HPMPC,
HPIPM) have different requirements on
how the problem and solution data should
be organized.

I The dimensions of a problem, a solution
and a solver must match.

I This creates tight coupling between a
problem, a solution and a solver, making a
new entity called QP Workspace.

Workspace

+solve()

Problem

+begin()
+end()

Solution

+begin()
+end()

Solver

+problem +solution

+solver

Manages all
necessary
resources for
Problem,
Solution and
Solver.

OCP QP Interface in tmpc M. Katliar 22



Solving an OCP QP: the Holy Trinity

I This is all nice, but what about solving a
QP?

I Well, you need two more entities: a
solution and a solver.

I External solvers (e.g. qpOASES, HPMPC,
HPIPM) have different requirements on
how the problem and solution data should
be organized.

I The dimensions of a problem, a solution
and a solver must match.

I This creates tight coupling between a
problem, a solution and a solver, making a
new entity called QP Workspace.

Workspace

+solve()

Problem

+begin()
+end()

Solution

+begin()
+end()

Solver

+problem +solution

+solver

Manages all
necessary
resources for
Problem,
Solution and
Solver.

OCP QP Interface in tmpc M. Katliar 22



Solving an OCP QP: the Holy Trinity

I This is all nice, but what about solving a
QP?

I Well, you need two more entities: a
solution and a solver.

I External solvers (e.g. qpOASES, HPMPC,
HPIPM) have different requirements on
how the problem and solution data should
be organized.

I The dimensions of a problem, a solution
and a solver must match.

I This creates tight coupling between a
problem, a solution and a solver, making a
new entity called QP Workspace.

Workspace

+solve()

Problem

+begin()
+end()

Solution

+begin()
+end()

Solver

+problem +solution

+solver

Manages all
necessary
resources for
Problem,
Solution and
Solver.

OCP QP Interface in tmpc M. Katliar 22



Solving an OCP QP: the Holy Trinity

I This is all nice, but what about solving a
QP?

I Well, you need two more entities: a
solution and a solver.

I External solvers (e.g. qpOASES, HPMPC,
HPIPM) have different requirements on
how the problem and solution data should
be organized.

I The dimensions of a problem, a solution
and a solver must match.

I This creates tight coupling between a
problem, a solution and a solver, making a
new entity called QP Workspace.

Workspace

+solve()

Problem

+begin()
+end()

Solution

+begin()
+end()

Solver

+problem +solution

+solver

Manages all
necessary
resources for
Problem,
Solution and
Solver.

OCP QP Interface in tmpc M. Katliar 22



Solving an OCP QP: the Holy Trinity

I This is all nice, but what about solving a
QP?

I Well, you need two more entities: a
solution and a solver.

I External solvers (e.g. qpOASES, HPMPC,
HPIPM) have different requirements on
how the problem and solution data should
be organized.

I The dimensions of a problem, a solution
and a solver must match.

I This creates tight coupling between a
problem, a solution and a solver, making a
new entity called QP Workspace.

Workspace

+solve()

Problem

+begin()
+end()

Solution

+begin()
+end()

Solver

+problem +solution

+solver

Manages all
necessary
resources for
Problem,
Solution and
Solver.

OCP QP Interface in tmpc M. Katliar 22



Solving an OCP QP: the Holy Trinity

I This is all nice, but what about solving a
QP?

I Well, you need two more entities: a
solution and a solver.

I External solvers (e.g. qpOASES, HPMPC,
HPIPM) have different requirements on
how the problem and solution data should
be organized.

I The dimensions of a problem, a solution
and a solver must match.

I This creates tight coupling between a
problem, a solution and a solver, making a
new entity called QP Workspace.

Workspace

+solve()

Problem

+begin()
+end()

Solution

+begin()
+end()

Solver

+problem +solution

+solver

Manages all
necessary
resources for
Problem,
Solution and
Solver.

OCP QP Interface in tmpc M. Katliar 22



Solving an OCP QP: the Holy Trinity

I This is all nice, but what about solving a
QP?

I Well, you need two more entities: a
solution and a solver.

I External solvers (e.g. qpOASES, HPMPC,
HPIPM) have different requirements on
how the problem and solution data should
be organized.

I The dimensions of a problem, a solution
and a solver must match.

I This creates tight coupling between a
problem, a solution and a solver, making a
new entity called QP Workspace.

Workspace

+solve()

Problem

+begin()
+end()

Solution

+begin()
+end()

Solver

+problem +solution

+solver

Manages all
necessary
resources for
Problem,
Solution and
Solver.

OCP QP Interface in tmpc M. Katliar 22



Code Example: Solving a QP

// A type to use for real numbers
using Real = double;
// Alias for Workspace. Want qpOASES? Just change to QpOasesWorkspace!
using Workspace = HpmpcWorkspace<Real>;

// Create a QP Workspace for 2 stages with specified dimensions.
// All the data structures for the solver will be created here.
Workspace workspace {QpSize {3, 0, 0}, QpSize {0, 0, 0}};
// Reference to stage 0. It is not a QpStage object, although it has the same interface.
// Modifiers will write directly to solver data structures - no memory overhead!
auto& stage0 = workspace.problem()[0];

// Set cost
stage0.gaussNewtonCostApproximation(

DynamicVector<Real> {1., 2., 42.},
IdentityMatrix<Real> {3u},
DynamicMatrix<Real> {3u, 0u}

);
// Set bounds
stage0.bounds(-infinity<Real>(), -infinity<Real>(), infinity<Real>(), infinity<Real>());

// Solve the problem
workspace.solve();
// Output the solution
std::cout << workspace.solution()[0].x() << std::endl;

What will it print
out?

-1

-2

-42

OCP QP Interface in tmpc M. Katliar 23



Code Example: Solving a QP

// A type to use for real numbers
using Real = double;
// Alias for Workspace. Want qpOASES? Just change to QpOasesWorkspace!
using Workspace = HpmpcWorkspace<Real>;

// Create a QP Workspace for 2 stages with specified dimensions.
// All the data structures for the solver will be created here.
Workspace workspace {QpSize {3, 0, 0}, QpSize {0, 0, 0}};
// Reference to stage 0. It is not a QpStage object, although it has the same interface.
// Modifiers will write directly to solver data structures - no memory overhead!
auto& stage0 = workspace.problem()[0];

// Set cost
stage0.gaussNewtonCostApproximation(

DynamicVector<Real> {1., 2., 42.},
IdentityMatrix<Real> {3u},
DynamicMatrix<Real> {3u, 0u}

);
// Set bounds
stage0.bounds(-infinity<Real>(), -infinity<Real>(), infinity<Real>(), infinity<Real>());

// Solve the problem
workspace.solve();
// Output the solution
std::cout << workspace.solution()[0].x() << std::endl;

What will it print
out?

-1

-2

-42

OCP QP Interface in tmpc M. Katliar 23



Code Example: Solving a QP

// A type to use for real numbers
using Real = double;
// Alias for Workspace. Want qpOASES? Just change to QpOasesWorkspace!
using Workspace = HpmpcWorkspace<Real>;

// Create a QP Workspace for 2 stages with specified dimensions.
// All the data structures for the solver will be created here.
Workspace workspace {QpSize {3, 0, 0}, QpSize {0, 0, 0}};
// Reference to stage 0. It is not a QpStage object, although it has the same interface.
// Modifiers will write directly to solver data structures - no memory overhead!
auto& stage0 = workspace.problem()[0];

// Set cost
stage0.gaussNewtonCostApproximation(

DynamicVector<Real> {1., 2., 42.},
IdentityMatrix<Real> {3u},
DynamicMatrix<Real> {3u, 0u}

);
// Set bounds
stage0.bounds(-infinity<Real>(), -infinity<Real>(), infinity<Real>(), infinity<Real>());

// Solve the problem
workspace.solve();
// Output the solution
std::cout << workspace.solution()[0].x() << std::endl;

What will it print
out?

-1

-2

-42

OCP QP Interface in tmpc M. Katliar 23



Summary

I OCP QP is represented as an ordered collection of objects called stages.

I OCP QPs can be represented as C ++ iterator ranges.
I Algorithms from the C ++ standard library (e.g. std::copy, std::find_if,

std::transform) can be applied to OCP QPs.
I Can this approach be extended to scenario trees?

The same applies to solution.

I Problem formulation is separated from its solving. A problem can be

I . . . set up in one place and solved in other place;
I . . . saved, loaded or copied.

I The interfaces of problem, solver and solution are separated from their implementation.

I Allows different solvers to be used interchangeably.

I The matrix math interface is separated from its implementation.

I One can switch between different implementations of matrix math (single precision, double
precision, Eigen3, Blaze, any custom).

I Tight coupliing between problem, solver and solution is resolved by introducing
workspaces.

OCP QP Interface in tmpc M. Katliar 24



Summary

I OCP QP is represented as an ordered collection of objects called stages.
I OCP QPs can be represented as C ++ iterator ranges.

I Algorithms from the C ++ standard library (e.g. std::copy, std::find_if,
std::transform) can be applied to OCP QPs.

I Can this approach be extended to scenario trees?

The same applies to solution.

I Problem formulation is separated from its solving. A problem can be

I . . . set up in one place and solved in other place;
I . . . saved, loaded or copied.

I The interfaces of problem, solver and solution are separated from their implementation.

I Allows different solvers to be used interchangeably.

I The matrix math interface is separated from its implementation.

I One can switch between different implementations of matrix math (single precision, double
precision, Eigen3, Blaze, any custom).

I Tight coupliing between problem, solver and solution is resolved by introducing
workspaces.

OCP QP Interface in tmpc M. Katliar 24



Summary

I OCP QP is represented as an ordered collection of objects called stages.
I OCP QPs can be represented as C ++ iterator ranges.
I Algorithms from the C ++ standard library (e.g. std::copy, std::find_if,

std::transform) can be applied to OCP QPs.

I Can this approach be extended to scenario trees?

The same applies to solution.

I Problem formulation is separated from its solving. A problem can be

I . . . set up in one place and solved in other place;
I . . . saved, loaded or copied.

I The interfaces of problem, solver and solution are separated from their implementation.

I Allows different solvers to be used interchangeably.

I The matrix math interface is separated from its implementation.

I One can switch between different implementations of matrix math (single precision, double
precision, Eigen3, Blaze, any custom).

I Tight coupliing between problem, solver and solution is resolved by introducing
workspaces.

OCP QP Interface in tmpc M. Katliar 24



Summary

I OCP QP is represented as an ordered collection of objects called stages.
I OCP QPs can be represented as C ++ iterator ranges.
I Algorithms from the C ++ standard library (e.g. std::copy, std::find_if,

std::transform) can be applied to OCP QPs.
I Can this approach be extended to scenario trees?

The same applies to solution.

I Problem formulation is separated from its solving. A problem can be

I . . . set up in one place and solved in other place;
I . . . saved, loaded or copied.

I The interfaces of problem, solver and solution are separated from their implementation.

I Allows different solvers to be used interchangeably.

I The matrix math interface is separated from its implementation.

I One can switch between different implementations of matrix math (single precision, double
precision, Eigen3, Blaze, any custom).

I Tight coupliing between problem, solver and solution is resolved by introducing
workspaces.

OCP QP Interface in tmpc M. Katliar 24



Summary

I OCP QP is represented as an ordered collection of objects called stages.
I OCP QPs can be represented as C ++ iterator ranges.
I Algorithms from the C ++ standard library (e.g. std::copy, std::find_if,

std::transform) can be applied to OCP QPs.
I Can this approach be extended to scenario trees?

The same applies to solution.

I Problem formulation is separated from its solving. A problem can be

I . . . set up in one place and solved in other place;
I . . . saved, loaded or copied.

I The interfaces of problem, solver and solution are separated from their implementation.

I Allows different solvers to be used interchangeably.

I The matrix math interface is separated from its implementation.

I One can switch between different implementations of matrix math (single precision, double
precision, Eigen3, Blaze, any custom).

I Tight coupliing between problem, solver and solution is resolved by introducing
workspaces.

OCP QP Interface in tmpc M. Katliar 24



Summary

I OCP QP is represented as an ordered collection of objects called stages.
I OCP QPs can be represented as C ++ iterator ranges.
I Algorithms from the C ++ standard library (e.g. std::copy, std::find_if,

std::transform) can be applied to OCP QPs.
I Can this approach be extended to scenario trees?

The same applies to solution.

I Problem formulation is separated from its solving. A problem can be

I . . . set up in one place and solved in other place;
I . . . saved, loaded or copied.

I The interfaces of problem, solver and solution are separated from their implementation.

I Allows different solvers to be used interchangeably.

I The matrix math interface is separated from its implementation.

I One can switch between different implementations of matrix math (single precision, double
precision, Eigen3, Blaze, any custom).

I Tight coupliing between problem, solver and solution is resolved by introducing
workspaces.

OCP QP Interface in tmpc M. Katliar 24



Summary

I OCP QP is represented as an ordered collection of objects called stages.
I OCP QPs can be represented as C ++ iterator ranges.
I Algorithms from the C ++ standard library (e.g. std::copy, std::find_if,

std::transform) can be applied to OCP QPs.
I Can this approach be extended to scenario trees?

The same applies to solution.

I Problem formulation is separated from its solving. A problem can be
I . . . set up in one place and solved in other place;

I . . . saved, loaded or copied.

I The interfaces of problem, solver and solution are separated from their implementation.

I Allows different solvers to be used interchangeably.

I The matrix math interface is separated from its implementation.

I One can switch between different implementations of matrix math (single precision, double
precision, Eigen3, Blaze, any custom).

I Tight coupliing between problem, solver and solution is resolved by introducing
workspaces.

OCP QP Interface in tmpc M. Katliar 24



Summary

I OCP QP is represented as an ordered collection of objects called stages.
I OCP QPs can be represented as C ++ iterator ranges.
I Algorithms from the C ++ standard library (e.g. std::copy, std::find_if,

std::transform) can be applied to OCP QPs.
I Can this approach be extended to scenario trees?

The same applies to solution.

I Problem formulation is separated from its solving. A problem can be
I . . . set up in one place and solved in other place;
I . . . saved, loaded or copied.

I The interfaces of problem, solver and solution are separated from their implementation.

I Allows different solvers to be used interchangeably.

I The matrix math interface is separated from its implementation.

I One can switch between different implementations of matrix math (single precision, double
precision, Eigen3, Blaze, any custom).

I Tight coupliing between problem, solver and solution is resolved by introducing
workspaces.

OCP QP Interface in tmpc M. Katliar 24



Summary

I OCP QP is represented as an ordered collection of objects called stages.
I OCP QPs can be represented as C ++ iterator ranges.
I Algorithms from the C ++ standard library (e.g. std::copy, std::find_if,

std::transform) can be applied to OCP QPs.
I Can this approach be extended to scenario trees?

The same applies to solution.

I Problem formulation is separated from its solving. A problem can be
I . . . set up in one place and solved in other place;
I . . . saved, loaded or copied.

I The interfaces of problem, solver and solution are separated from their implementation.

I Allows different solvers to be used interchangeably.

I The matrix math interface is separated from its implementation.

I One can switch between different implementations of matrix math (single precision, double
precision, Eigen3, Blaze, any custom).

I Tight coupliing between problem, solver and solution is resolved by introducing
workspaces.

OCP QP Interface in tmpc M. Katliar 24



Summary

I OCP QP is represented as an ordered collection of objects called stages.
I OCP QPs can be represented as C ++ iterator ranges.
I Algorithms from the C ++ standard library (e.g. std::copy, std::find_if,

std::transform) can be applied to OCP QPs.
I Can this approach be extended to scenario trees?

The same applies to solution.

I Problem formulation is separated from its solving. A problem can be
I . . . set up in one place and solved in other place;
I . . . saved, loaded or copied.

I The interfaces of problem, solver and solution are separated from their implementation.
I Allows different solvers to be used interchangeably.

I The matrix math interface is separated from its implementation.

I One can switch between different implementations of matrix math (single precision, double
precision, Eigen3, Blaze, any custom).

I Tight coupliing between problem, solver and solution is resolved by introducing
workspaces.

OCP QP Interface in tmpc M. Katliar 24



Summary

I OCP QP is represented as an ordered collection of objects called stages.
I OCP QPs can be represented as C ++ iterator ranges.
I Algorithms from the C ++ standard library (e.g. std::copy, std::find_if,

std::transform) can be applied to OCP QPs.
I Can this approach be extended to scenario trees?

The same applies to solution.

I Problem formulation is separated from its solving. A problem can be
I . . . set up in one place and solved in other place;
I . . . saved, loaded or copied.

I The interfaces of problem, solver and solution are separated from their implementation.
I Allows different solvers to be used interchangeably.

I The matrix math interface is separated from its implementation.

I One can switch between different implementations of matrix math (single precision, double
precision, Eigen3, Blaze, any custom).

I Tight coupliing between problem, solver and solution is resolved by introducing
workspaces.

OCP QP Interface in tmpc M. Katliar 24



Summary

I OCP QP is represented as an ordered collection of objects called stages.
I OCP QPs can be represented as C ++ iterator ranges.
I Algorithms from the C ++ standard library (e.g. std::copy, std::find_if,

std::transform) can be applied to OCP QPs.
I Can this approach be extended to scenario trees?

The same applies to solution.

I Problem formulation is separated from its solving. A problem can be
I . . . set up in one place and solved in other place;
I . . . saved, loaded or copied.

I The interfaces of problem, solver and solution are separated from their implementation.
I Allows different solvers to be used interchangeably.

I The matrix math interface is separated from its implementation.
I One can switch between different implementations of matrix math (single precision, double

precision, Eigen3, Blaze, any custom).

I Tight coupliing between problem, solver and solution is resolved by introducing
workspaces.

OCP QP Interface in tmpc M. Katliar 24



Summary

I OCP QP is represented as an ordered collection of objects called stages.
I OCP QPs can be represented as C ++ iterator ranges.
I Algorithms from the C ++ standard library (e.g. std::copy, std::find_if,

std::transform) can be applied to OCP QPs.
I Can this approach be extended to scenario trees?

The same applies to solution.

I Problem formulation is separated from its solving. A problem can be
I . . . set up in one place and solved in other place;
I . . . saved, loaded or copied.

I The interfaces of problem, solver and solution are separated from their implementation.
I Allows different solvers to be used interchangeably.

I The matrix math interface is separated from its implementation.
I One can switch between different implementations of matrix math (single precision, double

precision, Eigen3, Blaze, any custom).

I Tight coupliing between problem, solver and solution is resolved by introducing
workspaces.

OCP QP Interface in tmpc M. Katliar 24



Final Slide

Questions? Comments?

OCP QP Interface in tmpc M. Katliar 25


	Introduction to tmpc
	Obect-Oriented Interface to OCP QPs

