Modeling and System Identification – Microexam 1

Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg November 29, 2019, 10:00-12:00, Freiburg

_								
	Surname:	Name:	Matriculation number:					
	Study:	Programm: Bachelor	Master					
Please fill in your name above and tick exactly ONE box for the right answer of each question below. You can get a maximum of 10 points on this microexam.								
1.	. What is the probability density function (PDF) $p_X(x)$ for a normally distributed random variable X with mean -3 and standard deviation 3 ? The answer is $p_X(x) = \frac{1}{\sqrt{2\pi 9}} \dots$							
	(a) $ e^{-\frac{(x+3)^2}{6}} $	(b) $\mathbf{x} e^{-\frac{(x+3)^2}{18}}$	(c)	$(d) \ \square \ e^{-\frac{(x-3)^2}{9}}$				
2.	What does the term $\frac{1}{\sqrt{2\pi 9}}$ in p_X	(x) ensure? (The term dx was m	nissing on letter (a). So (a) and (c	1) are correct for microexam 1.				
	(a) $\sum_{-\infty}^{\infty} p(x) dx = 1$	(b) $\prod p(x) > 0$	(c) $\prod p(x) \ge 0$	(d) Nothing				
3.	Which of the following functions is NOT convex on $x \in [-1, 1]$							
	(a)	(b) $\square \exp(-x)$	(c) $\mathbf{x} \sin^{-1}(x)$	$(d) \Box - \cos(x)$				
4.	Which of the following statements does NOT hold for all PDFs $p(x)$ of a scalar random variable?							
	(a)	(b) $ p(x) \ge 0 $	(c) $x p(x) < 1$					
5.	What is the PDF of a random variable Y with uniform distribution on the interval $[5, 7]$? For $z \in [5, 7]$ it has the value:							
	(a) $\square p_z(Y) = \frac{1}{5}$	(b) $ p_z(Y) = \frac{1}{7} $	(c) $\prod p_Y(z) = \frac{1}{\sqrt{2}}$	$ (d) \boxed{\mathbf{X}} p_Y(z) = \frac{1}{2} $				
6.	Regard a random variable $X \in \mathbb{R}^n$ with mean $d \in \mathbb{R}^n$ and covariance matrix $\Sigma \in \mathbb{R}^{n \times n}$. For a fixed $b \in \mathbb{R}^m$ and $A \in \mathbb{R}^{m \times n}$ regard another random variable Y defined by $Y = b + AX$. What is the mean μ_Y of Y ? The answer is $\mu_Y = \dots$							
	(a) \square $b + AX$	(b) $\square AXX^{\top}A^{\top}$	(c) $\boxed{\mathbf{x}}$ $b + Ad$					
7.	Regard the random variable Y in the above Question, what is the covariance matrix of Y ?							
	(a) \Box $d^{\top} \Sigma d$	(b) \mathbf{x} $A\Sigma A^{\top}$	(c) $\square A^{\top} \Sigma^{-1} A$					
8.	Consider a multi-dimensional ra	Consider a multi-dimensional random variable $X \in \mathbb{R}^n$ with mean value μ . What is the covariance? $cov(X) = \dots$						
	(a) $\mathbb{E}\{(X-\mu)\}^2$		(b) $\square \mathbb{E}\{(X-\mu)^2\}$					
	(c) \mathbb{X} $\mathbb{E}\{(X-\mu)(X-\mu)^{\top}\}$		(d) $\square \mathbb{E}\{(X-\mu)^{\top}(X-\mu)\}$					
9.	Consider a multi-dimensional random variable $X \in \mathbb{R}^d$. What are the dimensions of the covariance? $cov(X) \in$							
	(a) \square $\mathbb{R}^{1 \times d}$	(b) $\square \mathbb{R}^{d \times 2d}$	(c) \mathbb{X} $\mathbb{R}^{d \times d}$	(d) \square $\mathbb{R}^{d \times 1}$				
10.	Regard a zero mean random variable $X \in \mathbb{R}^n$ with covariance matrix $\Sigma \in \mathbb{R}^{n \times n}$. Given a vector $c \in \mathbb{R}^n$, what is the mean of $Z = c^\top X X^\top c$?							
	(a) \square Σ^{\top}	(b) <u>Σ</u> c	(c) \mathbf{x} $c^{T} \Sigma c$	$(d) \ \square \ c^{\top} c \Sigma^{-1}$				

11.	What is the minimizer x^* of the convex function $f: \mathbb{R}_{++} \to \mathbb{R}, f(x) = -\log(x) + 5x$?					
	$(a) \square x^* = -5$	(b) $x = 1/5$	(c)	$(d) x^* = 5$		
12.	What is the minimizer x^* of $f: \mathbb{R}^n \to \mathbb{R}$, $f(x) = \frac{1}{2} Ax - b _2^2$ if $\operatorname{rank}(A) = n$? The solution is $x^* = \dots$					
	(a) $\square A + b$		$(b) \boxed{\mathbf{x}} (A^{\top}A)^{-1}A^{\top}b$			
	(c)		$(d) \ \square \ (A^{\top}A)^{-1}Ab$			
13.	For a matrix $\Phi \in \mathbb{R}^{N \times d}$ with rank d (and $N \geq d$), what is its pse		eudo-inverse Φ^+ ?			
	$(a) \square (\Phi \Phi^{\top})^{-1} \Phi^{\top}$	(b)	(c) $\Phi(\Phi^{\top}\Phi)^{-1}$	$(\mathbf{d}) \ \mathbf{x} \ (\Phi^{\top} \Phi)^{-1} \Phi^{\top}$		
14.	What is the gradient of $f: \mathbb{R}^n$	$\to \mathbb{R}, f(x) = \frac{1}{2} \ -b + Dx \ _W^2$	(with D of rank n and W positive	n and W positive definite)?		
	(a) Wb		(b) $\square b + Wb$			
	$ (c) \mathbf{x} (D^{\top}WD)x - D^{\top}Wb $		$(d) \ \square \ (DWD^\top + D)^{-1}$			
15.	Given a sequence of numbers $y(1), \ldots, y(N)$, what is the minimizer θ^* of the function $f(\theta) = \sum_{k=1}^{N} (y(k) - 6\theta)^2$? The answer is $\theta^* = \ldots$					
	(a)	$\begin{array}{c c} \text{(b)} & \underline{\mathbf{X}} & \frac{\sum_{k=1}^{N} y(k)}{6N} \end{array}$	(c)	(d)		
	Given a sequence of i.i.d. scalar random variables $X(1), \ldots, X(N)$, each with mean μ and variance σ^2 , what is the expected value of Y defined by $Y = \sum_{k=1}^{N} X(k)$?					
	(a) \mathbf{x} $N\mu$	(b) $\prod \frac{\mu}{N}$	(c) $\frac{\mu}{\sigma^2}$	(d) $\frac{\mu}{\sqrt{\sigma^2}}$		
17.	Regard the random variable Y in the above Question, what is the variance of the variable Y ? The answer is $var(Y) = \dots$					
	(a) <i>N</i> σ	(b)	(c) $\mathbf{x} N\sigma^2$	(d) $\prod \frac{\sigma^2}{N}$		
18.	Consider the model $y(k) = \theta_1 + \frac{\theta_2}{3}x(k)^2 + \frac{\theta_3}{4}x(k)^3 + \epsilon(k)$ and the vector of unknown parameters $\theta = (\theta_1, \theta_2, \theta_3)^{\top}$. The additive noise $\epsilon(k)$ is assumed to have zero mean and to be i.i.d. For a given sequence of N scalar input and output measurement $x(1), \dots, x(N)$ and $y(1), \dots, y(N)$, we want to compute the linear least squares (LLS) estimate $\hat{\theta}_N$ by minimizing the function $f(\theta) = \ y_N - \Phi_N \theta\ _2^2$. If $y_N = [y(1), \dots, y(N)]^{\top}$, how do we need to choose the matrix $\Phi_N \in \mathbb{R}^{N \times 3}$? $\Phi_N = \dots$					
	$\begin{bmatrix} 2 & 3x(1)^2 & 4x(1)^3 \\ \vdots & \vdots & \vdots \\ 1 & 3x(N)^2 & 4x(N)^3 \end{bmatrix}$	$\begin{bmatrix} 1 & \frac{x(1)^2}{3} & \frac{x(1)^3}{4} \\ \vdots & \vdots & \vdots \\ 1 & \frac{x(N)^2}{3} & \frac{x(N)^3}{4} \end{bmatrix}$	$\begin{bmatrix} \frac{x(1)^2}{3} & 2 & \frac{x(1)^3}{4} \\ \vdots & \vdots & \vdots \\ \frac{x(N)^2}{3} & 2 & \frac{x(N)^3}{4} \end{bmatrix}$	$\begin{bmatrix} 2 & x(1)^2 & x(1)^3 \\ \vdots & \vdots & \vdots \\ 2 & x(N)^2 & x(N)^3 \end{bmatrix}$		
19.		Which of the following formulas computes the covariance for a least squares estimator and a single experiment with i.i.d. noise components $\epsilon_N = [\epsilon(1), \ldots, \epsilon(N)]^T$? $\hat{\Sigma}_{\hat{\theta}} = \ldots$				
	$(\mathbf{a}) \frac{\ y_{\mathbf{N}} - \Phi_{\mathbf{N}} \hat{\boldsymbol{\theta}}\ _{2}^{2}}{N - d} (\Phi_{N}^{\top} \Phi_{N})^{-1}$		(b)			
	(c) $\frac{\ y_N - \Phi_N \hat{\theta}\ _2}{N - d} (\Phi_N^\top + \Phi_N)$					
20.	Given a set of measurements $y(1), \ldots, y(N)$ following the model $y(k) = \phi(k)^{\top}\theta + \epsilon(k)$, where $\phi(k)$ are the regression vector with $\Phi_N = [\phi(1)^{\top} \ldots \phi(N)^{\top}]^{\top}$, θ the unknown parameters and $\epsilon(k) \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$ the i.i.d. noise contribution for $k = 1, \ldots, N$					
	we can compute the LLS estimator of the parameters θ as $\hat{\theta}_{LS}$. Defining the covariance of $\hat{\theta}_{LS}$ as $\Sigma_{\hat{\theta}}$, which of the following is NOT true?					
	(a) \square $\hat{ heta}_{\mathrm{LS}}$ is a random variable		(b) \square $\hat{\theta}_{LS} = \Phi_N^+ y_N$			
	(c) $\hat{\mathbf{x}}$ $\hat{\theta}_{\mathrm{LS}} \sim \mathcal{N}(0, \Sigma_{\hat{\theta}})$		(d)			