Modeling and System Identification – Microexam 1

Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg December 6, 2019, 10:00-12:00, Freiburg

_			·					
	Surname:	Name:	Matriculation number:					
	Study:	Programm: Bachelor	Master					
Please fill in your name above and tick exactly ONE box for the right answer of each question below. You can get a maximum of 10 points on this microexam.								
1.	What is the probability density function (PDF) $p_X(x)$ for a normally distributed random variable X with mean -3 and standard deviation 3 ? The answer is $p_X(x) = \frac{1}{\sqrt{2\pi 9}} \dots$							
	$(a) \square e^{-\frac{(x+3)^2}{6}}$	(b) $ e^{-\frac{(x+3)^2}{18}} $	(c)	(d) $\square e^{-\frac{(x-3)^2}{9}}$				
2.	What does the term $\frac{1}{\sqrt{2\pi 9}}$ in p_X	(x) ensure?						
	(a) $\prod_{-\infty}^{\infty} p(x) dx = 1$	(b)	(c)	(d) Nothing				
3.	Which of the following functions is NOT convex on $x \in [-1, 1]$							
	(a)	(b) $\square \exp(-x)$	(c) $\square \sin^{-1}(x)$	(d) \Box $-\cos(x)$				
4.	Which of the following statements does NOT hold for all PDFs $p(x)$ of a scalar random variable?							
	(a) $\prod_{-\infty}^{\infty} p(x) dx = 1$	(b)	(c) $\prod p(x) < 1$					
5.	What is the PDF of a random variable Y with uniform distribution on the interval $[5, 7]$? For $z \in [5, 7]$ it has the value:							
	(a) $\square p_z(Y) = \frac{1}{5}$	(b) $\prod p_z(Y) = \frac{1}{7}$	(c) $\prod p_Y(z) = \frac{1}{\sqrt{2}}$	(d) $\square p_Y(z) = \frac{1}{2}$				
6.	Regard a random variable $X \in \mathbb{R}^n$ with mean $d \in \mathbb{R}^n$ and covariance matrix $\Sigma \in \mathbb{R}^{n \times n}$. For a fixed $b \in \mathbb{R}^m$ and $A \in \mathbb{R}^{m \times n}$, regard another random variable Y defined by $Y = b + AX$. What is the mean μ_Y of Y ? The answer is $\mu_Y = \dots$							
	(a) \square $b + AX$	(b) $\square AXX^{\top}A^{\top}$	(c) \Box $b + Ad$					
7.	Regard the random variable Y in the above Question, what is the covariance matrix of Y ?							
	(a) \Box $d^{\top} \Sigma d$	(b) $\square A \Sigma A^{\top}$	(c) $\square A^{\top} \Sigma^{-1} A$					
8.	Consider a multi-dimensional random variable $X \in \mathbb{R}^n$ with mean value μ . What is the covariance? $cov(X) = \dots$							
	(a) $\mathbb{E}\{(X-\mu)\}^2$		(b) $\square \mathbb{E}\{(X-\mu)^2\}$					
	(c) $\square \mathbb{E}\{(X-\mu)(X-\mu)^{\top}\}$		(d) $\square \mathbb{E}\{(X-\mu)^{\top}(X-\mu)\}$					
9.	Consider a multi-dimensional random variable $X \in \mathbb{R}^d$. What are the dimensions of the covariance? $cov(X) \in$							
	(a) \square $\mathbb{R}^{1 \times d}$	(b) $\square \mathbb{R}^{d \times 2d}$	(c) \square $\mathbb{R}^{d \times d}$	(d) \square $\mathbb{R}^{d \times 1}$				
10.	. Regard a zero mean random variable $X \in \mathbb{R}^n$ with covariance matrix $\Sigma \in \mathbb{R}^{n \times n}$. Given a vector $c \in \mathbb{R}^n$, what is the mean of $Z = c^\top X X^\top c$?							
	$(a) [] \Sigma^\top$	(b) <u>Σ</u> c	(c) $\Box c^{\top} \Sigma c$	(d) $\Box c^{\top}c\Sigma^{-1}$				

11.	What is the minimizer x^* of the convex function $f: \mathbb{R}_{++} \to \mathbb{R}$, $f(x) = -\log(x) + 5x$?					
	$(a) \square x^* = -5$	(b)	(c)	(d)		
12.	What is the minimizer x^* of $f: \mathbb{R}^n \to \mathbb{R}$, $f(x) = \frac{1}{2} Ax - b _2^2$ if $\operatorname{rank}(A) = n$? The solution is $x^* = \dots$					
	(a) $\square A + b$	(a) $\square A + b$		$(b) \boxed{ (A^{\top}A)^{-1}A^{\top}b}$		
	(c)					
13.	For a matrix $\Phi \in \mathbb{R}^{N \times d}$ with ran	nk d (and $N \ge d$), what is its pse	eudo-inverse Φ^+ ?			
	(a)	(b)	(c) $\square \Phi(\Phi^{\top}\Phi)^{-1}$	$(d) \ \square \ (\Phi^{\top} \Phi)^{-1} \Phi^{\top}$		
14.	What is the gradient of $f: \mathbb{R}^n$	$\rightarrow \mathbb{R}, \boxed{f(x) = \frac{1}{2} \ -b + Dx\ _W^2}$	with D of rank n and W positive definite)?			
	(a) Wb		(b) \[b + Wb			
	(c) $\square (D^{\top}WD)x - D^{\top}Wb$		(d) $\square (DWD^{\top} + D)^{-1}$			
15.	Given a sequence of numbers $y(1), \ldots, y(N)$, what is the minimizer θ^* of the function $f(\theta) = \sum_{k=1}^{N} (y(k) - 6\theta)^2$? The answer is $\theta^* = \ldots$					
	(a)	(b)	(c) $\prod_{k=1}^{\infty} \frac{1}{3N} \sum_{k=1}^{N} y(k)^2$	(d)		
16.	Given a sequence of i.i.d. scalar random variables $X(1),\ldots,X(N)$, each with mean μ and variance σ^2 , what is the expected value of Y defined by $Y = \sum_{k=1}^{N} X(k)$?					
	(a) _ Nμ	(b) $\frac{\mu}{N}$	(c) $\prod \frac{\mu}{\sigma^2}$	(d) $\frac{\mu}{\sqrt{\sigma^2}}$		
17.	Regard the random variable Y in the above Question, what is the variance of the variable Y ? The answer is $var(Y) = \dots$					
	(a) <i>N</i> σ	(b)	(c) $\square N\sigma^2$	(d) $\square \frac{\sigma^2}{N}$		
18.	Consider the model $y(k) = \theta_1 + \frac{\theta_2}{3}x(k)^2 + \frac{\theta_3}{4}x(k)^3 + \epsilon(k)$ and the vector of unknown parameters $\theta = (\theta_1, \theta_2, \theta_3)^{\top}$. The additive noise $\epsilon(k)$ is assumed to have zero mean and to be i.i.d. For a given sequence of N scalar input and output measurements $\theta = (N_1, \theta_2, \theta_3)^{\top}$.					
	$x(1),\ldots,x(N)$ and $y(1),\ldots,y(N)$, we want to compute the linear least squares (LLS) estimate $\hat{\theta}_N$ by minimizing the function $f(\theta)=\ y_N-\Phi_N\theta\ _2^2$. If $y_N=[y(1),\ldots,y(N)]^{\top}$, how do we need to choose the matrix $\Phi_N\in\mathbb{R}^{N\times 3}$? $\Phi_N=\ldots$					
	(a)	(b)	$\begin{bmatrix} \frac{x(1)^2}{3} & 2 & \frac{x(1)^3}{4} \\ \vdots & \vdots & \vdots \\ \frac{x(N)^2}{3} & 2 & \frac{x(N)^3}{4} \end{bmatrix}$	(d)		
19.	Which of the following formula components $\epsilon_N = [\epsilon(1), \ldots, \epsilon]$		least squares estimator and a sir	igle experiment with i.i.d. noise		
	(a) $ \frac{\ y_N - \Phi_N \hat{\theta}\ _2^2}{N - d} (\Phi_N^\top \Phi_N)^{-1} $		(b) $ [] \frac{\ y_N - \Phi_N \hat{\theta}\ _2}{N-d} (\Phi_N \Phi_N^\top)^- $	ı		
	$(c) \qquad \frac{\ y_N - \Phi_N \hat{\theta}\ _2}{N - d} (\Phi_N^\top + \Phi_N)$		(d) $\square \Phi_N^+ \sigma_{\epsilon_N}$			
20.	Given a set of measurements $y(1), \ldots, y(N)$ following the model $y(k) = \phi(k)^{\top}\theta + \epsilon(k)$, where $\phi(k)$ are the regression vectors with $\Phi_N = [\phi(1)^{\top} \ldots \phi(N)^{\top}]^{\top}$, θ the unknown parameters and $\epsilon(k) \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$ the i.i.d. noise contribution for $k = 1,, N$ we can compute the LLS estimator of the parameters θ as $\hat{\theta}_{LS}$. Defining the covariance of $\hat{\theta}_{LS}$ as $\Sigma_{\hat{\theta}}$, which of the following is					
	NOT true?					
	(a) \square $\hat{\theta}_{\mathrm{LS}}$ is a random variable		(b) $\ \ \ \ \ \ \ \ \ \ \ \ \ $			
	(c) $\hat{\theta}_{LS} \sim \mathcal{N}(0, \Sigma_{\hat{\theta}})$		(d) $\square \Sigma_{\hat{\theta}} = \sigma_{\epsilon}^2 (\Phi_N^+ \Phi_N^{+^{\top}})$			