
i
i

“exercise7” — 2019/12/10 — 14:24 — page 1 — #1 i
i

i
i

i
i

Exercises for Course on Modeling and System Identification (MSI)
Albert-Ludwigs-Universität Freiburg – Winter Term 2019-2020

Exercise 7: Recursive Least Squares
(to be returned on Dez 18th, 2019, 8:30 in HS 00 036 (Schick-Saal),

or before in building 102, 1st floor, ’Anbau’)

Prof. Dr. Moritz Diehl, Tobias Schöls, Naya Baslan, Jakob Harzer, Bryan Ramos

In this exercise you will implement a Recursive Least Squares (RLS) estimator and a forward simulation
of a differential drive robot with unicycle dynamics. We will apply the RLS algorithm to position data of
a 2-DOF movement in the X-Y plane, measured with a sampling time of 0.0159 s. The movement of the
robot depends on the angular velocities of the left and the right wheel ωL and ωR, as well as on their radii
RL and RR. Differing radii influence the behaviour of the robot.

v

x

y

β

The system can be described by a state space model with three internal states. The state vector x =
[x, y, β]> contains the position of the robot in the X − Y plane and the deviation β from its initial
orientation. The system can be controlled by the angular velocities of the wheels: u = [ωL, ωR]>. The
output of the system is the position of the robot: y = [x, y]>. The model follows as

ẋ =

 v · cos β

v · sin β
ωLRL−ωRRR

L

 y =

(
x
y

)
(1)

with L being the length of the axis between the two wheels and the velocity v being

v =
ωL ·RL + ωR ·RR

2
.

1. Recursive Least Squares applied to position data
In this task you will implement the Recursive Least Squares (RLS) algorithm in MATLAB and tune
the forgetting factors. The robot’s kinematic model introduced above is nonlinear. To obtain a linear-
in-the-parameters (LIP) model, we approximate the position data it by a fourth order polynomial.
You can assume that the noise on the X and Y measurements is independent. The experiment starts
at t = 0 s.

(a) MATLAB: Fit a 4-th order polynomial through the data using linear least-squares. Plot the data
and the fit for the X- and Y-coordinate.
Hint: You need one estimator for each coordinate.
PAPER: Does the fit seem reasonable? Why do you think that is? (1 point)

1



i
i

“exercise7” — 2019/12/10 — 14:24 — page 2 — #2 i
i

i
i

i
i

(b) MATLAB: Implement the RLS algorithm as described in the script (Check section 5.3.1) to
estimate 4-th order polynomials to fit the data. Do not use forgetting factors yet. Plot the result
against the data.
PAPER: Compare the LS estimator from (a) with the RLS estimator you obtain after processing
N measurements. Please give an explanation for your observation. (2 points)

(c) MATLAB: Add a forgetting factor α to your algorithm and try different values for α. Plot the
results on the same plot as the previous question.
PAPER: How does α influence the fit? What is a reasonable value for α? (1 point)

(d) PAPER: How can you compute the covariance Σp of the position, if you know the covariance
of the estimator Σθ̂?
Hint: For a random variable γ = Aθ, where A is a matrix, cov(γ) = Acov(θ)AT. (1 point)

(e) MATLAB: Compute the one-step-ahead prediction at each point (i.e. extrapolate your poly-
nomial fit to the next time step). We also provided code to plot the 1-σ confidence ellipsoid
around this point, and the data.
PAPER: Do the confidence ellipsoids grow bigger or smaller as you take more measurements?
Why do you think that is? (2 points)

2. Covariance approximation
Consider a nonlinear function f : Rn → R that maps a random vector X = (X1, . . . , Xn)> to a
scalar random variable Y , i.e.

Y = f(X) = f(X1, . . . , Xn).

We have E{X} = µx = (µ1, . . . , µn)> and cov(X) = Σx ∈ Rn×n.

(a) ON PAPER: Give an approximation of the expected value E{Y } and the covariance matrix
cov(Y ) of Y using a first order Taylor expansion of f around µx. (2 points)

(b) ON PAPER: Suppose X1, . . . , Xn are independent. Simplify your covariance approximation
from part (a). (1 point)

This sheet gives in total 10 points

2


