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Overview

What can you expect from this talk:

» First order optimization algorithms.
» Motivation from computer vision, but results are abstract/not application specific.
» Main focus is on certain non-smooth non-convex optimization problems.

» Non-smooth analysis is required for the details.
For intuition, smooth analysis is sufficient.

Overview:

» Motivation for inertial methods.
» Algorithm for a class of non-smooth non-convex optimization problems: iPiano.
» Application examples.

> Convergence analysis.
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Gradient descent dynamical system

v

Smooth optimization problem:

min £(x)

v

Consider the (time-continuous) gradient descent dynamical system
X(t) = —Vf(X(t)).

Solution is a curve X: [0, +00) — RN with time-derivative X(t).
> Objective values are non-increasing.

v
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Heavy-ball dynamical system

v

Heavy-ball dynamical system:
X(t) = —yX(t) = VF(X(1))

v

v

X(t) is the second derivative (~ acceleration). ~» models inertia / momentum.

» —~X is a viscous friction force (y > 0).

The system describes the motion of a ball on the graph of the objective function f.
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Inertial methods can speed up convergence

v

Polyak investigates multi-step methods in the paper:

[Some methods for speeding up the convergence of iteration methods. Polyak, 1964].

v

A k-step method constructs x( D) using the previous k iterations xR

v

Gradient descent method is a single-step method.

v

Inertial methods are multi-step methods.

v

Heavy-ball method is a 2-step method.

Evidence in convex optimization:
» Optimal method are usually multi-step methods.

» The Heavy-ball method is optimal for smooth strongly convex functions.
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Heavy-ball method

v

The (time-discrete) Heavy-ball method has the update rule
6D 1 ® _ ouf(x®) 4 B — 56D

\4

(x®))en: sequence of iterates.

v

a > 0: step size parameter.

v

B € [0,1): inertial parameter.

v

For 8 = 0, we recover the gradient descent method.

|
GD,HB

Some properties:

>GD
» It is not a classical descent method. 4 ) ( @
(D [ > XHB

» It avoids zick-zacking.

SP,HB x

» Similarity to conjugate gradient method.
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Non-smooth non-convex optimization problems

» Efficiently solving all Lipschitz continuous problems is hopeless [Nesterov, 2004].

» Can take several million years for small problems with only 10 unknowns.

[We should exploit the structure of optimization problems]

» Develop algorithms for special classes of structured non-convex problems:

min [ smooth, non-convex ] + [ non-smooth, non-convex, simple ]
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A generic optimization problem

» Non-convex optimization problem with a function 1: RY — R (R := RU {+00})

min h(x); () = f(x) + g(x).

xERN

> g9 RY 5 R proper, lower semi-continuous (Isc), simple, prox-bounded.

(%)
» f: RY — R is smooth with L-Lipschitz
continuous gradient on domg C RV, i.e. %)
I X
IVf()=Vf(y)| < Llx=y|, Vx,ycdomg. 1 |
X

> I is coercive (x| — +oo = h(x) — +00) and bounded from below
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Inertial proximal algorithm for nonconvex optimization

Algorithm. (iPiano, [O., Chen, Brox, Pock, 2014], [O., 2015])

» Optimization problem:
> f has L-Lipschitz continuous gradient
52]11@ fx) +g() > ¢ proper, Isc, prox-bounded

~N

/|

» Iterations (k > 0): Update (x ' := x” € domg)

D ¢ prox,, (x(k) — an(x(k)) + B(x(k) — x(k_l)))

> Parameter setting: See convergence analysis.
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Proximity operator

Proximity operator:

» For a proper, Isc, prox-bounded function g: RY - R and « > 0, define

- . 1 _2
proxag(x) = argireljlzzrs g(x) + 5|x — .

> prox,,: RN = R is a set-valued mapping.
> If g is convex, then prox,, is single-valued.
» If ¢ = ds is the indicator function of a set S, then
proxag(a_c) = Ps(x)
is the projection onto S.

> gissimple, if prox , can be efficiently evaluated for a global minimum.
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Relationsship to other methods

[x(k+1) € prox,, (x(k) — aVf(E®) + B(x® — x(k—l))) ]

» ¢ =0and 8 = 0: Gradient descent
» ¢ =6c and § = 0: Projected gradient descent [Goldstein '64], [Levitin, Polyak "66], ...

» 3 = 0: Forward-backward splitting [Lions, Mercier '79], [Tseng "91], [Daubechie et al.
'04], [Combettes, Wajs '05], [Raguet, Fadili, Peyré “13], [Chouzenoux, Pesquet, Repetti
"14], [Fukushima, Mine "81], ...

> ¢ = 0: Gradient descent with momentum or Heavy-ball method [Polyak "64],
[Zavriev, Kostyuk '93], [Alvarez '04], [Alvarez, Attouch '01], ...

» f =0and 8 = 0: Instance of the proximal point algorithm [Rockafellar '76], ...
» Note the difference to Nesterov’s method [Nesterov '83]

HOHD 0 _ o TF® 4 B (x® — xED))y g (0 — 50D

> Generalization to forward-backward splitting [Beck, Teboulle "09], [Nesterov 12], ...
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Diffusion based image compression

Diffusion based image compression:

Encoding:

» store image I’ only in some small number of pixel:

ci = 1if pixel i is stored and 0 otherwise
Decoding:
> use u; = I? foralliwith¢ =1

> use linear diffusion in unknown region (¢; = 0)
(solve Laplace equation Lu = 0)

= solve for 1 in
Clu—1") — (Id =C)Lu = 0

where C = diag(c), and Id the identity matrix

+ encoding

@decoding

|
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Diffusion based image compression

Diffusion based image compression:
Goal:

» Find a sparse vector c that yields the best
reconstruction.
Non-convex optimization problem:
» Math. program with equilibrium constraint
i PP+ A
omin Zl\u 17+ Allellx
s.t. C(u —I°) — (Id —=C)Lu = 0
where C = diag(c).

» Can be formulated as

mm HA e’ — IOHZ—F)\HCHl

ceR

where A = C+ (C —Id)L.

' |
\ |
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Results for Trui
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Results for Walter
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Results for Walter
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Compressive sensing application

Sparse and Low-rank Matrix Decomposition:

» Let A, X, Y be M x N matrices.

» Find a decomposition
AxX+Y.

» X should have low rank.
» Y should have few non-zero entries.

» Optimization problem:

. 1
min =
X,YERMXN 2

A = X — Y| + tk(X) + | Y]lo.
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Basic stability result for iPiano

Define Hs(x,y) := h(x) + §|x — y|>, where h(x) = f(x) + g(x) and 6 > 0.

» (Hs(x®, x* 1)),y is monotonically decreasing and thus converging:

Hs (x" x®) < Hs(x® x* D) — 5 x® — 412 for some v > 0.

12 T T

—h(z")
_H{)\” (IEH , I_n—l) |

10

0 50 100 150 200
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Discussion about step size parameters

[H(;(x<k+l>,x(k>) < H(;(X(k>,x(k7])> o ,\’|1(1\) o x(/\'—l)‘z J

> Step size restrictions come from v > 0.

\4

Actually, o and 8 can vary along the iterations.

v

Lipschitz constant of Vf can be estimated “locally” using backtracking.

v

Later, v and ¢ and the norm can vary along the iterations [O., 2016].

v

General case:

O<o¢<@ and BE[O,%).

» ¢ semi-convex with modulus m € R (m maximal such that g(x) — %|x|* is convex):

0<04<M and B€[0,1).
L—m
> g convex:
O<a<@ and B €[0,1).
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Basic convergence resutls for iPiano

Definition:
A point x* € dom/ is a critical point of /i: RN S R, if
0 € Oh(x™) (zero of the limiting subdifferential) .

In our case, it is equivalent to
—Vf(x") € 9g(x*).

Theorem:

» The sequence (h(x")))cn converges.

» There exists a converging subsequence (x)cr.

» Any limit point x* := lim x% is a critical point of / and 1(x) — h(x*) as j — oc.

]—oo
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Full convergence for iPiano

Theorem:

If Hs(x, y) has the Kurdyka-Lojasiewicz property at a cluster point (x*, x™), then

> (x(k))keN has finite length, i.e., Z |x(k) — x(k_])| < 00,
k=1
» x® 5 x*ask — oo,

> (x*,x") is a critical point of Hs, and x* is a critical point of /.

Kurdyka-Lojasiewicz property:
» Weak assumption about the structure of the objective functions.

» Very hard to find a function that does not have this property.

» Examples on next slide.
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Examples of KL functions

> Real analytic functions [Lojasiewicz '63]
» Differentiable functions that are definable in an o-minimal structure [Kurdyka 98]

» Non-smooth Isc functions that are definable in an o-minimal structure
[Bolte, Daniilidis, Lewis, Shiota 2007], [Attouch, Bolte, Redont, Soubeyran 2010]

» semi-algebraic functions
(polynomials, piecewise polynomials, absolute value function, Euclidean distance
function, p-norm for p € Q (alsop =0), ...)

» An o-minimal structure is closed under finite sums and products, composition, and
several other important operations

» Bad news: not all functions are KL functions, [Bolte, Daniilidis, Ley, Mazet 2010]
construct a C? function in R? that does not satisfy the KL inequality

» Good news: Such functions are very unlikely to occur in practical applications
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Abstract descent algorithms [Attouch et al. 2013]

min f (x)

» f: RN — R proper, Isc
» (xM)4cn sequence of iterates generated by some algorithm
» a,b > 0 fixed

(h1) (Sufficient decrease condition). For each k € N,

FG) - ala D O < )
(h2) (Relative error condition). For each k € N, there exists w**? ¢ of (x*+1) such
that
|w(’<+1)‘ < blx(k-H) _ x(k)| :

(h3) (Continuity condition). There exists a subsequence (M) jen and X such that

% and f(XY) = f(X), asj— oc.

> These properties are shared by many first-order optimization algorithms.
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Direct consequences of the descent property

The following analysis is motivated by [Bolte, Sabach, Teboulle, 2013].

Lemma:

> (f(x"))ren is non-increasing and converging,

k
> Z x0T — x0)2 < 400 and, therefore |x 1) — x| — 0, as k — .
=1
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Direct consequences for the set of limit points

Define:
> Let wp be the set of limit points of a bounded sequence (x(k))keN.

> Subset of limit points that allow for subsequences along which f is continuous, i.e.,
oo I3 &) foo= s
wo 1= {X¥ € wo|x" = xforj — oo} C wo.

Lemma: If f is continuous on domf, then wy = wp.

From now on, let (x*));cy be a bounded sequence.

Lemma:

> o is non-empty, and Wy C critf.
> wp is non-empty, compact, and connected.

> It holds that lim dist(x® wy) = 0.
— 00

» F is constant and finite on wy.
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An abstract convergence theorem

Theorem: ([Attouch et al. 2013])
If

» f: RN — R be a proper, Isc,
> (x(k))keN satisfies (h1), (h2), and (h3), and
> f has the KL property at the cluster point X,

then

> (x<k))k€N converges to X = ¥,
> Xis a critical point of f,

> (x<k) )ken has a finite length.

» However, is does not apply to inertial methods directly.
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Unifying abstract convergence theorem [O., 2016]

> (u“‘) )ren be a sequence of parameters in RP.
> (er)ren be an /1-summable sequence of non-negative real numbers.
> (ar)ken, (bk)ken, and (di)ren of non-negative real numbers.

(H1) (Sufficient decrease condition) For each k € N, it holds that
Fax®D 4 ®y 4 a2 < F(x®  u®)y

(H2) (Relative error condition) For each k € N, the following holds:

bt [P )| < D ) + e
(H3) (Continuity condition) 3((x", 11" ))) ien and (%, 1) € RN x R such that
w5 (%,0) as o oo,
(H4) (Contraction condition) It holds that

T —x®), e o(dy) and  (ben € £, sup by < oo, infa, =:a>0.
keN
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Abstract Convergence Theorem

Theorem:

If

» Fis a proper, Isc, bounded from below, and has the KL property,

> (x")4cn be a bounded sequence generated by an abstract parametrized algorithm,
» with a sequence of parameter (1)),

> w(x(o),u(o)) — D(xm),u(ﬂ)),

then
> (x<k))k€N satisfies

Z |x(k+1> - x<k)| < 400,
k=0

and (x),cy converges to some .

» Moreover, if (u(k))keN is a converging sequence, then ((x<k), u® ))ken F-converges to
(x,1), and (X, 1) is a critical point of F.
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Variable metric iPiano

Non-smoth non-convex optimization problem: (f smooth, § non-smooth)

min h(x) = min f(x) + g(x)

xERN xERN

Algorithm. (variable metric iPiano, [O., 2016])
» Initialization: Choose a starting point ¥’ € dom /1 and set x(~" = x(?.
» Iterations (k > 0): Choose A; € S(N), 0 < Ar < 1Id, and update:

D ¢ (Id +akA,:18g)71 (x(k) — akA,:lVf(x(k)) + Bk(x<k) — x(k71>)> ,

where o, S, Yk, and J; are as in the base variant of iPiano and the following
monotonicity condition holds:

5k+1‘x(k+l) —x® |3\k+1 < 6k|x<k+1) - x(k>|§\k :

» Convergence: Same as in the Abstract Convergence Theorem from before.

» Lipschitz constant can be estimated with backtracking.

» Algorithm can be extended to block coordinate version.
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Summary

» Heavy-ball dynamical system:

X(t) = —yX(H) — VF(X(®)

v

The (time-discrete) Heavy-ball method has the update rule

2D () an(x(k)) + ﬂ(x(k) B x(k—l)).

> Develop algorithms for special classes of structured non-convex problems:

min [ smooth, non-convex ] + [ non-smooth, non-convex, simple ]

» iPiano:
(k+1) (k) (k) (k) (k=1)
x € prox,, (x aVF(x™) + B(x )

» Convergence analysis of iPiano and abstract descent methods.
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