
Numerical optimization course – computer exercise

Linear and nonlinear optimization with CasADi

Prof. Dr. Moritz Diehl1, Prof. Dr. Angelika Altmann-Dieses2, Adrian Bürger1,2
1 Systems Control and Optimization Laboratory, IMTEK, University of Freiburg

2 Faculty of Management Science and Engineering, Karlsruhe University of Applied Sciences

1 Overview of the computer exercise

This computer exercise will provide a brief insight on how to formulate and solve linear and nonlinear
programs within the symbolic optimization framework CasADi [1].

1.1 About CasADi

The open-source tool CasADi implements algorithmic differentiation on user-defined symbolic expres-
sions and provides standardized interfaces to a variety of numerical routines: simulation and optimiza-
tion, and solution of linear and nonlinear equations.
A key feature of these interfaces is that every user-defined CasADi function passed to a numerical
solver automatically provides the necessary derivatives to this solver, without any additional user input.
Often, the result of the numerical solver itself can be interpreted as a differentiable CasADi function,
such that derivatives up to any order can be generated without actually differentiating the source code
of the solver. Thus, concatenated and recursive calls to numerical solvers are possible and still result
in differentiable CasADi functions.
CasADi is written in C++, but allows user input to be provided from either C++, Python, Octave or
Matlab. When CasADi is used from the interpreter languages Python, Octave or Matlab, the user does
not have any direct contact with C++; but because the internal handling of all symbolic expressions as
well as the numerical computations are performed in a compiled environment, the speed of simulation or
optimization computations is similar to the performance of compiled C-code. One particularly powerful
optimization solver interfaced to CasADi is IPOPT, which is automatically provided in the standard
CasADi installation. For more information on CasADi, please visit http://casadi.org.

1.2 Installing CasADi

CasADi can be installed on Windows, Linux and Mac, for detailed instructions please visit https://
github.com/casadi/casadi/wiki/InstallationInstructions. For this exercise, we
will use CasADi 3.1 from Matlab to show the solutions for the tasks given below. However, the
templates and corresponding solutions will also be provided for Python in case some participants do
not have access to a Matlab license.

1

http://casadi.org
https://github.com/casadi/casadi/wiki/InstallationInstructions
https://github.com/casadi/casadi/wiki/InstallationInstructions


2 Linear optimization exercise

An electricity trading company supplies customers in n = 4 areas, and purchases energy from m =
3 production sites. The contracted amount of energy delivery bj for each customer in MWh, the
production capacity ai for each site in MWh as well as the cost for energy distribution cij from
production site i to customer j in Euro/MWh are given as

a =

 75.0
125.0
100.0

 , b =
(
80.0 65.0 70.0 85.0

)
, C =

63.0 15.0 32.0 31.0
71.0 38.0 60.0 40.0
34.0 25.0 17.0 42.0

 (1)

The sum of the contracted amounts of energy delivery is equal to the sum of production capacities,
i. e.,

∑m
i=1 ai =

∑n
j=1 bj . The task now is to find an energy delivery plan in form of a transportation

matrix X = (xij) ∈ Rm×n that contains the energy deliveries xij from production site i to consumer
j in MWh and minimizes the total transportation cost K as in

minimize
xij

K =

m∑
i=1

n∑
j=1

cijxij (2a)

subject to
n∑

j=1

xij = ai, i = 1, . . . ,m, (2b)

m∑
i=1

xij = bj , j = 1, . . . , n, (2c)

xij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n. (2d)

This transportation problem can be formulated as a linear program in CasADi and solved using IPOPT.1

Tasks

a) Have a first look at the template provided for this task and at the functioning and syntax of
CasADi. Identify the sections where the problem information and the symbolic optimization
variables are initialized, where the several parts of problem (2) are formulated and where the
nlpsolver class of CasADi that passes the problem to IPOPT is instantiated.

b) Complete the template using the information given in the problem description above and run the
script. What is the minimal cost for transportation? How has the delivery been organized?

c) Assume now that we have an oversupply of produced energy, i. e.,
∑m

i=1 ai >
∑n

j=1 bj , with

a =

105
125
100

 . (3)

For finding a new cost-optimal transportation plan, we can still formulate an optimization problem
similar to (2) if we introduce an additional, virtual customer whose contracted amount of energy is

1Please note that we use the nonlinear program solver IPOPT [2] only for convenience here. Using a linear or
quadratic program solver, the problem could be solved faster than by IPOPT.

2



bn+1 =
∑m

i=1 ai−
∑n

j=1 bj and therefore exactly consumes the oversupply. This virtual consumer
can be supplied by all producers without invoking any cost.
Implement the changes accordingly, and look at the resulting cost and transportation plan. How
did the cost change? Which production sites deliver the virtual customer, and are therefore not
able to distribute all energy they produced?

3 Nonlinear optimization exercise

Within a production process, five spheres si with i = 1, . . . , 5 shall be cut out from a quadratic plate
with egde size a = 10 cm. Three of those spheres shall be of radius R and two of radius 2R. The
objective is to maximize the radius R.
The center of each sphere si can be expressed in Cartesian coordinates (xi, yi) on the plate, and are
to be optimized in addition to the radius R. The spheres may not lie outside of the plate or overlap
each other. To ensure this, the minimum distance between the centers of all spheres from each other
as well as the edges of the plate must enter the constraints of the optimization problem. A depiction
of a possible but suboptimal solution with R = 1 is given in Figure 1.

0 2 4 6 8 10
x

0

2

4

6

8

10

y

s_1

s_2

s_3

s_4

s_5

Figure 1: Graphical depiction of a possible, but suboptimal solution for Task 2 with R = 1.

The problem can be formulated as a nonlinear program in CasADi and solved using IPOPT, where the
following sets of constraints must enters the optimization problem:

1. The radii of two of the spheres must be twice a big as the radii of the three other spheres, and
must therefore fulfill the condition

ri = R, i = 1, . . . , 3, (4)
rj = 2R, j = 4, . . . , 5. (5)

2. The minimum distance of a sphere’s x-coordinate from the left egde and the right edge of the
plate must be greater or equal than its radius ri, the same must hold for the distance of the

3



y-coordinate from the top edge and bottom edge of the plate:

xi − ri ≥ 0, i = 1, . . . , 5, (6)
xi + ri ≤ a, i = 1, . . . , 5, (7)
yi − ri ≥ 0, i = 1, . . . , 5, (8)
yi + ri ≤ a, i = 1, . . . , 5. (9)

3. The distance of two sphere’s centers must be greater or equal to the sum of both sphere’s radii,
which can be expressed simply by using the Pythagorean theorem as

(xi − xj)
2 + (yi − yj)

2 − (ri + rj)
2 ≥ 0 i = 1, . . . , 5, i < j ≤ 5. (10)

Tasks

a) Complete the template provided for this task with the information given above and run the script.
On success, you should see a plot that depict the positioning of the spheres on the plate, and
they should neither interlap nor lie outside the plate. How big is R if you use the initial guesses
for the circles coordinates that are already contained in the template?

b) Looking at the plot, could you think of a distribution for the spheres that might lead to even
bigger values for R? Try setting different initial guesses for the spheres’ center coordinates, and
write down your best solution for R.

4 (If you want to do more:) Dynamic optimization exercise

This additional exercise will give you an insight on how to solve Optimal Control Problems (OCPs) with
CasADi. For this, we will implement an adapted version of the Bergman model of the human glucose
insulin system [3], and compute the optimal insulin infusion rate of a (simplified) artificial pancreas for
a type 1 diabetic patient to react on a meal disturbance of the blood glucose level, according to [4],
[5], [6]. The adapted Bergman model is an Ordinary Differential Equation (ODE) of the form

Ġ(t) = −P1 · (G(t)−Ginit)− (X(t)−Xinit) ·G(t) + umeal(t)

Ẋ(t) = −P2 · (X(t)−Xinit) + P3 · (I(t)− Iinit)

İ(t) = −n · I(t) + D(t)

V1

Ḋ(t) = uicr(t),

(11)

where

– G(t) describes the plasma glucose concentration in mmol
L at a time t,

– X(t) is a proportional to I(t) in remote compartment mU
L ,

– I(t) describes the plasma insulin concentration in mU
L above the basal value, and

– D(t) describes the insulin infusion rate in mU
min [4], [6].

The parameter values for a type 1 diabetic are given in [5] as

– P1 = 0.028753min−1,
– P2 = 0.028344min−1,

4



– P3 = 5.035 · 10−5 mU
L ,

– n = 5.0/54.0min−1 and
– V1 = 12.0L.

The control uicr(t) describes the change of the insulin infusion rate in mU
min·s . Choosing the values for

this control in an optimal way will later allow us to optimally control the insulin infusion rate with
regard to a specified objective. The control umeal(t) on the other hand, which is the meal disturbance
of the plasma glucose concentration G, we can not optimize, but assume it to take values from the
meal disturbance function [5]

umeal(t) = 3 · e0.05·t mmol

L
. (12)

For the problem formulation in CasADi, we set up a state vector x that contains all states as follows

x(t) =

G(t)
X(t)
I(t)
D(t)

 , (13)

and for the simulation we assume the initial values for the states to be [6]

x0 =

G0

X0

I0

D0

 =


4.5 mmol

L
15.0 mU

L
15.0 mU

L
0.0 mU

min

 . (14)

Further, we define a control vector u that contains all controls as

u(t) =

(
uicr(t)
umeal(t)

)
. (15)

We want to formulate and solve an optimal control problem for (11) so that the change of the insulin
infusion rate uicr is controlled in a way that the plasma glucose concentration G and the insulin infusion
rate D are pushed towards their reference values Gref = 5.0 mmol

L and Dref = 13.0 mU
min , respectively.

For this, a quadratic objective function is used.
Over the whole control horizon, the insulin infusion rate D has to stay between its minimum value
Dmin = 5.0 mU

min and it’s maximum value Dmax = 20.0 mU
min . All other states display concentration

values, and therefore must not become negative. While the change of the insulin infusion rate uicr is
not bounded, the meal disturbance umeal is exactly constrained to the meal disturbance function (12).
These conditions lead to the following OCP formulation in continuous time:

minimize
uicr(·)

tend∫
t0

(
(G(t)−Gref)

2 + (D(t)−Dref)
2
)
dt

subjectto (11) t ∈ [t0, tend]

(12) t ∈ [t0, tend]

xmin ≤ x(t) ≤ xmax t ∈ [t0, tend]

x(0) = x0

(16)

5



with state bounds defined as

xmin =

Gmin

Xmin

Imin

Dmin

 =


0.0 mmol

L
0.0 mU

L
0.0 mU

L
5.0 mU

min

 (17)

and

xmax =

Gmax

Xmax

Imax

Dmax

 =


∞ mmol

L
∞ mU

L
∞ mU

L
20.0 mU

min

 . (18)

This OCP shall now be transformed to a Nonlinear Program (NLP) using direct multiple shooting,
which then can be handed to CasADi’s nlpsol function that can automatically generate the neces-
sary derivatives using algorithmic differentiation and pass the optimization problem to a NLP solver
interfaced by CasADi, which by default is IPOPT.
For this, the continuous time problem first needs to be discretized, so we divide the time horizon
[t0, tend] with t0 = 0 s and tend = 200.0 s into N = 250 control intervals. Further, we need to
introduce optimization variables s for the discrete states and q for the discrete controls. Since x ∈ Rnx

and u ∈ Rnu , we need to introduce a total s ∈ Rnx×(N+1) and a total q ∈ Rnx×N .
Iteratively, we need to add the multiple shooting continuity constraints to the NLP formulation. As
integrator r(·), we use CVODES of SUNDIALS [7], which is shipped with the CasADi package. Also,
we need to add the constraints for the upper and lower bounds of s and q to the NLP that result from
the upper and lower bounds of the states and controls, respectively.
With CasADi’s nlpsol function, only inequality constraints can be used to formulate NLPs, so equality
constraints need to be reformulated accordingly, i. e.

x(0) = x0 (19)

needs to be formulated as

x0 ≤ x(0) ≤ x0. (20)

These reformulations lead to the NLP

minimize
s(·),q(·)

N∑
k=0

(sk − sref)
T(sk − sref)︸ ︷︷ ︸

=f

subjectto 0︸︷︷︸
=gmin

≤ sk+1 − r(sk, qk)︸ ︷︷ ︸
=g

≤ 0︸︷︷︸
=gmax

, k = 0, . . . , N − 1

xmin ≤ sk ≤ xmax k = 0, . . . , N − 1

qmin,k ≤ qk ≤ qmax,k k = 0, . . . , N − 1

x0 ≤ s0 ≤ x0

(21)

6



with

sref =

Gref

0
0

Dref

 (22)

and

qmin,k =

(
−∞

3 · e0.05·k∆t

)
, (23)

qmax,k =

(
∞

3 · e0.05·k∆t

)
. (24)

As initial values for the optimization variables s and q, the corresponding values of states and controls
from an ex ante simulation wit uicr(t) = 0.0 mU

min·s can be used.

Tasks

a) With the information given in this section, complete the template file provided for this task.

References

[1] Andersson, Joel: A General-Purpose Software Framework for Dynamic Optimization. PhD the-
sis, Arenberg Doctoral School, KU Leuven, Department of Electrical Engineering (ESAT/SCD) and
Optimization in Engineering Center, Kasteelpark Arenberg 10, 3001-Heverlee, Belgium, October
2013.

[2] Wächter, Andreas; Biegler, Lorenz T.: On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming,
106(1):25–57, 2006.

[3] Bergman, R. N.; Philips, L. S.; Cobelli, C.: Physiological evaluation of factors controlling
glucose tolerance in man. Journal of Clinical Investigation, 68:1456–1467, 1981.

[4] Lynch, S. M.; Bequette, B. W.: Estimation-based model predictive control of blood glucose
in type I diabetics: a simulation study. In Bioengineering Conference, 2001. Proceedings of the
IEEE 27th Annual Northeast, pages 79–80, 2001.

[5] Lynch, S. M.; Bequette, B. W.: Model predictive control of blood glucose in type I diabetics
using subcutaneous glucose measurements. In American Control Conference, 2002. Proceedings of
the 2002, volume 5, pages 4039–4043 vol.5, 2002.

[6] Modelon AB: blood_glucose_opt.py. http://www.jmodelica.org/api-docs/
pyjmi/EXAMPLE_blood_glucose_opt.html, visited on November 30, 2015.

[7] Lawrence Livermore National Laboratory: SUNDIALS: SUite of Nonlinear and DIf-
ferential/ALgebraic Equation Solvers. https://computation.llnl.gov/projects/
sundials, visited on April 11, 2017.

7

http://www.jmodelica.org/api-docs/pyjmi/EXAMPLE_blood_glucose_opt.html
http://www.jmodelica.org/api-docs/pyjmi/EXAMPLE_blood_glucose_opt.html
https://computation.llnl.gov/projects/sundials
https://computation.llnl.gov/projects/sundials

	Overview of the computer exercise
	About CasADi
	Installing CasADi

	Linear optimization exercise
	Nonlinear optimization exercise
	(If you want to do more:) Dynamic optimization exercise

