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Preface

Optimal control regards the optimization of dynamic systems. Thus, it bridges

two large and active research communities of applied mathematics, each with

their own journals and conferences. A scholar of numerical optimal control

has to acquire basic numerical knowledge within both fields, i.e. numerical op-

timization on the one hand, and system theory and numerical simulation on the

other hand. Within this text, we start by rehearsing basic concepts from both

fields. Hereby, we give numerical optimization the larger weight, as dynamic

system simulation is often covered rather well in engineering and applied math-

ematics curricula, and basic optimization concepts such as convexity or opti-

mality conditions and Lagrange multipliers play a crucial role in numerical

methods for optimal control. The course is intended for students of engineer-

ing and the exact sciences as well as for interested PhD students and besides the

abovementioned fields requires only knowledge of linear algebra and numeri-

cal analysis. The course should be accompanied by computer exercises, and its

aim is to give an introduction into numerical methods for solution of optimal

control problems, in order to prepare the students for using and developing

these methods themselves for specific applications in science and engineering.

This manuscript is based on lecture notes of courses on optimal control that

the authors gave since 2011 at various universities (ETH Zurich, KU Leuven,

Trento, Freiburg, Trondheim, Linkoping and Chalmers University of Technol-

ogy). It profited already from feedback by many students, but is still work in

progress and not yet error free. Special thanks go to Sebastian Sager for in-

spiring discussions on how best to present optimal control, and for suggesting

some of the quotes at the start of each chapter. Both authors want to thank

Jesus Lago Garcia who helped, during a student job contract, with the La-

tex editing of text and formulae, who suggested and implemented valuable

changes in the organization of the chapters, and who in particular collected

and re-edited nearly all of the exercises of this book. MD also wants to thank
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Florian Messerer and Armin Nurkanović who helped giving the master course

on Numerical Optimal Control at Freiburg University in the past years, and

gave valuable feedback. MD also wants to thank James B. Rawlings for valu-

able advice on textbook writing in general, and for continuing to point out the

need for a new textbook on numerical optimal control with focus on direct

methods.

The present version of the manuscript is not yet complete, and it is not yet

proofread carefully. However, we decided to put the PDF already online so

that we can refer to the manuscript in courses we teach and recommend it to

interested persons. Feedback is most welcome, in particular at this stage of the

writing process.

Santa Barbara and Trondheim Moritz Diehl and Sébastien Gros

March 2024

Please send feedback and ideas for improvement to

moritz.diehl@imtek.uni-freiburg.de

and

sebastien.gros@ntnu.no.



1

Introduction: Dynamic Systems and

Optimization

Optimal control regards the optimization of dynamic systems. We identify dy-

namic systems with processes that are evolving in time and that can be char-

acterized by states x that allow us to predict the future behavior of the system.

Often, the dynamic system can be controlled by a suitable choice of inputs

that we denote as controls u in this textbook. Typically, these controls shall

be chosen optimally in order to optimize some objective function and respect

some constraints. The process of finding the optimal control inputs requires

numerical methods, and these methods are the focus of the book.

As an example of an optimal control problem, we might think of an electric

train where the state x consists of the current position and velocity, and where

the control u is the engine power that the train driver can choose at each mo-

ment. We might regard the motion of the train on a time interval [0, T ], and the

objective could be to minimize the consumed energy to drive from Station A

to Station B, and one of the constraints would be that the train should arrive in

Station B at the fixed final time, T .

A typical property of a dynamic system is that knowledge of an initial state

x0 and a control input trajectory u(t) for all t ∈ [0, T ] allows one to determine

the whole state trajectory x(t) for t ∈ [0, T ]. 1 As the motion of a train can very

well be modelled by Newton’s laws of motion, the usual description of this

dynamic system is deterministic and in continuous time and with continuous

states.

But dynamic systems and their mathematical models can come in many vari-

ants, and it is useful to properly define the names given commonly to different

dynamic system classes, which we do in the next section. Afterwards, we will

discuss two important classes, continuous time and discrete time systems, in

1 For ease of notation, and without loss of generality, we use time t = 0 as start and t = T as end
of most time intervals in this book.

1



2 Introduction: Dynamic Systems and Optimization

more mathematical detail, before we give an overview of optimization problem

classes and finally outline the contents of the book chapter by chapter.

1.1 Dynamic System Classes

In this section, let us go, one by one, through the many dividing lines in the

field of dynamic systems.

Continuous vs Discrete Time Systems

Any dynamic system evolves over time, but time can come in two variants:

while the physical time is continuous and forms the natural setting for most

technical and biological systems, other dynamic systems can best be modelled

in discrete time, such as digitally controlled sampled-data systems, or games.

We call a system a discrete time system whenever the time in which the

system evolves only takes values on a predefined time grid, usually assumed

to be integers. If we have an interval of real numbers, like for the physical

time, we call it a continuous time system. In this book, we usually denote the

continuous time by the variable t ∈ R and write for example x(t). In case of

discrete time systems, we use an index, usually k ∈ N, and write xk for the state

at time point k.

Continuous vs Discrete State Spaces

Another crucial element of a dynamic system is its state x, which often lives in

a continuous state space, like the position of the train, but can also be discrete,

like the position of the figures on a chess game. We define the state space X

to be the set of all values that the state vector x may take. If X is a subset of a

real vector space such as Rnx or another differentiable manifold, we speak of a

continuous state space. IfX is a finite or a countable set, we speak of a discrete

state space. If the state of a system is described by a combination of discrete

and continuous variables we speak of a hybrid state space.

A multi-stage system is the special case of a system with hybrid state space

that develops through a sequence of stages and where the state space on each

stage is continuous. An example for a multi-stage system is walking, where

consecutive stages are characterized by the number of feet that are on the

ground at a given moment. For multi-stage systems, the time instant when

one stage ends and the next one starts can often be described by a switching

function. This function is positive on one and negative on the other stage, and

assumes the value zero at the time instant that separates the stages.

Another special case are systems that develop in a continuous state space
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and in continuous time, but are sometimes subject to discontinuous jumps,

such as bouncing billiard balls. These can often be modelled as multi-stage

systems with switching functions, plus so called jump conditions that describe

the discontinuous state evolution at the time instant between the stages.

Finite vs Infinite Dimensional Continuous State Spaces

The class of continuous state spaces can be further subdivided into the finite

dimensional ones, whose state can be characterized by a finite set of real num-

bers, and the infinite dimensional ones, which have a state that lives in func-

tion spaces. The evolution of finite dimensional systems in continuous time is

usually described by ordinary differential equations (ODE) or their generaliza-

tions, such as differential algebraic equations (DAE).

Infinite dimensional systems are sometimes also called distributed param-

eter systems, and in the continuous time case, their behaviour is typically de-

scribed by partial differential equations (PDE). An example for a controlled

infinite dimensional system is the evolution of the airflow and temperature dis-

tribution in a building that is controlled by an air-conditioning system.

Continuous vs Discrete Control Sets

We denote by U the set in which the controls u live, and exactly as for the

states, we can divide the possible control sets into continuous control sets and

discrete control sets. A mixture of both is a hybrid control set. An example for

a discrete control set is the set of gear choices for a car, or any switch that we

can can choose to be either on or off, but nothing in between.

In the systems and control community, the term hybrid system denotes a

dynamic system which has either a hybrid state or hybrid control space, or

both. Generally speaking, hybrid systems are more difficult to optimize than

systems with continuous control and state spaces.

However, an interesting and relevant class are hybrid systems that have con-

tinuous time and continuous states, but discrete controls. They might be called

hybrid systems with external switches or integer controls and turn out to be

tremendously easier to optimize than other forms of hybrid systems, if treated

with the right numerical methods [78].

Time-Variant vs Time-Invariant Systems

A system whose dynamics depend on time is called a time-variant system,

while a dynamic system is called time-invariant if its evolution does not de-

pend on the time and date when it is happening. As the laws of physics are

time-invariant, most technical systems belong to the latter class, but for exam-

ple the temperature evolution of a house with hot days and cold nights might
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best be described by a time-variant system model. While the class of time-

variant systems trivially comprises all time-invariant systems, it is an important

observation that also the other direction holds: each time-variant system can be

modelled by a nonlinear time-invariant system if the state space is augmented

by an extra state that takes account of the advancement of time, and which we

might call the “clock state”.

Linear vs Nonlinear Systems

If the state trajectory of a system depends linearly on the initial value and

the control inputs, it is called a linear system. If the dependence is affine, one

should ideally speak of an affine system, but often the term linear is used here

as well. In all other cases, we speak of a nonlinear system.

A particularly important class of linear systems are linear time invariant

(LTI) systems. An LTI system can be completely characterized in at least three

equivalent ways: first, by two matrices that are typically called A and B; second,

by its step response function; and third, by its frequency response function. A

large part of the research in the control community is devoted to the study of

LTI systems.

Controlled vs Uncontrolled Dynamic Systems

While we are in this book mostly interested in controlled dynamic systems, i.e.

systems that have a control input that we can choose, it is good to remember

that there exist many systems that cannot be influenced at all, but that only

evolve according to their intrinsic laws of motion. These uncontrolled systems

have an empty control set, U = ∅. If a dynamic system is both uncontrolled

and time-invariant it is also called an autonomous system.

Note that an autonomous system with discrete state space that also lives in

discrete time is often called an automaton.

Within the class of controlled dynamic systems, of special interest are the so

called controllable systems, which have the desirable property that their state

vector x can be steered from any initial state x0 to any final state xfin in a finite

time with suitably chosen control input trajectories. Many controlled systems

of interest are not completely controllable because some parts of their state

space cannot be influenced by the control inputs. If these parts are stable, the

system is called stabilizable.

Stable vs Unstable Dynamic Systems

A dynamic system whose state trajectory remains bounded for bounded initial

values and controls is called a stable system, and an unstable system otherwise.

For autonomous systems, stability of the system around a fixed point can be
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defined rigorously: for any arbitrarily small neighborhood N around the fixed

point there exists a region so that all trajectories that start in this region remain

in N. Asymptotic stability is stronger and additionally requires that all consid-

ered trajectories eventually converge to the fixed point. For autonomous LTI

systems, stability can be computationally characterized by the eigenvalues of

the system matrix.

Deterministic vs Stochastic Systems

If the evolution of a system can be predicted when its initial state and the

control inputs are known, it is called a deterministic system. When its evolution

involves some random behaviour, we call it a stochastic system.

The movements of assets on the stockmarket are an example for a stochastic

system, whereas the motion of planets in the solar system can usually be as-

sumed to be deterministic. An interesting special case of deterministic systems

with continuous state space are chaotic systems. These systems are so sensi-

tive to their initial values that even knowing these to arbitrarily high, but finite,

precisions does not allow one to predict the complete future of the system:

only the near future can be predicted. The partial differential equations used

in weather forecast models have this property, and one well-known chaotic

system of ODE, the Lorenz attractor, was inspired by these.

Note that also games like chess can be interpreted as dynamic systems. Here

the evolution is neither deterministic nor stochastic, but determined by the ac-

tions of an adverse player. If we assume that the adversary always chooses

the worst possible control action against us, we enter the field of game theory,

which in continuous state spaces and engineering applications is often denoted

by robust optimal control.

Open-Loop vs Closed-Loop Controlled Systems

When choosing the inputs of a controlled dynamic system, one first way is

decide in advance, before the process starts, which control action we want to

apply at which time instant. This is called open-loop control in the systems

and control community, and has the important property that the control u is a

function of time only and does not depend on the current system state.

A second way to choose the controls incorporates our most recent knowl-

edge about the system state which we might observe with the help of measure-

ments. This knowledge allows us to apply feedback to the system by adapting

the control action according to the measurements. In the systems and control

community, this is called closed-loop control, but also the more intuitive term

feedback control is used. It has the important property that the control action

does depend on the current state. The map from the state to the control action is
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called a feedback control policy. In case this policy optimizes our optimization

objective, it is called the optimal feedback control policy.

Open-loop control can be compared to a cooking instruction that says: cook

the potatos for 25 minutes in boiling water. A closed-loop, or feedback control

of the same process would for example say: cook the potatos in boiling water

until they are so soft that they do not attach anymore to a fork that you push into

them. The feedback control approach promises the better result, but requires

more work as we have to take the measurements.

This book is mainly concerned with numerical methods of how to compute

optimal open-loop controls for given objective and constraints. But the last part

of the book is concerned with a powerful method to approximate the optimal

feedback control policy: nonlinear model predictive control, a feedback control

technique that is based on the repeated solution of open-loop optimal control

problems.

Focus of This Book: Deterministic Systems with Continuous States

In this textbook we have a strong focus on deterministic systems with con-

tinuous state and control spaces. In Chapters 7 and we consider discrete time

systems, and in Chapters 9 to 14 we discuss continuous time systems.

The main reason for this focus on continuous state and control spaces is that

the resulting optimal control problems can efficiently be treated by derivative-

based optimization methods. They are thus tremendously easier to solve than

most other classes, both in terms of the solvable system sizes and of compu-

tational speed. Also, these continuous optimal control problems comprise the

important class of convex optimal control problems, which allow us to find

a global solution reliably and fast. Convex optimal control problems are im-

portant in their own right, but also serve as an approximation of nonconvex

optimal control problems within Newton-type optimization methods.

1.2 Continuous Time Systems

Most systems of interest in science and engineering are described in form of

differential equations which live in continuous time. On the other hand, all

numerical simulation methods have to discretize the time interval of interest

in some form or the other and thus effectively generate discrete time systems.

We will thus only briefly sketch some relevant properties of continuous time

systems in this section, and sketch how they can be transformed into discrete

time systems. After this section, and throughout the first two parts of the book,
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we will exclusively be concerned with discrete time systems, before we will

finally come back to the continuous time case in Chapter 9.

Ordinary Differential Equations

A controlled dynamic system in continuous time can in the simplest case be

described by an ordinary differential equation (ODE) on a time interval [0, T ]

by

ẋ(t) = f (x(t), u(t), t), t ∈ [0, T ]

where t ∈ R is the time, u(t) ∈ Rnu are the controls, and x(t) ∈ Rnx is the state.

The function f is a map from states, controls, and time to the rate of change of

the state, i.e. f : Rnx ×Rnu × [0, T ]→ Rnx . Due to the explicit time dependence

of the function f , this is a time-variant system.

We are first interested in the question if this differential equation has a so-

lution if the initial value x(0) is fixed and also the controls u(t) are fixed for

all t ∈ [0, T ]. In this context, the dependence of f on the fixed controls u(t) is

equivalent to a a further time-dependence of f , and we can redefine the ODE

as ẋ = f̃ (x, t) with f̃ (x, t) := f (x, u(t), t). Thus, let us first leave away the de-

pendence of f on the controls, and just regard the time-dependent uncontrolled

ODE:

ẋ(t) = f (x(t), t), t ∈ [0, T ]. (1.1)

Initial Value Problems

An initial value problem (IVP) is given by (1.1) and the initial value constraint

x(0) = x0 with some fixed parameter x0. Existence of a solution to an IVP

is guaranteed under continuity of f with respect to to x and t according to a

theorem from 1886 that is due to Giuseppe Peano. But existence alone is of

limited interest as the solutions might be non-unique.

Example 1.1 (Non-Unique ODE Solution). The scalar ODE with f (x) =√
|x(t)| can stay for an undetermined duration in the point x = 0 before leaving

it at an arbitrary time t0. It then follows a trajectory x(t) = (t − t0)2/4 that can

be easily shown to satisfy the ODE (1.1). We note that the ODE function f

is continuous, and thus existence of the solution is guaranteed mathematically.

However, at the origin, the derivative of f approaches infinity. It turns out that

this is the reason which causes the non-uniqueness of the solution.

As we are only interested in systems with well-defined and deterministic

solutions, we would like to formulate only ODE with unique solutions. Here

helps the following theorem by Charles Émile Picard (1890), and Ernst Leonard

Lindelöf (1894).
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Theorem 1.2 (Existence and Uniqueness of IVP). Regard the initial value

problem (1.1) with x(0) = x0, and assume that f : Rnx × [0, T ] → Rnx is

continuous with respect to x and t. Furthermore, assume that f is Lipschitz

continuous with respect to x, i.e., that there exists a constant L such that for all

x, y ∈ Rnx and all t ∈ [0, T ]

‖ f (x, t) − f (y, t)‖ ≤ L‖x − y‖.

Then there exists a unique solution x : [0, T ]→ Rnx of the IVP.

Lipschitz continuity of f with respect to x is not easy to check. It is much

easier to verify if a function is differentiable. It is therefore a helpful fact that

every function f that is differentiable with respect to x is also locally Lips-

chitz continuous, and one can prove the following corollary to the Theorem of

Picard-Lindelöf.

Corollary 1.3 (Local Existence and Uniqueness). Regard the same initial

value problem as in Theorem 1.2, but instead of global Lipschitz continuity,

assume that f is continuously differentiable with respect to x for all t ∈ [0, T ].

Then there exists a possibly shortened, but non-empty interval [0, T ′] with

T ′ ∈ (0, T ] on which the IVP has a unique solution.

Note that for nonlinear continuous time systems – in contrast to discrete time

systems – it is very easily possible even with innocently looking and smooth

functions f to obtain an “explosion”, i.e., a solution that tends to infinity for

finite times.

Example 1.4 (Explosion of an ODE). Regard the scalar example f (x) = x2

with x0 = 1, and let us regard the interval [0, T ] with T = 10. The IVP has

the explicit solution x(t) = 1/(1 − t), which is only defined on the half open

interval [0, 1), because it tends to infinity for t → 1. Thus, we need to choose

some T ′ < 1 in order to have a unique and finite solution to the IVP on the

shortened interval [0, T ′]. The existence of this local solution is guaranteed by

the above corollary. Note that the explosion in finite time is due to the fact

that the function f is not globally Lipschitz continuous, so Theorem 1.2 is not

applicable.

Discontinuities with Respect to Time

It is important to note that the above theorem and corollary can be extended to

the case that there are finitely many discontinuities of f with respect to t. In

this case the ODE solution can only be defined on each of the continuous time

intervals separately, while the derivative of x is not defined at the time points

at which the discontinuities of f occur, at least not in the strong sense. But the
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transition from one interval to the next can be determined by continuity of the

state trajectory, i.e. we require that the end state of one continuous initial value

problem is the starting value of the next one.

The fact that unique solutions still exist in the case of discontinuities is im-

portant because, first, many optimal control problems have discontinuous con-

trol trajectories u(t) in their solution, and, second, many algorithms discretize

the controls as piecewise constant functions which have jumps at the inter-

val boundaries. Fortunately, this does not cause difficulties for existence and

uniqueness of the IVPs.

Linear Time Invariant (LTI) Systems

A special class of tremendous importance are the linear time invariant (LTI)

systems. These are described by an ODE of the form

ẋ = Ax + Bu

with fixed matrices A ∈ Rnx×nx and B ∈ Rnx×nu . LTI systems are one of the

principal interests in the field of automatic control and a vast literature exists on

LTI systems. Note that the function f (x, u) = Ax + Bu is Lipschitz continuous

with respect to x with Lipschitz constant L = ‖A‖, so that the global solution

to any initial value problem with a piecewise continuous control input can be

guaranteed.

Many important notions such as controllability or stabilizability, and com-

putational results such as the step response or frequency response function can

be defined in terms of the matrices A and B alone. Note that in the field of

linear system analysis and control, usually also output equations y = Cx are

present, where the outputs y may be the only physically relevant quantities.

Only the linear operator from u to y - the input-output-behaviour - is of in-

terest, while the state x is just an intermediate quantity. In that context, the

states are not even unique, because different state space realizations of the

same input-output behavior exist. In this book, however, we are not interested

in input-outputs-behaviours, but assume that the state is the principal quantity

of interest. Output equations are not part of the models in this book. If one

wants to make the connection to the LTI literature, one might set C = I.

Zero Order Hold and Solution Map

In the age of digital control, the inputs u are often generated by a computer

and implemented at the physical system as piecewise constant between two

sampling instants. This is called zero order hold. The grid size is typically

constant, say of fixed length ∆t > 0, so that the sampling instants are given by

tk = k · ∆t. If our original model is a differentiable ODE model, but we have
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piecewise constant control inputs with fixed values u(t) = uk wtih uk ∈ Rnu on

each interval t ∈ [tk, tk+1], we might want to regard the transition from the state

x(tk) to the state x(tk+1) as a discrete time system. This is indeed possible, as

the ODE solution exists and is unique on the interval [tk, tk+1] for each initial

value x(tk) = x0.

If the original ODE system is time-invariant, it is enough to regard one initial

value problem with constant control u(t) = uconst

ẋ(t) = f (x(t), uconst), t ∈ [0,∆t], with x(0) = x0. (1.2)

The unique solution x : [0,∆t]→ Rnx to this problem is a function of both, the

initial value x0 and the control uconst, so we might denote the solution by

x(t; x0, uconst), for t ∈ [0,∆t].

This map from (x0, uconst) to the state trajectory is called the solution map. The

final value of this short trajectory piece, x(∆t; x0, uconst), is of major interest,

as it is the point where the next sampling interval starts. We might define the

transition function fdis : Rnx × Rnu → Rnx by fdis(x0, uconst) = x(∆t; x0, uconst).

This function allows us to define a discrete time system that uniquely describes

the evolution of the system state at the sampling instants tk:

x(tk+1) = fdis(x(tk), uk).

Solution Map of Linear Time Invariant Systems

Let us regard a simple and important example: for linear continuous time sys-

tems

ẋ = Ax + Bu

with initial value x0 at t = 0, and constant control input uconst, the solution map

x(t; x0, uconst) is explicitly given as

x(t; x0, uconst) = exp(At)x0 +

∫ t

0

exp(A(t − τ))Buconstdτ,

where exp(A) is the matrix exponential. It is interesting to note that this map

is well defined for all times t ∈ R, as linear systems cannot explode. The

corresponding discrete time system with sampling time ∆t is again a linear

time invariant system, and is given by

fdis(xk, uk) = Adisxk + Bdisuk

with

Adis = exp(A∆t) and Bdis =

∫ ∆t

0

exp(A(∆t − τ))Bdτ.
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Sensitivities

In the context of optimal control, derivatives of the dynamic system simulation

are needed for nearly all numerical algorithms. Following Theorem 1.2 and

Corollary 1.3 we know that the solution map to the IVP (1.2) exists on an

interval [0,∆t] and is unique under mild conditions even for general nonlinear

systems. But is it also differentiable with respect to the initial value and control

input?

In order to discuss the issue of derivatives, which in the dynamic system

context are often called sensitivities, let us first ask what happens if we call

the solution map with different inputs. For small perturbations of the values

(x0, uconst), we still have a unique solution x(t; x0, uconst) on the whole inter-

val t ∈ [0,∆t]. Let us restrict ourselves to a neighborhood N of fixed values

(x0, uconst). For each fixed t ∈ [0,∆t], we can now regard the well defined and

unique solution map x(t; ·) : N → Rnx , (x0, uconst) 7→ x(t; x0, uconst). A natu-

ral question to ask is if this map is differentiable. Fortunately, it is possible to

show that if f is m-times continuously differentiable with respect to both x and

u, then the solution map x(t; ·), for each t ∈ [0,∆t], is also m-times continuously

differentiable with respect to (x0, uconst).

In the general nonlinear case, the solution map x(t; x0, uconst) can only be

generated by a numerical simulation routine. The computation of derivatives

of this numerically generated map is a delicate issue that we discuss in detail

in the third part of the book. To mention already the main difficulty, note that

most numerical integration routines are adaptive, i.e., might choose to do differ-

ent numbers of integration steps for different IVPs. This renders the numerical

approximation of the map x(t; x0, uconst) typically non-differentiable in the in-

puts x0, uconst. Thus, multiple calls of a black-box integrator and application of

finite differences might result in very wrong derivative approximations.

Numerical Integration Methods

A numerical simulation routine that approximates the solution map is often

called an integrator. A simple but very crude way to generate an approximation

for x(t; x0, uconst) for t ∈ [0,∆t] is to perform a linear extrapolation based on

the time derivative ẋ = f (x, u) at the initial time point:

x̃(t; x0, uconst) = x0 + t f (x0, uconst), t ∈ [0,∆t].

This is called one Euler integration step. For very small ∆t, this approximation

becomes very good. In fact, the error x̃(∆t; x0, uconst) − x(∆t; x0, uconst) is of

second order in ∆t. This motivated Leonhard Euler to perform several steps of

smaller size, and propose what is now called the Euler integration method. We

subdivide the interval [0,∆t] into M subintervals each of length h = ∆t/M, and
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perform M such linear extrapolation steps consecutively, starting at x̃0 = x0:

x̃ j+1 = x̃ j + h f (x̃ j, uconst), j = 0, . . . , M − 1.

It can be proven that the Euler integration method is stable, i.e. that the prop-

agation of local errors is bounded with a constant that is independent of the

step size h. Therefore, the approximation becomes better and better when we

decrease the step size h: since the consistency error in each step is of order

h2, and the total number of steps is of order ∆t/h, the accumulated error in

the final step is of order h∆t. As this is linear in the step size h, we say that

the Euler method has the order one. Taking more steps is more accurate, but

also needs more computation time. One measure for the computational effort

of an integration method is the number of evaluations of f , which for the Euler

method grows linearly with the desired accuracy.

In practice, the Euler integrator is rarely competitive, because other meth-

ods exist that deliver the desired accuracy levels at much lower computational

cost. We discuss several numerical simulation methods later, but present here

already one of the most widespread integrators, the Runge-Kutta Method of Or-

der Four, which we will often abbreviate as RK4. One step of the RK4 method

needs four evaluations of f and stores the results in four intermediate quanti-

ties ki ∈ Rnx , i = 1, . . . , 4. Like the Euler integration method, the RK4 also

generates a sequence of values x̃ j, j = 0, . . . , M, with x̃0 = x0. At x̃ j, and us-

ing the constant control input uconst, one step of the RK4 method proceeds as

follows:

k1 = f (x̃ j, uconst)

k2 = f (x̃ j +
h

2
k1, uconst)

k3 = f (x̃ j +
h

2
k2, uconst)

k4 = f (x̃ j + h k3, uconst)

x̃ j+1 = x̃ j +
h

6
(k1 + 2k2 + 2k3 + k4).

One step of RK4 is thus as expensive as four steps of the Euler method. But it

can be shown that the accuracy of the final approximation x̃M is of order h4∆t.

In practice, this means that the RK4 method usually needs tremendously fewer

function evaluations than the Euler method to obtain the same accuracy level.

From here on, and throughout the first part of the book, we will leave the

field of continuous time systems, and directly assume that we control a discrete

time system xk+1 = fdis(xk, uk). Let us keep in mind, however, that the transition

map fdis(xk, uk) is usually not given as an explicit expression but can instead be
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a relatively involved computer code with several intermediate quantities. In the

exercises of the first part of this book, we will usually discretize the occuring

ODE systems by using only one Euler or RK4 step per control interval, i.e. use

M = 1 and h = ∆t. The RK4 step often gives already a sufficient approximation

at relatively low cost.

1.3 Discrete Time Systems

Let us now discuss in more detail the discrete time systems that are at the

basis of the control problems in Chapters 7 and 8 of this book. In the general

time-variant case, these systems are characterized by the dynamics

xk+1 = fk(xk, uk), k = 0, 1, . . . ,N − 1 (1.3)

on a time horizon of length N, with N control input vectors u0, . . . , uN−1 ∈ Rnu

and (N + 1) state vectors x0, . . . , xN ∈ Rnx .

If we know the initial state x0 and the controls u0, . . . , uN−1 we could recur-

sively call the functions fk in order to obtain all other states, x1, . . . , xN . We

call this a forward simulation of the system dynamics.

Definition 1.5 (Forward simulation). The forward simulation is the map

fsim : R
nx+Nnu → R

(N+1)nx

(x0; u0, u1, . . . , uN−1) 7→ (x0, x1, x2, . . . , xN)

that is defined by solving Equation (1.3) recursively for all k = 0, 1, . . . ,N − 1.

The inputs of the forward simulation routine are the initial value x0 and

the controls uk for k = 0, . . . ,N − 1. In many practical problems we can only

choose the controls while the initial value is fixed. Though this is a very natural

assumption, it is not the only possible one. In optimization, we might have

very different requirements: We might, for example, have a free initial value

that we want to choose in an optimal way. Or we might have both a fixed

initial state and a fixed terminal state that we want to reach. We might also

look for periodic sequences with x0 = xN , but do not know x0 beforehand. All

these desires on the initial and the terminal state can be expressed by suitable

constraints. For the purpose of this textbook it is important to note that the

fundamental equation that is characterizing a dynamic optimization problem

are the system dynamics stated in Equation (1.3), but no initial value constraint,

which is optional.
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Linear Time Invariant (LTI) Systems

As discussed already for the continuous time case, linear time invariant (LTI)

systems are not only one of the simplest possible dynamic system classes, but

also have a rich and beautiful history. In the discrete time case, they are deter-

mined by the system equation

xk+1 = Axk + Buk, k = 0, 1, . . . ,N − 1.

with fixed matrices A ∈ Rnx×nx and B ∈ Rnx×nu . An LTI system is stable if all

eigenvalues of the matrix A are in the unit disc of the complex plane, i.e. have

a modulus smaller or equal to one, and asymptotically stable if all moduli are

strictly smaller than one. It is easy to show that the forward simulation map for

an LTI system on a horizon with length N is given by

fsim(x0; u0, . . . , uN−1) =





x0

x1

x2

...

xN





=





x0

Ax0 + Bu0

A2x0 + ABu0 + Bu1

...

AN x0 +
∑N−1

k=0 AN−1−kBuk





.

In order to check controllability, due to linearity, one might ask the question if

after N steps any terminal state xN can be reached from x0 = 0 by a suitable

choice of control inputs. Because of

xN =
[

AN−1B AN−2B · · · B
]

︸                              ︷︷                              ︸

=CN





u0

u1

...

uN−1





this is possible if and only if the matrix CN ∈ Rnx×Nnu has the rank nx. Increas-

ing N can only increase the rank, but one can show that the maximum possible

rank is already reached for N = nx, so it is enough to check if the so called

controllability matrix Cnx
has the rank nx.

Affine Systems and Linearizations along Trajectories

An important generalization of linear systems are affine time-varying systems

of the form

xk+1 = Ak xk + Bkuk + ck, k = 0, 1, . . . ,N − 1. (1.4)

These often appear as linearizations of nonlinear dynamic systems along a

given reference trajectory. To see this, let us regard a nonlinear dynamic system

and some given reference trajectory values x̄0, . . . , x̄N−1 as well as ū0, . . . , ūN−1.
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Then the Taylor expansion of each function fk at the reference value (x̄k, ūk) is

given by

(xk+1 − x̄k+1) ≈ ∂ fk

∂x
(x̄k, ūk)(xk − x̄k) +

∂ fk

∂u
(x̄k, ūk)(uk − ūk) + ( fk(x̄k, ūk) − x̄k+1)

thus resulting in affine time-varying dynamics of the form (1.4). Note that even

for a time-invariant nonlinear system the linearized dynamics becomes time-

variant due to the different linearization points on the reference trajectory.

It is an important fact that the forward simulation map of an affine system

(1.4) is again an affine function of the initial value and the controls. More

specifically, this affine map is for any N ∈ N given by:

xN = (AN−1 · · · A0) x0 +

N−1∑

k=0

(

ΠN−1
j=k+1A j

)

(Bkuk + ck) .

1.4 Optimization Problem Classes

Mathematical optimization refers to finding the best, or optimal solution among

a set of possible decisions, where optimality is defined with the help of an ob-

jective function. Some solution candidates are feasible, others not, and it is

assumed that feasibility of a solution candidate can be checked by evaluation

of some constraint functions that need for example be equal to zero. Like the

field of dynamic systems, the field of mathematical optimization comprises

many different problem classes, which we will briefly try to classify in this

section.

Historically, optimization has been identified with programming, where a

program was understood as a deterministic plan, e.g., in logistics. For this rea-

son, many of the optimization problem classes have been given names that

contain the words program or programming. In this book we will often use

these names and their abbreviations, because they are still widely used. Thus,

we use e.g. the term linear program (LP) as a synonym for a linear optimiza-

tion problem. It is interesting to note that the major society for mathematical

optimization, which had for decades the name Mathematical Programming So-

ciety (MPS), changed its name in 2011 to Mathematical Optimization Society

(MOS), while it decided not to change the name of its major journal, that still

is called Mathematical Programming. In this book we chose a similarly prag-

matic approach to the naming conventions.
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Finite vs Infinite Dimensional Optimization

An important divididing line in the field of optimization regards the dimension

of the space in which the decision variable, say x, is chosen. If x can be repre-

sented by finitely many numbers, e.g. x ∈ Rn with some n ∈ N, we speak of a

finite dimensional optimization problem, otherwise, of an infinite dimensional

optimization problem. The second might also be referred to as optimization

in function spaces. Discrete time optimal control problems fall into the first,

continuous time optimal control problems into the second class.

Besides the dimension of the decision variable, also the dimension of the

constraint functions can be finite or infinite. If an infinite number of inequal-

ity constraints is present while the decision variable is finite dimensional, one

speaks of a semi-infinite optimization problem. This class naturally arises in

the context of robust optimization, where one wants to find the best choice of

the decision variable that satisfies the constraints for all possible values of an

unknown but bounded disturbance.

Continuous vs Integer Optimization

A second dividing line concerns the type of decision variables. These can be

either continuous, like for example real valued vectors x ∈ Rn, or any other

elements of a smooth manifold. On the other hand, the decision variable can

be discrete, or integer valued, i.e. we have z ∈ Zn, or, when a set of binary

choices has to be made, z ∈ {0, 1}n. In this case one often also speaks of com-

binatorial optimization. If an optimization problem has both, continuous and

integer variables, it is called a mixed-integer optimization problem.

An important class of continuous optimization problems are the so called

nonlinear programs (NLP). They can be stated in the form

minimize
x ∈ Rn

f (x)

subject to g(x) = 0,

h(x) ≤ 0,

where f : Rn → R, g : Rn → Rng , and h : Rn → Rnh are assumed to be at

least once continuously differentiable. Note that we use function and variable

names such as f and x with a very different meaning than before in the context

of dynamic systems. In Chapters 2 to 6 we discuss algorithms to solve this

kind of optimization problems, and the discrete time optimal control problems

treated in Chapters 7 and 8 can also be regarded as a specially structured form

of NLPs. Two important subclasses of NLPs are the linear programs (LP),

which have affine problem functions f , g, h, and the quadratic programs (QP),
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which have affine constraint functions g, h and a more general linear quadratic

objective f (x) = c⊤x + 1
2

x⊤Bx with a symmetric matrix B ∈ Rn×n.

A large class of mixed-integer optimization problems are the so called mixed

integer nonlinear programs (MINLP), which can be stated as

minimize
x∈Rn

z∈Zm

f (x, z)

subject to g(x, z) = 0,

h(x, z) ≤ 0.

(1.5)

Among the MINLPs, an important special case arises if the problem functions

f , g, h are affine in both variables, x and z, which is called a mixed integer linear

program (MILP). If the objective is allowed to be linear quadratic, one speaks

of a mixed integer quadratic program (MIQP). If in an MILP only integer

variables are present, one usually just calls it an integer program (IP). The field

of (linear) integer programming is huge and has powerful algorithms available.

Most problems in logistics fall into this class, a famous example being the

travelling salesman problem, which concerns the shortest closed path that one

can travel through a given number of towns, visiting each town exactly once.

An interesting class of mixed-integer optimization problems arises in the

context of optimal control of hybrid dynamic systems, which in the discrete

time case can be regarded a special case of MINLP. In continuous time, we

enter the field of infinite dimensional mixed-integer optimization, often also

called Mixed-integer optimal control problems (MIOCP).

Convex vs Nonconvex Optimization

Arguably the most important dividing line in the world of optimization is

between convex and nonconvex optimization problems. Convex optimization

problems are a subclass of the continuous optimization problems and arise if

the objective function is a convex function and the set of feasible points a con-

vex set. In this case one can show that any local solution, i.e. values for the

decision variables that lead to the best possible objective value in a neighbor-

hood, is also a global solution, i.e. has the best possible objective value among

all feasible points. Practically very important is the fact that convexity of a

function or a set can be checked just by checking convexity of its building

blocks and if they are constructed in a way that preserves convexity.

Several important subclasses of NLPs are convex, such as LPs. Also QPs are

convex if they have a convex objective f . Another example are Quadratically

Constrained Quadratic Programs (QCQP) which have quadratic inequalities

and whose feasible set is the intersection of ellipsoids. Some other optimization

problems are convex but do not form part of the NLP family. Two widely used
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classes are second-order cone programs (SOCP) and semi-definite programs

(SDP) which have linear objective functions but more involved convex feasible

sets: for SOCP, it is the set of vectors which have one component that is larger

than the Euclidean norm of all the other components and which it is called

the second order cone, and for SDP it is the set of symmetric matrices that are

positive semi-definite, i.e. have all eigenvalues larger than zero. SDPs are often

used when designing linear feedback control laws. Also infinite dimensional

optimization problems such as optimal control problems in continuous time

can be convex under fortunate circumstances.

In this context, it is interesting to note that a sufficient condition for convex-

ity of an optimal control problem is that the underlying dynamic system is lin-

ear and that the objective and constraints are convex in controls and states. On

the other hand, optimal control problems with underlying nonlinear dynamic

systems, which are the focus of this book, are usually nonconvex.

Optimization problems with integer variables can never be convex due to

the nonconvexity of the set of integers. However, it is of great algorithmic ad-

vantage if mixed-integer problems have a convex substructure in the sense that

convex problems arise when the integer variables are allowed to also take real

values. These so called convex relaxations are at the basis of nearly all com-

petitive algorithms for mixed-integer optimization. For example, linear integer

programs can be solved very efficiently because their convex relaxations are

just linear programs, which are convex and can be solved very efficiently.

1.5 Overview, Exercises and Notation

As said before, the book is divided into four major parts. Below we list the

topics which are treated in each part.

• Numerical Optimization: Newton-type optimization methods in many vari-

ants.

• Discrete Time Optimal Control: problem formulations, sparsity structure ex-

ploitation and dynamic programming.

• Continuous Time Optimal Control: numerical simulation, indirect methods

and Hamilton-Jacobi-Bellman equation based approaches, direct colloca-

tion, differential-algebraic equations.

• Online Optimal Control: parametric optimization, online quadratic and non-

linear programming, efficient initializations, real-time iterations.

The four parts build on each other, so it is advisable to read and work on them

in the order in which they are presented in the book.
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Exercises

At the end of each chapter there is a collection of exercises. Some of the ex-

ercises are solvable by pen and paper, but many exercises need the use of a

computer. In this case, very often we require the use of the following software:

• MATLAB (www.mathworks.com) or the open-source alternative OCTAVE

(https://www.gnu.org/software/octave/).

• The open source packages:

– CasADi (https://github.com/casadi/casadi/wiki).

– ACADO (http://acado.github.io/).

– qpOASES (https://projects.coin-or.org/qpOASES).

Sometimes exercises can only be done with help of data or template files,

which can all be downloaded on the webpage that is accompanying this book

(http://www.syscop.de/numericaloptimalcontrol).

Notation

Within this book we use R for the set of real numbers, R+ for the non-negative

ones and R++ for the positive ones, Z for the set of integers, and N for the set

of natural numbers including zero, i.e. we identify N = Z+. The set of real-

valued vectors of dimension n is denoted by Rn, and Rn×m denotes the set of

matrices with n rows and m columns. By default, all vectors are assumed to

be column vectors, i.e. we identify Rn = Rn×1. We usually use square brackets

when presenting vectors and matrices elementwise. Because will often deal

with concatenations of several vectors, say x ∈ Rn and y ∈ Rm, yielding a

vector in Rn+m, we abbreviate this concatenation sometimes as (x, y) in the text,

instead of the correct but more clumsy equivalent notations [x⊤, y⊤]⊤ or

[

x

y

]

.

Square and round brackets are also used in a very different context, namely for

intervals in R, where for two real numbers a < b the expression [a, b] ⊂ R
denotes the closed interval containing both boundaries a and b, while an open

boundary is denoted by a round bracket, e.g. (a, b) denotes the open interval

and [a, b) the half open interval containing a but not b.

When dealing with norms of vectors x ∈ Rn, we denote by ‖x‖ an arbitrary

norm, and by ‖x‖2 the Euclidean norm, i.e. we have ‖x‖2
2
= x⊤x. We denote a

weighted Euclidean norm with a positive definite weighting matrix Q ∈ Rn×n

by ‖x‖Q, i.e. we have ‖x‖2
Q
= x⊤Qx. The L1 and L∞ norms are defined by ‖x‖1 =

∑n
i=1 |xi| and ‖x‖∞ = max{|x1|, . . . , |xn|}. Matrix norms are the induced operator

www.mathworks.com
https://www.gnu.org/software/octave/
https://github.com/casadi/casadi/wiki
http://acado.github.io/
https://projects.coin-or.org/qpOASES
http://www.syscop.de/numericaloptimalcontrol
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norms, if not stated otherwise, and the Frobenius norm ‖A‖F of a matrix A ∈
R

n×m is defined by ‖A‖2
F
= trace(AA⊤) =

∑n
i=1

∑m
j=1 Ai jAi j.

When we deal with derivatives of functions f with several real inputs and

several real outputs, i.e. functions f : Rn → Rm, x 7→ f (x), we define the

Jacobian matrix
∂ f

∂x
(x) as a matrix in Rm×n, following standard conventions.

For scalar functions with m = 1, we denote the gradient vector as ∇ f (x) ∈ Rn,

a column vector, also following standard conventions. Slightly less standard,

we generalize the gradient symbol to all functions f : Rn → Rm even with

m > 1, i.e. we generally define in this book

∇ f (x) =
∂ f

∂x
(x)⊤ ∈ Rn×m.

Using this notation, the first order Taylor series is e.g. written as

f (x) = f (x̄) + ∇ f (x̄)⊤(x − x̄)) + o(‖x − x̄‖).

The second derivative, or Hessian matrix will only be defined for scalar func-

tions f : Rn → R and be denoted by ∇2 f (x).

For square symmetric matrices of dimension n we sometimes use the symbol

Sn, i.e. Sn = {A ∈ Rn×n|A = A⊤}. For any symmetric matrix A ∈ Sn we write

A < 0 if it is a positive semi-definite matrix, i.e. all its eigenvalues are larger

or equal to zero, and A ≻ 0 if it is positive definite, i.e. all its eigenvalues

are positive. This notation is also used for matrix inequalities that allow us

to compare two symmetric matrices A, B ∈ Sn, where we define for example

A < B by A − B < 0.

When using logical symbols, A ⇒ B is used when a proposition A implies

a proposition B. In words the same is expressed by “If A then B”. We write

A ⇔ B for “A if and only if B”, and we sometimes shorten this to “A iff B”,

with a double “f”, following standard practice.

Exercises

1.1 Consider a linear model of some coutry population with the state vector

x ∈ R100 representing the population of each age group. Let xi(k) mean

the number of people of age i during year k. For instance, x6(2014) would

be the number of people who are 6 years old in year 2014. Each year

babies (0-year-olds) are formed depending on a linear birth rate:

x0(k + 1) =

99∑

j=0

β jx j(k)
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Each year most of the population ages by one year, except for a frac-

tion who die according to mortality rate µ:

xi+1(k + 1) = xi(k) − µixi(k) i = 0, . . . , 98

(a) Download the file birth_mortality_rates.m from the book web-

site to obtain the birth rate β and mortality rate µ. Plot them as a

function of the population age.

(b) Write the discrete time model in the form of

x(k + 1) = A x(k)

(c) Lord of the Flies: Setting an initial population of 100 four-year-olds,

and no other people, simulate the system for 150 years. Make a 3-d

plot of the population, with axes {year, age, population}.
(d) Eigen decomposition: Plot the eigenvalues of A in the complex plane.

Plot the real part of the two eigenvectors of A which have largest

eigenvalue magnitude

Is this system stable? What is the significance of these eigenvectors

with large eigenvalues?

(e) Run two simulations: in each simulation, use for x(0) the real part of

an eigenvector from the previous question. What is the significance

of this result?

1.2 Consider a two-dimensional model of an airplane with states x = [px, pz, vx, vz]

where position ~p = [px, pz] and velocity ~v = [vx, vz] are vectors in the

x − z directions. We will use the standard aerospace convention that x̂

is forward and ẑ is DOWN, so altitude is −pz. The system has one con-

trol u = [α], where α is the aerodynamic angle of attack in radians. The

system dynamics are:

d

dt





px

pz

vx

vz





=





vx

vz

Fx/m

Fz/m





where m = 2.0 is the mass of the airplane. The forces ~F on the airplane

are

~F = ~Flift + ~Fdrag + ~Fgravity

Lift force ~Flift is

~Flift =
1

2
ρ‖~v‖2CL(α)S ref êL
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where lift direction êL = [vz,−vx]/‖~v‖, and lift coefficient CL = 2πα 10
12

.

S ref is the wing aerodynamic reference area. The drag force ~Fdrag is

~Fdrag =
1

2
ρ‖~v‖2CD(α)S ref êD

Drag direction êD = −~v/‖~v‖, and drag coefficient CD = 0.01 +
C2

L

ARπ
. The

gravitational force is

~Fgravity = [0,m g]

Use AR = 10, ρ = 1.2, g = 9.81, S ref = 0.5.

(a) Write the continuous time model in the form of

d

dt
x = f (x, u) (1.6)

(b) Simulate the system for 10 seconds using the ode45MATLAB func-

tion. Use α = 3◦, and initial conditions px = pz = vz = 0, vx = 10.

Plot px, pz, vx, vz vs. time, and px vs. altitude.

(c) Convert the system to the discrete time form

x(k + 1) = fd(x(k), u(k))

using a forward Euler integrator. Simulate this system and compare

to ode45. Estimating the accuracy by eye, how small do you have

to make the time step so that results are similar accuracy to ode45?

Using the MATLAB functions tic and toc, how much time does

ode45 take compared to forward Euler for similar accuracy?

(d) Re-do the previous item using 4th order Runge-Kutta (RK4) instead

of forward Euler. Which is faster (for similar accuracy) among the

three methods?

(e) Linearize the discrete time RK4 system to make an approximate sys-

tem of the form

x(k + 1) ≈ f (x̃, ũ) +
∂ f

∂x
(x̃, ũ)

︸   ︷︷   ︸

A

(x(k) − x̃) +
∂ f

∂u
(x̃, ũ)

︸   ︷︷   ︸

B

(u(k) − ũ)

using a first order Taylor expansion around the point x̃ = [10, 3, 11, 5]⊤,

ũ = 5◦.

The Jacobian is given by

∂ f

∂x
=

(

∂ f

∂px
,
∂ f

∂pz
,
∂ f

∂vx
,
∂ f

∂vz

)

.

You can approximate the Jacobian by doing small variations in all
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directions of x and u (finite differences). For example, in the direction

of px the derivative
∂ f

∂px
is given by:

∂ f

∂px

(x̃, ũ) ≈ f (x̃ + [δ, 0, 0, 0]⊤, ũ) − f (x̃, ũ)

δ
.

(f) Plot the Eigenvalues of A in the complex plane. Is the system stable?

Is this a problem?

1.3 Introduction to CasADi 1: CasADi is an open-source software tool for

solving optimization problems in general and optimal control problems

in particular. In its most typical usage, it leaves it to the user to formulate

the problem as a standard form constrained optimization problem of the

form:

minimize
x

f (x)

subject to x ≤ x ≤ x

g ≤ g(x) ≤ g,

(1.7)

where x ∈ Rnx is the decision variable, f : Rnx → R is the objective

function, and g : Rnx → R
ng is the constraint function. For equality

constraints, the upper and lower bounds are equal.

In this exercise, f is a convex quadratic function and g is a linear func-

tion, in which case we refer to problem (13.14) as a (convex) quadratic

program (QP). To solve a QP with CasADi, start by creating a struct

containing expressions for x, f and g:

• MATLAB:

x = SX.sym(’x’,n);

f = (some expression of x)

g = (some expression of x)

prob = struct(’x’,x,’f’,f,’g’,g);

• Python:

x = SX.sym(’x’,n)

f = (some expression of x)

g = (some expression of x)

prob = {’x’:x,’f’:f,’g’:g}

This symbolic representation of the problem is then used to construct

a QP solver as follows:
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• MATLAB:

solver = qpsol(’solver’,’qpoases’,prob);

• Python:

solver = qpsol(’solver’,’qpoases’,prob)

where the arguments are, respectively, the display name of the solver s,

the solver plugin – here the open-source QP solver qpOASES – and and

the above symbolic problem formulation. A set of algorithmic options

can be passed as an optional forth argument. Optimization solvers are

functions in CasADi that are evaluated to get the solution:

• MATLAB:

res = solver(’x0’,x0,’lbx’,lbx,’ubx’,ubx,

’lbg’,lbg,’ubg’,ubg);

• Python:

res = solver(x0:=0,lbx = lbx,ubx=ubx,

lbg=lbg,ubg=ubg)

Where lbx, ubx, lbg and ubg are the bounds of x and g(x) and x0 is

an initial guess for x (less important for convex QPs, since the solution

is unique).

Exercise example: Hanging Chain We want to model a chain at-

tached to two supports and hanging in between. Let us discretize it with

N mass points connected by N − 1 springs. Each mass i has position

(yi, zi), i = 1, . . . ,N. The equilibrium point of the system minimises the

potential energy. The potential energy of each spring is

V i
el =

1

2
Di

(

(yi − yi+1)2 + (zi − zi+1)2
)

.

The gravitational potential energy of each mass is

V i
g = mi g0 zi.

The total potential energy is thus given by:

Vchain(y, z) =
1

2

N−1∑

i=1

Di

(

(yi − yi+1)2 + (zi − zi+1)2
)

+ g0

N∑

i=1

mi zi, (1.8)

where y = [y1, · · · , yN]T and z = [z1, · · · , zN]T .
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We wish to solve

minimize
y,z

Vchain(y, z) (1.9)

subject to constraints modeling the ground, to be introduced below.

(a) Go to the CasADi website and locate the user guide. Make sure the

version of the user guide matches the version of CasADi used in the

book (3.0.0). Then, with a Python or MATLAB interpreter in front of

you, read Chapter 3 as well as Sections 4.1-4.3 in Chapter 4 of the

user guide.

(b) From the course website, you will find solution scripts for Python and

MATLAB that solve the unconstrained problem using N = 40, mi =

40/N kg, Di = 70N N/m, g0 = 9.81 m/s2 with the first and last

mass point fixed to (−2, 1) and (2, 1), respectively. Go through the

script and make sure you understand the steps.

(c) Introduce ground constraints: zi ≥ 0.5 and zi − 0.1 yi ≥ 0.5, for i =

2, · · · ,N−2. Solve your QP again, plot the result and compare it with

the previous one.

http://casadi.org
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Root-Finding with Newton-Type Methods

Nature and nature’s laws lay hid in night;

God said “Let Newton be” and all was light.

— Alexander Pope

In this first part of the book we discuss several concepts from the field of nu-

merical analysis and mathematical optimization that are important for optimal

control. Our focus is on quickly arriving at a point where the specific opti-

mization methods for dynamic systems can be treated, while the same material

can be found in much greater detail in many excellent textbooks on numerical

optimization such as [72]. The reason for keeping this part on optimization self-

contained and without explicit reference to optimal control is that this allows

us to separate between the general concepts of numerical analysis and opti-

mization on the one hand, and those specific to optimal control on the other

hand. We slightly adapt the notation, however, in order to prepare the interface

to optimal control later.

In essence, optimization is about finding the inputs for some possibly non-

linear function that make the output of the function achieve some desired prop-

erties. In the simplest case, one demands that the function output should have a

certain value, and assumes that the function has exactly as many inputs as it has

outputs. Many problems in numerical analysis – in particular in optimization

– can be formulated as such root-finding problems. Newton’s method and its

variants are at the basis of virtually all methods for their solution. Throughout

this chapter, let us therefore consider a continuously differentiable function

R : Rn → Rn, z 7→ R(z), where our aim is to solve the nonlinear equation

system

R(z) = 0.

Newton’s idea was to start with an initial guess z0, and recursively generate a

26



2.1 Local Convergence Rates 27

sequence of iterates {zk}∞k=0
by linearizing the nonlinear equation at the current

iterate:

R(zk) +
∂R

∂z
(zk)(z − zk) = 0.

We can explicitly compute the next iterate by solving the linear system:

zk+1 = zk −
(

∂R

∂z
(zk)

)−1

R(zk).

Note that we have to assume that the Jacobian J(zk) := ∂R
∂z

(z) is invertible.

More general, we can use an invertible approximation Mk of the Jacobian
∂R
∂z

(zk). The general Newton type iteration is

zk+1 = zk − M−1
k R(zk).

Depending on how closely Mk approximates J(zk), the local convergence can

be fast or slow, or the sequence may even not converge.

Example 2.1. Regard R(z) = z16−2, where ∂R
∂z

(z) = 16z15. The Newton method

iterates:

zk+1 = zk − (16z15)−1(z16 − 2).

The iterates quickly converge to the solution z∗ with R(z∗) = 0. In fact, the

convergence rate of Newton’s method is q-quadratic. Alternatively, we could

use a Jacobian approximation, e.g. the constant value Mk = 16 corresponding

to the true Jacobian at z = 1. The resulting iteration would be

zk+1 = zk − (16)−1(z16 − 2).

This approximate method might or might not converge. This might or might

not depend on the initial value z0. If the method converges, what will be its

convergence rate? We investigate the conditions on R(z), z0 and Mk that we

need to ensure local convergence in the following sections.

2.1 Local Convergence Rates

Definition 2.2 (Different types of convergence rates). Assume zk ∈ Rn, zk → z.

Then the sequence zk is said to converge:

(i) Q-linearly⇔

‖zk+1 − z‖ 6 C‖zk − z‖ with C < 1 (2.1)
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holds for all k > k0. The “Q” in Q-linearly means the “Q” of “quotient”.

Another equivalent definition is:

lim supk→∞
‖zk+1 − z‖
‖zk − z‖ < 1.

(ii) Q-superlinearly⇔

‖zk+1 − z‖ 6 Ck‖zk − z‖ with Ck → 0.

This is equivalent to:

lim supk→∞
‖zk+1 − z‖
‖zk − z‖ = 0.

(iii) Q-quadratically⇔

‖zk+1 − z‖ 6 C‖zk − z‖2 with C < ∞

which is equivalent to:

lim supk→∞
‖zk+1 − z‖
‖zk − z‖2

< ∞.

Example 2.3 (Convergence rates). Consider examples with zk ∈ R, zk → 0

and z = 0.

(i) zk =
1
2k converges q-linearly: zk+1

zk
= 1

2
.

(ii) zk = 0.99k also converges q-linearly: zk+1

zk
= 0.99. This example converges

very slowly to z. In practice we desire C in equation (2.1) be smaller than,

say, 1
2
.

(iii) zk =
1
k!

converges Q-superlinearly, as
zk+1

zk
= 1

k+1
.

(iv) zk =
1

22k converges Q-quadratically, because zk+1

(zk)2 =
(22k

)2

22k+1 = 1 < ∞. For

k = 6, zk = 1
264 ≈ 0, so in practice convergence up to machine precision is

reached after roughly 6 iterations.

2.2 A Local Contraction Theorem

Theorem 2.4 (Local Contraction). Regard a nonlinear differentiable function

R : Rn → Rn and a solution point z∗ ∈ Rn with R(z∗) = 0, and the Newton

type iteration zk+1 = zk − M−1
k

R(zk) that is started at the initial value z0. The

sequence zk converges to z∗ with contraction rate

‖zk+1−z∗‖ ≤
(

κk+
ω

2
‖zk−z∗‖

)

‖zk−z∗‖
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if there exist ω < ∞ and κ < 1 such that for all zk and z holds

‖M−1
k (J(zk) − J(z))‖ ≤ ω‖zk − z‖ (Lipschitz, or ”omega”, condition),

‖M−1
k (J(zk) − Mk)‖ ≤ κk ≤ κ (compatibility, or ”kappa”, condition)

and if ‖z0 − z∗‖ is sufficiently small, namely ‖z0 − z∗‖ < 2(1−κ)
ω

.

Note: κ = 0 for exact Newton.

Proof

zk+1 − z∗ = zk − z∗ − M−1
k R(zk)

= zk − z∗ − M−1
k (R(zk) − R(z∗))

= M−1
k (Mk(zk − z∗))

−M−1
k

∫ 1

0

J(z∗ + t(zk − z∗))(zk − z∗)dt

= M−1
k (Mk − J(zk))(zk − z∗)

−M−1
k

∫ 1

0

[

J(z∗+t(zk−z∗))−J(zk)
]

(zk−z∗)dt.

Taking the norm of both sides:

‖zk+1 − z∗‖ ≤ κk‖zk − z∗‖

+

∫ 1

0

ω‖z∗ + t(zk − z∗) − zk‖dt ‖zk − z∗‖

=
(

κk + ω

∫ 1

0

(1 − t)dt

︸        ︷︷        ︸

= 1
2

‖zk − z∗‖
)

‖zk − z∗‖

=
(

κk +
ω

2
‖zk − z∗‖

)

‖zk − z∗‖.

Convergence follows from the fact that the first contraction factor,
(

κ0 +

ω
2
‖zk − z∗‖

)

is smaller than δ :=
(

κ + ω
2
‖zk − z∗‖

)

, and that δ < 1 due to the

assumption ‖z0− z∗‖ < 2(1−κ)
ω

. This implies that ‖z1− z∗‖ ≤ δ‖z0− z∗‖, and recur-

sively that all following contraction factors will be bounded by δ, such that we

have the upper bound ‖zk − z∗‖ ≤ δk‖z0 − z∗‖. This means that we have at least

linear convergence with contraction rate δ. Of course, the local contraction rate

will typically be faster than this, depending on the values of κk. �

Remark: The above contraction theorem could work with slightly weaker

assumptions. First, we could restrict the validity of the ”omega and kappa con-

ditions” to a norm ball around the solution z∗, namely to the set {z | ‖z − z∗‖ <
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2(1−κ)
ω
}. Second, in the omega and kappa conditions, we could have used slightly

weaker conditions, as follows:

‖M−1
k (J(zk) − J(zk + t(z∗ − zk)))(z∗ − zk)‖ ≤ ωt‖zk − z∗‖2 (weaker ω cond.)

‖M−1
k (J(zk) − Mk)(zk − z∗)‖ ≤ κk‖zk − z∗‖ (weaker κ cond.).

The above weaker conditions turn out to be invariant under affine transforma-

tions of the variables z as well as under linear transformations of the root find-

ing residual function function R(z). For this reason, they are in general prefer-

able over the assumptions which we used the above theorem, which are only

invariant under linear transformations of R(z), but simpler to write down and

to remember. Let us discuss the concept of affine invariance in the following

section.

2.3 Affine Invariance

An iterative method to solve a root finding problem R(z) = 0 is called ”affine

invariant” if affine basis transformations of the equations or of the variables

will not change the resulting iterations. This is an important property in prac-

tice. Regard, for example, the case where we would like to generate a method

for finding an equilibrium temperature in a chemical reaction system. You can

formulate your equations measuring the temperature in Kelvin, in Celsius or in

Fahrenheit, which each will give different numerical values denoting the same

physical temperature. Fortunately, the three values can be obtained by affine

transformations from each other. For example, to get the value in Kelvin from

the value in Celsius you just have to add the number 273.15, and for the tran-

sition from Celsius to Fahrenheit you have to multiply the Celsius value with

1.8 and add 32 to it. Also, you might think of examples where you indicate dis-

tances using kilometers or nanometers, respectively, resulting in very different

numerical values that are obtained by a multiplication or division by the factor

1012, but have the same physical meaning. The fact that the choice of units or

coordinate system will result just in a affine transformation, applies to many

other root finding problems in science and engineering. It is not unreasonable

to ask that a good numerical method should behave the same if it is applied to

problems formulated in different units or coordinate systems. This property we

call ”affine invariance”.

More mathematically, given two invertible matrices A, B ∈ Rn×n and a vector

b ∈ Rn, we regard the following root finding problem

R̃(y) := AR(b + By) = 0.
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Clearly, if we have a solution z∗ with R(z∗) = 0, then we can easily construct

from it a y∗ such that R̃(y∗) = 0, by inverting the relation z∗ = b + By∗, i.e.

y∗ = B−1(z∗ − b). Let us now regard an iterative method that, starting from an

initial guess z0, generates iterates z0, z1, . . . towards the solution of R(z) = 0.

The method is called ”affine invariant” if, when it is applied to the problem

R̃(y) = 0 and started with the initial guess y0 = B−1(z0 − b) (i.e. the same point

in the new coordinate system), it results in iterates y0, y1, . . . that all satisfy the

relation yk = B−1(zk − b) for k = 0, 1, . . ..

It turns out that the exact Newton method is affine invariant, and many other

Newton type optimization methods like the Gauss-Newton method share this

property, but not all. Practically speaking, to come back to the conversion

from Celsius to Fahrenheit, Newton’s method would perform exactly as well

in America as in Europe. In contrast to this, some other methods, like for exam-

ple the gradient method, would depend on the chosen units and thus perform

different iterates in America than in Europe. More severely, a method that is

not affine invariant usually needs very careful scaling of the model equations

and decision variables in order to work well, while an affine invariant method

works (usually) well, independent of the chosen scaling.

2.4 Tight Conditions for Local Convergence

The local contraction theorem of this chapter gives sufficient conditions for lo-

cal convergence. Here, the omega condition is not restrictive, because ω can

be arbitrarily large, and is satisfied on any compact set if the function R is

twice continuously differentiable (ω is given by the maximum of the norm of

the second derivative tensor, a continuous function, on the compact set). Also,

we could start the iterations arbitrarily close to the solution, so the condition

κ + ω
2
‖z0 − z∗‖ < 1 can always be met as long as κ < 1. Thus, the only re-

ally restrictive condition is the condition that the iteration matrices Mk should

be similar enough to the true Jacobians J(zk), so that a κ < 1 exists. Unfortu-

nately, the similarity measure of the kappa-condition might not be tight, so if

we cannot find such a κ, it is not clear if the iterations converge or not.

In this section we want to formulate a sufficient condition for local conver-

gence that is tight, and even find a necessary condition for local convergence

of Newton-type methods. For this aim, we only have to make one assumption,

namely that the iteration matrices Mk are given by a continuously differen-

tiable matrix valued function M : Rn → Rn×n, i.e. that we have Mk = M(zk).

This is for example the case for an exact Newton method, as well as for any

method with fixed iteration matrix M (the function is just constant in this case).



32 Root-Finding with Newton-Type Methods

It is also the case for the Gauss-Newton method for nonlinear least squares

optimization. We need to use a classical result from nonlinear systems theory,

which we will not prove here.

Lemma 2.5 (Linear Stability Analysis). Regard an iteration of the form zk+1 =

G(zk) with G a continuously differentiable function in a neighborhood of a fixed

point G(z∗) = z∗. If all Eigenvalues of the Jacobian ∂G
∂z

(z∗) have a modulus

smaller than one, i.e. if the spectral radius ρ
(
∂G
∂z

(z∗)
)

is smaller than one, then

the fixed point is asymptotically stable and the iterates converge to z∗ with a

Q-linear convergence rate with asymptotic contraction factor ρ
(
∂G
∂z

(z∗)
)

. On

the other hand, if one of the Eigenvalues has a modulus larger than one, i.e.

if ρ
(
∂G
∂z

(z∗)
)

> 1, then the fixed point is unstable and the iterations can move

away from z∗ even if we have an initial guess z0 that is arbitrarily close to z∗.

Here, we use the definition of the spectral radius ρ(A) of a square matrix A,

as follows:

ρ(A) := max{|λ| | λ is Eigenvalue of A}.

We will not prove the lemma here, but only give some intuition. For this aim

regard the Taylor series of G at the fixed point z∗, which yields

zk+1 − z∗ = G(zk) − z∗

= G(z∗) +
∂G

∂z
(z∗)(zk − z∗) + O(‖zk − z∗‖2) − z∗

=
∂G

∂z
(z∗)(zk − z∗) + O(‖zk − z∗‖2).

Thus, up to first order, the nonlinear system dynamics of zk+1 = G(zk) are

determined by the Jacobian A := ∂G
∂z

(z∗). A recursive application of the relation

(zk+1 − z∗) ≈ A · (zk− z∗) yields (zk − z∗) = Ak · (z0− z∗)+O(‖z0− z∗‖2). Now, the

matrix product Ak shrinks to zero with increasing k if ρ(A) < 1, and it grows to

infinity if ρ(A) > 1.

When we apply the lemma to the continously differentiable map G(z) :=

z−M(z)−1R(z), then we can establish the following theorem, which is the main

result of this section.

Theorem 2.6 (Sufficient and Necessary Conditions for Local Newton Type

Convergence). Regard a Newton type iteration of the form zk+1 = zk−M(zk)−1R(zk),

where R(z) is twice continuously differentiable with Jacobian J(z) and M(z)

once continuously differentiable and invertible in a neighborhood of a solu-

tion z∗ with R(z∗) = 0. If all Eigenvalues of the matrix I − M(z∗)−1J(z∗) have a
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modulus smaller than one, i.e. if the spectral radius

κexact := ρ
(

I − M(z∗)−1J(z∗)
)

is smaller than one, then this fixed point is asymptotically stable and the iter-

ates converge to z∗ with a Q-linear convergence rate with asymptotic contrac-

tion factor κexact. On the other hand, if κexact > 1, then the fixed point z∗ is

unstable.

Proof We prove the theorem based on the lemma, applied to the map G(z) :=

z − M(z)−1R(z). We first check that indeed z∗ = G(z∗), due to the fact that

R(z∗) = 0. Second, we need to compute the Jacobian of G at z∗:

∂G

∂z
(z∗) = I − ∂(M−1)

∂z
(z∗) R(z∗)

︸︷︷︸

=0

−M(z∗)−1 ∂R

∂z
(z∗)

= I − M(z∗)−1J(z∗).

�

In summary, the spectral radius of the matrix I − M(z∗)−1J(z∗) is a tight

criterion for local convergence. If it is larger than one, the Newton type method

diverges, if it is smaller than one, the method converges.

Remark: The local contraction rate κexact directly depends on the difference

between the exact and the approximate Jacobian, due to the trivial matrix iden-

tity

I − M(z∗)−1J(z∗) = M(z∗)−1(M(z∗) − J(z∗)).

For Newton’s method itself, the two matrices are identical, M(z∗) = J(z∗), and

the linear contraction rate is zero: κexact = 0. This should be expected due to the

fact that Newton’s method converges quadratically. For Newton-type methods

with nonzero κexact, the convergence will be linear only, but it can be very fast

linear convergence if the approximate Jacobian is close to the exact one and

κexact ≪ 1. On the other hand, if the difference between the two matrices is

too large, the spectral radius κexact might become larger than one, making the

Newton-type method divergent.

2.5 Globalization

When the initial guess z0 for starting a Newton-type iteration is too far from the

solution, the iterates usually do not converge. In order to be able to reach the
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region of local convergence, most Newton-type methods use a form of glob-

alization for ensuring global convergence, i.e., convergence from any starting

point. Here, we only give one example for a globalization technique for an

exact Newton method, one that is based on line search.

Globalization by Armijo backtracking line search. To design a simple glob-

alization procedure for a Newton method to solve R(z) = 0, we regard the func-

tion V(z) = (1/2) ‖R(z)‖2 as the merit function. Because its gradient is given

by ∇V(z) = J(z)⊤R(z), the exact Newton step p(z) ≔ −J(z)−1R(z) is a descent

direction for any point with R(z) , 0, as can be seen by computing the scalar

product ∇V(z)⊤p(z) = −R(z)⊤J(z)J(z)−1R(z) = − ‖R(z)‖2 < 0. This means that

there exists a step length α ∈ (0, 1] such that V(z + αp(z)) < V(z). To ensure

sufficient decrease of the merit function in each iteration, we can even impose

the stronger Armijo condition that requires

V(z + αp(z)) ≤ V(z) + αγ∇V(z)⊤p(z) (2.2)

for some fixed γ ∈ (0, 1/2), e.g., γ = 0.01. By choosing any step length α

that satisfies the Armijo condition, one can prevent the iterates from jumping

between points of nearly equal merit-function value without making progress.

To prevent the steps from becoming infinitely small, one can use the backtrack-

ing algorithm. First, one checks if the step length α = 1 satisfies the Armijo

condition. If not, one reduces α by a constant factor, i.e., one reduces α to βα

with a fixed value β ∈ (0, 1), e.g., β = 0.8, and checks the Armijo condition

again. If it is satisfied, one accepts the step length; if not, one reduces the value

of α further, each time by the constant factor β. For descent directions and

continuously differentiable merit functions, the backtracking algorithm always

terminates and delivers a step length larger than zero. In fact, it delivers the

largest value α ∈ {1, β, β2, . . .} that satisfies the Armijo condition (2.2). We de-

note the selected step length by α(z) in order to express its implicit dependence

on z.

In summary, the globalized Newton’s method iterates according to the sys-

tem dynamics z+ = f (z) with f (z) = z + α(z)p(z). Note that while the merit

function V(z) is continuous and even differentiable, the discrete time system f

is not continuous due to the state dependent switches in the backtracking pro-

cedure. Under mild assumptions on the function R(z), one can ensure global

convergence of the damped Newton procedure to a stationary point of the merit

function, i.e., to a point z∗ with ∇V(z∗) = 0, which can either be a solution with

R(z∗) = 0 or a point where J(z∗) is singular.
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Exercises

2.1 Sketch the root finding residual function R : R→ R, R(z) := z16 − 2 and

its tangent at z0 = 1, and locate the first Newton iterate z1 in the graph.

2.2 For the root finding problem above, regard a Newton-type method with

fixed iteration matrix M := 20 and locate the first Newton-type iterate in

the graph. Also draw the corresponding Taylor-type approximation that

is given by the linear function R̃(z) := z0 + M(z − z0).

2.3 Define the iteration map G(z) := z − M(z)−1R(z) for R(z) := z16 − 2

with two different choices for M: first, with MNewton(z) = J(z) (exact

Newton), and second, with Mfixed := 20 (fixed Jacobian approximation).

Draw both iteration maps on the positive orthant. Also draw the diagonal

line corresponding to the identity map, and sketch the first three Newton-

type iterates for both methods.

2.4 As above, plot the iteration map for the fixed Jacobian method, but now

for different values of Mfixed. For which values of Mfixed do you expect

divergence? How would you justify your expectation analytically, and

how can it be interpreted visually?

2.5 Write a computer program for Newton-type optimization in Rn , that

takes as inputs a function F(z), a Jacobian approximation M(z), and a

starting point z0 ∈ Rn, and which outputs the first 20 Newton type itera-

tions. Test your program with R(z) = z16 − 2 and exact Jacobian starting

at different positive initial guesses. How many iterations do you typically

need in order to obtain a solution that is exact up to machine precision?

2.6 An equivalent problem to z16 − 2 = 0 can be obtained by lifting it to a

higher dimensional space [2], as follows:

R(z) =





z2 − z2
1

z3 − z2
2

z4 − z2
3

2 − z2
4





.

Implement Newton’s method for this lifted problem and start it at z0 =

[1, 1, 1, 1]⊤. Also implement the Newton method for the unlifted prob-

lem, and compare the convergence of the two algorithms.

2.7 Consider the root finding problem R(z) = 0 with R : R → R,R(z) :=

tanh(z) − 1
2
. Convergence of Newton’s method will be sensitive to the

chosen initial value z0. Plot R(z) and observe the non-linearity. Imple-

ment Newton’s method (with full steps) and test if it converges or not for

different initial values z0.
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2.8 Regard the problem of finding a solution to the nonlinear equation sys-

tem x = ey and x4 + y4 = 4 in the two variables x, y ∈ R. Sketch the

solution sets to the two individual equations as curves in R2 and locate

the intersection points. Now regard the solution of this system with New-

ton’s method, initialized at the point x = y = 2. Based on the system

linearization at this initial guess, sketch the solution sets of the two lin-

ear equations that define the first Newton iterate, and locate this iterate

graphically.

2.9 Regard the two dimensional root finding problem from Question 2.8

above and solve it with your implementation of Newton’s method from

Question 2.5, using different initial guesses. Does it always converge,

and if it converges, does it always converge to the same solution?

2.10 Consider the following optimization problem:

minimize
z

(1 − z2
1) + 100 (z2 − z2

1)2

︸                         ︷︷                         ︸

=: f (z)

where the objective f : R2 → R is the famous Rosenbrock function. A

solution to this problem z∗ can be obtained by solution of the nonlinear

system ∇ f (z) = 0. Compute the gradient of the Rosenbrock function,

R(z) := ∇ f (z) and the Jacobian of R (i.e. the Hessian matrix of f ) on

paper. Implement Newton’s method. Start with different initial guesses

and observe the convergence.

2.11 Solve the previous exercise with the a simple Newton-type method, where

you use a fixed Jacobian approximation that is given by M =

[

200 0

0 200

]

.

2.12 A hanging chain can be modeled as a set of N balls (each with mass m)

connected by N − 1 massless rods ( each of length L). We assume that

the two endpoints of the chain are fixed, and are interested in the equilib-

rium positions of all balls in between. In this exercise, we compute these

positions by using the equilibrium of forces and Newton’s method.

Applying the equilibrium conditions to each ball produces the follow-

ing set of equations, for i = 1, . . . ,N − 1.

Fi+1 = mg

[

0

1

]

+ Fi (2.3)

where g is the gravitational acceleration and Fi ∈ R2 is defined as the

force between the balls i and i + 1. On the other hand, considering the

geometry of the chain, the following relation between the ball positions
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pi can be obtained:

pi+1 = pi + L
Fi

‖Fi‖2
. (2.4)

Here, pi ∈ R2 represents the position of the ball i. Assume that N = 15,

Li = 1 [m] and m = 5 [kg].

(a) Fixing the position of the first mass p1 to

[

0

10

]

, knowing the force F1

and using Equations (2.3) and (2.4), we can create a forward map and

compute all the forces Fi and positions pi. Implement a function that

uses as input F1 and outputs the positions p1, . . . , p15 of every mass.

(b) Now we want to fix also the position of the last mass p15 to

[

10

10

]

.

The function from the previous task generates p15 as a function of the

initial force F1. Form a root finding problem R(z) = 0, with z := F1

and R(z) := p15(z) −
[

10

10

]

.

(c) In order to apply Newton’s method to R(z), we have to compute its

derivative. Finite differences provide an easy method for this. Defin-

ing the Jacobian of R(z) at a point z as J(z), finite differences use the

fact that:

J(z)p ≈ R(z + ǫp) − R(z)

ǫ

where we can use e.g. ǫ = 10−6. If using first p =

[

1

0

]

and then p =

[

0

1

]

,

the Jacobian can be computed after three calls of R(z). Implement the

computation of the Jacobian of J(z) at an arbitrary point z by finite

differences.

(d) Implement Newton’s method to obtain the F∗
1

that satisfies the equilib-

rium of forces and solves the root finding problem. Use the forward

map computed on the first task and plot the position of every mass

under equilibrium conditions.

(e) Can you formulate and solve an equivalent ”lifted” root finding prob-

lem for computing the rest position of the chain?
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Nonlinear Optimization

The great watershed in optimization is not

between linearity and nonlinearity, but con-

vexity and nonconvexity.

— R. Tyrrell Rockafellar

The optimization problem with which we are concerned in this and the fol-

lowing chapters is the standard Nonlinear Program (NLP) that was already

stated in the introduction:

minimize
w ∈ Rn

f (w)

subject to g(w) = 0,

h(w) ≤ 0,

(3.1)

where f : Rn → R, g : Rn → Rng , and h : Rn → Rnh are assumed to be

twice continuously differentiable. Function f is called the objective function,

function g is the vector of equality constraints, and h the vector of inequality

constraints. We start with some fundamental definitions. First, we collect all

points that satisfy the constraints in one set.

Definition 3.1 (Feasible set). The feasible set Ω is the set

Ω := {w ∈ Rn | g(w) = 0, h(w) ≤ 0} .

The points of interest in optimization are those feasible points that minimize

the objective, and they come in two different variants.

Definition 3.2 (Global minimum). The point w∗ ∈ Rn is a global minimizer if

and only if (iff) w∗ ∈ Ω and ∀w ∈ Ω : f (w) ≥ f (w∗). The value f (w∗) is the

global minimum.

38
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Unfortunately, the global minimum is usually difficult to find, and most al-

gorithms allow us to only find local minimizers, and to verify optimality only

locally.

Definition 3.3 (Local minimum). The point w∗ ∈ Rn is a local minimizer iff

w∗ ∈ Ω and there exists a neighborhoodN of w∗ (e.g., an open ball around w∗)

so that ∀w ∈ Ω ∩N : f (w) ≥ f (w∗). The value f (w∗) is a local minimum.

In order to be able to state the optimality conditions that allow us to check if

a candidate point w∗ is a local minimizer or not, we need to describe the feasi-

ble set in the neighborhood of w∗. It turns out that not all inequality constraints

need to be considered locally, but only the active ones.

Definition 3.4 (Active Constraints and Active Set). An inequality constraint

hi(w) ≤ 0 is called active at w∗ ∈ Ω iff hi(w
∗) = 0 and otherwise inactive. The

index set A(w∗) ⊂ {1, . . . , nh} of active inequality constraint indices is called

the ”active set”.

Often, the name active set also comprises all equality constraint indices, as

equalities could be considered to be always active.

Problem (3.1) is very generic. In Section 3.1 we review some special cases,

which still yield large classes of optimization problems. In order to choose

the right algorithm for a practical problem, we should know how to classify it

and which mathematical structures can be exploited. Replacing an inadequate

algorithm by a suitable one can reduce solution times by orders of magnitude.

E.g., an important structure is convexity. It allows us to to find global minima

by searching for local minima only.

For the general case we review the first and second order conditions of opti-

mality in Sections 3.2 and 3.3, respectively.

3.1 Important Special Classes

Linear Optimization

An obvious special case occurs when the functions f , g, and h in (3.1) are

linear, resulting in a linear optimization problem (or Linear Program, LP)

minimize
w ∈ Rn

c⊤w

subject to Aw − b = 0,

Cw − d ≤ 0.
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Here, the problem data are c ∈ Rn, A ∈ Rng×n, b ∈ Rng ,C ∈ Rnh×n, and d ∈ Rnh .

It is easy to show that one optimal solution of any LP – if the LP does

have a solution and is not unbounded – has to be a vertex of the polytope of

feasible points. Vertices can be represented and calculated by means of basis

solution vectors, with a basis of active inequality constraints. Thus, there are

only finitely many vertices, giving rise to Simplex algorithms that compare

all possible solutions in a clever way. However, naturally also the optimality

conditions of Section 3.2 are valid and can be used for algorithms, in particular

interior point methods.

Quadratic Optimization

If in the general NLP formulation (3.1) the constraints g, h are affine, and

the objective is a linear-quadratic function, we call the resulting problem a

Quadratic Optimization Problem or Quadratic Program (QP). A general QP

can be formulated as follows.

minimize
w ∈ Rn

c⊤w +
1

2
w⊤Bw

subject to Aw − b = 0,

Cw − d ≤ 0.

(3.2)

Here, the problem data are c ∈ Rn, A ∈ Rng×n, b ∈ Rng ,C ∈ Rnh×n, d ∈ Rnh ,

as well as the “Hessian matrix” B ∈ Rn×n. Its name stems from the fact that

∇2 f (w) = B for f (w) = c⊤w + 1
2
w⊤Bw.

The eigenvalues of B decide on convexity or non-convexity of a QP, i.e., the

possibility to solve it in polynomial time to global optimality, or not. If B < 0

we speak of a convex QP, and if B ≻ 0 we speak of a strictly convex QP. The

latter class has the property that it always has unique minimizers.

Convex Optimization

Roughly speaking, a set is convex, if all connecting lines lie inside the set:

Definition 3.5 (Convex Set). A set Ω ⊂ Rn is convex if

∀x, y ∈ Ω, t ∈ [0, 1] : x + t(y − x) ∈ Ω.

A function is convex, if all secants are above the graph:

Definition 3.6 (Convex Function). A function f : Ω → R is convex, if Ω is

convex and if

∀x, y ∈ Ω, t ∈ [0, 1] : f (x + t(y − x)) ≤ f (x) + t( f (y) − f (x)).
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Note that this definition is equivalent to saying that the Epigraph of f , i.e.,

the set {(x, s) ∈ Rn × R|x ∈ Ω, s ≥ f (x)}, is a convex set.

Definition 3.7 (Concave Function). A function f : Ω→ R is called “concave”

if (− f ) is convex.

Note that the feasible set Ω of an optimization problem (3.1) is convex if

the function g is affine and the functions hi are convex, as supported by the

following theorem.

Theorem 3.8 (Convexity of Sublevel Sets). The sublevel set {x ∈ Ω | h(x) ≤ 0}
of a convex function h : Ω→ R is convex.

Definition 3.9 (Convex Optimization Problem). An optimization problem with

convex feasible set Ω and convex objective function f : Ω→ R is called a con-

vex optimization problem.

Theorem 3.10 (Local Implies Global Optimality for Convex Problems). For

a convex optimization problem, every local minimum is also a global one.

We leave the proofs of Theorems 3.8 and 3.10 as an exercise.

There exists a whole algebra of operations that preserve convexity of func-

tions and sets, which is excellently explained in the text books on convex opti-

mization [11, 25]. Here we only mention an important fact that is related to the

positive curvature of a function. Before we proceed, we introduce an important

definition often used in this book.

Definition 3.11 (Generalized Inequality for Symmetric Matrices). We write

for a symmetric matrix B = B⊤, B ∈ Rn×n that “B < 0” if and only if B is

positive semi-definite i.e., if ∀z ∈ Rn : z⊤Bz ≥ 0, or, equivalently, if all (real)

eigenvalues of the symmetric matrix B are non-negative:

B < 0⇐⇒ min eig (B) ≥ 0.

We write for two such symmetric matrices that “A < B” iff A − B < 0, and

“A 4 B” iff B < A. We say B ≻ 0 iff B is positive definite, i.e., if ∀z ∈ Rn \ {0} :

z⊤Bz > 0, or, equivalently, if all eigenvalues of B are positive

B ≻ 0⇐⇒ min eig(B) > 0.

Theorem 3.12 (Convexity for C2 Functions). Assume that f : Ω→ R is twice

continuously differentiable and Ω convex and open. Then f is convex if and

only if for all x ∈ Ω the Hessian is positive semi-definite, i.e.,

∀x ∈ Ω : ∇2 f (x) < 0.
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Again, we leave the proof as an exercise. As an example, the quadratic ob-

jective function f (x) = c⊤x + 1
2

x⊤Bx of (3.2) is convex if and only if B < 0,

because ∀x ∈ Rn : ∇2 f (x) = B.

3.2 First Order Optimality Conditions

An important question in continuous optimization is if a feasible point w∗ ∈ Ω
satisfies necessary first order optimality conditions. If it does not satisfy these

conditions, w∗ cannot be a local minimizer. If it does satisfy these conditions,

it is a hot candidate for a local minimizer. If the problem is convex, these

conditions are even sufficient to guarantee that it is a global optimizer. Thus,

most algorithms for nonlinear optimization search for such points. The first

order condition can only be formulated if a technical “constraint qualification”

is satisfied, which in its simplest and numerically most attractive variant comes

in the following form.

Definition 3.13 (LICQ). The linear independence constraint qualification (LICQ)

holds at w∗ ∈ Ω iff all vectors ∇gi(w
∗) for i ∈ {1, . . . , ng} and ∇hi(w

∗) for

i ∈ A(w∗) are linearly independent.

To give further meaning to the LICQ condition, let us combine all active

inequalities with all equalities in a map g̃ defined by stacking all functions on

top of each other in a colum vector as follows:

g̃(w) =

[

g(w)

hi(w)(i ∈ A(w∗))

]

. (3.3)

LICQ is then equivalent to full row rank of the Jacobian matrix
∂g̃

∂w
(w∗).

The Karush-Kuhn-Tucker Optimality Conditions

This condition allows us to formulate the famous KKT conditions that are due

to Karush [56] and Kuhn and Tucker [59].

Theorem 3.14 (KKT Conditions). If w∗ is a local minimizer of the NLP (3.1)

and LICQ holds at w∗ then there exist so called multiplier vectors λ ∈ Rng and

µ ∈ Rnh with

∇ f (w∗) + ∇g(w∗)λ∗ + ∇h(w∗)µ∗ = 0 (3.4a)

g(w∗) = 0 (3.4b)

h(w∗) ≤ 0 (3.4c)

µ∗ ≥ 0 (3.4d)

µ∗i hi(w
∗) = 0, i = 1, . . . , nh. (3.4e)
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Regarding the notation used in the first line above, please observe that in this

script we use the gradient symbol ∇ also for functions g, h with multiple out-

puts, not only for scalar functions like f . While∇ f is a column vector, in∇g we

collect the gradient vectors of all output components in a matrix which is the

transpose of the Jacobian, i.e., ∇g(w) :=
∂g

∂w
(w)⊤. Note: The KKT conditions

are the first order necessary conditions for optimality (FONC) for constrained

optimization, and are thus the equivalent to ∇ f (w∗) = 0 in unconstrained opti-

mization. In the special case of convex problems, the KKT conditions are not

only necessary for a local minimizer, but even sufficient for a global minimizer.

In fact, the following extremely important statement holds.

Theorem 3.15. Regard a convex NLP and a point w∗ at which LICQ holds.

Then:

w∗ is a global minimizer⇐⇒ ∃λ, µ so that the KKT conditions hold.

The Lagrangian Function

Definition 3.16 (Lagrangian Function). We define the so called “Lagrangian

function” to be

L(w, λ, µ) = f (w) + λ⊤g(w) + µ⊤h(w).

Here, we have used again the so called “Lagrange multipliers” or “dual vari-

ables” λ ∈ Rng and µ ∈ Rnh . The Lagrangian function plays a crucial role in

both convex and general nonlinear optimization, not only as a practical short-

hand within the KKT conditions: using the definition of the Lagrangian, we

have (3.4a)⇔ ∇wL(w∗, λ∗, µ∗) = 0.

Remark 1: In the absence of inequalities, the KKT conditions simplify to

∇wL(w, λ) = 0, g(w) = 0, a formulation that is due to Lagrange and was much

earlier known than the KKT conditions.

Remark 2: The KKT conditions require the inequality multipliers µ to be

positive, µ ≥ 0, while the sign of the equality multipliers λ is arbitrary. An

interesting observation is that for a convex problem with f and all hi convex

and g affine, and for µ ≥ 0, the Lagrangian function is a convex function in

w. This often allows us to explicitly find the unconstrained minimum of the

Lagrangian for any given λ and µ ≥ 0, which is called the Lagrange dual

function, and which can be shown to be an underestimator of the minimum.

Maximizing this underestimator over all λ and µ ≥ 0 leads to the concepts of

weak and strong duality.
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Complementarity

The last three KKT conditions (3.4c)-(3.4e) are called the complementarity

conditions. For each index i, they define an L-shaped set in the (hi, µi) space.

This set is not a smooth manifold but has a non-differentiability at the origin,

i.e., if hi(w
∗) = 0 and also µ∗

i
= 0. This case is called a weakly active constraint.

Often we want to exclude this case. On the other hand, an active constraint with

µ∗
i
> 0 is called strictly active.

Definition 3.17. Regard a KKT point (w∗, λ∗, µ∗). We say that strict comple-

mentarity holds at this KKT point iff all active constraints are strictly active.

Strict complementarity is a favourable condition because, together with a

second order condition, it implies that the active set is stable against small

perturbations. It also makes many theorems easier to formulate and to prove,

and is also required to prove convergence of some numerical methods.

3.2.1 Interpretation of the KKT conditions

It is extremely useful to equip ourselves with an interpretation of the KKT

conditions (3.4). We present here the physical interpretation, where we see

the KKT conditions as a force balance between the objective function and the

constraints. It is easiest to construct this interpretation on a two-dimensional

problem. The objective function can then be seen as a landscape with hills and

depressions, and the optimal solution can be seen as a ”ball” rolling towards

the lowest point in that landscape. The force exerted by the cost function on

the solution corresponds to the slope of the cost function, i.e.:

−∇ f (w∗) .

In this picture, equality constraints can be seen as a ”rail” (or as a surface in

dimensions higher than two) along which the ”ball” is forced to move. Inequal-

ity constraints can be seen as ”barriers” that divide the landscape and contain

the ”ball” in a restrained domain. The constraints then exert forces on the ball,

maintaining it on the rail and on the correct side of the barriers.

Equality constraints, the rail in our landscape, are described by the manifold

g(w) = 0. The ”ball” is free to move along the rail but cannot leave it. The rail

then exerts a force on the ”ball” only in directions orthogonal to the rail. Such

directions are readily described by ∇g(w). The KKT condition (3.4a) for pure

equality constraints reads as:

∇ f (w∗) + ∇g (w∗) λ∗ = 0



3.2 First Order Optimality Conditions 45

µ = −0.63446 µ = 0.14645

w1w1

w
2

w
2

−∇ f (w∗)
−∇ f (w∗)

−∇g (w∗) λ∗

−∇g (w∗) λ∗

Figure 3.1 Illustration of the KKT conditions for an equality-constrained NLP.

The ”slope” of the cost function −∇ f (w) pushes the ”ball” towards its lowest

point. The ”ball” is maintained on the ”rail”, i.e. the equality constraints g (w) = 0,

via the force −∇g (w) λ, but is free to move along the rail. At the solution w∗, λ∗,

the forces exerted by the rail and the cost function even out.

and prescribes that at the solution w∗, λ∗, the force exerted by the cost func-

tion −∇ f (w∗) and the force exerted by the rail i.e. −∇g (w∗) λ∗ are in balance.

The rail will exert whatever force (in the orthogonal direction) is required to

maintain the ”ball” on the rail, hence the role of the Lagrange multipliers λ∗

is to adjust the force of the rail in order to balance out the gradient of the cost

function. This interpretation is illustrated in Figure 3.1.

Similarly, inequality constraints, the barriers in our landscape, are described

by the manifold h(w) ≤ 0, and can exert a force on the ”ball” only in direc-

tions orthogonal to the barrier, i.e. ∇h(w), and only towards the interior of the

feasible domain. The sign constraint (3.4b) on the Lagrange multipliers µ asso-

ciated to the inequality constraints is then needed to ensure that the barrier can

only ”push” the ”ball” into the feasible domain, but cannot force it to remain

in contact with the barrier. The complementarity slackness condition (3.4e) es-

sentially means that the barrier can exert a force on the ”ball” if and only if the

”ball” is in contact with the barrier. This interpretation is illustrated in Figure

3.2.

Finally the LICQ condition also has a physical interpretation. In the two-

dimensional case, when the LICQ fails, some constraints exert forces that are

collinear at the solution, resulting in infinite forces. This interpretation is illus-

trated in Figure 3.3.
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µ = −0.63446 µ = 0

w1w1

w
2

w
2

−∇ f (w∗)
−∇ f (w∗) = 0

h (w) ≤ 0h (w) ≤ 0

µ∗ = 0, h (w∗) < 0

∇h (w∗) µ∗

Figure 3.2 Illustration of the KKT conditions for an inequality-constrained NLP.

The ”slope” of the cost function −∇ f (w) pushes the solution towards its low-

est point. The solution contained by the ”barrier”, i.e. the inequality constraints

h (w) ≤ 0 to remain within the feasible domain via the force −∇h (w) µ, but is free

to move along the barrier and towards the interior of the feasible domain. At the

solution w∗, µ∗, the forces exerted by the barrier and the cost function even out. If

the solution is in contact with the barrier, then the force is non-zero and pushes

towards the interior of the feasible domain, i.e. h(w∗) = 0, µ > 0 (left graph).

Otherwise, the barrier exerts no force on the solution, i.e. h(w∗) < 0, µ = 0 (right

graph).

w1

w
2

∇h1 (w∗)

∇h2 (w∗)

h1 (w) ≤ 0

h2 (w) ≤ 0

−∇ f (w∗)

Figure 3.3 Failure of the LICQ condition. The optimal solution is not a KKT

point. In this case, the forces exerted by the constraints h1(w) and h2(w) are

collinear, and cannot balance the slope of the cost function −∇ f (w), even though

the constraints prevent the solution from moving further toward the minimum of

the cost function.
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3.3 Second Order Optimality Conditions

In case of strict complementarity at a KKT point (w∗, λ∗, µ∗), the optimization

problem can locally be regarded to be a problem with equality constraints only,

namely those within the function g̃ defined in Equation (3.3). Though more

complex second order conditions can be formulated that are applicable even

when strict complementarity does not hold, we restrict ourselves here to this

special case.

Theorem 3.18 (Second Order Optimality Conditions). Let us regard a point

w∗ at which LICQ holds together with multipliers λ∗, µ∗ so that the KKT con-

ditions (3.4a)-(3.4e) are satisfied and let strict complementarity hold. Regard

a basis matrix Z ∈ Rn×(n−ng̃) of the null space of
∂g̃

∂w
(w∗) ∈ Rng̃×n, i.e., Z has full

column rank and
∂g̃

∂w
(w∗)Z = 0.

Then the following two statements hold:

(a) If w∗ is a local minimizer, then Z⊤∇2
wL(w∗, λ∗, µ∗)Z < 0.

(Second Order Necessary Condition, short : SONC)

(b) If Z⊤∇2
wL(w∗, λ∗, µ∗)Z ≻ 0, then w∗ is a local minimizer.

This minimizer is unique in its neighborhood, i.e., a strict local minimizer,

and stable against small differentiable perturbations of the problem data.

(Second Order Sufficient Condition, short: SOSC)

The matrix ∇2
wL(w∗, λ∗, µ∗) plays an important role in optimization algo-

rithms and is called the Hessian of the Lagrangian, while its projection on the

null space of the Jacobian, Z⊤∇2
wL(w∗, λ∗, µ∗)Z, is called the reduced Hessian.

Quadratic Problems with Equality Constraints

To illustrate the above optimality conditions, let us regard a QP with equality

constraints only.

minimize
w ∈ Rn

c⊤w +
1

2
w⊤Bw

subject to Aw + b = 0.

We assume that A has full row rank, i.e., LICQ holds. The Lagrangian is

L(w, λ) = c⊤w + 1
2
w⊤Bw + λ⊤(Aw + b) and the KKT conditions have the

explicit form

c + Bw + A⊤λ = 0

b + Aw = 0.
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This is a linear equation system in the variable (w, λ) and can be solved if the

so called KKT matrix
[

B A⊤

A 0

]

is invertible. In order to assess if the unique solution (w∗, λ∗) of this linear

system is a minimizer, we need first to construct a basis Z of the null space

of A, e.g., by a full QR factorization of A⊤ = QR with Q = (Y | Z) square

orthonormal and R = (R̄⊤ | 0)⊤. Then we can check if the reduced Hessian

matrix Z⊤BZ is positive semidefinite. If it is not, the objective function has

negative curvature in at least one of the feasible directions and w∗ cannot be a

minimizer. If on the other hand Z⊤BZ ≻ 0 then w∗ is a strict local minimizer.

Due to convexity this would also be the global solution of the QP.

Invertibility of the KKT Matrix and Stability under Perturbations

An important fact is the following. If the second order sufficient conditions for

optimality of Theorem 3.18 (b) hold, then it can be shown that the KKT-matrix





∇2
wL(w∗, λ∗, µ∗)

∂g̃

∂w
(w∗)⊤

∂g̃

∂w
(w∗)





is invertible. This implies that the solution is stable against perturbations. To

see why, let us regard a perturbed variant of the optimization problem (3.1)

minimize
w ∈ Rn

f (w) + δ⊤f w

subject to g(w) + δg = 0,

h(w) + δh ≤ 0,

(3.5)

with small vectors δ f , δg, δh of appropriate dimensions that we summarize as

δ = (δ f , δg, δh). If a solution exists for δ = 0, the question arises if a solution

exists also for small δ , 0, and how this solution depends on the perturbation

δ. This is is answered by the following theorem.

Theorem 3.19 (SOSC implies Stability of Solutions). Regard the family of

perturbed optimization problems (3.5) and assume that for δ = 0 exists a lo-

cal solution (w∗(0), λ∗(0), µ∗(0)) that satisfies LICQ, the KKT condition, strict

complementarity, and the second order sufficient condition of Theorem 3.18 (b).

Then there exists an ǫ > 0 so that for all ‖δ‖ ≤ ǫ exists a unique local solution

(w∗(δ), λ∗(δ), µ∗(δ)) that depends differentiably on δ. This local solution has

the same active set as the nominal one, i.e., its inactive constraint multipliers

remain zero and the active constraint multipliers remain positive. The solution
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does not depend on the inactive constraint perturbations. If g̃ is the combined

vector of equalities and active inequalities, and λ̃ and δ̃2 the corresponding

vectors of multipliers and constraint perturbations, then the derivative of the

solution (w∗(δ), λ̃∗(δ)) with respect to (δ1, δ̃2) is given by

d

d(δ1, δ̃2)

[

w∗(δ)

λ̃∗(δ)

]∣
∣
∣
∣
∣
∣
δ=0

= −




∇2
wL(w∗, λ∗, µ∗) ∂g̃

∂w
(w∗)⊤

∂g̃

∂w
(w∗)





−1

This differentiability formula follows from differentiation of the necessary

optimality conditions of the parametrized optimization problems with respect

to (δ1, δ̃2)

∇ f (w∗(δ)) +
∂g̃

∂w
(w∗)⊤λ̃ + δ1 = 0

g̃(w∗(δ)) + δ̃2 = 0

Invertibility of the KKT matrix and stability of the solution under perturbations

are very useful facts for the applicability of Newton-type optimization methods

that are discussed in the next chapter.

Multipliers as Shadow Costs of the Constraints

One immediate consequence of the above sensitivity result is that the gradient

of the objective function f (w∗(δ)) with respect to the perturbation parameter δ

is due to the chain rule given by

d

dδ
f (w∗(δ))

∣
∣
∣
∣
∣

⊤

δ=0

= −




∇2
wL(w∗, λ∗, µ∗) ∂g̃

∂w
(w∗)⊤

∂g̃

∂w
(w∗)





−1 [

∇w f (w∗)

0

]

=

[

0

λ̃∗

]

The last equality can be derived by noting that the KKT matrix is invertible,

thus the solution unique, and that the gradient of the Lagrangian is zero at the

solution. The interpretation of the result is twofold: first, due to the leading

zeros, it can be seen that the objective value f (w∗(δ)) is completely insensitive

against perturbations δ f in the gradient of the objective, or more general, in

perturbations of the objective function. This remarkable observation is a conse-

quence of the fact that the minimizer is in a flat region of the reduced objective,

thus feasible changes in w∗(δ) do not change the objective up to first order. The

second interpretation is equally interesting: the appearance of the multipliers

in the gradient means that changes δg̃ to the constraints lead directly to an in-

crease or decrease in the cost f (w∗(δ)). Thus, for positive multipliers, the cost

increases for positive perturbations of the constraints, and the increase in the

cost is directly given by the multiplier values λ̃. Note that this is consistent with

the fact that the inequality multipliers are restricted to be positive: an increase

in δh will tighten the inequality constraint, i.e., reduce the feasible set, such
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that the objective function can only increase. Also note that the physical units

of the multipliers are given by the objective unit divided by the correspond-

ing constraint units, i.e., for an objective in Euro and a constraint that restricts

some distance in meter, the multiplier would have the unit Euro/meter. This is

the famous interpretation of multipliers as ”shadow costs” of the constraints.

Software: An excellent tool to formulate and solve convex optimization prob-

lems in a MATLAB environment is CVX, which is available as open-source

code and easy to install.

Software for solving a QP Problem: MATLAB: quadprog. Commercial: CPLEX,

MOSEK. Open-source: CVX, qpOASES.

For anyone not really familiar with the concepts of nonlinear optimization

that are only very briefly outlined here, it is highly recommended to have a look

at the excellent Springer text book “Numerical Optimization” by Jorge No-

cedal and Steve Wright [72]. Who likes to know more about convex optimiza-

tion than the much too brief outline given in this script is recommended to have

a look at the equally excellent Cambridge University Press text book “Convex

Optimization” by Stephen Boyd and Lieven Vandenberghe [25], whose PDF is

freely available.

Exercises

3.1 Consider the following NLP:

minimize
w ∈ RN

1

2
w⊤w

subject to N − w⊤w ≤ 0.

What is the solution of the above problem? Is it a KKT point ? Is it

regular ? Does it fulfil the SOSC ? Justify and explain.

3.2 Solve the same questions of the previous tasks on the modified NLP:

minimize
w ∈ R2

1

2
w⊤w

subject to w1w2 − 1 = 0,

2 − w⊤w ≤ 0.
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3.3 A colleague of yours wants to solve the following problem:

minimize
w ∈ R2

w1 + w2 (3.6a)

subject to w1 + w2 = aw2
1 + bw2

2 + c (3.6b)

with a, b > 0. He observes the equality constraint (3.6b) and the cost

(3.6a) and concludes that solving (3.6) is equivalent to solving:

minimize
w ∈ R2

aw2
1 + bw2

2 + c

which takes the trivial solution x, y = 0. He then realizes that something

is wrong with his approach, but he cannot explain what goes wrong. Help

him.

3.4 Prove that the unconstrained optimization problem

minimize
x ∈ Rn

f (x)

with f : Rn → R a continuous, coercive function, has a global minimum

point.

Hint: Use the Weierstrass Theorem and the following definition.

Definition (Coercive functions). A continuous function f (x) that is

defined on Rn is coercive if

lim
‖x‖→∞

f (x) = +∞

or equivalently, if ∀ M ∃R : ‖x‖ > R⇒ ‖ f (x)‖ > M.

3.5 Determine and explain whether the following functions are convex or

not:

(a) f (x) = c⊤x + x⊤A⊤Ax

(b) f (x) = −c⊤x − x⊤A⊤Ax

(c) f (x) = log(c⊤x) + exp(b⊤x)

(d) f (x) = − log(c⊤x) − exp(b⊤x)

(e) f (x1, x2) = 1/(x1x2) on R2
++.
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(f) f (x1, x2) = x1/x2 on R2
++.

3.6 Determine and explain whether the following sets are convex or not:

(a) Ω = {x ∈ Rn | x⊤B⊤Bx ≤ c⊤x}

(b) A ball, i.e., a set of the form:

B(xc, r) = {x | ‖x − xc‖ ≤ r} = {x | (x − xc)⊤(x − xc) ≤ r2}

(c) A cone, i.e., a set of the form:

C = {(x, t) | ‖ x ‖ ≤ t}

(d) A wedge, i.e., a set of the form:

{x ∈ Rn | a⊤1 x ≤ b1, a
⊤
2 x ≤ b2}

(e) A polyhedra:

{x ∈ Rn | Ax � b, Cx � d}

(f) The set of points closer to one set than another:

C := {x ∈ Rn| dist(x, S) ≤ dist(x,T)},
with dist(x, S) := inf{||x − z||2 | z ∈ S}

3.7 Consider the following mixed-integer quadratic program (MIQP):

minimize
x ∈ {0, 1}n

x⊤Qx + q⊤x

subject to Ax ≥ b

where the optimization variables xi are restricted to take values in {0, 1}.
Solving mixed-integer problems is in general a challenging task, thus it

is common practice to reformulate them as the following:

minimize
x ∈ {0, 1}n

x⊤Qx + q⊤x

subject to Ax ≥ b,

xi(1 − xi) = 0 i = 0, · · · , n − 1.

(a) Is this reformulation continuous?

(b) Is this reformulation convex?

(c) Is this reformulation a QP problem?

(d) Compute the Lagrangian function L(x, λ, µ).
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(e) Derive the first and second order optimality conditions for this spe-

cific problem.

3.8 Regard, first just on paper, the following NLP:

minimize
x ∈ R2

x2

subject to x2
1 + 4x2

2 ≤ 4,

x1 ≥ −2,

x1 = 1

(a) How many degrees of freedom, how many equality, and how many

inequality constraints does this problem have?

(b) Sketch the feasible set Ω of this problem. What is the optimal solu-

tion?

(c) Bring this problem into the NLP standard form

minimize
x ∈ Rn

f (x)

subject to g(x) = 0,

h(x) ≤ 0

by defining the dimension n and the functions f , g, h along with their

dimensions appropriately.

(d) Now formulate three MATLAB functions f , g, h for the above NLP,

choose an initial guess for x, and solve the problem using fmincon.

Check that the output corresponds to what you expected.

3.9 We want to model a chain attached to two supports and hanging in be-

tween. Let us discretise it with N mass points connected by N−1 springs.

Each mass i has position (yi, zi), i = 1, . . . ,N. The equilibrium point of

the system minimises the potential energy. We know that the potential

energy of each spring is given by

V i
el =

1

2
Di

(

(yi − yi+1)2 + (zi − zi+1)2
)

,

and that the gravitational potential energy of each mass by

V i
g = mi g0 zi.
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As a result, the total potential energy is given by:

Vchain(y, z) =
1

2

N−1∑

i=1

Di

(

(yi − yi+1)2 + (zi − zi+1)2
)

+ g0

N∑

i=1

mi zi,

Considering y = [y1, · · · , yN]⊤ and z = [z1, · · · , zN]⊤, the problem that

we wish to solve is given by:

minimize
y,z

Vchain(y, z),

with optional additional inequality constraints which model a plane that

the chain can not touch. This problem can be formulated by a QP as:

minimize
x

1

2
x⊤Hx + g⊤x

subject to xlb ≤ x ≤ xub,

alb ≤ Ax ≤ aub

where x = [y1, z1, . . . , yN , zN]⊤. In this representation, you get an equality

constraint by having upper and lower bound equal, i.e. a
(k)

lb
= a

(k)

ub
for

some k.

(a) Formulate the problem using N = 40, mi = 4/N kg, Di = 70N N/m, g0 =

9.81 m/s2 with the first and last mass point fixed to (−2, 1) and (2, 1),

respectively.

(b) Solve the problem using the function quadprog from MATLAB.

(c) Visualize the solution by plotting (y, z).

(d) Introduce ground constraints: zi ≥ 0.5 and zi−0.1 yi ≥ 0.5. Solve your

QP again and plot the result. Compare the result with the previous

one.

(e) What would happen if you add instead of the piecewise linear ground

constraints, the nonlinear ground constraints zi ≥ y2
i

to your problem?

The resulting problem is no longer a QP, but is it convex?

(f) What would happen if you add instead the nonlinear ground con-

straints zi ≥ −y2
i

to your problem? Is the problem convex?

(g) Introduction to CasADi 2: Based on the template solution of Ex-

ercise 1.3, implement the above problem in CasaADi using IPOPT

instead of qpOASES. To do that, call the function nlpsol instead of

qpsol and leave the rest identical:

• MATLAB
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solver = nlpsol(’solver’,’ipopt’,prob);

• Python

solver = nlpsol(’solver’,’ipopt’,prob)

3.10 The following function has multiple local minima in the domain [−1, 1]×
[−1, 1]:

f (x, y) = exp(−x2 − y2) sin(4 (x + y + x ∗ y2))

(a) Plot and visualize the function in [−1, 1] × [−1, 1].

(b) Find the unconstrained minimizer of the function starting at differ-

ent initial points, e.g. [0, 0], [0.9, 0, 9], [−0.9,−0, 9]. Use the function

fminunc from MATLAB. What do you see?

3.11 Using the same aircraft model from Exercise 1.2, we provide a set of real

measurements of an aircraft’s flight. This data set contains position mea-

surements p̂x,k and p̂z,k but not velocity. Since it’s possible to measure

some aircraft parameters with a scale and ruler, you know that mass is

2.5, S sref is 0.7, and aspect ratio AR is 14. You don’t know the angle of

attack α or initial state x0 so they need to be estimated.

(a) Dowload the file flight_data.m from the book website to obtain

the dataset. Plot the noisy measurements as a function of time consid-

ering that the measurements were recorded during a time interval of

20 s.

(b) For Exercise 1.2, you wrote a simulation function which you can

think of as taking initial state x0 and angle of attack α as inputs, and re-

turning the simulated states over the trajectory x̄k = [ p̄x,k| p̄z,k|v̄x,k|v̄z,k], k =

0 . . .N − 1 as outputs:

[x̄0, x̄1, . . . , x̄N−1] = fsim(x0, α)

Estimate angle of attack α and initial state x0 by solving the following

NLP:

min
x0,α

N−1∑

k=0

(

p̄x,k(x0, α
) − p̂x,k)2 +

(

p̄z,k(x0, α) − p̂z,k
)2

Use the RK4 fixed-step integrator from Exercise 1.2. You may need

to adjust the initial guess in order to find the correct local minimum.

A good way to tweak the initial guess is to simulate and plot the

simulated trajectory against the data. You may also need to play with

bounds on your design variables.
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(c) Plot the final estimated trajectory against the noisy data.

3.12 Introduction to CasADi 3: Recalling the Rosenbrock problem from Ex-

ercise 2.10:

(a) Formulate and solve the following version:

minimize
x

x2
1 + 100 x2

3

subject to x3 + (1 − x1)2 − x2 = 0

Using IPOPT and x = [2.5, 3.0, 0.75] as a starting point. How many

iterations does the solver need to converge to the solution? Does it

change if we instruct IPOPT to use a limited-memory BFGS approxi-

mation? This can be done by passing the following options dictionary

as the forth argument to nlpsol:

• MATLAB

opts = struct;

opts.ipopt.hessian_approximation = ’limited-memory’;

• Python

opts = {’ipopt.hessian_approximation’: ’limited-memory’}

(b) Manually eliminate x3 from the problem formulation using the con-

straint equation and resolve the now unconstrained problem with only

two variables. How does the number of iterations change?

(c) Nonlinear root-finding problems in CasADi A special case of an

NLP is a root-finding problem. We will write them in the form:

g0(z, x1, x2, . . . , xn) = 0

g1(z, x1, x2, . . . , xn) = y1

g2(z, x1, x2, . . . , xn) = y2

...

gm(z, x1, x2, . . . , xn) = ym,

where the first equation uniquely defines z as a function of x1, . . . , xn

by the implicit function theorem and the remaining equations define

the auxiliary outputs y1, . . . , ym. Given a function g for evaluating g0,

. . . , gm, we can use CasADi to automatically formulate a (differen-

tiable) function G : {zguess, x1, x2, . . . , xn} → {z, y1, y2, . . . , ym}. This

function includes a guess for z to handle the case when the solution

is non-unique. The syntax for this, assuming n = m = 1, is:
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• MATLAB

z = SX.sym(’x’,nz);

x = SX.sym(’x’,nx);

g0 = (some expression of x and z)

g1 = (some expression of x and z)

g = Function(’g’, {z, x}, {g0, g1});

G = rootfinder(’G’, ’newton’, g);

• Python

z = SX.sym(’x’,nz)

x = SX.sym(’x’,nx)

g0 = (some expression of x & z)

g1 = (some expression of x & z)

g = Function(’g’, [z, x], [g0, g1])

G = rootfinder(’G’, ’newton’, g)

where the rootfinder function, similar to nlpsol and qpsol, ex-

pects a display name, the name of a solver plugin (here a simple full-

step Newton method) and the problem formulation, here expressed as

a residual function.

Starting with the unconstrained version of the Rosenbrock problem

use CasADi’s gradient function to get a new expression for the gra-

dient of the objective function. According to the first order necessary

conditions for optimality, this gradient must be zero. Formulate and

solve this as a root-finding problem in CasADi. Use the same initial

condition as before.
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Newton-Type Optimization Algorithms

It can be programmed in an afternoon if one

has a quadratic programing subroutine avail-

able [...]

— Michael J. D. Powell (1936-2015), [36]

4.1 Equality Constrained Optimization

Let us first regard an optimization problem with only equality constraints,

minimize
w ∈ Rn

f (w)

subject to g(w) = 0,

where f : Rn → R and g : Rn → Rng are both smooth functions. The idea

of the Newton-type optimization methods is to apply a variant of Newton’s

method to solve the nonlinear KKT conditions

∇wL(w, λ) = 0

g(w) = 0.

In order to simplify notation, we define

z :=

[

w

λ

]

and F(z) :=

[

∇wL(w, λ)

g(w)

]

with z ∈ Rn+ng , F : Rn+ng → Rn+ng , so that we can compactly formulate the

above nonlinear root finding problem as

F(z) = 0.

58
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Starting from an initial guess z0, Newton’s method generates a sequence of

iterates {zk}∞k=0
by linearizing the nonlinear equation at the current iterate

F(zk) +
∂F

∂zk

(zk)(z − zk) = 0 (4.1)

and obtaining the next iterate as its solution, i.e.

zk+1 = zk −
∂F

∂zk

(zk)−1F(zk).

For equality constrained optimization, the linear system (4.1) has the specific

form1

[

∇wL(wk, λk)

g(wk)

]

+

[

∇2
wL(wk, λk) ∇g(wk)

∇g(wk)⊤ 0

]

︸                         ︷︷                         ︸

KKT-matrix

[

w − wk

λ − λk

]

= 0.

Using the definition

∇wL(wk, λk) = ∇ f (wk) + ∇g(wk)λk

we see that the contributions depending on the old multiplier λk cancel each

other, so that the above system is equivalent to

[

∇ f (wk)

g(wk)

]

+

[

∇2
wL(wk, λk) ∇g(wk)

∇g(wk)⊤ 0

] [

w − wk

λ

]

= 0.

This formulation shows that the data of the linear system only depend on λk

via the Hessian matrix. We need not use the exact Hessian matrix, but can

approximate it with different methods. This leads to the more general class

of Newton-type optimization methods. Using any such approximation Bk ≈
∇2

wL(wk, λk), we finally obtain the Newton-type iteration as

[

wk+1

λk+1

]

=

[

wk

0

]

−
[

Bk ∇g(wk)

∇g⊤(wk) 0

]−1 [

∇ f (wk)

g(wk)

]

. (4.2)

The general Newton-type method is summarized in Algorithm 4.1. If we use

Bk = ∇2
wL(wk, λk), we recover the exact Newton method.

Algorithm 4.1 (Equality constrained full step Newton-type method).

Choose: initial guesses w0, λ0, and a tolerance ǫ

Set: k = 0

while ‖∇L(wk, λk)‖ ≥ ǫ or ‖g(wk)‖ ≥ ǫ do

1 Recall that in this book we use the convention ∇g(w) :=
∂g

∂w
(w)⊤ that is consistent with the

definition of the gradient ∇ f (w) of a scalar function f being a column vector.
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obtain a Hessian approximation Bk

get wk+1, λk+1 from (4.2)

k = k + 1

end while

4.1.1 Quadratic Model Interpretation

It is easy to show that wk+1 and λk+1 from (4.2) can equivalently be obtained

from the solution of a QP:

minimize
w ∈ Rn

∇ f (wk)⊤(w − wk) +
1

2
(w − wk)⊤Bk(w − wk)

subject to g(wk) + ∇g(wk)⊤(w − wk) = 0.

(4.3)

So we can interpret the Newton-type optimization method as a “Sequential

Quadratic Programming” (SQP) method, where we find in each iteration the

solution wQP and λQP of the above QP and take it as the next NLP solution

guess and linearization point wk+1 and λk+1. This interpretation will turn out

to be crucial when we treat inequality constraints. But let us first discuss what

methods exist for the choice of the Hessian approximation Bk.

4.1.2 The Exact Newton Method

The first and obvious way to obtain Bk is to use the exact Newton method and

just set

Bk := ∇2
wL(wk, λk).

But how can this matrix be computed? Many different ways for computing

this second derivative exist. The most straightforward way is a finite difference

approximation where we perturb the evaluation of ∇L in the direction of all

unit vectors {ei}ni=1
by a small quantity δ > 0. This yields each time one column

of the Hessian matrix, as

∇2
wL(wk, λk)ei =

∇wL(wk + δei, λk) − ∇wL(wk, λk)

δ
+ O(δ). (4.4)

Unfortunately, the evaluation of the numerator of this quotient suffers from

numerical cancellation, so that δ cannot be chosen arbitrarily small, and the

maximum attainable accuracy for the derivative is
√
ǫ if ǫ is the accuracy with

which the gradient ∇wL can be obtained. Thus, we loose half the valid digits.

If ∇wL was itself already approximated by finite differences, this means that

we have lost three quarters of the originally valid digits. More accurate and
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also faster ways to obtain derivatives of arbitrary order will be presented in the

chapter on algorithmic differentiation.

Local convergence rate: The exact Newton method has a quadratic con-

vergence rate in a neighbourhood of the optimal solution z∗, i.e. ‖zk+1 − z∗‖ ≤
ω
2
‖zk − z∗‖2 when zk is sufficiently close to z∗. This means that the number of

accurate digits doubles in each iteration. As a rule of thumb, once a Newton

method is in its area of quadratic convergence, it needs at maximum 6 iterations

to reach the highest possible precision.

4.1.3 The Constrained Gauss-Newton Method

Let us regard the special case that the objective f (w) has a nonlinear least-

squares form, i.e. f (w) = 1
2
‖R(w)‖2

2
with some function R : Rn → RnR . In this

case we can use a very powerful Newton-type method which approximates the

Hessian Bk using only first order derivatives. It is called the Gauss-Newton

method. To see how it works, let us thus regard the nonlinear least-squares

problem

minimize
w ∈ Rn

1

2
‖R(w)‖22

subject to g(w) = 0.

The idea of the Gauss-Newton method is to linearize at a given iterate wk both

problem functions R and g, in order to obtain the following approximation of

the original problem.

minimize
w ∈ Rn

1

2
‖R(wk) + ∇R(wk)⊤(w − wk)‖22 (4.5a)

subject to g(wk) + ∇g(wk)⊤(w − wk) = 0. (4.5b)

This is a convex QP which can easily be seen by noting that the objective (4.5a)

is equal to

1

2
R(wk)⊤R(wk)+ (w−wk)

⊤ ∇R(wk)R(wk)
︸          ︷︷          ︸

=∇ f (wk)

+
1

2
(w−wk)⊤ ∇R(wk)∇R(wk)⊤

︸              ︷︷              ︸

=:Bk

(w−wk)

which is convex because Bk < 0. Note that the constant term does not influence

the solution and can be dropped. Thus, the Gauss-Newton subproblem (4.5) is

identical to the SQP subproblem (4.3) with a special choice of the Hessian

approximation, namely

Bk := ∇R(wk)∇R(wk)⊤ =

nR∑

i=1

∇Ri(wk)∇Ri(wk)⊤.
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Note that the multipliers λk are not needed in order to compute the Gauss-

Newton Hessian approximation Bk. In order to assess the quality of the Gauss-

Newton Hessian approximation, let us compare it with the exact Hessian, that

is given by

∇2
wL(w, λ) =

nR∑

i=1

∇Ri(wk)∇Ri(wk)⊤ +

nR∑

i=1

Ri(w)∇2Ri(w) +

ng∑

i=1

λi∇2gi(w)

= Bk + O(‖R(wk)‖) + O(‖λ‖).

One can show that in the solution of a problem holds ‖λ∗‖ = O(‖R(w∗)‖). Thus,

in the vicinity of the solution, the difference between the exact Hessian and the

the Gauss-Newton approximation Bk is of order O(‖R(w∗)‖).
Local convergence rate: The Gauss-Newton method converges linearly,

‖zk+1 − z∗‖ ≤ κ‖zk − z∗‖ with a contraction rate κ = O(‖R(w∗)‖) in a neigh-

bourhood of the solution z∗. Thus, it converges fast if the residuals Ri(w
∗) are

small, or equivalently, if the objective is close to zero, which is our desire in

least-squares problems. In estimation problems, a low objective corresponds to

a “good fit”. Thus the Gauss-Newton method is only attracted by local minima

with a small function value, a favourable feature in practice.

4.1.4 Hessian Approximation by Quasi-Newton BFGS Updates

Besides the exact Hessian and the Gauss-Newton Hessian approximation, there

is another widely used way to obtain a Hessian approximation Bk within the

Newton-type framework. It is based on the observation that the evaluation of

∇wL at different points can deliver curvature information that can help us to

estimate ∇2
wL, similar as it can be done by finite differences, cf. Equation (4.4),

but without any extra effort per iteration besides the evaluation of ∇ f (wk)

and ∇g(wk) that we need anyway in order to compute the next step. Quasi-

Newton Hessian update methods use the previous Hessian approximation Bk,

the step sk := wk+1 − wk and the gradient difference yk := ∇wL(wk+1, λk+1) −
∇wL(wk, λk+1) in order to obtain the next Hessian approximation Bk+1. As in

the finite difference formula (4.4), this approximation shall satisfy the secant

condition

Bk+1sk = yk

but because we only have one single direction sk, this condition does not

uniquely determine Bk+1. Thus, among all matrices that satisfy the secant con-

dition, we search for the ones that minimize the distance to the old Bk, mea-

sured in some suitable norm. The most widely used Quasi-Newton update



4.2 Local Convergence of Newton-Type Methods 63

formula is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update that can be

shown to minimize a weighted Frobenius norm. It is given by the explicit for-

mula:

Bk+1 = Bk −
Bksk s⊤

k
Bk

s⊤
k

Bksk

+
yky⊤

k

s⊤
k

yk

. (4.6)

Local convergence rate: It can be shown that Bk → ∇2
wL(w∗, λ∗) in the

relevant directions, so that superlinear convergence is obtained with the BFGS

method in a neighbourhood of the solution z∗, i.e. ‖zk+1 − z∗‖ ≤ κk‖zk − z∗‖ with

κk → 0.

4.2 Local Convergence of Newton-Type Methods

We have seen three examples for Newton-type optimization methods which

have different rates of local convergence if they are started close to a solution.

They are all covered by the following theorem that exactly states the conditions

that are necessary in order to obtain local convergence.

Theorem 4.2 (Newton-Type Convergence). Regard the root finding problem

F(z) = 0, F : Rn → Rn

with z∗ a local solution satisfying F(z∗) = 0 and a Newton-type iteration zk+1 =

zk − M−1
k

F(zk) with Mk ∈ Rn×m invertible for all k. Let us assume a Lipschitz

condition on the Jacobian J(z) := ∂F
∂z

(z) as follows:

‖M−1
k (J(zk) − J(z))‖ ≤ ω‖zk − z∗‖.

Let us also assume a bound on the distance of approximation Mk from the true

Jacobian J(zk):

‖M−1
k (J(zk) − Mk)‖ ≤ κk

where κk ≤ κ with κ < 1. Finally, we assume that the initial guess z0 is suffi-

ciently close to the solution z∗,

‖z0 − z∗‖ ≤ 2

ω
(1 − κ).

Then zk → z∗ with the following linear contraction in each iteration:

‖zk+1 − z∗‖ ≤
(

κk +
ω

2
‖zk − z∗‖

)

· ‖zk − z∗‖.

If κk → 0, this results in a superlinear convergence rate, and if κk = 0 quadratic

convergence results.
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Noting that in Newton-type optimization we have

J(zk) =





∇2
wL(wk, λk)

∂g

∂w
(wk)⊤

∂g

∂w
(wk) 0





Mk =





Bk
∂g

∂w
(wk)⊤

∂g

∂w
(wk) 0





J(zk) − Mk =

[

∇2
wL(·)−Bk 0

0 0

]

the above theorem directly implies the three convergence rates that we had

already mentioned.

Corollary 4.3. Newton-type optimization methods converge

• quadratically if Bk = ∇2
wL(wk, λk) (exact Newton),

• superlinearly if Bk → ∇2
wL(wk, λk) (BFGS),

• linearly if ‖Bk − ∇2
wL(wk, λk)‖ is small (Gauss-Newton).

Proof of Theorem 4.2

We will show that ‖zk+1 − z∗‖ ≤ δk‖zk − z∗‖ with δk :=
(

κk +
ω
2
‖zk − z∗‖

)

and

that for all k holds δk < 1. For this aim let us regard

zk+1 − z∗ = zk − z∗ − M−1
k F(zk)

= zk − z∗ − M−1
k (F(zk) − F(z∗))

= M−1
k (Mk(zk − z∗)) − M−1

k

∫ 1

0

J(z∗ + t(zk − z∗))(zk − z∗)dt

= M−1
k (Mk − ∇2 f (zk))(zk − z∗)

− M−1
k

∫ 1

0

[

∇2 f (z∗ + t(zk − z∗)) − ∇2 f (zk)
]

(zk − z∗)dt.

Taking the norm of both sides:

‖zk+1 − z∗‖ ≤ κk‖zk − z∗‖ +
∫ 1

0

ω‖z∗ + t(zk − z∗) − zk‖dt ‖zk − z∗‖

=
(

κk + ω

∫ 1

0

(1 − t)dt

︸        ︷︷        ︸

= 1
2

‖zk − z∗‖
)

‖zk − z∗‖

=
(

κk +
ω

2
‖zk − z∗‖

)

︸                ︷︷                ︸

=δk

‖zk − z∗‖.
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The proof that for all k we have that δk < 1 proceeds inductively: as δ0 < 1 by

the assumptions of Theorem 4.2, we can conclude that ‖z1−z∗‖ ≤ ‖z0−z∗‖. This

in turn implies that δ1 ≤ δ0. The same reasoning can be made for each of the

following steps, implying that all δk < 1. Thus, the proof is nearly complete.

To obtain the specific convergence rates, we distinguish three cases depending

on the value of κ respectively κk:

(i) ‖zk+1 − z∗‖ ≤ ω
2
‖zk − z∗‖2, Q-quadratic convergence if κ = 0,

(ii) ‖zk+1 − z∗‖ ≤ (κk +
ω

2
‖zk − z∗‖)

︸                ︷︷                ︸

→0

‖zk − z∗‖, Q-superlinear if κk → 0,

(iii) ‖zk+1 − z∗‖ ≤ ( κ
︸︷︷︸

<1

+
ω

2
‖zk − z∗‖

︸       ︷︷       ︸

→0

)‖zk − z∗‖, Q-linear if κk do not converge

to zero.

4.3 Inequality Constrained Optimization

When a nonlinear optimization problem with inequality constraints shall be

solved, two big families of methods exist, first, nonlinear interior point (IP),

and second, sequential quadratic programming (SQP) methods. Both aim at

solving the KKT conditions (3.4) which include the non-smooth complemen-

tarity conditions, but have different ways to deal with this non-smoothness.

4.3.1 Interior Point Methods

The basic idea of an interior point method is to replace the non-smooth L-

shaped set resulting from the complementarity conditions with a smooth ap-

proximation, typically a hyberbola. Thus, a smoothing constant τ > 0 is in-

troduced and the KKT conditions are replaced by the smooth equation system

∇ f (w∗) + ∇g(w∗)λ∗ + ∇h(w∗)µ∗ = 0 (4.7a)

g(w∗) = 0 (4.7b)

µ∗i hi(w
∗) + τ = 0, i = 1, . . . , nh. (4.7c)

Note that the last equation ensures that −hi(w
∗) and µ∗

i
are both strictly positive

and on a hyperbola.2 For τ very small, the L-shaped set is very closely approx-

imated by the hyperbola, but the nonlinearity is increased. Within an interior

2 In the numerical solution algorithms for this system, we have to ensure that the iterates do not
jump to a second hyperbola of infeasible shadow solutions, by shortening steps if necessary to
keep the iterates in the correct quadrant.
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Figure 4.1 Relaxation of the complementarity slackness condition. We display

here the manifold µihi (w) + τ = 0 for various values of τ. The original non-

smooth manifold µihi (w) = 0 arising in the KKT conditions is displayed as the

thick lines.

point method, we usually start with a large value of τ and solve the resulting

nonlinear equation system by a Newton method, and then iteratively decrease

τ, always using the previously obtained solution as initialization for the next

one.

One way to interpret the above smoothened KKT-conditions is to use the last

condition to eliminate µ∗
i
= − τ

hi(w∗)
and to insert this expression into the first

equation, and to note that ∇w

(

log(−hi(w))
)

= 1
hi(w)
∇hi(w)). Thus, the above

smooth form of the KKT conditions is nothing else than the optimality condi-

tions of a barrier problem

minimize
w ∈ Rn

f (w) − τ
nh∑

i=1

log (−hi(w))

subject to g(w) = 0.

(4.8)

Note that the objective function of this problem tends to infinity when hi(w)→
0. Thus, even for very small τ > 0, the barrier term in the objective function

will prevent the inequalities to be violated. The primal barrier method just

solves the above barrier problem with a Newton-type optimization method for

equality constrained optimization for each value of τ. One can observe that the

barrier problem (4.8) and the primal-dual (4.7) deliver the same solution wτ

for any given value of τ. It is also important to know that the error between
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Figure 4.2 Illustration of the primal barrier method presented in (4.8). The left

graph displays an illustrative cost function f (w) (thick curve), and simple bounds

0 ≤ w ≤ 1. The various objective functions with barrier f (w)− τ
∑nh

i=1
log (−hi(w))

are displayed for various values of τ, alongside their respective minima wτ. The

right graph displays the error between the actual solution to the problem w∗, and

the solutions wτ obtained from the barrier problem (4.8) for various values of τ.

the solution delivered by Interior-Point methods and the exact solution of the

original problem is of the order O (τ), i.e. the error introduced by the Interior-

Point methods decreases linearly with τ.

Though easy to implement and to interpret, Interior-Point methods are not

necessarily the best in terms of numerical treatment, among other because its

KKT matrices become very ill-conditioned for small τ. This is not the case for

the primal-dual IP method that solves the full nonlinear equation system (4.7)

including the dual variables µ.

For convex problems, very strong complexity results exist that are based on

self-concordance of the barrier functions and give upper bounds on the total

number of Newton iterations that are needed in order to obtain a numerical ap-

proximation of the global solution with a given precision. When an IP method

is applied to a general NLP that might be non-convex, we can of course only ex-

pect to find a local solution, but convergence to KKT points can still be proven,

and these nonlinear IP methods perform very well in practice.

Most IP solvers treat the relaxed complementarity conditions (4.7c) using a

slack formulation, where a set of ”artificial” or slack variables si, i = 1, ..., nh
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is added to the problem in order to reformulate it. The equivalent system:

∇ f (w∗) + ∇g(w∗)λ∗ + ∇h(w∗)µ∗ = 0 (4.9a)

g(w∗) = 0 (4.9b)

µ∗i s∗i − τ = 0, i = 1, . . . , nh (4.9c)

hi(w
∗) + s∗i = 0, i = 1, . . . , nh (4.9d)

is solved instead of (4.7). Though the form (4.9) is equivalent to (4.7) and

delivers the same solution, it offers several advantages over (4.7), in particular:

• the Newton iteration on system (4.9) can be started with an initial guess w

that is infeasible with respect to the inequality constraints, i.e. hi(w) > 0

for some i, as long as the slack variables si are initiated and kept positive

throughout the iterations. Hence one does not need to provide a feasible ini-

tial guess. In the course of the Newton iterations, the inequality constraints

are brought to feasibility via the equality constraints (4.9d).

• when a Newton iteration is deployed on system (4.7), one must ensure that

h(w) < 0 thoughout the iterations, which requires a careful backtracking, i.e.

a reduction of the size of the step provided by the Newton iteration (see Sec-

tion 4.4 for more details) until h(w) < 0 is ensured. When h(w) is expensive

to evaluate, such backtracking can be time consuming. In contrast, ensuring

that s > 0, µ > 0 is trivial to do when the form (4.9) is used. The step-size

ensuring the positivity of s and µ then provides an inexpensive upper-bound

to the actual step-size that ought to be used.

Software: A very widespread and successful implementation of the nonlin-

ear IP method is the open-source code IPOPT [90, 89]. Though IPOPT can

be applied to convex problems and will yield the global solution, dedicated

IP methods for different classes of convex optimization problems can exploit

more problem structure and will solve these problems faster and more reliably.

Most commercial LP and QP solution packages such as CPLEX or MOSEK

make use of IP methods, as well as many open-source implementations such

as the sparsity exploiting QP solver OOQP.

4.3.2 Sequential Quadratic Programming (SQP) Methods

Another approach to address NLPs with inequalities is inspired by the quadratic

model interpretation that we gave before for Newton-type methods. It is called

Sequential Quadratic Programming (SQP) and solves in each iteration an in-

equality constrained QP that is obtained by linearizing the objective and con-

straint functions:
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minimize
w ∈ Rn

∇ f (wk)⊤(w − wk) +
1

2
(w − wk)⊤Bk(w − wk)

subject to g(wk) + ∇g(wk)⊤(w − wk) = 0,

h(wk) + ∇h(wk)⊤(w − wk) ≤ 0.

Note that the active set is automatically discovered by the QP solver and can

change from iteration to iteration. However, under strict complementarity, it

will be the same as in the true NLP solution w∗ once the SQP iterates wk are in

the neighborhood of w∗.

As before for equality constrained problems, the Hessian Bk can be cho-

sen in different ways. First, in the exact Hessian SQP method we use Bk =

∇2
wL(wk, λk, µk), and it can be shown that under the second order sufficient

conditions (SOSC) of Theorem 3.18 (b), this method has locally quadratic con-

vergence. Second, in the case of a least-squares objective f (w) = 1
2
‖R(w)‖2

2
,

we can use the Gauss-Newton Hessian approximation Bk = ∇R(wk)∇R(wk)⊤,

yielding linear convergence with a contraction rate κ = O(‖R(w∗)‖). Third,

quasi-Newton updates such as BFGS can directly be applied, using the La-

grange gradient difference yk := ∇wL(wk+1, λk+1, µ
k+1) − ∇wL(wk, λk+1, µ

k+1)

in formula (4.6).

Note that in each iteration of an SQP method, an inequality constrained

QP needs to be solved, but that we did not mention yet how this should be

done. One way would be to apply an IP method tailored to QP problems. This

is indeed done, in particular within SQP methods for large sparse problems.

Another way is to use a QP solver that is based on an active set method, as

sketched in the next subsection.

Software: A successful and sparsity exploiting SQP code is SNOPT [46].

Many optimal control packages such as MUSCOD-II [61] or the open-source

package ACADO [53, 1] contain at their basis structure exploiting SQP meth-

ods. Also the MATLAB solver fmincon is based on an SQP algorithm.

4.3.3 Active Set Methods

Another class of algorithms to address optimization problems with inequalities,

the active set methods, are based on the following observation: if we would

know the active set, then we could solve directly an equality constrained opti-

mization problem and obtain the correct solution. The main task is thus to find

the correct active set, and an active set method iteratively refines a guess for
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the active set that is often called the working set, and solves in each iteration an

equality constrained problem. This equality constrained problem is particularly

easy to solve in the case of linear inequality constraints, for example in LPs

and QPs. Many very successful LP solvers are based on an active set method

which is called the simplex algorithm, whose invention by Dantzig [31] was

one of the great breakthroughs in the field of optimization. Also many success-

ful QP solvers are based on active set methods. A major advantage of active

set strategies is that they can very efficiently be warm-started under circum-

stances where a series of related problems have to be solved, e.g. within an

SQP method, within codes for mixed integer programming, or in the context

of model predictive control (MPC) [42].

4.4 Globalization Strategies

In all convergence results for the Newton-type algorithms stated so far, we had

to assume that the initialization was sufficiently close to the true solution in

order to make the algorithm converge, which is not always the case. Indeed,

the Newton iteration using the SQP approach is based on solving successive

quadratic problems which approximate locally the original problem. The New-

ton step then takes the minimum of the current quadratic problem as a guess

for the minimum of the original problem. However, the Newton step can be

large, and leave the region of validity of the quadratic model. In such cases,

the Newton step can be counterproductive for improving the optimality and/or

feasibility of the iterate. We illustrate this problem for the unconstrained case

in Figure 4.3

An approach often used to overcome this problem is to use a homotopy be-

tween a problem we have already solved and the problem we want to solve: in

this procedure, we start with the known solution and then proceed slowly, step

by step modifying the relevant problem parameters, towards the problem we

want to solve, each time converging the Newton-type algorithm and using the

obtained solution as initial guess for the next problem. Applying a homotopy

requires more user input than just the specification of the problem, so most

available Newton-type optimization algorithms have so called globalization

strategies. Most of these strategies can be interpreted as automatically gener-

ated homotopies.

In the ideal case, a globalization strategy ensures global convergence, i.e.,

the Newton-type iterations converge to a local minimum from arbitrary initial

guesses. Note that the terms global convergence and globalization strategies



4.4 Globalization Strategies 71

0.5 0.6 0.7 0.8 0.9

2.4

2.45

2.5

2.55

2.6

2.65

f (wk)
f (wk+1)

w

wk wk+1

f(
w

)

Quadratic model

Newton step

Figure 4.3 Illustration of the failure of the full Newton step. The Newton iteration

is based on solving successive quadratic problems, which model locally the orig-

inal optimization problem. If the Newton step provided by the quadratic model

leaves its region of validity, it can provide a worse point wk+1 than the previous

one, i.e., wk. In this example, the Newton step going from wk to wk+1 increases the

cost function.

have nothing to do with global optimization, which is concerned with finding

global minima for non-convex problems.

Here, we only touch the topic of globalization strategies very superficially,

and for all details we refer to textbooks on nonlinear optimization and recom-

mend in particular [72].

Two ingredients characterize a globalization strategy: first, a measure of

progress, and second, a way to ensure that progress is made in each iteration.

4.4.1 Measuring Progress: Merit Functions and Filters

When two consecutive iterations of a Newton-type algorithm for solution of a

constrained optimization problem shall be compared with each other it is not

trivial to judge if progress is made by the step. The objective function might

be improved, while the constraints might be violated more, or conversely. A

merit function introduces a scalar measure of progress with the property that

each local minimum of the NLP is also a local minimum of the merit function.

Then, during the optimization routine, it can be monitored if the next Newton-

type iteration gives a better merit function than the iterate before. If this is not

the case, the step can be rejected or modified.
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A widely used merit function is the exact L1 merit function

T1(w) = f (w) + σ(‖g(w)‖1 + ‖h+(w)‖1)

with f (w) the objective, g(w) the residual vector of the equality constraints, and

h+(w) the violations of the inequality constraints, i.e., h+
i
(w) = max{0, hi(w)}

for i = 1, . . . , nh. Note that the L1 penalty function is non-smooth. If the penalty

parameter σ is larger than the largest modulus of any Lagrange multiplier at

a local minimum and KKT point (w∗, λ∗, µ∗), i.e., if σ > max{‖λ∗‖∞, ‖µ∗‖∞},
then the L1 penalty is exact in the sense that w∗ also is a local minimum of

T1(w). Thus, in a standard procedure we require that in each iteration a descent

is achieved, i.e., T1(wk+1) < T1(wk), and if it is not the case, the step is rejected

or modified, e.g., by a line search or a trust region method.

A disadvantage of requiring a descent in the merit function in each iteration

is that the full Newton-type steps might be too often rejected, which can slow

down the speed of convergence. Remedies to this are e.g. a “watchdog tech-

nique” that starting at some iterate wk allows up to M − 1 full Newton-type

steps without merit function improvement if the Mth iterate is better, i.e., if at

the end holds T1(wk+M) < T1(wk), so that the generosity was justified. If this is

not the case, the algorithm jumps back to wk and enforces strict descent for a

few iterations.

A different approach that avoids the arbitrary weighting of objective func-

tion and constraint violations within a merit function and often allows to ac-

cept more full Newton-steps comes in the form of filter methods. They regard

the pursuit of a low objective function and low constraint violations as two

equally important aims, and accept each step that leads to an improvement in

at least one of the two, compared to all previous iterations. To ensure this, a

so called filter keeps track of the best objective and constraint violation pairs

that have been achieved so far, and the method rejects only those steps that are

dominated by the filter, i.e., for which one of the previous iterates had both,

a better objective and a lower constraint violation. Otherwise the new iterate

is accepted and added to the filter, possibly dominating some other pairs in

the filter that can then be removed from the filter. Filter methods are popular

because of the fact that they often allow the full Newton-step and still have a

global convergence guarantee.

4.4.2 Ensuring Progress: Line Search and Trust-Region Methods

If a full Newton-type step does not lead to progress in the chosen measure, it

needs to be rejected. But how can a step be generated that is acceptable? Two

very popular ways for this exist, one called line search, the other trust region.
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A line search method takes the result of the QP subproblem as a trial step

only, and shortens the step if necessary. If (w
QP

k
, λ

QP

k
, µ

QP

k
) is the solution of the

QP at an SQP iterate wk, it can be shown (if the QP multipliers are smaller than

σ) that the step vector or search direction (w
QP

k
− wk) is a descent direction for

the L1 merit function T1, i.e., descent in T1 can be enforced by performing,

instead of the full SQP step wk+1 = w
QP

k
, a shorter step

wk+1 = wk + t(w
QP

k
− wk)

with a damping factor or step length t ∈ (0, 1]. One popular way to ensure

global convergence with help of a merit function is to require in each step the

so called Armijo condition, a tightened descent condition, and to perform a

backtracking line search procedure that starts by trying the full step (t = 1)

first and iteratively shortens the step by a constant factor (t ← t/β with β > 1)

until this descent condition is satisfied. As said, the L1 penalty function has

the desirable property that the search direction is a descent direction so that the

Armijo condition will eventually be satisfied if the step is short enough. Line-

search methods can also be combined with a filter as a measure of progress,

instead of the merit function.

An alternative way to ensure progress is to modify the QP subproblem by

adding extra constraints that enforce the QP solution to be in a small region

around the previous iterate, the trust region. If this region is small enough, the

QP solution shall eventually lead to an improvement of the merit function, or

be acceptable by the filter. The underlying philosophy is that the linearization

is only valid in a region around the linearization point and only here we can

expect our QP approximation to be a good model of the original NLP. Similar

as for line search methods with the L1 merit function, it can be shown for

suitable combinations that the measure of progress can always be improved

when the trust region is made small enough. Thus, a trust region algorithm

checks in each iteration if enough progress was made to accept the step and

adapts the size of the trust region if necessary.

As said above, a more detailed description of different globalization strate-

gies is given in [72].

Exercises

4.1 Prove that a regularized Newton-type step xk+1 = xk − (Bk +αI)−1∇ f (xk)

with Bk a Hessian approximation, α a positive scalar and I the iden-

tity matrix of suitable dimensions, converges to a small gradient step
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xk+1 = xk − 1
α
∇ f (xk) as α→ ∞.

4.2 Show that the Newton method is guaranteed to converge to a root (if it

exists) of any monotonically increasing convex differentiable function

F : R→ R.

4.3 Let f be a twice continuously differentiable function satisfying LI �
∇2 f (x) � mI for some L > m > 0 and let x∗ be the unique minimizer of

f over Rn.

(a) Show that for any x ∈ Rn:

f (x) − f (x∗) ≥ m

2
||x − x∗||2.

(b) Let {xk}k≥0 be the sequence generated by the damped Newton’s method

with constant stepsize tk =
m
L

. Show that:

f (xk) − f (xk+1) ≥ m

2L
∇ f (xk)⊤(∇2 f (xk))−1∇ f (xk).

(c) Show that xk → x∗ as k → ∞.

4.4 Prove the following theorem on the convergence of the exact Newton

method.

If we apply the exact Newton method on the nonlinear set of equations

r (w) = 0 and the following properties on the Jacobian hold:

• Boundedness: ‖∇r (w) ‖ ≥ m, ∀w ∈ Rn,

• Lipschitz continuity: ‖∇r (w) − ∇r (x) ‖ ≤ L‖w − x‖, ∀w, x ∈ Rn,

then the Newton iteration converges (locally) with the rate:

‖r (w + ∆w) ‖ ≤ L

2m2
‖r (w) ‖2.

Hint: use the integration by parts formula:

r (w + ∆w) = r (w) +

∫ 1

0

∇r (w + t∆w)⊤ ∆w · dt.

4.5 The goal of this exercise is to Implement different Newton-type methods

that minimize the nonlinear function:

f (x, y) =
1

2
(x − 1)2 +

1

2
(10(y − x2))2 +

1

2
y2. (4.10)
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(a) Derive, first on paper, the gradient and Hessian matrix of the function

in (4.10). Then, re-write it in the form f (x, y) = 1
2
||R(x, y)||2

2
where R :

R
2 → R3 is the residual function. Derive the Gauss-Newton Hessian

approximation and compare it with the exact one. When do the two

matrices coincide?

(b) Implement your own Newton method with exact Hessian information

and full steps. Start from the initial point (x0, y0) = (−1, 1) and use as

termination condition ||∇ f (xk, yk)||2 ≤ 10−3. Keep track of the iterates

(xk, yk) and use the provided function to plot the results.

(c) Update your code to use the Gauss-Newton Hessian approximation

instead. Compare the performance of the two algorithms and plot the

difference between exact and approximate Hessian as a function of

the iterations.

(d) Now try to implement the BFGS formula for calculating the Hessian.

Compare the results with the previous algorithms.

(e) Check how the steepest descent method performs on this example.

Your Hessian now becomes simply αI where α is a positive scalar

and I the identity matrix. Try α = 100, 200 and 500. For which values

does your algorithm converge? How does its performance compare

with the previous methods?

(f) Imagine you remove the term 1
2
y2 from f (x, y) and compare the exact

Newton’s method with the Gauss-Newton. What do you expect?

4.6 Consider an NLP of the form:

minimize
w

Φ (w)

subject to g(w) = 0.
(4.11)

Prove that, under a condition on matrix H that you should specify, the

primal Newton direction for (4.11) is provided by solving the QP:

minimize
∆w

1

2
∆w⊤H∆w + ∇Φ (w)⊤∆w

subject to g (w) + ∇g (w)⊤∆w = 0

(4.12)

and the Lagrange multipliers of QP (4.12) provide the update for the

Lagrange multipliers of (4.11).

4.7 Write a NLP solver for a problem of the type (4.11) using the Newton

method.
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• Have the option between using an exact Hessian and a Gauss-Newton

Hessian approximation.

• Implement a line-search based on the Armijo condition.

• Use ‖
[

∇L g
]

‖1 ≤ tol as an exit condition.

Hint: use the matlab symbolic toolbox to automatically compute your

sensitivities ∇g, ∇Φ, and H, generate a function computing them using

”matlabFunction”. You will then be able to easily deploy your code to

any NLP of the form (4.11), that will save you a lot of time in the follow-

ing question. Test your code on a strictly convex Quadratic Program first,

it should converge in one full Newton step.

4.8 Try the following problem:

minimize
w

1

2
w⊤w + 1⊤w

subject to w⊤w = 1

where 1 is a standing vector of ones of adequate dimension, and w ∈ Rn.

Prepare your solver for n = 2, and plots of:

• The trajectory of w1, w2 in a 2D plot, plot the unit circle representing

the constraint.

• A semi-log plot of your exit criterion ‖
[

∇L g
]

‖1 ≤ tol over the iter-

ations.

• Your step size t over the iterations.

(a) Run the code using the parameters α = β = 0.5 for the line-search

parameters and ν = 1 for the T1 merit function. Use a tolerance of

10−8. Use λ = 0 for the dual initial guess and try the following primal

initial guesses:

w =

[

0

1

]

and w =

[

−1

−1

]

and w =

[

−1

1

]

.

Explain what you see.

(b) Try now the initial guess

w =

[

1

1

]

and λ = 0.

What happens ? Explain.

(c) Same question for the initial guess

w =

[

0

0

]

and λ = 0.
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(d) Finally what happens with the initial guess

w =

[

0.5

1

]

and λ = 0.

Can you fix it ?

4.9 We now turn to the following NLP

minimize
w ∈ R3

1

2
w⊤w

subject to w2
1 − 2w3

2 − w2 − 10w3 = 0,

w2 + 10w3 = 0.

(4.13)

Deploy your NLP solver on problem (4.13). You can e.g. use the initial

guess:

w =





1

1

0





and λ =

[

0

0

]

and a tolerance of 10−8. What do you observe ? Explain.

4.10 Re-use your code to write an SQP solver for the general problems of the

form:

minimize
w

Φ(w)

subject to g(w) = 0,

h(w) ≤ 0.

(4.14)

You can use the Matlab function quadprog as a QP solver. Make sure

you include a check of the QP solver output (check for infeasibility, and

non-convexity). Verify your code by setting up a QP problem in (4.14),

you should observe a one-step convergence.

4.11 We will again use the aircraft model of Exercise 1.2 with the aircraft’s

flight noisy data of Exercise 3.11 to estimate a model for the flight trajec-

tory. The data can be obtained in the book website as flight_data.m,

and as before, it represents the position p̂x,k and p̂z,k during a 20 s flight.

For this exercise, we will assume that the solution trajectory can be mod-

eled by a fifth order polynomial as:
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p̄x,k(θx) = θx,1 + tkθx,2 + θx,3 sin
(

θx,4 + tkθx,5
)

e−θx,6tk

p̄z,k(θz) = θz,1 + tkθz,2 + θz,3 sin
(
θz,4 + tkθz,5

)
e−θz,6tk

Then, in order to model the airplane flight trajectory, we can estimate

the polynomial coefficients by solving the following optimization prob-

lem:

minimize
θx, θz

N−1∑

k=0

(

p̄x,k(θx, θz)
) − p̂x,k)2 +

(

p̄z,k(θx, θz) − p̂z,k
)2

(a) Write down the objective function in the form of Gauss-Newton:

minimize
θ

1

2
F(θ)⊤F(θ) (4.15)

(b) Linearize F(θ) analytically to solve for F0, J, where:

F(θ) ≈ F0 + J∆θ

(c) Use Newton’s method with the Gauss-Newton Hessian approxima-

tion to solve (4.15).

(d) Plot px vs −pz, −pz vs time, and px vs time. It will probably be very

useful in debugging to plot each iteration of the algorithm.

(e) In Exercise 1.2, you used a RK4 integrator to minimize the measure-

ment errors but for estimating α and the initial state. Now put that

probem in the Gauss-Newton form. Only write a MATLAB function

for F, not J. A function for computing J from F is provided in the

book website as finite_difference_jacob.m. You will call this

function with a command something like:

[F0,J] = finite_difference_jacob(@(x)Fobj(x),x0);

Solve this problem using Newton’s method with the Gauss-Newton

Hessian approximation. For initial guess, use any initial state you

want, and use α = 3◦.

4.12 CasADi Exercise: SQP Implementation Regard the following optimiza-

tion problem:

minimize
x

f (x) :=
1

2
(x1 − 1)2 +

1

2
(10(x2 − x2

1))2 +
1

2
x2

2

subject to g(x) := x1 + (1 − x2)2 = 0,

h(x) := 0.2 + x2
1 − x2 ≤ 0

(4.16)
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(a) Re-write on paper the objective function in nonlinear least-square

form f (x) = 1
2
‖R(x)‖2

2
and derive the Gauss-Newton approximation

of the Hessian of the Lagrangian.

(b) We will start by implementing an SQP solver for the unconstrained

problem obtained by removing both g and h from (4.16). Using the

template provided in the website, implement the CasADi functions f

and Jf that return evaluations of f and its Jacobian. Use the numerical

values given in the template to check that your implementation is

correct. Do the same for the residual function R and its Jacobian.

(c) Using the Jacobian of f and R build the Gauss-Newton objective func-

tion

fgn =
1

2
∆xT∇R(xk)∇R(xk)T∆x + ∇x f (xk)T∆x.

Then, allocate an instance of the QP solver qpOASES using CasADi

and use it to solve the local quadratic approximations in the SQP

iterations. Plot the results using the template. Where do the iterates

converge to?

(d) Include now the equality constraints. Define two CasADi functions G

and Jg that return evaluations of g and its Jacobian and use them to

define the linearized equality constraint

gl = g(xk) + ∇gx(xk)T∆x.

Include this constraint in the QP formulation and run the simulation

again. Does the solution change?

(e) Finally, include the inequality constraints. As in Task 5.4, define H

and Jh and use them to define the linearized inequality constraints.

Include them in the QP formulation and run the finalized version of

the SQP solver.
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Calculating Derivatives

Progress is measured by the degree of differ-

entiation within a society.

— Herbert Read

Derivatives of computer coded functions are needed everywhere in optimiza-

tion. In order to just check optimality of a point, we need already to com-

pute the gradient of the Lagrangian function. Within Newton-type optimiza-

tion methods, we need the full Jacobian of the constraint functions. If we want

to use an exact Hessian method, we even need second order derivatives of the

Lagrangian.

There are many ways to compute derivatives: Doing it by hand is error prone

and nearly impossible for longer evaluation codes. Computer algebra packages

like Mathematica or Maple can help us, but require that the function is formu-

lated in their specific language. More annoyingly, the resulting derivative code

can become extremely long and slow to evaluate.

On the other hand, finite differences can always be applied, even if the func-

tions are only available as black-box codes. They are easy to implement and

relatively fast, but they necessarily lead to a loss of precision of half the valid

digits, as they have to balance the numerical errors that originate from Taylor

series truncation and from finite precision arithmetic. Second derivatives ob-

tained by recursive application of finite differences are even more inaccurate.

The best perturbation sizes are difficult to find in practice. Note that the com-

putational cost to compute the gradient ∇ f (x) of a scalar function f : Rn → R
is (n + 1) times the cost of one function evaluation.

We will see that a more efficient way exists to evaluate the gradient of a

scalar function, which is also more accurate. The technology is called algo-

rithmic differentiation (AD) and requires in principle nothing more than that

80
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the function is available in the form of source code in a standard programming

language such as C, C++ or FORTRAN.

5.1 Algorithmic Differentiation (AD)

Algorithmic differentiation uses the fact that each differentiable function F :

R
n → RnF is composed of several elementary operations, like multiplication,

division, addition, subtraction, sine-functions, exp-functions, etc. If the func-

tion is written in a programming language like e.g. C, C++ or FORTRAN,

special AD-tools can have access to all these elementary operations. They can

process the code in order to generate new code that does not only deliver the

function value, but also desired derivative information. Algorithmic differenti-

ation was traditionally called automatic differentiation, but as this might lead

to confusion with symbolic differentiation, most AD people now prefer the

term algorithmic differentiation, which fortunately has the same abbreviation.

A good and authoritative textbook on AD is [48].

In order to see how AD works, let us regard a function F : Rn → R
nF

that is composed of a sequence of m elementary operations. While the inputs

x1, . . . , xn are given before, each elementary operation φi, i = 0, . . . ,m−1 gener-

ates another intermediate variable, xn+i+1. Some of these intermediate variables

are used as output of the code, but in principle we can regard all variables as

possible outputs, which we do here. This way to regard a function evaluation

is stated in Algorithm 5.1 and illustrated in Example 5.2 below.

Algorithm 5.1 (User Function Evaluation via Elementary Operations).

Input: x1, . . . , xn

Output: x1, . . . , xn+m

for i = 0 to m − 1 do

xn+i+1 ← φi(x1, . . . , xn+i)

end for

Note: each φi depends on only one or two out of {x1, . . . , xn+i}.

Example 5.2 (Function Evaluation via Elementary Operations). Let us regard

the simple scalar function

f (x1, x2, x3) = sin(x1x2) + exp(x1x2 x3)

with n = 3. We can decompose this function into m = 5 elementary operations,



82 Calculating Derivatives

namely

x4 = x1 x2

x5 = sin(x4)

x6 = x4 x3

x7 = exp(x6)

x8 = x5 + x7.

Thus, if the n = 3 inputs x1, x2, x3 are given, the m = 5 elementary operations

φ0, . . . , φ4 compute the m = 5 intermediate quantities, x4, . . . , x8, the last of

which is our desired scalar output, xn+m.

The idea of AD is to use the chain rule and differentiate each of the elemen-

tary operations φi separately. There are two modes of AD, on the one hand

the “forward” mode of AD, and on the other hand the “backward”, “reverse”,

or “adjoint” mode of AD. In order to present both of them in a consistent

form, we first introduce an alternative formulation of the original user func-

tion, that uses augmented elementary functions, as follows1: we introduce new

augmented states

x̃0 = x =





x1

...

xn





, x̃1 =





x1

...

xn+1





, . . . , x̃m =





x1

...

xn+m





as well as new augmented elementary functions φ̃i : Rn+i → Rn+i+1, x̃i 7→
x̃i+1 = φ̃i(x̃i) with

φ̃i(x̃i) =





x1

...

xn+i

φi(x1, . . . , xn+i)





, i = 0, . . . ,m − 1.

Thus, the whole evaluation tree of the function can be summarized as a con-

catenation of these augmented functions followed by a multiplication with a

“selection matrix” C that selects from x̃m the final outputs of the computer

code.

F(x) = C · φ̃m−1(φ̃m−2(· · · φ̃1(φ̃0(x)))).

The full Jacobian of F, that we denote by JF =
∂F
∂x

is given by the chain rule

1 MD thanks Carlo Savorgnan for having outlined to him this way of presenting forward and
backward AD
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as the product of the Jacobians of the augmented elementary functionsJ̃i =
∂φ̃i

∂x̃i
,

as follows:

JF = C · J̃m−1 · J̃m−2 · · · J̃1 · J̃0. (5.1)

Note that each elementary Jacobian is given as a unit matrix plus one extra row.

Also note that the extra row that is here marked with stars ∗ has at maximum

two non-zero entries.

J̃i =





1

1

. . .

1

∗ ∗ ∗ ∗





.

For the generation of first order derivatives, algorithmic differentiation uses

two alternative ways to evaluate the product of these Jacobians, the forward

and the backward mode as described in the next two sections.

5.2 The Forward Mode of AD

In forward AD we first define a seed vector p ∈ Rn and then evaluate the

directional derivative JF p in the following way:

JF p = C · (J̃m−1 · (J̃m−2 · · · (J̃1 · (J̃0 p)))).

In order to write down this long matrix product as an efficient algorithm where

the multiplications of all the ones and zeros do not cause computational costs,

it is customary in the field of AD to use a notation that uses “dot quantities” ẋi

that we might think of as the velocity with which a certain variable changes,

given that the input x changes with speed ẋ = p. We can interpret them as

ẋi ≡
dxi

dx
p.

In the augmented formulation, we can introduce dot quantities ˙̃xi for the aug-

mented vectors x̃i, for i = 0, . . . ,m−1, and the recursion of these dot quantities

is just given by the initialization with the seed vector, ˙̃x0 = p, and then the re-

cursion

˙̃xi+1 = J̃i(x̃i) ˙̃xi, i = 0, 1, . . . ,m − 1.

Given the special structure of the Jacobian matrices, most elements of ˙̃xi are

only multiplied by one and nothing needs to be done, apart from the computa-

tion of the last component of the new vector ˙̃xi+1. This last component is ẋn+i+1
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Thus, in an efficient implementation, the forward AD algorithm works as the

algorithm below. It first sets the seed ẋ = p and then proceeds as follows.

Algorithm 5.3 (Forward Automatic Differentiation).

Input: ẋ1, . . . , ẋn and all partial derivatives
∂φi

∂x j

Output: ẋ1, . . . , ẋn+m

for i = 0 to m − 1 do

ẋn+i+1 ←
∑n+i

j=1
∂φi

∂x j
ẋ j

end for

Note: each sum consist of only one or two non-zero entries.

In forward AD, the function evaluation and the derivative evaluation can be

performed in parallel, which eliminates the need to store any internal informa-

tion. This is best illustrated using an example.

Example 5.4 (Forward Automatic Differentiation). We regard the same exam-

ple as above, f (x1, x2, x3) = sin(x1x2) + exp(x1x2x3). First, each intermediate

variable has to be computed, and then each line can be differentiated. For given

x1, x2, x3 and ẋ1, ẋ2, ẋ3, the algorithm proceeds as follows:

x4 = x1x2 ẋ4 = ẋ1 x2 + x1 ẋ2

x5 = sin(x4) ẋ5 = cos(x4)ẋ4

x6 = x4x3 ẋ6 = ẋ4 x3 + x4 ẋ3

x7 = exp(x6) ẋ7 = exp(x6)ẋ6

x8 = x5 + x7 ẋ8 = ẋ5 + ẋ7

The result is ẋ8 = (ẋ1, ẋ2, ẋ3)∇ f (x1, x2, x3).

It can be proven that the computational cost of Algorithm 14.15 is smaller

than two times the cost of Algorithm 5.1, or short

cost(JF p) ≤ 2 cost(F).

If we want to obtain the full Jacobian of F, we need to call Algorithm 14.15

several times, each time with the seed vector corresponding to one of the n unit

vectors in Rn, i.e. we have

cost(JF) ≤ 2 n cost(F).
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AD in forward mode is slightly more expensive than numerical finite differ-

ences, but it is exact up to machine precision.

5.2.1 The “Imaginary trick” in MATLAB

An easy way to obtain high precision derivatives in MATLAB is closely related

to AD in forward mode. It is based on the following observation: if F : Rn →
R

nF is analytic and can be extended to complex numbers as inputs and outputs,

then for any t > 0 holds

JF(x)p =
im(F(x + itp))

t
+ O(t2).

In contrast to finite differences, there is no subtraction in the numerator, so

there is no danger of numerical cancellation errors, and t can be chosen ex-

tremely small, e.g. t = 10−100, which means that we can compute the deriva-

tive up to machine precision. This “imaginary trick” can most easily be used

in a programming language like MATLAB that does not declare the type of

variables beforehand, so that real-valued variables can automatically be over-

loaded with complex-valued variables. This allows us to obtain high-precision

derivatives of a given black-box MATLAB code. We only need to be sure that

the code is analytic (which most codes are) and that matrix or vector transposes

are not expressed by a prime ’ (which conjugates a complex number), but by

dot-prime .’ or transpose().

5.3 The Backward Mode of AD

In backward AD we evaluate the product in Eq. (5.1) in the reverse order com-

pared with forward AD. Backward AD does not evaluate forward directional

derivatives. Instead, it evaluates adjoint directional derivatives: when we de-

fine a seed vector λ ∈ RnF then backward AD is able to evaluate the product

λ⊤JF . It does so in the following way:

λ⊤JF = ((((λ⊤C) · J̃m−1) · J̃m−2) · · · J̃1) · J̃0. (5.2)

When writing this matrix product as an algorithm, we use “bar quantities” in-

stead of the “dot quantities” that we used in the forward mode. These quantities

can be interpreted as derivatives of the final output with respect to the respec-

tive intermediate quantity. We can interpret

x̄i ≡ λ⊤
dF

dxi

.
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Each intermediate variable has a bar variable and at the start, we initialize all

bar variables with the value that we obtain from C⊤λ. Note that most of these

seeds will usually be zero, depending on the output selection matrix C. Then,

the backward AD algorithm modifies all bar variables. Backward AD gets most

transparent in the augmented formulation, where we have bar quantities ¯̃xi for

the augmented states x̃i. We can transpose the above Equation (5.2) in order to

obtain

J⊤Fλ = J̃⊤0 · (J̃⊤1 · · · J̃
⊤
m−1 (C⊤λ)

︸︷︷︸

= ¯̃xm
︸       ︷︷       ︸

= ¯̃xm−1

).

In this formulation, the initialization of the backward seed is nothing else than

setting ¯̃xm = C⊤λ and then going in reverse order through the recursion

¯̃xi = J̃i(x̃i)
⊤ ¯̃xi+1, i = m − 1,m − 2, . . . , 0.

Again, the multiplication with ones does not cause any computational cost, but

an interesting feature of the reverse mode is that some of the bar quantities can

get several times modified in very different stages of the algorithm. Note that

the multiplication J̃⊤
i

¯̃xi+1 with the transposed Jacobian

J̃⊤i =





1 ∗
1 ∗

. . . ∗
1 ∗





.

modifies at maximum two elements of the vector ¯̃xi+1 by adding to them the

partial derivative of the elementary operation multiplied with x̄n+i+1. In an effi-

cient implementation, the backward AD algorithm looks as follows.

Algorithm 5.5 (Reverse Automatic Differentiation).

Input: seed vector x̄1, . . . , x̄n+m and all partial derivatives
∂φi

∂x j

Output: x̄1, x̄2, . . . , x̄n

for i = m − 1 down to 0 do

for all j = 1, . . . , n + i do

x̄ j ← x̄ j + x̄n+i+1
∂φi

∂x j

end for

end for

Note: each inner loop will only update one or two bar quantities.
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Example 5.6 (Reverse Automatic Differentiation). We regard the same exam-

ple as before, and want to compute the gradient ∇ f (x) = (x̄1, x̄2, x̄3)⊤ given

(x1, x2, x3). We set λ = 1. Because the selection matrix C selects only the last

intermediate variable as output, i.e. C = (0, · · · 0, 1), we initialize the seed vec-

tor with zeros apart from the last component, which is one. In the reverse mode,

the algorithm first has to evaluate the function with all intermediate quantities,

and only then it can compute the bar quantities, which it does in reverse order.

At the end it obtains, among other, the desired quantitities (x̄1, x̄2, x̄3). The full

algorithm is the following.

// *** forward evaluation of the function ***

x4 = x1 x2

x5 = sin(x4)

x6 = x4 x3

x7 = exp(x6)

x8 = x5 + x7

// *** initialization of the seed vector ***

x̄i = 0, i = 1, . . . , 7

x̄8 = 1

// *** backwards sweep ***

// * differentiation of x8 = x5 + x7

x̄5 = x̄5 + 1 x̄8

x̄7 = x̄7 + 1 x̄8

// * differentiation of x7 = exp(x6)

x̄6 = x̄6 + exp(x6)x̄7

// * differentiation of x6 = x4 x3

x̄4 = x̄4 + x3 x̄6

x̄3 = x̄3 + x4 x̄6

// * differentiation of x5 = sin(x4)

x̄4 = x̄4 + cos(x4)x̄5

// differentiation of x4 = x1x2

x̄1 = x̄1 + x2 x̄4

x̄2 = x̄2 + x1 x̄4
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The desired output of the algorithm is (x̄1, x̄2, x̄3), equal to the three compo-

nents of the gradient ∇ f (x). Note that all three are returned in only one reverse

sweep.

It can be shown that the cost of Algorithm 5.5 is less than 3 times the cost

of Algorithm 5.1, i.e.,

cost(λ⊤JF ) ≤ 3 cost(F).

If we want to obtain the full Jacobian of F, we need to call Algorithm 5.5

several times with the nF seed vectors corresponding to the unit vectors in RnF ,

i.e. we have

cost(JF) ≤ 3 nF cost(F).

This is a remarkable fact: it means that the backward mode of AD can compute

the full Jacobian at a cost that is independent of the state dimension n. This is

particularly advantageous if nF ≪ n, e.g. if we compute the gradient of a scalar

function like the objective or the Lagrangian. The reverse mode can be much

faster than what we can obtain by finite differences, where we always need

(n + 1) function evaluations. To give an example, if we want to compute the

gradient of a scalar function f : Rn → R with n =1 000 000 and each call of

the function needs one second of CPU time, then the finite difference approxi-

mation of the gradient would take 1 000 001 seconds, while the computation of

the same quantity with the backward mode of AD needs only 4 seconds (1 call

of the function plus one backward sweep). Thus, besides being more accurate,

backward AD can also be much faster than finite differences.

The only disadvantage of the backward mode of AD is that we have to store

all intermediate variables and partial derivatives, in contrast to finite differences

or forward AD. A partial remedy to this problem exist in form of checkpointing

that trades-off computational speed and memory requirements. Instead of all

intermediate variables, it only stores some “checkpoints” during the forward

evaluation. During the backward sweep, starting at these checkpoints, it re-

evaluates parts of the function to obtain those intermediate variables that have

not been stored. The optimal number and location of checkpoints is a science

of itself. Generally speaking, checkpointing reduces the memory requirements,

but comes at the expense of runtime.

From a user perspective, the details of implementation are not too relevant,

but it is most important to just know that the reverse mode of AD exists and

that it allows in many cases a much more efficient derivative generation than

any other technique.
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5.3.1 Efficient Computation of the Hessian

A particularly important quantity in Newton-type optimization methods is the

Hessian of the Lagrangian. It is the second derivative of the scalar function

L(x, λ, µ) with respect to x. As the multipliers are fixed for the purpose of

differentiation, we can for notational simplicity just regard a function f : Rn →
R of which we want to compute the Hessian ∇2 f (x). With finite differences we

would at least need (n + 2)(n + 1)/2 function evaluations in order to compute

the Hessian, and due to round-off and truncation errors, the accuracy of a finite

difference Hessian would be much lower than the accuracy of the function f :

we loose three quarters of the valid digits.

In contrast to this, algorithmic differentiation can without problems be ap-

plied recursively, yielding a code that computes the Hessian matrix at the same

precision as the function f itself, i.e. typically at machine precision. Moreover,

if we use the reverse mode of AD at least once, e.g. by first generating an

efficient code for ∇ f (x) (using backward AD) and then using forward AD to

obtain the Jacobian of it, we can reduce the CPU time considerably compared

to finite differences. Using the above procedure, we would obtain the Hessian

∇2 f at a cost of 2 n times the cost of a gradient ∇ f , which is about four times

the cost of evaluating f alone. This means that we have the following runtime

bound:

cost(∇2 f ) ≤ 8 n cost( f ).

A compromise between accuracy and ease of implementation that is equally

fast in terms of CPU time is to use backward AD only for computing the first

order derivative ∇ f (x), and then to use finite differences for the differentiation

of ∇ f (x).

5.4 Algorithmic Differentiation Software

Most algorithmic differentiation tools implement both forward and backward

AD, and most are specific to one particular programming language. They come

in two different variants: either they use operator overloading or source-code

transformation.

The first class does not modify the code but changes the type of the variables

and overloads the involved elementary operations. For the forward mode, each

variable just gets an additional dot-quantity, i.e. the new variables are the pairs

(xi, ẋi), and elementary operations just operate on these pairs, like e.g.

(x, ẋ) · (y, ẏ) = (xy, xẏ + yẋ).
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An interesting remark is that operator overloading is also at the basis of the

imaginary trick in MATLAB were we use the overloading of real numbers

by complex numbers and used the small imaginary part as dot quantity and

exploited the fact that the extremely small higher order terms disappear by

numerical cancellation.

A prominent and widely used AD tool for generic user supplied C++ code

that uses operator overloading is ADOL-C. Though it is not the most efficient

AD tool in terms of CPU time it is well documented and stable. Another popu-

lar tool in this class is CppAD.

The other class of AD tools is based on source-code transformation. They

work like a text-processing tool that gets as input the user supplied source code

and produces as output a new and very differently looking source code that im-

plements the derivative generation. Often, these codes can be made extremely

fast. Tools that implement source code transformations are ADIC for ANSI C,

and ADIFOR and TAPENADE for FORTRAN codes.

In the context of ODE or DAE simulation, there exist good numerical in-

tegrators with forward and backward differentiation capabilities that are more

efficient and reliable than a naive procedure that would consist of taking an

integrator and processing it with an AD tool. Examples for integrators that use

the principle of forward and backward AD are the code DAESOL-II or the

open-source codes from the ACADO Integrators Collection or from the SUN-

DIALS Suite.

Exercises

5.1 Assume we have a twice continuously differentiable function f : R→ R
and we want to evaluate its derivative f ′(x0) at x0 with finite differences.

Further assume that in a neighborhood N(x0) it holds:

| f ′′(x)| ≤ f ′′max, | f (x)| ≤ fmax (5.3)

with N(x0) := {x |x0 − δ ≤ x ≤ x0 + δ}, δ > t and t the perturbation in the

finite difference approximation. The function f (x) can be represented on

a computing system with an accuracy ǫmach, i.e., it is perturbed by noise

ǫ(x):

f̃ (x) = f (x)(1 + ǫ(x)) |ǫ(x)| ≤ ǫmach.

(a) Compute a boundψ on the error of the finite difference approximation
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of f ′(x0)
∣
∣
∣
∣
∣
∣

f̃ (x0 + t) − f̃ (x0)

t
− f ′(x0)

∣
∣
∣
∣
∣
∣
≤ ψ(t, fmax, f ′′max, ǫmach).

(b) Which value t∗ minimizes this bound and which value has the bound

at t∗?

(c) Do a similar analysis for the central differences where f̃ ′(x0) =
f̃ (x0+t)− f̃ (x0−t)

2t
.

Hint: you can assume that also the third derivative is bounded in

[x0 − t, x0 + t].

5.2 Consider a two-dimensional model of an airplane with states x = [px, pz,

vx, vz] where position ~p = [px, pz] and velocity ~v = [vx, vz] are vectors in

the x− z directions. We will use the standard aerospace convention that x̂

is forward and ẑ is down, so altitude is −pz. The system has one control

u = [α], where α is the aerodynamic angle of attack in radians. A Matlab

function has been provided for you which integrates the system in time,

implementing:

xk+1 = xk + h ∗ f (xk, uk)

where the continuous time system dynamics have the form:

f (x, u) =





vx

vz

Fx/m

Fz/m





with

~F = ~Flift + ~Fdrag + ~Fgravity.

As well as outputting xk+1, this function also provides ∂xk+1

∂xk
and ∂xk+1

∂uk
.

This function is available as integrate_airplane_ode.m at the book

webpage. In this exercise we want to find controls for the airplane so that

it gets a maximum velocity in upwards direction at the end of the horizon

(after 2 seconds) using h = 0.02 and a horizon length of N = 100. In

particular, we will optimize the following NLP:

minimize
U ∈ R100

φ(U) = vz,N(U)

subject to −1◦ ≤ Uk ≤10◦, k = 0 . . .N − 1

A matlab function function [phi, grad_phi, X] = phi_obj(U)
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has been provided at the webpage in the file phi_obj.m. This function

computes vz,N (phi) and a time history of states (X). It also returns
∂vz,N

∂U

(grad_phi), but this part is incomplete - you will implement it yourself.

(a) Use phi_obj.m to solve the NLP using fmincon letting Matlab esti-

mate derivatives. Your fmincon call should look like:

opts = optimset(’display’,’iter’,’algorithm’,...

’interior-point’,’MaxFunEvals’,100000);

alphasOpt = fmincon(@phi_obj, alphas0, [], [],...

[], [], lb, ub, [], opts);

Use αk = 0, k = 0 . . .N−1 as an initial guess. Plot px vs−pz and α vs

time. How much time and iterations does the solver need to converge?

(b) Using reverse mode AD, complete the missing part of phi_obj.m to

compute grad_phi.

(c) Solve the NLP with phi_obj.m and fmincon again, this time using

exact derivatives. Your fmincon call should look like:

opts = optimset(’GradObj’,’on’,’display’,’iter’,...

’algorithm’,’interior-point’);

alphasOpt = fmincon(@phi_obj, alphas0, [], [],...

[], [], lb, ub, [], opts);

Use αk = 0, k = 0 . . .N−1 as an initial guess. Plot px vs−pz and α vs

time. How much time and iterations does the solver need to converge?
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Parameter Estimation

6.1 Parameter Estimation via Least-Squares Penalties

A common source of optimization problems are least-squares problems, which

often arise from parameter estimation tasks. Let us in this section discuss how

these problems are formulated, starting with linear least-squares problems and

then going to nonlinear ones.

6.1.1 Unconstrained linear least-squares

For a start, let us first consider the following linear model

Aw = y (6.1)

that aims at explaining the set of measured data ymeas ∈ Rny via the vector of

parameters w ∈ Rnw , i.e. one aims at having

Aw ≈ ymeas.

In this context, matrix A ∈ Rny×nw serves as a set of input data, and provides

the model structure.

For a redundant set of measurements ymeas, i.e. for ny > nw, (6.1) is over-

determined and typically does not have a solution. In this situation, matrix A

has more rows than columns, and is not invertible. This issue is addressed via

solving a fitting problem instead of solving the original problem (6.1). Fitting

provides a vector of parameters ŵ that minimises the fitting error or residual in

system (6.1), defined as

e = Aw − ymeas

The vector of parameter ŵ is then determined by means of the following opti-

93



94 Parameter Estimation

misation problem:

ŵ = min
w

1

2
‖Aw − ymeas‖2Q (6.2)

where the symmetric positive-definite matrix Q is an ad-hoc weighting matrix.

Example 6.1. Let us consider the problem of fitting a line of equation z =

w1 x + w2 to a set of measured pairs of points {xk, zk} for k = 1, . . . ,N. We

formulate the estimation of w1, w2 as a least-squares problem:

minimize
w

N∑

k=1

1

2
(w1xk + w2 − zk)2

which can be put in the form (6.2) using:

A =





x1 1
...

xN 1





, w =

[

w1

w2

]

, ymeas =





z1

...

zN





.

Solution to the unconstrained least-squares problem

Problem (6.2) is solved by finding a stationary point of its cost function, i.e. a

vector w that satisfies:

∇w

1

2
‖Aw − ymeas‖2Q = A⊤Q

(

Aw − ymeas) = 0.

The optimal vector of parameter w then reads as:

ŵ =
(

A⊤QA
)−1

A⊤Qymeas. (6.3)

In the special case Q = I, one can recognise that w is obtained via the pseudo-

inverse of matrix A, i.e.

ŵ =
(

A⊤A
)−1

A⊤

︸        ︷︷        ︸

A†

ymeas.

Remark: The size of matrix A⊤A is nw × nw. For a very large number of

parameters w, i.e. for nw very large, the factorisation of the possibly dense

matrix A⊤A can be challenging.

Moments of the parameter estimation

Let us assume here that the fitting error e of the linear model (6.1) results from

a zero-mean normally distributed additive measurement noise, i.e.

ymeas = Aw0 + n (6.4)
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where w0 is the actual vector of parameters, and n ∼ N (0,Σn). We want to

understand the impact of the measurement noise n on the resulting estimated

parameters ŵ by computing its two first moments (expected value and covari-

ance). It should be observed here that since the noise n is Gaussian and since

the least-squares solution (6.3) is a linear map applied to the measurements

ymeas, the resulting parameter estimation ŵ is also following a Gaussian distri-

bution, i.e.:

ŵ ∼ N (E {ŵ} ,Σŵ)

where E {ŵ} and Σŵ are the expected value and covariance of the estimation ŵ.

The expected value E {ŵ} can be easily computed:

E {ŵ} = E

{(

A⊤QA
)−1

A⊤Qymeas
}

=

(

A⊤QA
)−1

A⊤QE {Aw0 + n} =
(

A⊤QA
)−1

A⊤QAw0 = w0 (6.5)

where we have used the fact that E {n} = 0. It follows that the parameter estima-

tion obtained via solving the fitting problem (6.2) is unbiased, i.e. E {ŵ} = w0.

The covariance of the parameter estimation then reads as:

Σŵ = E
{

(ŵ − w0)(ŵ − w0)⊤
}

.

Let us define A
†
Q
=

(
A⊤QA

)−1
A⊤Q. We then have ŵ = A

†
Q

y = A
†
Q

(Aw0 + n)

and because A
†
Q

A = I, we have the following identity:

ŵ − w0 = A
†
Q

n

such that we get

Σŵ = A
†
Q

E
{

nn⊤
} (

A
†
Q

)⊤
,

and defining Σn = E
{

nn⊤
}

, we finally have:

Σŵ =
(

A⊤QA
)−1

A⊤QΣnQA
(

A⊤QA
)−1

.

Observe that for the specific choice

Q = Σ−1
n , (6.6)

the covariance of the parameter estimation reduces to:

Σŵ =
(

A⊤QA
)−1

.

We will see in the next two sections that the choice of weighting matrix (6.6)

can be interpreted as optimal in two different ways.
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Least-squares and maximum likelihood estimator

Let us consider an alternative view of deciding the best parameter estimation ŵ

from a set of measurements ymeas. Instead of the fitting problem (6.2), we will

consider finding the value of w that maximises the likelihood of obtaining the

observed measurements ymeas. Since w and ymeas are continuous variables, we

frame this question in terms of probability densities. We formulate the maxi-

mum likelihood problem as follows:

ŵ = arg max
w

f
(

ymeas|w)

(6.7)

where f (ymeas|w) is the conditional probability distribution of ymeas, for a given

parameter w. A simple interpretation of (6.7) is: what is the value that the

parameter w should have in order to make the probability density of observing

ymeas maximal ?

From (6.4) and for a given w, it is clear that ymeas follows a normal distribu-

tion of the form:

ymeas ∼ N (Aw,Σn) ,

hence

f
(

ymeas|w)

= exp
{

− (

Aw − ymeas)⊤ Σ−1
n

(

Aw − ymeas)
}

· const.

We then reformulate the optimisation problem (6.7) as follows, using the mono-

tonicity of the logarithm:

ŵ = arg max
w

f
(

ymeas|w)

= arg min
w
− log

{

f
(

ymeas|w)}

=

arg min
w

(

Aw − ymeas)⊤ Σ−1
n

(

Aw − ymeas) .

It follows that problem (6.7) delivers the same solution ŵ as the least-squares

problem (6.2) with the choice of weight (6.6). Hence the least-squares problem

with the choice of weight (6.6) is a maximum-likelihood estimator.

Least-squares as a minimiser of the estimation covariance

In this section, we show that the choice of weight (6.6) is optimal in the sense

that it minimises the trace of the covariance of the parameter estimation Σŵ, i.e.

it minimises the uncertainty of the estimated parameter.

The trace operator, here denoted as trace (.), sums the elements of the diago-

nal of the matrix it is applied to, i.e. for an arbitrary matrix M ∈ Rn×n:

trace (M) =

n∑

i=1

Mii.
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Taking the trace of a matrix is identical to summing up the matrix eigenvalues,

i.e.

trace (M) =

n∑

j=1

λ j (M) ,

and is identical to the sum of the matrix singular values if the matrix is sym-

metric positive-definite.

To establish the statement of this section, let us define the matrix K ∈ Rnw×ny

as a generic linear estimator providing the estimation of the parameter vector

ŵ from the measurements ymeas, i.e.:

ŵ = Kymeas = K (Aw + n) .

In order to recover an unbiased estimator, i.e. to ensure that E {ŵ} = w, matrix

K must satisfy:

KA = I. (6.8)

It can be verified that the covariance of the parameter estimation ŵ then reads

as:

Σŵ = E
{

ŵŵ⊤
}

− E {ŵ} E
{

ŵ⊤
}

= KΣnK⊤.

Let us then consider the following matrix optimisation problem:

minimize
K

1

2
trace

(

KΣnK⊤
)

(6.9a)

subject to KA − I = 0, (6.9b)

which minimises the covariance of ŵ under the constraint that the estimator

should be ”unbiased”, i.e. Eq. (6.8). Even though problems of the form (6.9)

have not been considered so far in this book, they can be solved using very

similar techniques as seen previously. To that end, we define the Lagrangian

function associated to (6.9):

L(K, Z) =
1

2
trace

(

KΣnK⊤
)

+ trace
(

Z⊤ (KA − I)
)

where matrix Z ∈ Rnw×nw acts as the set of Lagrange multipliers associated to

the constraint (6.9b), and trace
(

Z⊤ (KA − I)
)

defines a scalar product between

Z and KA − I. The solution to (6.9) is then given by:

∇KL(K, Z) = 0, KA − I = 0.
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The trace operator is linear and has the following useful properties:

trace (ABC) = trace (BCA) = trace (CAB) , ∇Atrace (AB) = B⊤.

It can then be verified that:

∇KL(K, Z) =
1

2
∇K trace

(

KΣnK⊤
)

+ ∇K trace
(

Z⊤KA
)

=

= KΣn + ZA⊤ = 0.

Hence K = −ZA⊤Σ−1
n , and using the constraint (6.9b):

−ZA⊤Σ−1
n A = I ⇒ Z = −

(

A⊤Σ−1
n A

)−1
.

We finally get as the optimal solution K∗ =
(

A⊤Σ−1
n A

)−1
A⊤Σ−1

n , i.e.

ŵ = K∗y
meas =

(

A⊤Σ−1
n A

)−1
A⊤Σ−1

n ymeas.

Hence, the least-squares problem (6.2) with the choice of weight (6.6) mini-

mizes the trace of the covariance matrix of the parameter estimation Σŵ. More

generally than discussed here, one can prove that the optimal linear estimator

K∗ minimizes not only the trace of the covariance, but any other meaningful

performance measure: for any unbiased linear estimator K with KA = I holds

KΣnK⊤ � K∗ΣnK⊤∗ .

The reasoning above was minimizing the trace.

6.1.2 Nonlinear least-squares

We now turn to the problem of estimating a set of parameters in the case a

nonlinear measurement function is in use. Consider the problem:

ŵ = arg min
w

1

2
‖y (w) − ymeas‖2Q, (6.10)

where y (.) : Rnw 7→ Rny is an arbitrary yet sufficiently smooth function.

Solution to the unconstrained nonlinear least-squares problem

Problem (6.10) is in a form suitable for the Gauss-Newton method with the

nonlinear residual function (see Section 4.1.3), with the residual function:

R (w) = Q
1
2
(

y (w) − ymeas) .
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The estimation ŵ is then typically obtained by performing the Newton-type

iterations:

wk+1 = wk − B−1
k ∇R (wk) R (wk) , ∇R (wk) = ∇y (wk) Q

1
2 ,

to convergence, where Bk = ∇R (wk)∇R (wk)⊤ is the Gauss-Newton Hessian

approximation for problem (6.10).

Moments of the parameter estimation

Similarly to the linear least-squares case, we are interested in assessing the

moments of the parameter estimation ŵ resulting from measurement noise,

mainly its expected value and covariance. However, compared to the linear

least-squares case, using a nonlinear measurement function has some impor-

tant consequences.

The first important observation we need to make concerns the expected value

of the parameter estimation. By definition, the expected value of the estimated

parameter is given by:

E {ŵ} =
∫

W

w fw (w) dw

where W is the domain of ŵ and fw the probability density function of ŵ. We

note that the solution ŵ to problem (6.10) satisfies the KKT conditions:

∇w

1

2
‖y (w) − ymeas‖2Q =

1

2
∇w

(

R⊤R
)

= ∇wRR = 0. (6.11)

Because the measurement function y (w) is nonlinear, (6.11) yields an im-

plicit nonlinear map from the measurements ymeas to the estimated parameters

ŵ. It follows that even assuming that the measurements are subject to additive,

Gaussian noise, i.e.:

ymeas = y (w0) + n, n ∼ N (0,Σn) , (6.12)

where w0 is the true value of the parameter, the resulting probability density

function of the estimated parameter fw is in general not a Gaussian distribution.

In particular, it follows that in general:

E {ŵ} =
∫

W

w fw (w) dw , w0. (6.13)

This result needs to be contrasted with (6.5), and warns us that in the case of

a nonlinear measurement function, the expected value of the parameter estima-

tion does, in general, not match the true value of the parameter. We then say

that the nonlinear least-squares problem (6.10) provides biased estimations.
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We are interested next in estimating the covariance of the solution of prob-

lem (6.10). As detailed previously, for a nonlinear measurement function y (w),

the estimation ŵ will in general not have a Gaussian distribution, even when

the noise distribution has. It follows that assessing the true covariance of the

parameter estimation is in general an intricate problem. To circumvent this is-

sue, we consider a linearisation of the nonlinear fitting problem (6.10) at its

solution, and deploy a similar approach as in the linear least-squares case. The

distribution of the parameter estimation ŵ is then approximated as Gaussian.

We detail this approach next.

Using the additive noise (6.12), the residual function R becomes

R (w, n) = Q
1
2 (y (w) − y (w0) − n) .

In the absence of measurement noise, i.e. with n = 0, the solution to the fitting

problem (6.10) yields the true parameter w0 with R (w0, 0) = 0. The true pa-

rameter w0 is then solution of (6.11). We carry out the analysis by taking the

first-order approximation of the (nonlinear) KKT conditions (6.11) at n = 0

and w0:

H (w0, n) (ŵ − w0) +
∂

∂n
(∇wR (w0, n) R (w0, n)) n + O

(

‖n‖2
)

= 0, (6.14)

where H (w0, n) is the Hessian of the least-square penalty. We observe that

∂

∂n
(∇wR (w0, n) R (w0, n)) = −∇y (w0) Q. (6.15)

We then obtain the following linear system:

ŵ − w0 = H (w0)−1 ∇y (w0) Qn + O
(

‖n‖2
)

describing to a first-order approximation the error between the estimated pa-

rameter ŵ and its true value w0. We can then approximate the covariance of

ŵ:

Σŵ = E
{

(ŵ − w0) (ŵ − w0)⊤
}

≈ H (w0)−1 ∇y (w0) QΣnQ∇y (w0)⊤ H (w0)−1 .

Using the choice of weight (6.6), i.e. Q = Σ−1
n , we obtained:

Σŵ = E
{

(ŵ − w0) (ŵ − w0)⊤
}

≈ H (w0)−1 ∇y (w0) Q∇y (w0)⊤ H (w0)−1 .

(6.16)

Finally, the Gauss-Newton Hessian approximation for problem (6.11) reads as:

H (w0, n) ≈ ∇wR (w0, n)∇wR (w0, n)⊤ = ∇y (w0) Q∇y (w0)⊤
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such that (6.16) can be further approximated as:

Σŵ ≈
(

∇y (w0) Q∇y (w0)⊤
)−1

. (6.17)

Note that if the measurement function y (w) is linear, i.e. y (w) = Aw, then

∇y (w) = A⊤, and (6.17) yields (6.1.1).

We illustrate next the concepts developed in this subsection.

Example 6.2. Consider the nonlinear least-squares problem:

minimize
w

1

2

N∑

k=1

‖z (w, xk) − ymeas
k ‖2

Σ−1
n

(6.18)

where ymeas
k

, xk, w ∈ R and z (w, xk) = w + xkw3. We write problem (6.18) in

the form (6.10) using:

y (w) =





z (w, x1)

...

z (w, xN)





, ymeas =





ymeas
1

...

ymeas
N





.

We use N = 10, and use an additive Gaussian noise in the measurements, i.e.

ymeas = y (w0) + n, n ∼ N (0,Σn) .

We then solve problem (6.18) for 50000 randomly generated noise sequences

n ∈ RN , and a true parameter w0 = 0.2. Figure 6.1 reports the resulting dis-

tribution of the parameter estimation ŵ for various levels of noise Σn (shaded

dots). The true distribution is approximated as a Gaussian distribution of mean

E {ŵ} and using the covariance given by (6.17), reported as the plain black

curves in Figure 6.1. The plain lines report the true value w0 while the dashed

lines report the true expected value of ŵ. It can be observed that for a small

measurement noise, the estimation ŵ is practically unbiased and the Gaussian

distribution is a good approximation of its true distribution. For a larger mea-

surement noise, the estimation becomes biased and the distribution becomes

clearly non-Gaussian.

Bias and Consistency

It is important in the context of nonlinear least square estimation to have a

clear understanding of the difference between a biased estimator and a consis-

tent estimator. As detailed in the previous section, the nonlinear least-squares

estimator (6.10) is biased, i.e. in general

E {ŵ} , w0 (6.19)
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Figure 6.1 distribution of the parameter estimation w, for various measurement

noise covariance. The black curve report the Gaussian distribution estimating the

true distribution. The dots represent the

because of the integral (6.13). Put in practical terms, assuming that one accu-

mulates a large number of realizations ŵk of the nonlinear least square esti-

mation (6.10) computed from Nexp different experiments i = 1, ...,Nexp, one

shall not expect that averaging the estimates ŵi will deliver an estimator that

converges to w0 for Nexp → ∞. However, it is crucial here to distinguish be-

tween bias and inconsistency. To that end, we consider the problem presented

in Example 6.2, i.e.

ŵN = arg min
w

1

2

N∑

k=1

‖y (w, xk) − ymeas
k ‖2Q, (6.20)

where we assume that a Gaussian noise enters linearly in the measurements,

i.e. ymeas
k
= y (w0, xk)+n. As detailed previously, the nonlinear estimator (6.20)

is biased, but it is nonetheless consistent, in the sense that limN→∞ ŵN → w0,

i.e. the estimator (6.20) converges to the true value of of the parameter w as the

number of data sample N → ∞. More details on this remark and on the differ-

ence between unbiased and consistent estimators can be found in e.g. [64].

An interesting interpretation of this lack of equivalence is to construe it as

a non-commutativity between the argmin and the summation operation. More

specifically, let us label ŵN,i the least-squares estimates stemming from a batch

of N data point xk,i, ymeas
k,i

with k = 1, ...,N obtained in an experiment i. Sup-

pose now that Nexp experiments are performed, such that i = 1, ...,Nexp. The

following two approaches can then be used to compute an estimation of the
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true parameter w0:

µ
(

ŵN,1, ..., ŵN,Nexp

)

:=
1

Nexp

Nexp∑

i=1

ŵN,i

=
1

Nexp

Nexp∑

i=1

arg min
w

1

2

N∑

k=1

‖y (

w, xk,i
) − ymeas

k,i ‖
2
Q,

(6.21)

and

ŵN×Nexp
:= arg min

w

1

2

1

Nexp

Nexp∑

i=1

N∑

k=1

‖y
(

w, xk,i

)

− ymeas
k,i ‖

2
Q, (6.22)

We then observe that

lim
Nexp→∞

µ
(

ŵN,1, ..., ŵN,Nexp

)

, lim
Nexp→∞

ŵN×Nexp
= w0 (6.23)

We then observe that (6.22) converges to the to the true parameter w0 while

(6.21) does not. The difference between the two estimations lies solely in com-

muting the summation 1
Nexp

∑Nexp

i=1
with the minimization.

6.1.3 Constrained least-squares

We now turn to the problem of estimating a set of parameters subject to con-

straints. The vector of parameter w is then determined by means of the follow-

ing optimisation problem:

w∗ = arg min
w

1

2
‖y (w) − ymeas‖2Q (6.24a)

subject to g(w) = 0 (6.24b)

where y (.) : Rnw 7→ Rny and g(.) : Rnw 7→ Rnc is a sufficiently smooth function.

Remark: a possible interpretation of the equality constraint (6.24b) is that it

embeds in problem (6.24) the prior knowledge that the estimated parameter ŵ

sits on the manifold M = {w | g(w) = 0} with absolute certainty. Such certainty

must be treated with care. Indeed, if function g represents a model underlying

the estimation problem, including g as a constraint in (6.24) entails that one as-

sumes that the underlying model captures the reality perfectly. However, such

an assumption is rarely valid in practice.

Solution to the constrained nonlinear least-squares problem

As in Section 6.1.2, one can recognise in (6.24) a problem in a form suitable

for the Gauss-Newton method (see Section 4.1.3). We then get the solution to
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problem (6.24) via iterating the linear system:

[

Bk ∇g (wk)

∇g (wk)⊤ 0

] [

wk+1 − wk

λk+1

]

= −
[

∇R (wk) R (wk)

g (wk)

]

where R (wk) = Q
1
2 (y (wk) − ymeas) and Bk = ∇R (wk)∇R (wk)⊤ is the Gauss-

Newton Hessian approximation for problem (6.24).

Moments of the parameter estimation

Similarly to the nonlinear, unconstrained least-squares case, we are interested

in assessing the moments of the parameter estimation ŵ resulting from mea-

surement noise, mainly its expected value and covariance. In particular, we are

interested in understanding the effect of the equality constraint g in problem

(6.24).

Similarly to (6.11), we note that the solution ŵ to problem (6.24) is implicitly

given by the KKT conditions:

∇wR (w, n) R (w, n) + λ⊤g (w) = 0

g (w) = 0.
(6.25)

As in Section 6.1.2, because the measurement and (or) constraint functions

y (w) , g (w) are nonlinear, the conditions (6.25) yield an implicit nonlinear map

from the measurements ymeas to the estimated parameters ŵ. It also follows that

the distribution of the estimated parameters ŵ is in general not Gaussian, and

that the expected value of ŵ does in general not match the true value of the

parameter, i.e. the constrained nonlinear least-square estimator is biased.

We deploy a similar approach as in Section 6.1.2 to assess the covariance

of the nonlinear constrained estimator (6.24). In the absence of measurement

noise, i.e. with n = 0, the solution to the fitting problem (6.24) yields the true

parameter w0, solution of (6.25). It is interesting to observe that for n = 0, the

multipliers λ0 associated to the constraint g in (6.24) are zero, i.e. λ0 = 0.

We carry out the analysis by taking the first-order approximation of the (non-

linear) KKT conditions (6.25) at n = 0 and w0:

H (w0, n) (ŵ − w0) +
∂

∂n

(

∇wR (w, n) R (w, n) + λ⊤g (w)
)

n + O
(

‖n‖2
)

= 0

∇g (w0)⊤ (ŵ − w0) = 0

(6.26)

where H (w0, n) now stands for the Hessian of the constrained least-square

problem (6.24). We observe that the main difference between (6.14) and (6.26)
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is that now the first-order variation ŵ − w0 is restricted to the null-space of the

constraints Jacobian ∇g (w0)⊤. We additionally observe that:

∂

∂n

(

∇wR (w, n) R (w, n) + λ⊤g (w)
)

= −∇y (w0) Q,

i.e. it is identical to the unconstrained case (6.15). It follows that the first-order

variation of ŵ − w0 is provided by:

[

H (w0, n) ∇g (w0)

∇g (w0)⊤ 0

]

︸                     ︷︷                     ︸

M

ẑ
︷    ︸︸    ︷
[

ŵ − w0

λ̂ − λ0

]

=

[

−∇y (w0) Q

0

]

︸          ︷︷          ︸

φ

n + O
(

‖n‖2
)

(6.27)

It will be useful to consider in the following the range-space/null-space decom-

position of the constraints Jacobian ∇g (w0)⊤, i.e. matrices N, F such that:

∇g (w0)⊤ N = 0, ∇g (w0)⊤ F = I.

It can then be verified that:

ŵ − w0 = −
(

N⊤H (w0, n) N
)−1

N⊤∇y (w0) Qn + O
(

‖n‖2
)

.

The matrix H̄ = N⊤H (w0, n) N is labelled the reduced Hessian of problem

(6.24) and is the projection of the Hessian of the problem in the space of the

admissible primal directions. We can then obtain:

Σŵ = En

(

(ŵ − w0) (ŵ − w0)⊤
)

= H̄−1N⊤∇y (w0) QΣnQ∇y (w0)⊤ NH̄−1+O
(

‖n‖2
)

.

Using the choice of weight Q−1 = Σn then yields:

Σŵ = En

(

(ŵ − w0) (ŵ − w0)⊤
)

= H̄−1N⊤∇y (w0) Q∇y (w0)⊤ NH̄−1 + O
(

‖n‖2
)

.

Finally, the Gauss-Newton Hessian approximation for problem (6.24)

H (w0, n) ≈ ∇wR (w0, n)∇wR (w0, n)⊤ = ∇y (w0) Q∇y (w0)⊤

yields:

Σŵ = H̄−1N⊤H (w0, n) NH̄−1 + O
(

‖n‖2
)

= H̄−1 + O
(

‖n‖2
)

.

It follows that the inverse of the reduced Hessian of problem (6.24) at the

noise-free solution w0 provides an estimation of the covariance of ŵ.
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6.2 Alternative convex penalties

Though the least-squares cost function is by far the most widespread cost used

in fitting problems, there exist other penalty functions than the L2 norm that

are used at different occasions. Like the L2 norm, all commonly used penalty

functions are convex. We discuss two of the most popular ones.

6.2.1 L1 norm

The first common alternative penalty for fitting problems uses the L1-norm as

a penalty function. Here, we consider the fitting problem:

minimize
w

‖y (w) − ymeas‖1

subject to g(w) = 0.
(6.28)

1 Slack formulation

A cost function involving an L1 penalty is non-differentiable. One must be very

careful when deploying Newton algorithms on non-smooth problems in order

to obtain a reasonably fast and guaranteed convergence. To circumvent this

problem, we detail next a reformulation of the L1 penalty function in problem

(6.28), which allows for removing the non-smoothness from the cost function,

and place it in the inequality constraints instead. To that end, we introduce an

additional set of variables s ∈ Rn having the same dimension as the vector

subject to the L1 penalty. The variables s are often labelled slack variables in

the literature, and are used in many different contexts. The L1 penalty is then

implemented by ”trapping” the fitting error y (w)− ymeas between s and −s, i.e.:

−sk ≤ yk (w) − ymeas
k ≤ sk.

If all constraints are active, then we have

|yk (w) − ymeas
k | = sk

and

‖y (w) − ymeas‖1 =
n∑

k=0

sk = 1⊤s.

We then rewrite problem (6.28) as:

minimize
w, s

1⊤s

subject to g(w) = 0,

−s ≤ y (w) − ymeas ≤ s.

(6.29)
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We leave it as an exercises the proof that (6.29) is equivalent to (6.28).

Remark: problem (6.29) has a linear cost function, and as such may require

some care when using Newton-type algorithms. E.g. the Gauss-Newton Hes-

sian approximation for (6.29) is zero and therefore singular. Nevertheless, the

Gauss-Newton method with zero Hessian might converge in many cases when

applied to L1-fitting problems, and converge even with quadratic convergence

rate, due to the fact that the solution is in a vertex of the feasible set.

When an exact Newton method is used, one needs to observe that the exact

Hessian associated to (6.29) is likely to be indefinite and thus one might want

to apply some level of regularisation.

6.2.2 Huber penalty

minimize
w

Hρ
(
y (w) − ymeas)

subject to g(w) = 0,
(6.30)

where

Hρ (x) =






1
2

x2 if |x| ≤ ρ
ρ
(

|x| − 1
2
ρ
)

if |z| > ρ

with ρ ∈ R. The shape of the Huber penalty function is depicted in Figure

6.2. The Huber penalty Hρ (y − ymeas) implements an L2 on the samples of the

fitting error y − ymeas that are smaller than ρ, and an L1 norm on the larger

ones. It is very useful for rejecting outliers, while retaining the nice behaviour

least-squares fitting with respect to the data points that can be well fitted.

Remark: the Huber penalty function is not a norm, since e.g. the homogene-

ity condition does not hold, i.e. in general Hρ (αx) , |α|Hρ (x).

Slack formulation The Huber penalty is everywhere differentiable, but not

twice differentiable. Similarly to the L1 norm problem (6.28), a reformulation

using slack variables allows for having a smooth formulation of problem (6.30),

which is better suited for the Newton context. The reformulation for problem

(6.30) reads as:

minimize
w

ρ1⊤ν +
1

2
µ⊤µ

subject to g(w) = 0,

−µ − ν ≤ y (w) − ymeas ≤ ν + µ,
ν ≥ 0.

(6.31)
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Figure 6.2 Huber penalty function Hρ(x) for ρ = 0.3.

Example 6.3.
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Figure 6.3 Comparison of the L2, L1 norms and the Huber penalty with ρ = 1 for

a linear regression with outliers. The crosses report the two points having a zero

residual in the L1 norm problem.

We leave it as an exercises the proof that (6.31) is equivalent to (6.30).
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Exercises

6.1 Linear Least Squares and Maximum Likelihood Estimation are two meth-

ods to estimate unknown parameters. State the relation between them.

Can they both be used under the same circumstances?

6.2 Consider the following experimental set up to estimates the values of E

and R.

I(k)

R

+ −

E

V

U(k)

Every experiment consists of N measurements of the voltage U(k) for

different values of I(k). The measurements U(k) are affected by additive

Gaussian noise with mean µ and standard deviation σ:

U(k) = E + RI(k) + nu(k)

Here we assume that the input variable I(k) is not affected by noise.

Tasks:

(a) Import the data available on the website to MATLAB and plot the

U(k), I(k) relation using ’x’ markers.

(b) Use a least squares estimator in matrix form to find the experimental

values of R and E and plot the linear fit through the U(k), I(k) data.

(c) A thermistor is a resistor which resistance varies with a change of the

resistor temperature. A basic model of such a effect is R = R0(1 +

k1(T (t) − T0)), where R0 is the resistance at ambient temperature T0,

and where k1[Ω
K

] is positive for PTC (positive temperature coefficient)

thermistors and negative for NTC (negative temperature coefficient)

thermistors. On the other hand, resistor self-heating due to power dis-

sipation increases the resistor temperature, being this power dissipa-

tion also a function of the temperature difference between the ambient

and the resistor that can me modelled as P = k2(T (t) − T0)), where

k2[ W
K

] > 0. Modelling R2
0
k1/k2 as a single constant k3, and assuming
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that the power dissipated can be approximated by P ≈ I2R0, obtain

the new equation model of U and compute the least squares estima-

tor of R0, k3 and E. Finally plot the nonlinear fit into the same figure

as before (use legend and different colors to clearly show the corre-

spondence of each plot).

(d) Using the estimation values of part c, give an approximation of k1

k2
. Is

it a NTC or PTC type of thermistor?

6.3 Given a matrix J ∈ Rm×n with arbitrary dimensions, a symmetric positive

definite matrix Q ≻ 0, a vector of measurements η ∈ Rm and a point

x̄ ∈ Rn, calculate the limit:

lim
α→ 0
a > 0

arg min
x

1

2
||η − Jx||22 +

α

2
(x − x̄)⊤Q(x − x̄).

Hint: Use matrix square root and the Moore–Penrose pseudoinverse, i.e.,

SVD of a suitable matrix.

6.4 Assume we have a set of N measurements (xi, yi) ∈ R2 onto which we

would like to fit a line y = ax + b. This task can be expressed by the

optimization problem:

min
a,b

N∑

i=1

(axi + b − yi)
2 = min

a,b

∥
∥
∥
∥
∥
∥
J

(

a

b

)

− y

∥
∥
∥
∥
∥
∥

2

2

.

(a) Generate the problem data. Take N = 30 points in the interval [0, 5]

and generate the measurements yi = 3xi+4. Add Gaussian noise with

zero mean and standard deviation 1 to the measurements and plot the

results.

(b) Write down matrix J and vector y for your fitting problem. Calculate

the coefficients a, b in MATLAB and plot the obtained line in the

same graph as the measurements.

(c) Introduce 3 outliers in your measurements y and plot the new fitted

line in your plot.

(d) In this task we want to fit a line to the same set of measurements, but

we use a different cost function:

min
a,b

N∑

i=1

|(axi + b − yi)|.

This objective is not differentiable, so we will need auxiliary variables



Exercises 111

to form an equivalent problem. We introduce the so-called slack vari-

ables s1, . . . , sN and solve instead:

min
a,b,s

∑

i

si

s.t. − si ≤ axi + b − yi ≤ si, i = 1, . . . ,N,

− si ≤ 0, i = 1, . . . ,N.

Solve the problem using the measurements y (both with and without

outliers) and plot the results against those of the L2 fitting. Which

norm performs better and why?

6.5 You are trying to estimate the offset θ0 of a voltmeter given a set of values

Y = [50, 55, 58, 61] [V] obtained from an experiment on a setup which

is known to have a true value of θ0 [V]. In the data sheet of the volt-

meter, it is written that the offset error follows the following probability

distribution f (θ) = 1
8
e−

|x−θ0 |
4

(a) Name the probability distribution given by f (θ).

(b) Using MLE, write down the minimization problem that you should

solve in order to obtain an estimator θ̂0 offset.

(c) Solve the minimization problem and provide the numerical result of

θ̂0 in the case that θ0 = 54 [V].

6.6 In a high precision telescope looking into outer space, we want to esti-

mate the position of an extremely far star as exactly as possible. Unfor-

tunately, only very few photons arrive every hour to the cells of our light

detector. We model the problem in one dimension only. On an line of

N detector cells (which also has a length of N millimeters, i.e. each cell

is a millimeter wide) we have counted the number of photons y(k) ∈ N
that arrived in one hour in each cell. We know that the true but unknown

light intensity λ(x; θ) of the star is spread out and bell-shaped, and there-

fore we use bell-shaped function for describing it. The function has three

unknown parameters: the center-point θ1, the overall scaling θ2, and the

spread θ3, and is given by

λ(x; θ) = θ2 exp

(

− (x − θ1)2

θ3

)

The interesting fact is that the number of photons arriving in each hour

for a given light intensity follows a Poisson-distribution, i.e. the proba-

bility to count y ∈ N photons is given by

P(y) =
λye−λ

y!
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Formulate the negative log-likelihood function for the maximum-likelihood

estimator.

6.7 We will again use the aircraft model of Exercise 1.2 with the aircraft’s

flight noisy data of Exercise 3.11 to estimate a model for the flight trajec-

tory. The data can be obtained in the book website as flight_data.m,

and as before, it represents the position p̂x,k and p̂z,k during a 20 s flight.

For this exercise, we will assume that the solution trajectory has a poly-

nomial form in time t:

p̄x,k =

10∑

j=0

a jt
j

k
, p̄z,k =

10∑

j=0

b jt
j

k
,

Then, in order to estimate the polynomial coefficients to obtain the air-

craft model, we should solve the following optimization problem:

minimize
a0,...,a10,
b0,...,b10

N−1∑

k=0

(

p̄x,k(a, b)
)− p̂x,k)2 +

(

p̄z,k(a, b) − p̂z,k
)2

(a) Formulate the problem as a linear least squares problem and solve it

using the standard formula xLS = (A⊤A)−1A⊤b. You should expect an

imperfect fit, and possibly a badly conditioned matrix inverse. It may

be better to use the MATLAB mldivide function (which is written as

A\b) instead of the least squares formula.

(b) Plot px vs −pz, −pz vs time, and px vs time.

6.8 It has been observed that the magnitude of the wind speed in a wind

farm throughout a year follows a distribution given by the following con-

ditioned probability density function:

p(v|λ, k) =






k
λ

(
v
λ

)k−1
e−(v/λ)k

v ≥ 0

0 v ≤ 0
(6.32)

This distribution is known as the Weibull distribution, where λ > 0 and

k > 0 are the parameters of the distribution and v is the magnitude of the

wind speed at the turbine location. Since these parameters are required

to study the average power that a certain turbine will produce in a certain

location, the task of this problem will be to estimate these parameters λ

and k given some measurements of the wind speed at a given location.

(a) Formulate the negative log-likelihood function given N measurements

of wind speed v1, . . . , vN from the same same turbine throughout the

year. Simplify this function as much as possible.
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(b) State the minimization problem and simplify again the objective func-

tion. Hint: constant terms in the objective function do not alter the

solution of a minimisation problem.

(c) Import the wind speed data from the website and solve the minimisa-

tion problem to estimate λ and k.

6.9 Consider a test setup with a LED light driven by a PWM (Pulse Width

Modulation) signal with a frequency of f0 = 100 Hz. The dutycycle D ∈
[0, 1] of a PWM signal determines what portion of a cycle a signal is

active, i.e. it is active for D/ f0 s, and inactive for (1−D)/ f0 s within one

cycle. We want to identify an ARX-type model (Auto-Regressive with

eXogeneous inputs) for the heating of the LED. We take the following

form for the ARX model:

T (k) = −
na∑

i=1

aiT (k − i) +

nb∑

i=1

biD(k − i) + ǫ(k), (6.33)

where T [C] is the temperature of the LED, D [−] is the dutycycle of the

PWM signal, na, nb are the number of past outputs and inputs, respec-

tively, and ǫ [C] is the output noise.

(a) What assumption do we need in order to do a Linear Least Squares

fit?

(b) Write down the Linear Least Squares problem you need to solve in or-

der to estimate the parameters ai, bi in Eq. (6.33). State all the vectors

and matrices that are needed.

Download from the course website the simulation routine LEDsim.m,

which you can use to simulate the LED. It takes N values for the dutycy-

cles and returns N + 1 resulting temperatures. The initial temperature is

set within this simulation function.

(c) Choose an input signal with N between 50 and 500 and generate mea-

surements from the function LEDsim.m.

(d) Implement the above Linear Least Squares estimation in MATLAB.

(e) Plot the measurements along with the one-step-ahead predictors at

each time step.
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Discrete Optimal Control

A lot of times it’s up to our discretion.

— Joe Jimenez

0 5 10 15 20 25 30 35 40 45
−2

−1
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1
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Path constraint h(x1) ≤ 0

Path constraint h(x2) ≤ 0

Initial value:
x0,2

Initial value: x0,1

Terminal conditions:
r (xN ) ≤ 0

k

State xk,1

State xk,2

Control uk

Figure 7.1 Variables of a discrete optimal control problem with N = 49

Throughout this part of the script we regard for notational simplicity time-

invariant dynamical systems with dynamics

xk+1 = f (xk, uk), k = 0, . . . ,N − 1.

Recall that uk are the controls and xk the states, with xk ∈ Rnx and uk ∈ Rnu .

114
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As discussed in the first chapter, if we know the initial state x0 and the con-

trols u0, . . . , uN−1, we could simulate the system to obtain all other states. But

in optimization, we might have different requirements than just a fixed initial

state. We might, for example, have both a fixed initial state and a fixed terminal

state that we want to reach. Or we might just look for periodic sequences with

x0 = xN . All these desires on the initial and the terminal state can be expressed

by a boundary constraint function

r(x0, xN) = 0.

For the case of fixed initial value, this function would just be

r(x0, xN) = x0 − x̄0

where x̄0 is the fixed initial value and not an optimization variable. Another

example would be to have both ends fixed, resulting in a function r of double

the state dimension, namely:

r(x0, xN) =

[

x0 − x̄0

xN − x̄N

]

.

Finally, periodic boundary conditions can be imposed by setting

r(x0, xN) = x0 − xN .

Other constraints that are usually present are path constraint inequalities of

the form

h(xk, uk) ≤ 0, k = 0, . . . ,N − 1.

In the case of upper and lower bounds on the controls, umin ≤ uk ≤ umax, the

function h would just be

h(x, u) =

[

u − umax

umin − u

]

.

7.1 Optimal Control Problem (OCP) Formulations

Two major approaches can be distinguished to formulate and numerically solve

a discrete time optimal control problem, the simultaneous and the sequential

approach, which we will outline after having formulated the optimal control

problem in its standard form.
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7.1.1 Original Problem Formulation

Given the system model and constraints, a quite generic discrete time optimal

control problem can be formulated as the following constrained NLP:

minimize
x0,u0,x1,...,

uN−1,xN

N−1∑

k=0

L(xk, uk) + E(xN) (7.1a)

subject to xk+1 − f (xk, uk) = 0, k = 0, . . . ,N − 1, (7.1b)

h(xk, uk) ≤ 0, k = 0, . . . ,N − 1, (7.1c)

r(x0, xN) = 0. (7.1d)

We remark that other optimization variables could be present as well, such

as a free parameter p that can be chosen but is constant over time, like e.g.

the size of a vessel in a chemical reactor or the length of a robot arm. Such

parameters could be added to the optimisation formulation above by defining

dummy states {pk}Nk=1
that satisfy the dummy dynamic model equations

pk+1 = pk, k = 0, . . . ,N − 1.

Note that the initial value of p0 is not fixed by these constraints and thus we

would have obtained our aim of having a time constant parameter vector that

is free for optimization.

7.1.2 The Simultaneous Approach

The nonlinear program (7.1) is large and structured and can thus in principle be

solved by any NLP solver. This is called the simultaneous approach to optimal

control and requires the use of a structure exploiting NLP solver in order to be

efficient. Note that in this approach, all original variables, i.e., uk and xk, remain

optimization variables of the NLP. Its name stems from the fact that the NLP

solver has to simultaneously solve both, the simulation and the optimization

problem. It is interesting to remark that the model equations (7.1b) will for

most NLP solvers only be satisfied once the NLP iterations are converged. The

simultaneous approach is therefore sometimes referred to as an infeasible path

approach. The methods direct multiple shooting and direct collocation that we

explain in the third part of this script are simultaneous approaches.

7.1.3 The Reduced Formulation and the Sequential Approach

On the other hand, we know that we could eliminate nearly all states by a

forward simulation, and in this way we could reduce the variable space of the
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NLP. The idea is to keep only x0 and U = [u⊤
0
, . . . , u⊤

N−1
]⊤ as variables. The

states x1, . . . , xN are eleminated recursively by

x̄0(x0,U) = x0

x̄k+1(x0,U) = f (x̄k(x0,U), uk), k = 0, . . . ,N − 1.
(7.2)

Then the optimal control problem is equivalent to a reduced problem with

much less variables, namely the following nonlinear program:

minimize
x0,U

N−1∑

k=0

L(x̄k(x0,U), uk)+E(x̄k(x0,U)) (7.3a)

subject to r(x0, x̄N(x0,U)) = 0, (7.3b)

h(x̄k(x0,U), uk) ≤ 0, k = 0, . . . ,N − 1. (7.3c)

Note that the model Equation (7.2) is implicitly satisfied by definition, but is

not anymore a constraint of the optimization problem. This reduced problem

can now be addressed again by Newton-type methods, but the exploitation of

sparsity in the problem is less important. This is called the sequential approach,

because the simulation problem and optimization problem are solved sequen-

tially, one after the other. Note that the user can observe during all iterations of

the optimization procedure what is the resulting state trajectory for the current

iterate, as the model equations are satisfied by definition.

If the initial value is fixed, i.e. if r(x0, xN) = x0 − x̄0, one can also eliminate

x0 ≡ x̄0, which reduces the variables of the NLP further.

7.2 Analysis of a Simplified Optimal Control Problem

In order to learn more about the structure of optimal control problems and the

relation between the simultaneous and the sequential approach, we regard in

this section a simplified optimal control problem in discrete time:

minimize
x0,u0,x1,...,

uN−1,xN

N−1∑

k=0

L(xk, uk) + E(xN) (7.4a)

subject to xk+1 − f (xk, uk) = 0, k = 0, . . . ,N − 1, (7.4b)

r(x0, xN) = 0. (7.4c)
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7.2.1 KKT Conditions of the Simplified Problem

We first summarize the variables as w = (x0, u0, x1, u1, . . . , uN−1, xN) and sum-

marize the multipliers as λ = (λ1, . . . , λN , λr). Then the above optimal control

problem can be summarized as

minimize
w

F(w)

subject to G(w) = 0.

Here, the objective F(w) is just copied from (7.4a) while G(w) collects all

constraints:

G(w) =





f (x0, u0) − x1

f (x1, u1) − x2

...

f (xN−1, uN−1) − xN

r(x0, xN)





.

The Lagrangian function has the form

L(w, λ) = F(w) + λ⊤G(w)

=

N−1∑

k=0

L(xk, uk) + E(xN) +

N−1∑

k=0

λ⊤k+1( f (xk, uk) − xk+1)

+ λ⊤r r(x0, xN),

and the summarized KKT-conditions of the problem are

∇wL(w, λ) = 0 (7.5a)

G(w) = 0. (7.5b)

But let us look at these KKT-conditions in more detail. First, we evaluate

the derivative of L with respect to all state variables xk, one after the other. We

have to treat k = 0 and k = N as special cases. For k = 0 we obtain:

∇x0
L(w, λ) = ∇x0

L(x0, u0) +
∂ f

∂x0

(x0, u0)⊤λ1 +
∂r

∂x0

(x0, xN)⊤λr = 0. (7.6a)

Then the case for k = 1, . . . ,N − 1 is treated
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∇xk
L(w, λ) = ∇xk

L(xk, uk) − λk +
∂ f

∂xk

(xk, uk)⊤λk+1 = 0. (7.6b)

Last, the special case k = N

∇xN
L(w, λ) = ∇xN

E(xN) − λN +
∂r

∂xN

(x0, xN)⊤λr = 0. (7.6c)

Second, let us calculate the derivative of the Lagrangian with respect to all

controls uk, for k = 0, . . . ,N − 1. Here, no special cases need to be considered,

and we obtain the general formula

∇uk
L(w, λ) = ∇uk

L(xk, uk) +
∂ f

∂uk

(xk, uk)⊤λk+1 = 0. (7.6d)

Until now, we have computed in detail the components of the first part of

the KKT-condition (7.5a), i.e., ∇wL(w, λ) = 0. The other part of the KKT-

condition, G(w) = 0, is trivially given by

f (xk, uk) − xk+1 = 0, k = 0, . . . ,N − 1 (7.6e)

r(x0, xN) = 0. (7.6f)

Thus, collecting all equations (7.6a) to (7.6f), we have stated the KKT-conditions

of the OCP. They can be treated by Newton-type methods in different ways.

The simultaneous approach addresses equations (7.6a) to (7.6f) directly by a

Newton-type method in the space of all variables (w, λ). In contrast to this, the

sequential approach approach eliminates all the states x1, . . . , xN in (7.6e) by a

forward simulation, and if it is implemented efficiently, it also uses Eqs. (7.6c)

and (7.6b) to eliminate all multipliers λN , . . . , λ1 in a backward simulation, as

discussed in the following subsection.

7.2.2 Computing Gradients in the Sequential Approach

A naive implementation of the sequential approach would start by coding rou-

tines that evaluate the objective and constraint functions, and then passing these

routines as black-box codes to a generic NLP solver, like fmincon in MAT-

LAB. But this would not be the most efficient way to implement the sequential

approach. The reason is the generation of derivatives, which a generic NLP

solver will compute by finite differences. On the other hand, many generic

NLP solvers allow the user to deliver explicit functions for the derivatives as

well. This allows us to compute the derivatives of the reduced problem func-

tions more efficiently. The key technology here is algorithmic differentiation

in the backward mode, as explained in Chapter 5.
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To see how this relates to the optimality conditions (7.6a) to (7.6f) of the

optimal control problem, let us simplify the setting even more by assuming a

fixed initial value and no constraint on the terminal state, i.e., r(x0, xN) = x̄0−x0.

In this case, the KKT conditions simplify to the following set of equations,

which we bring already into a specific order:

x0 = x̄0 (7.7a)

xk+1 = f (xk, uk), k = 0, . . . ,N − 1, (7.7b)

λN = ∇xN
E(xN) (7.7c)

λk = ∇xk
L(xk, uk) +

∂ f

∂xk

(xk, uk)⊤λk+1, k = N − 1, . . . , 1, (7.7d)

0 = ∇uk
L(xk, uk) +

∂ f

∂uk

(xk, uk)⊤λk+1, k = 0, . . . ,N − 1. (7.7e)

It can easily be seen that the first four equations can trivially be satisfied, by a

forward sweep to obtain all xk and a backward sweep to obtain all λk. Thus, xk

and λk can be made explicit functions of u0, . . . , uN−1. The only equation that

is non-trivial to satisfy is the last one, the partial derivatives of the Lagrangian

w.r.t. the controls u0, . . . , uN−1. Thus we could decide to eliminate xk and λk and

only search with a Newton-type scheme for the variables U = (u0, . . . , uN−1)

such that these last equations are satisfied. It turns out that the left hand side

residuals (7.7e) are nothing else than the derivative of the reduced problem’s

objective (7.3a), and the forward-backward sweep algorithm described above

is nothing else than the reverse mode of algorithmic differentiation. It is much

more efficient than the computation of the gradient by finite differences.

The forward-backward sweep is well known in the optimal control literature

and often introduced without reference to the reverse mode of AD. On the other

hand, it is good to know the general principles of AD in forward or backward

mode, because AD can also be beneficial in other contexts, e.g. for the evalua-

tion of derivatives of the other problem functions in (7.3a)-(7.3b). Also, when

second order derivatives are needed, AD can be used and more structure can

be exploited, but this is most easily derived in the context of the simultaneous

approach, which we do in the following section.

7.3 Sparsity Structure of the Optimal Control Problem

Let us in this section regard a very general optimal control problem in the

original formulation, i.e., the NLP that would be treated by the simultaneous

approach.
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minimize
x0,u0,x1,...,

uN−1,xN

N−1∑

k=0

Lk(xk, uk) + E(xN) (7.8a)

subject to fk(xk, uk) − xk+1 = 0, k = 0, . . . ,N − 1, (7.8b)

N−1∑

k=0

rk(xk, uk) + rN(xN) = 0, (7.8c)

hk(xk, uk) ≤ 0, k = 0, . . . ,N − 1, (7.8d)

hN(xN) ≤ 0. (7.8e)

Compared to the OCP (7.1) in the previous sections, we now allow indices

on all problem functions making the system time dependent; also, we added

terminal inequality constraints (7.8e), and as boundary conditions we now al-

low now very general coupled multipoint constraints (7.8c) that include the

cases of fixed initial or terminal values or periodicity, but are much more gen-

eral. Note that in these boundary constraints, terms arising from different time

points are only coupled by addition, because this allows us to maintain the

sparsity structure we want to exploit in this section.

Collecting all variables in a vector w, the objective in a function F(w), all

equalities in a function G(w) and all inequalities in a function H(w), the optimal

control problem could be summarized as

minimize
w

F(w)

subject to G(w) = 0,

H(w) ≤ 0.

Its Lagrangian function is given by

L(w, λ, µ) = F(w) + λ⊤G(w) + µ⊤H(w).

But this summarized form does not reveal any of the structure that is present

in the problem.

7.3.1 Partial Separability of the Lagrangian

In fact, the above optimal control problem is a very sparse problem because

each of its functions depends only on very few of its variables. This means

for example that the Jacobian matrix of the equality constraints has many zero

entries. But not only first order derivatives are sparse, also the second order
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derivative that we need in Newton-type optimization algorithms, namely the

Hessian of the Lagrangian, is a very sparse matrix. This is due to the fact that

the Lagrangian is a partially separable function [47].

Definition 7.1 (Partial Separability). A function f : Rn → R is called partially

separable if it can be decomposed as a sum of m functions f j : Rn j → R with

n j < n for all j = 1, . . . ,m. This means that for each j exists a subset I j of

indices from {1, . . . , n} and subvectors xI j
of x such that

f (x) =

m∑

j=1

f j(xI j
).

The Lagrangian function of the above optimization problem can explicitly

be decomposed into subfunctions that each depend on some of the multipliers

and only on the variables (xk, uk) with the same index k. Let us collect again

all variables in a vector w but decompose it as1 w = (w1, . . . ,wN) with wk =

(xk, uk) for k = 0, . . . ,N − 1 and wN = xN . Collecting all equality multipliers

in a vector λ = (λ1, . . . , λN , λr) and the inequality multipliers in a vector µ =

(µ0, . . . , µN) we obtain for the Lagrangian

L(w, λ, µ) =

N∑

k=0

Lk(wk, λ, µ)

with the local Lagrangian subfunctions defined as follows. The first subfunc-

tion is given as

L0(w0, λ, µ) = L0(x0, u0) + λ⊤1 f0(x0, u0) + µ⊤0 h0(x0, u0) + λ⊤r r0(x0, u0)

and for k = 1, . . . ,N − 1 we have the subfunctions

Lk(wk, λ, µ) = Lk(xk, uk) + λ⊤k+1 fk(xk, uk) − λ⊤k xk + µ
⊤
k hk(xk, uk) + λ⊤r rk(xk, uk)

while the last subfunction is given as

LN (wN , λ, µ) = E(xN) − λ⊤N xN + µ
⊤
NhN(xN) + λ⊤r rN(xN).

In fact, while each of the equality multipliers appears in several (λ1, . . . , λN) or

even all problem functions (λr), the primal variables of the problem do not have

any overlap in the subfunctions. This leads to the remarkable observation that

the Hessian matrix ∇2
wL is block diagonal, i.e. it consists only of small sym-

metric matrices that are located on its diagonal. All other second derivatives

1 Note that for notational beauty we omit here and in many other occasions the transpose signs
that would be necessary to make sure that the collection of column vectors is again a column
vector, when this is clear from the context.
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are zero, i.e.

∂2L

∂wi∂w j

(w, λ, µ) = 0, for any i , j.

This block diagonality of the Hessian leads to several very favourable facts,

namely that (i) the Hessian can be approximated by high-rank or block updates

within a BFGS method [47, 23], and (ii) that the QP subproblem in all Newton-

type methods has the same decomposable objective function as the original

optimal control problem itself.

7.3.2 The Sparse QP Subproblem

In order to analyse the sparsity structure of the optimal control problem, let us

regard the quadratic subproblem that needs to be solved in one iteration of an

exact Hessian SQP method. In order not to get lost in too many indices, we dis-

regard the SQP iteration index completely. We regard the QP that is formulated

at a current iterate (x, λ, µ) and use the SQP step ∆w = (∆x0,∆u0, . . . ,∆xN) as

the QP variable. This means that in the summarized formulation we would

have the QP subproblem

minimize
∆w

∇F(w)⊤∆w +
1

2
∆w⊤∇2

wL(w, λ, µ)∆w

subject to G(w) + ∇G(w)⊤∆w = 0,

H(w) + ∇H(w)⊤∆w ≤ 0.

Let us now look at this QP subproblem in the detailed formulation. It is remark-

ably similar to the original OCP. To reduce notational overhead, let us define a

few abbreviations: first, the diagonal blocks of the Hessian of the Lagrangian

Qk = ∇2
wk
L(w, λ, µ), k = 0, . . . ,N,

second, the objective gradients

gk = ∇(x,u)L(xk, uk), k = 0, . . . ,N − 1, and gN = ∇xE(xN),

third the system discontinuities (that can be non-zero in the simultaneous ap-

proach)

ak = fk(xk, uk) − xk+1, k = 0, . . . ,N − 1,

and fourth the transition matrices

Ak =
∂ fk

∂xk

(xk, uk), Bk =
∂ fk

∂uk

(xk, uk), k = 0, . . . ,N − 1,
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fifth the residual of the coupled constraints

r =

N−1∑

k=0

rk(xk, uk) + rN(xN),

as well as its derivatives

Rk =
∂rk

∂(xk, uk)
(xk, uk), k = 0, . . . ,N − 1, and RN =

∂rN

∂x
(xN),

and last the inequality constraint residuals and their derivatives

hk = hk(xk, uk), Hk =
∂hk

∂(xk, uk)
(xk, uk) and hN = hN(xN), HN =

∂hN

∂x
(xN).

With all the above abbreviations, the detailed form of the QP subproblem is

finally given as follows.

minimize
∆x0,∆u0,...,
∆xN

1

2

N−1∑

k=0

[

∆xk

∆uk

]⊤

Qk

[

∆xk

∆uk

]

+
1

2
∆x⊤N QN∆xN +

N∑

k=0

[

∆xk

∆uk

]⊤

gk + ∆x⊤N gN

(7.9a)

subject to ak + Ak∆xk + Bk∆uk−∆xk+1 = 0, k = 0, . . . ,N − 1, (7.9b)

r +

N−1∑

k=0

Rk

[

∆xk

∆uk

]

+ RN∆xN = 0, (7.9c)

hk + Hk

[

∆xk

∆uk

]

≤ 0, k = 0, . . . ,N − 1, (7.9d)

hN + HN∆xN ≤ 0. (7.9e)

This is again an optimal control problem, but a linear-quadratic one. It is

a convex QP if the Hessian blocks Qk are positive semidefinite, and can be

solved by a variety of sparsity exploiting QP solvers.

7.3.3 Sparsity Exploitation in QP Solvers

When regarding the QP (7.9) one way would be to apply a sparse interior point

QP solver like OOQP to it, or a sparse active set method. This can be very

efficient. Another way would be to first reduce, or condense, the variable space

of the QP, and then apply a standard dense QP solver to the reduced problem.

Let us treat this way first.
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Condensing

When we regard the linearized dynamic system equations (7.9b) they corre-

spond to an affine time variant system in the steps ∆xk, namely

∆xk+1 = ak + Ak∆xk + Bk∆uk. (7.10)

If the values for ∆x0 as well as for all {∆uk}N−1
k=0

would be known, then also

the values for {∆xk}Nk=1
can be obtained by a forward simulation of this linear

system. Due to its linearity, the resulting map will be linear, i.e., we can write





∆x1

...

∆xN





= v + M





∆x0

∆u0

...

∆uN−1





,

⇔
∆wdep = v + M∆wind

with a vector v ∈ RN·nx and a matrix M ∈ R(N·nx)×(nx+N·nu), and dividing the

variables into a dependent and an independent part, ∆w = (∆wdep,∆wind).

The vector v can be generated recursively by simulating the affine dynamic

system (7.10) with all inputs set to zero, i.e., ∆wind = 0. This yields the forward

recursion

v1 = a0, vk+1 = ak + Akvk, k = 1, . . . ,N − 1

for the components of the vector v = (v1, . . . , vN). The subblocks of the matrix

M can be obtained recursively as well in a straightforward way. Note that the

matrix is lower triangular because the states ∆x j do not depend on ∆uk if k ≥ j.

On the other hand, if k < j, the corresponding matrix blocks are A j−1 · · ·Ak+1Bk.

Finally, the dependence of ∆x j on ∆x0 is A j−1 · · · A0. In this way, all blocks of

the matrix M are defined.

To get a notationally different, but equivalent view on condensing, note that

the linear dynamic system equations (7.9b) are nothing else than the linear
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system





A0 B0 −I
A1 B1 −I

. . .

AN−1 BN−1 −I









∆x0

∆u0

∆x1

∆u1

∆x2

...

∆xN−1

∆uN−1

∆xN





= −





a0

a1

...

aN





.

After reordering the variables into dependent and independent ones, this sys-

tem can be written as





A0 B0 −I
B1 A1 −I

. . .
. . .

. . .

BN−1 AN−1 −I









∆x0

∆u0

...

∆uN−1

∆x1

...

∆xN





= −





a0

a1

...

aN





which we can summarize as

[X|Y]

[

∆wind

∆wdep

]

= −a

so that we get the explicit solution

∆wdep = (−Y−1a)
︸   ︷︷   ︸

=v

+ (−Y−1X)
︸    ︷︷    ︸

=M

∆wind.

Note that the submatrix Y is always invertible due the fact that it is lower

triangular and has (negative) unit matrices on its diagonal.

Once the vector v and matrix M are computed, we can formulate a con-

densed QP which has only the independent variables ∆wind as degrees of free-

dom. This condensed QP can be solved by a dense QP solver, and the re-

sulting solution ∆w∗
ind

can be expanded again to yield also the QP solution

for w∗
dep
= v + M∆w∗

ind
. The QP multipliers λdep = (λ1, . . . , λN) for the con-

straints (7.9b) can be obtained from the dense QP solution in a slightly more

complex way. The trick is to regard the Lagrangian of the original QP (7.9b),

LQP(∆wind,∆wdep, λdep, λr, µ) and note that the condensed QP yields also the
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multipliers λ∗r , µ
∗, which turn out to be the correct multipliers also for the un-

condensed QP. Thus, the only missing quantity is λ∗
dep

. It can be obtained by

using the follwing two observations: first, for the true QP solution must hold

that the Lagrange gradient is zero, also with respect to ∆wdep. Second, this

Lagrange gradient depends linearly on the unknown multipliers λdep which

contribute to it via the term Y⊤λdep, i.e. we have

0 = ∇∆wdep
L

QP(∆w∗ind,∆w∗dep, λ
∗
dep, λ

∗
r , µ
∗)

= ∇∆wdep
L

QP(∆w∗ind,∆w∗dep, 0, λ
∗
r , µ
∗) + Y⊤λ∗dep.

It is a favourable fact that the Lagrange gradient depends on the missing mul-

tipliers via the matrix Y⊤, because this matrix is invertible. Thus, we obtain an

explicit equation for obtaining the missing multipliers, namely

λ∗dep = −Y−T∇∆wdep
L

QP(∆w∗ind,∆w∗dep, 0, λ
∗
r , µ
∗).

Note that the multipliers would not be needed within a Gauss-Newton method.

Summarizing, condensing reduces the original QP to a QP that has the size

of the QP in the sequential approach. Nearly all sparsity is lost, but the dimen-

sion of the QP is much reduced. Condensing is favourable if the horizon length

N and the control dimension nu are relatively small compared to the state di-

mension nx. If the initial value is fixed, then also ∆x0 can be eliminated from

the condensed QP before passing it to a dense QP solver, further reducing the

dimension.

On the other hand, if the state dimension nx is very small compared to N ·nu,

condensing is not favourable due to the fact that it destroys sparsity. This is

most easily seen in the Hessian. In the original sparse QP, the block sparse

Hessian has N(nx + nu)2 + n2
x nonzero elements. This is linear in N. In contrast

to this, the condensed Hessian is dense and has (nx + Nnu)2 elements, which

is quadratic in N. Thus, if N is large, not only might the condensed Hessian

need more (!) storage than the original one, also the solution time of the QP

becomes cubic in N (factorization costs of the Hessian).

Sparse KKT System

A different way to exploit the sparsity present in the QP (7.9) is to keep all vari-

ables in the problem and use within the QP solver linear algebra routines that

exploit sparsity of matrices. This can be realized within both, interior point (IP)

methods as well as in active set methods, but is much easier to illustrate at the

example of IP methods. For illustration, let us assume a problem without cou-

pled constraints (7.9c) and assume that all inequalities have been transformed

into primal barrier terms that are added to the objective. Then, in each interior
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point iteration, an equality constrained QP of the following simple form needs

to be solved.

minimize
∆x0,∆u0,...,
∆xN

1

2

N−1∑

k=0

[

∆xk

∆uk

]⊤[
Qx

k
Qxu

k

(Qxu
k

)⊤ Qu
k

][

∆xk

∆uk

]

+
1

2
∆x⊤N QN∆xN

+

N∑

k=0

[

∆xN

∆uN

]⊤

gk+∆x⊤NgN

subject to ak + Ak∆xk + Bk∆uk−∆xk+1 = 0, k = 0, . . . ,N − 1.

(7.11)

Formulating the Lagrangian of this QP and differentiating it with respect to

all its primal and dual variables y = (∆x0,∆u0, λ1,∆x1,∆u1, . . . λN ,∆xN) in this

order we obtain a linear system of the following block tridiagonal form





Qx
0

Qxu
0

A⊤
0

(Qxu
0

)⊤ Qu
0

B⊤
0

A0 B0 0 −I
−I Qx

1
Qxu

1
A⊤

1

(Qxu
1

)⊤ Qu
1

B⊤
1

A1 B1 0 −I
−I

. . .
. . .

AN−1 BN−1 0 −I
−I QN









∆x0

∆u0

λ1

∆x1

∆u1

λ2

...

λN

∆xN





=





∗
∗
∗
∗
∗
∗
∗
∗
∗





This linear system can be solved with a banded direct factorization routine,

whose runtime is proportional to N(2nx + nu)3. We will see in the next chapter

that a particularly efficient way to solve the above linear system can be obtained

by applying the principle of dynamic programming to the equality constrained

quadratic subproblem (7.11).

Summarizing, the approach to directly solve the sparse QP without condens-

ing is advantageous if Nnu is large compared to nx. It needs, however, sparse

linear algebra routines within the QP solver. This is easier to implement in the

case of IP methods than for active set methods.
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Exercises

7.1 Consider a simple pendulum defined by the system state x = [φ, ω]⊤

where φ is the angle and ω the angular velocity of the pendulum, and

where φ = 0, represents the pendulum in its inverse position, e.g. the

mass is at the top. The system dynamics are given by:

φ̇ = ω

ω̇ = 2 sin(φ) + u

In this problem, we will solve a Discrete Optimal Control Problem

formulated as an Non-Linear Program by discretization of the dynam-

ics. In particular, we will use the Matlab fmincon function to solve the

following NLP:

minimize
x0,...,xN ,

u0,...,uN−1

N−1∑

k=0

(φ2
k + u2

k)

subject to x̄0 − x0 = 0,

f (xk, uk) − xk+1 = 0, k = 0, . . . ,N − 1,

ωmin ≤ ωk ≤ ωmax, k = 0, . . . ,N,

umin ≤ uk ≤ umax, k = 0, . . . ,N,

where the discrete time system dynamics are obtain by a Runge-Kutta

integrator of order 4 with a timestep of h = 0.2. The horizon of the

optimal control problem is N = 60, the given initial state is x̄0 = [−π, 0],

and the bounds are given by ωmin = −π, ωmax = π, umin = −1.1, umax =

1.1.

In order to pass the optimal control problem to the solver we first have

to formulate it as an NLP. The variables of the optimal control problem

are summarized in a vector y = (x0, u0, . . . , uN−1, xN)⊤. Then the NLP

has the following form:

minimize
y

ψ(y)

subject to G(y) = 0,

ymin ≤ y ≤ ymax.

(7.12)
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(a) Write down the objective function ψ(y) and the constraints on paper.

Use the same order for the constraints as in the optimal control prob-

lem.

G(y) =





...





ymax =









ymin =









Implement the objective and the equality constraints as Matlab func-

tions

(b) Check if your function G(y) does what you want by writing a for-

ward simulation function [y]=simulate(x0,U) that simulates, for

a given initial value x0 and control profile U = (u0, . . . , uN−1), the

whole trajectory x1, . . . , xN and constructs from this the full vector

y = (x0, u0, x1, . . . , xN). If you generate for any x0 and U a vector y

and then you call your function G(y) with this input, almost all of

your residuals should be zero. Which ones are not zero?

As a test, simulate e.g. with x0 = [0, 0.5]⊤ and uk = 1, k = 0, . . . ,N−1

in order to generate y, and then call G(y), to test that your function G

is correct. Specify the norm of the residuals G(y).

(c) Use fmincon to solve the NLP:

options=optimoptions(@fmincon, ’display’,

’final/iter’,’MaxFunEvals’,100000);

y=fmincon(@objective,y0,[],[],[],[],lby,uby,

@nonlconstraints,options);

As an initialization for y0 you can use x̄0 for all state variables and

zero for all control variables.

How many iteration does the solver need to converge (use display

option iter)? How long does the call to the minimizer take (use

tic/toc and the display option final)? Plot the evolution of the

state and the applied controls in time. Make an animation to see if the

pendulum swings up.

Hint: You can call the following function several times to create the

animation:

function plot_pendulum(x)

phi = x(1);
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plot([0;sin(phi)], [0;cos(phi)], ’-o’)

xlim([-1,1])

ylim([-1,1])

end

(d) Do a RK4 simulation of the pendulum and apply the optimal con-

trols of part (c) open-loop. Does the pendulum swing up? Does the

resulting state trajectory differ from the output of the solver? Why?

(e) Play with other options of the solvers like the type of finite differences

for computing the Jacobian, stopping criteria, and tolerances for vio-

lating the constraints. How do they influences computation time, num-

ber of iterations, and precision of the solution.

7.2 In this exercise, we will again use the same pendulum to solve the NLP

given by (7.12). This time however, we will solve (7.12) by a self written

Sequential Quadratic Programming (SQP) solver with Gauss-Newton

Hessian.

In particular, we will first prepare the calculation of the Jacobian that is

needed in the SQP iterations and we will test the correctness of the Jaco-

bian by passing it to the fmincon solver and find a faster way to compute

the Jacobian. Then, we will implement the SQP solver by solving the

Quadratic Programs (QP) in each iteration with then Matlab quadprog

function.

Hint: It is recommended to start the problem by re-using the code from

the previous task.

(a) The Jacobian of the non-linear equality constraints JG(y) = ∂G
∂y

(y) can

be passed directly to the fmincon function by including it as an out-

put of the constrains function (see Matlab constraints documentation),

and by activating the correct fmincon option:

options=optimoptions(@fmincon,\dots,’GradConstr’,

’on’,\dots);

Calculate the Jacobian JG(y) by finite differences, perturbing all 182

directions one after the other using δ = 10−4. This needs in total 183

calls of G. Give your routine e.g. the name [jac,Gy]=GJacSlow(y).

Compute JG for w0 and look at the structure of this matrix by making

a plot using the command spy(J). Use this Jacobian to solve the

OCP. How many iterations and how much time does the solver need

to converge?

(b) By looking at the structure of JG, we see that the matrix is very sparse

can be calculated much more efficiently. The Jacobian JG(y) = ∂G
∂y

(y)
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is block sparse with as blocks either (negative) unit matrices or the

partial derivatives Ak =
∂ f

∂x
(xk, uk) and Bk =

∂ f

∂u
(xk, uk). Fill in the

corresponding blocks in the following matrix

JG(y) =





. . .
. . .

. . .





(c) With this knowledge you can construct the Jacobian in a computation-

ally much more efficient way, as follows:

• First write a function [A,B]=RK4stepJac(x,u) using finite dif-

ferences with a step size of δ = 10−4. Here, A =
∂ f

∂x
(x, u) and

B =
∂ f

∂u
(x, u).

• Using this function [A,B]=RK4stepJac(x,u), implement a func-

tion [jac,Gy]=GJacFast(y).

• Compare if the result is correct by taking the difference

of the Jacobians you obtain by [jac,Gy]=GJacFast(y) and

[jac,Gy]=GJacSlow(y).

Pass this Jacobian to your constraints function. How many itera-

tions and how much time does the solver need now?

(d) The SQP with Gauss-Newton Hessian (also called constrained Gauss-

Newton method) solves a linearized version of this problem in each

iteration. More specific, if the current iterate is ȳ, the next iterate is

the solution of the following Quadratic Program (QP):

minimize
y

y⊤Hy

subject to G(ȳ) + JG(ȳ)(y − ȳ) = 0,

ymin ≤ y ≤ ymax.

(7.13)

Define what Hx and Hu need to be in the Hessian

H =





Hx

Hu

. . .

Hx





Hx =

[ ]

Hu =
[ ]

.

(e) Write a function [ybar_next]=GNStep(ybar) that performs one

SQP-Gauss-Newton step by first calling [jac,Gy] = GJacFast(y)
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and then solving the resulting QP (7.13) using the MATLAB Qp

solver quadprog. Note that the QP is very sparse but that this sparsity

is not exploited in full during the call of quadprog.

(f) Write a loop around your function GNStep, initialize the GN proce-

dure at at y0, and stop the iterations when ‖yk+1 − yk‖ gets smaller

than 10−4. Plot the iterates as well as the vector G during the itera-

tions. How many iterations do you need? How much time does your

SQP solver need to converge? Plot the evolution of the state and the

applied controls in time.

(g) Find out how to exploit sparsity in the quadprog solver and solve

the SQP with the sparse QP solver. How much time does your SQP

solver need to converge now?

7.3 The aim of this exercise is to bring a harmonic oscillator to rest with

minimal control effort. For this aim we regard the linear discrete time

dynamic system:

[

pk+1

vk+1

]

=

[

pk

vk

]

+ ∆t

([

0 1

−1 0

] [

pk

vk

]

+

[

0

1

]

uk

)

, k = 1, . . . ,N − 1

(7.14)

with p1 = 10, v1 = 0,∆t = 0.2,N = 51. Denote for simplicity from now

on xk = (pk, vk)⊤.

(a) Write a MATLAB routine [xN]=oscisim(U) that computes xN as a

function of the control inputs U = (u1, . . . , uN−1)⊤ . Mathematically,

we will denote this function by foscisim : RN−1 → R2.

(b) To verify that your routine does what you want, plot the simulated

positions p1, . . . , pN within this routine for the input U = 0.

(c) Now we want to solve the optimal control problem

minimize
U ∈ RN

‖U‖22

subject to foscisim(U) = 0

Formulate and solve this problem with fmincon. Plot the solution

vector U as well as the trajectory of the positions in the solution.

(d) Now add inequalities to the problem, limiting the inputs uk in am-

plitude by an upper bound |uk| ≤ umax, k = 1, . . . ,N − 1. This adds

2(N − 1) inequalities to your problem. Which?

(e) Formulate the problem with inequalities in fmincon. Experiment with

different values of umax, starting with big ones and making it smaller.

If it is very big, the solution will not be changed at all. At which crit-

ical value of umax does the solution start to change? If it is too small,
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the problem will become infeasible. At which critical value of umax

does this happen?

(f) Both of the above problems are convex, i.e. each local minimum is

also a global minimum. Note that the equality constraint of the opti-

mal control problems is just a linear function at the moment. Make

this constraint nonlinear and thus make the problem nonconvex. One

way is to add a small nonlinearity into the dynamic system (7.14) by

making the spring nonlinear, i.e. replacing the term −1 in the lower

left corner of the system matrix by −(1+µp2
k
) with a small µ, and solv-

ing the problem again. At which value of µ does the solver fmincon

need twice as many iterations as before?

7.4 We regard again the optimal control problem from Exercise 7.3. We had

previously used the Euler integrator, so let’s now we use a RK4 integra-

tor because it is more accurate. Furthermore, instead of using fmincon,

you will write your Newton-type optimization method. For notation sim-

plicity, let’s denote foscisim by gsim.

The necessary optimality conditions (KKT conditions) for the above

problem are

2U∗ +
∂gsim

∂U
(U∗)⊤λ∗ = 0

gsim(U∗) = 0.

Let us introduce a shorthand for the Jacobian matrix:

Jsim(U) :=
∂gsim

∂U
(U)

By linearization of the constraint at some given iterate (Uk, λk) and ne-

glecting its second order derivatives, we get the following (Gauss-Newton)

approximation of the KKT conditions:
[

2Uk

gsim(Uk)

]

+

[

2I Jsim(UK)⊤

Jsim(Uk) 0

] [

Uk+1 − Uk

λk+1

]

= 0

This system can be solved easily by a linear solve in order to obtain a

new iterate Uk+1. But in order to do this, we need first to compute the

Jacobian Jsim(U).

(a) Implement a routine that uses finite differences, i.e. calls the function

gsim (N + 1) times, once at the nominal value and then with each

component slightly perturbed by e.g. δ = 10−4 in the direction of

each unit vector ek, so that we get the approximations

∂gsim

∂uk

(U) ≈ gsim(U + δek) − gsim(U)

δ
.
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We denote the resulting function that gives the full Jacobian matrix of

gsim by Jsim : RN → R2×N .

(b) Now, we implement the Gauss-Newton scheme from above, but as we

are not interested in the multipliers we just implement it as follows:

Uk+1 = Uk −
[

I 0
]
[

2I Jsim(Uk)⊤

Jsim(Uk) 0

]−1 [

2Uk

gsim(Uk)

]

Choose an initial guess for the controls, e.g. U = 0, and start your it-

eration and stop when ‖Uk+1−Uk‖ is very small. How many iterations

do you need to converge? Do you have an idea why?

7.5 Throughout this exercise, we make our controlled oscillator from the pre-

vious problems slightly nonlinear by making it a pendulum and setting

d

dt

[

p(t)

v(t)

]

=

[

v(t)

−C sin(p(t)/C)

]

+

[

0

1

]

u(t), t ∈ [0, T ],

with C := 180/π/4. We again abbreviate the ODE as ẋ = f (x, u) with

x = (p, v)⊤, and choose again the fixed initial value x0 = (10, 0)⊤ and

T = 10. Note that p now measures the deviation from the equilibrium

state in multiples of 4 degrees (i.e. we start with 40 degrees).

We also regard again the optimal control problem from the last two

problems:

minimize
U ∈ RN

‖U‖22

subject to gsim(U) = 0

(7.15)

and we use again RK4 and do again N = 50 integrator steps to obtain the

terminal state xN as a function of the controls U = [u0, . . . , uN−1].

(a) Run again your Gauss-Newton scheme from the last problem, i.e. use

in each iteration finite differences to compute the Jacobian matrix

Jsim(U) :=
∂gsim

∂U
(U)

and iterate

Uk+1 = Uk −
[

I 0
]
[

2I Jsim(Uk)⊤

Jsim(Uk) 0

]−1 [

2Uk

gsim(Uk)

]

How many iterations do you need now with the nonlinear oscillator?

Plot the vector Uk and the resulting trajectory of p in each Gauss-

Newton iteration so that you can observe the Gauss-Newton algo-

rithm at work.
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(b) Modify your Gauss-Newton scheme so that you also obtain the mul-

tiplier vectors, i.e. iterate with Bk = 2I as follows:

[

Uk+1

λk+1

]

=

[

Uk

0

]

−
[

Bk Jsim(Uk)⊤

Jsim(Uk) 0

]−1 [

2Uk

gsim(Uk)

]

Choose as your stopping criterion now that the norm of the residual

KKTRESk :=

∥
∥
∥
∥
∥
∥

[

∇UL(Uk, λk)

gsim(Uk)

]∥
∥
∥
∥
∥
∥
=

∥
∥
∥
∥
∥
∥

[

2Uk + Jsim(Uk)⊤λk

gsim(Uk)

]∥
∥
∥
∥
∥
∥

shall be smaller than a given tolerance, e.g. TOL = 10−4. Store the

values KKTRESk and plot their logarithms against the iteration num-

ber k. Which converge rate does it show?

(c) Now use a different Hessian approximation, namely the BFGS update,

i.e. start with a unit Hessian, B0 = I and then update the Hessian

according to

Bk+1 := Bk −
Bksk s⊤

k
Bk

s⊤
k

Bksk

+
yky⊤

k

s⊤
k

yk

.

with sk := Uk+1−Uk and yk := ∇UL(Uk+1, λk+1)−∇UL(Uk, λk+1). De-

vise your BFGS algorithm so that you need to evaluate the expensive

Jacobian Jsim(Uk) only once per BFGS iteration. Tipp: remember the

old Jacobian Jsim(Uk), then evaluate the new one Jsim(Uk+1), and only

then compute Bk+1.

(d) Observe the BFGS iterations and regard the logarithmic plot of the

norm of the residual KKTRESk. How many iterations do you need

now? Can you explain the form of the plot? What happens if you

make your initial Hessian guess B0 equal to the Gauss-Newton Hes-

sian, ie. B0 = 2I?

*** In the remainder of this exercise, we want to compute the Jacobian

Jsim(U) in a more efficient way inspired by the reverse mode of algo-

rithmic differentiation (AD). This part of the exercise sheet is optional

and you should only do it if you feel motivated enough. ***

(e) For a start, save your old routine for Jsim(U) in a separate folder to be

able to compare the results of your new routine with it later.

(f) Then, note that the RK4 integrator step can be summarized in a func-

tion Φ so that the last state xN , i.e. the output of the function gsim(U),

is obtained by the recursion

xk+1 = Φ(xk, uk), k = 0, . . . ,N − 1.
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Along the simulated trajectory {(xk, uk)}N−1
k=0

, this system can be lin-

earized as

δxk+1 = Akδxk + Bkδuk, k = 0, . . . ,N − 1,

where the matrices

Ak :=
∂Φ

∂x
(xk, uk) and Bk :=

∂Φ

∂u
(xk, uk),

can be computed by finite differences. Note that we use the symbol

Bk here for coherence with the notation of linear system theory, but

that this symbol Bk here has nothing to do with the Hessian matrix Bk

used in the other questions.

To become specific: modify your integrator so that

• Your RK4 step is encapsulated in a single function:

[xnew]=RK4step(x,u)

• You also write a function [xnew,A,B]=RK4stepJac(x,u) using

finite differences with a step size of δ = 10−4

• Your integrator stores and outputs both the trajectory of states {xk}N−1
k=0

and the trajectory of matrices {(Ak, Bk)}N−1
k=0

. Use three dimensional

tensors like Atraj(i,j,k).

The interface of the whole routine could be:

[x,Atraj,Btraj]=forwardsweep(U)

(g) Now, using the matrices Ak, Bk, we want to compute Jsim(U), i.e. write

a routine with the interface [Jsim]=backwardsweep(Atraj,Btraj).

For this aim we observe that

∂gsim

∂uk

(U) = (AN−1AN−2 · · · Ak+1)
︸                   ︷︷                   ︸

=:Gk+1

Bk

In order to compute all derivatives
∂gsim

∂uk
(U) in an efficient way, we

compute the matrices Gk+1 = (AN−1AN−2 · · ·Ak+1) in reverse order,

i.e. we start with k = N − 1 and then go down to k = 0. We start by

GN := I and then compute

Gk := Gk+1Ak, k = N − 1, . . . , 0

(h) Combining the forward and the backward sweep from the previous

two questions, and write a new function for Jsim(U). It is efficient to

combine it with the computation of gsim(U), i.e. have the interface

[gsim,Jsim]=gsimJac(U). Compare the result with the numerical

Jacobian calculation from before by taking norm(Jsimold-Jsimnew).
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(i) How do the computation times of old and the new Jacobian routine

scale with N? This question can be answered without numerical ex-

periments, just by thinking.

(j) Now run your Gauss-Newton algorithm again and verify that it gives

the same solution and same number of iterations as before.

7.6 In this exercise we regard again the discrete time system

xk+1 = Φ(xk, uk)

that is generated by one RK4 step applied to the controlled nonlinear

pendulum with a time step ∆t = 0.2. Its state is x = (p, v)⊤ and the ODE

ẋ = f (x, u) is with C := 180/π/10 given as

f (x, u) =

[

v(t)

−C sin(p(t)/C)

]

+

[

0

1

]

u(t).

The key difference respect to the previous exercise is that now, you

will use the simultaneous approach with SQP and a Gauss-Newton Hes-

sian to solve the optimal control problem.

(a) Write the function Φ(xk, uk) as a MATLAB code encapsulated in a

single function [xnew]=RK4step(x,u)

(b) Let’s define the OCP that we aim to solve in this section. We start

by considering that the initial value is again x̄0 = (10, 0)⊤ and that

N = 50. Furthermore, we take into account that we define bounds on

p, v, and u, namely pmax = 10, vmax = 10, i.e. xmax = (pmax, vmax)⊤,

and umax = 3. Finally, we can regard the OCP that we solved in the

previous Exercises and that is given by Equation (7.15) as well the

specific structure of the simultaneous approach, so that as a result the

specific OCP is given by:

minimize
x0,u0,x1,...,

uN−1,xN

N−1∑

k=0

‖uk‖22

subject to x̄0 − x0 = 0,

Φ(xk, uk) − xk+1 = 0, k = 0, . . . ,N − 1,

xN = 0,

−xmax ≤ xk ≤ xmax, k = 0, . . . ,N − 1,

−umax ≤ uk ≤ umax, k = 0, . . . ,N − 1

Formulate the nonlinear function G(w), the Hessian matrix H, and
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bounds wmax, where w = (x0, u0, . . . , uN−1, xN) ∈ Rn and n = 152, so

that the above OCP can be written in the following form:

minimize
w ∈ R152

w⊤Hw

subject to G(w) = 0,

−wmax ≤ w≤wmax.

Define what Hx and Hu need to be in the Hessian

H =





Hx

Hu

. . .

Hx





, Hx =

[ ]

,Hu =
[ ]

.

Construct the matrix H and vector wmax in MATLAB, and write a

MATLAB function [G]=Gfunc(w).

(c) Check if your function G(w) does what you want by writing a for-

ward simulation function [w]=simulate(x0,U) that simulates, for

a given initial value x0 and control profile U = (u0, . . . , uN−1), the

whole trajectory x1, . . . , xN and constructs from this the full vector

w = (x0, u0, x1, . . . , xN). If you generate for any x0 and U a vector w

and then you call your function G(w) with this input, nearly all your

residuals should be zero. Which components will not be zero?

As a test, simulate e.g. with x0 = (5, 0) and uk = 1, k = 0, . . . ,N − 1

in order to generate w, and then call G(w), to test that your function

G is correct.

(d) The SQP with Gauss-Newton Hessian solves a linearized version of

this problem in each iteration. More specific, if the current iterate is

w̄, the next iterate is the solution of the following QP:

minimize
w ∈ R152

w⊤Hw

subject to G(w̄) + JG(w̄)(w − w̄) = 0,

−wmax ≤ w ≤wmax.

(7.16)

In order to implement the Gauss-Newton method we need the Jaco-

bian JG(w) = ∂G
∂w

(w). Considering that JG(w) is block sparse, where

the the blocks are either (negative) unit matrices, partial derivatives
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Ak =
∂Φ
∂x

(xk, uk) or partial derivatives Bk =
∂Φ
∂u

(xk, uk), fill in the corre-

sponding blocks in the following matrix:

JG(w) =





. . .
. . .

. . .





(e) We compute the Jacobian JG(w) by finite differences, i.e. perturbing

all 152 directions one after the other. Give your routine e.g. the name

[G,J]=GfuncJacSlow(w). Compute JG for a given w (e.g. the one

from above) and look at the structure this matrix, e.g. using the com-

mand spy(J).

(f) Write a function [wplus]=GNStep(w) that performs one SQP-Gauss-

Newton step by first calling [G,J]=GfuncJac(w) and then solving

the resulting QP (7.16) using quadprog from MATLAB. Note that

the QP is a very sparse QP but that this sparsity is not exploited in

full during the call of quadprog.

(g) Write a loop around your function GNStep, initialize the GN proce-

dure at at w = 0, and stop the iterations when ‖wk+1−wk‖ gets smaller

than 10−4. Plot the iterates as well as the vector G during the iterations.

How many iterations do you need?

(h) A different algorithm is obtained if we overwrite before each call of

the function GNStep the values for the states within w by the result of

a forward simulation, using the corresponding controls and the initial

value x̄0. Run it again with this modification, using the same zero

initialization for the controls. How many iterations do you need now?

Do you know to which of the algorithms from the previous exercises

this new method is equivalent?

(i) Finally, you can construct the Jacobian in a much more computation-

ally efficient way:

• First write a function [xnew,A,B]=RK4stepJac(x,u) using fi-

nite differences with a step size of δ = 10−4. Here, A = ∂Φ
∂x

(x, u)

and B = ∂Φ
∂u

(x, u).

• Using this function [xnew,A,B]=RK4stepJac(x,u), implement

a function [G,J]=GfuncJacFast(w).

• Compare if the result is correct by taking the difference of

the Jacobians you obtain by [G,J]=GfuncJacFast(w) and

[G,J]=GfuncJacSlow(w).



8

Dynamic Programming

In view of all that we have said in the forego-

ing sections, the many obstacles we appear

to have surmounted. What casts the pall over

our victory celebration? It is the curse of di-

mensionality, a malediction that has plagued

the scientist from earliest days.

— Richard E. Bellman

Dynamic programming (DP) is a very different approach to solve optimal

control problems than the ones presented previously. The methodology was

developed in the fifties and sixties of the 20th century, most prominently by

Richard Bellman [8] who also coined the term dynamic programming. Inter-

estingly, dynamic programming is easiest to apply to systems with discrete

state and control spaces, so that we will introduce this case first. When DP is

applied to discrete time systems with continuous state spaces, some approxima-

tions have to be made, usually by discretization. Generally, this discretization

leads to exponential growth of computational cost with respect to the dimen-

sion nx of the state space, what Bellman called the “curse of dimensionality”.

It is the only but major drawback of DP and limits its practical applicability to

systems with nx ≈ 6. In the continuous time case, DP is formulated as a par-

tial differential equation in the state space, the Hamilton-Jacobi-Bellman (HJB)

equation, suffering from the same limitation; but this will be treated in Chap-

ter 11. On the positive side, DP can easily deal with all kinds of hybrid systems

or non-differentiable dynamics, and it even allows us to treat stochastic optimal

control with recourse, or minimax games, without much additional effort. An

excellent textbook on discrete time optimal control and dynamic programming

is [12]. Let us now start with discrete control and state spaces.

141
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8.1 Dynamic Programming in Discrete State Space

Let us regard a dynamic system

xk+1 = f (xk, uk)

with f : X × U → X, i.e., xk ∈ X and uk ∈ U, where we do not have to specify

the sets X and U yet. We note, however, that we need to assume they are finite

for a practical implementation of DP. Thus, let us in this section assume they

are finite with nX and nU elements, respectively. Let us also define a stage cost

L(x, u) and terminal cost E(x) that take values from R∞ = R ∪ {∞}, where

infinity denotes infeasible pairs (x, u) or x. The optimal control problem that

we first address can be stated as

minimize
x0,u0,x1,...,

uN−1,xN

N−1∑

k=0

L(xk, uk) + E(xN)

subject to f (xk, uk) − xk+1 = 0, k = 0, . . . ,N − 1,

x̄0 − x0 = 0.

Given the fact that the initial value is fixed and the controls {uk}N−1
k=0

are the

only true degrees of freedom, and given that each uk ∈ U takes one of the nU

elements of U, there exist exactly nN
U

different trajectories, each with a specific

value of the objective function, where infinity denotes an infeasible trajectory.

Assuming that the evaluation of f and of L takes one computational unit, and

noting that each trajectory needs N such evaluations, the overall complexity of

simple enumeration is O(NnN
U

). Simple enumeration of all possible trajectories

thus has a complexity that grows exponentially with the horizon length N.

Dynamic programming is just a more intelligent way to enumerate all pos-

sible trajectories. It starts from the principle of optimality, i.e., the observation

that each subtrajectory of an optimal trajectory is an optimal trajectory as well.

More specifically, in DP we define the value function or cost-to-go function as

the optimal cost that would be obtained if at time k ∈ {0, . . . ,N} and at state x̄k

we solve the optimal control problem on a shortened horizon:

Jk(x̄k) = minimize
xk ,uk ,...,
uN−1,xN

N−1∑

i=k

L(xi, ui) + E(xN)

subject to f (xi, ui) − xi+1 = 0, i = k, . . . ,N − 1,

x̄k − xk = 0.

(8.1)
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Thus, each function Jk : X → R∞ summarizes the cost-to-go to the end

when starting at a given state. For the case k = N we trivially have JN(x) =

E(x). The principle of optimality states now that for any k ∈ {0, . . . ,N − 1}
holds

Jk(x̄k) = minimize
u

L(x̄k, u) + Jk+1( f (x̄k, u)). (8.2)

This immediately allows us to perform a recursion to compute all functions

Jk one after the other, starting with k = N − 1 and then reducing k in each

recursion step by one, until we have obtained J0. This recursion is called the

dynamic programming recursion. Once all the value functions Jk are computed,

the optimal feedback control for a given state xk at time k is given by

u∗k(xk) = arg min
u

L(xk, u) + Jk+1( f (xk, u))

This allows us to reconstruct the optimal trajectory by a forward simulation

that starts at x0 = x̄0 and then proceeds as follows:

xk+1 = f (xk, u
∗
k(xk)), k = 0, . . . ,N − 1.

In this way, DP allows us to solve the optimal control problem up to global

optimality, but with a different complexity than simple enumeration. To assess

its complexity, let us remark that the most cost intensive step is the genera-

tion of the N cost-to-go functions Jk. Each recursion step (8.2) needs to go

through all nX states x. For each state it needs to test nU controls u by evaluat-

ing once the system f (x, u) and stage cost L(x, u), which by definition costs one

computational unit. Thus, the overall computational complexity is O(NnXnU).

Compared with simple enumeration, where we had O(NnN
U

), DP is often much

better even for moderately sized horizons N. Let us for example assume an

optimal control problem with nU = 10, nX = 1000, N = 100. Then simple

enumeration has a cost of 10102 while DP has a cost of 106.

One of the main advantages of dynamic programming, that can likewise

be defined for continuous state spaces, is that we do not need to make any

assumptions (such as differentiability or convexity) on the functions f , L, E

defining the problem, and still it solves the problem up to global optimality.

On the other hand, if it shall be applied to a continuous state space, we have

to represent the functions Jk on the computer, e.g., by tabulation on a grid in

state space. If the continuous state space Xcont is a box in dimension nx, and

if we use a rectangular grid with m intervals in each dimension, then the total

number of grid points is mnx . If we perform DP on this grid, then the above

complexity estimate is still valid, but with nX = mnx . Thus, when DP is applied
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to systems with continuous state spaces, it has exponential complexity in the

dimension of the state space; it suffers from what Bellman called the curse

of dimensionality. There exist many ways to approximate the value function,

e.g., by neural networks or other functional representations [14], but the global

optimality guarantee of dynamic programming is lost in these cases. On the

other hand, there exists one special case where DP can be performed exactly

in continuous state spaces, that we treat next.

8.2 Linear Quadratic Problems

Let us regard now linear quadratic optimal control problems of the form

minimize
x, u

N−1∑

k=0

[

xk

uk

]⊤ [

Qk S ⊤
k

S k Rk

] [

xk

uk

]

+ x⊤N PN xN

subject to x0 − x̄0 = 0,

xk+1 − Akxk − Bkuk = 0, k = 0, . . . ,N − 1.

(8.3)

Let us apply dynamic programming to this case. In each recursion step, we

have to solve, for a time varying stage cost Lk(x, u) =

[

xk

uk

]⊤ [

Qk S ⊤
k

S k Rk

] [

xk

uk

]

and a dynamic system fk(x, u) = Ak x + Bku the recursion step

Jk(x) = min
u

Lk(x, u) + Jk+1( fk(x, u)),

where we start with JN(x) = x⊤PN x. Fortunately, it can be shown that

under these circumstances, each Jk is quadratic, i.e., it again has the form

Jk(x) = x⊤Pk x. More specifically, the following theorem holds, where we drop

the index k for simplicity.

Theorem 8.1 (Quadratic Representation of Value Function). If R + B⊤PB is

positive definite, then the minimum Jnew(x) of one step of the DP recursion

Jnew(x) = min
u

[

x

u

]⊤ ([

Q S ⊤

S R

]

+ [A | B]⊤P [A | B]

) [

x

u

]

is a quadratic function explicity given by Jnew(x) = x⊤Pnew x with

Pnew = Q + A⊤PA − (S ⊤ + A⊤PB)(R + B⊤PB)−1(S + B⊤PA). (8.4)

The proof starts by noting that the optimization problem for a specific x is
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given by

Jnew(x) = min
u

[

x

u

]⊤ [

Q + A⊤PA S ⊤ + A⊤PB

S + B⊤PA R + B⊤PB

] [

x

u

]

.

Then it uses the fact that for invertible R̄ = R + B⊤PB this problem can be

solved explicitly, yielding the formula (8.4), by a direct application of the Schur

complement lemma, that can easily be verified by direct calculation.

Lemma 8.2 (Schur Complement Lemma). If R̄ is positive definite then

min
u

[

x

u

]⊤ [

Q̄ S̄ ⊤

S̄ R̄

] [

x

u

]

= x⊤
(

Q̄ − S̄ ⊤R̄−1S̄
)

x

and the minimizer u∗(x) is given by u∗(x) = −R̄−1S̄ x.

The above theorem allows us to solve the optimal control problem by first

computing explicitly all matrices Pk, and then performing the forward closed

loop simulation. More explicitly, starting with PN , we iterate for k = N −
1, . . . , 0 backwards

Pk = Qk + A⊤k Pk+1Ak − (S ⊤k + A⊤k Pk+1Bk)(Rk + B⊤k Pk+1Bk)
−1(S k + B⊤k Pk+1Ak).

(8.5)

This is sometimes called the Difference Riccati Equation. Then, we obtain the

optimal feedback u∗
k
(xk) by

u∗k(xk) = −(Rk + B⊤k Pk+1Bk)
−1(S k + B⊤k Pk+1Ak)xk,

and finally, starting with x0 = x̄0 we perform the forward recursion

xk+1 = Ak xk + Bku∗k(xk),

which delivers the complete optimal trajectory of the linear quadratic optimal

control problem.

An important and more general case are problems with linear quadratic costs

and affine linear systems, i.e., problems of the form

minimize
x, u

N−1∑

i=0





1

xk

uk





⊤ 



∗ q⊤
k

s⊤
k

qk Qk S ⊤
k

sk S k Rk









1

xk

uk





+

[

1

xN

]⊤ [

∗ p⊤
N

pN PN

] [

1

xN

]

subject to x0 − xfix
0 = 0,

xk+1 − Ak xk − Bkuk − ck = 0, k = 0, . . . ,N − 1.

(8.6)
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These optimization problems appear at many occasions, for example as lin-

earizations of nonlinear optimal control problems, as in Chapter 7.3, in refer-

ence tracking problems with Lk(xk, uk) = ‖xk − xref
k
‖2

Q
+ ‖uk‖2R, or in moving

horizon estimation (MHE) with cost Lk(xk, uk) = ‖Cxk − ymeas
k
‖2

Q
+ ‖uk‖2R. They

can be treated by exactly the same recursion formulae as above, by augmenting

the system states xk to

x̃k =

[

1

xk

]

and replacing the dynamics by

x̃k+1 =

[

1 0

ck Ak

]

x̃k +

[

0

Bk

]

uk

with initial value

x̃fix
0 =

[

1

xfix
0
.

]

Then the problem (8.6) can be reformulated in the form of problem (8.3) and

can be solved using exactly the same difference Riccati equation formula as

before!

8.3 Infinite Horizon Problems

Dynamic programming can easily be generalized to infinite horizon problems

of the form

minimize
x, u

∞∑

k=0

L(xk, uk)

subject to x0 − x̄0 = 0,

xk+1 − f (xk, uk) = 0, k = 0, . . . ,∞.

Interestingly, the cost-to-go function Jk(xk) defined in Equation (8.1) becomes

independent of the index k, i.e, it holds that Jk = Jk+1 for all k. This directly

leads to the Bellman Equation:

J(x) = min
u

L(x, u) + J( f (x, u))
︸                  ︷︷                  ︸

=J̃(x,u)

.

The optimal controls are obtained by the function

u∗(x) = arg min
u

J̃(x, u).
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This feedback is called the stationary optimal feedback control. It is a static

state feedback law.

8.4 The Linear Quadratic Regulator

An important special case is again the case of a linear system with quadratic

cost. It is the solution to an infinite horizon problem with a linear system

f (x, u) = Ax + Bu and quadratic cost

L(x, u) =

[

x

u

]⊤ [

Q S ⊤

S R

] [

x

u

]

.

For its solution, we just require a stationary solution of the Riccati recur-

sion (8.5), setting Pk = Pk+1, which yields the so called algebraic Riccati

equation in discrete time

P = Q + A⊤PA − (S ⊤ + A⊤PB)(R + B⊤PB)−1(S + B⊤PA).

This is a nonlinear matrix equation in the symmetric matrix P, i.e., with nx(nx+

1)/2 unknowns. It can either be solved by an iterative application of the differ-

ence Riccati recursion (8.5) starting with, e.g., a zero matrix P = 0, or by

faster converging procedures such as Newton-type methods, where, however,

care has to be taken to avoid possible shadow solutions that are not positive def-

inite. Once the solution matrix P is found, the optimal feedback control u∗(x)

is given by

u∗(x) = − (R + B⊤PB)−1(S + B⊤PA)
︸                            ︷︷                            ︸

=K

x.

This feedback is called the Linear Quadratic Regulator (LQR), and K is the

LQR gain.

8.5 Robust and Stochastic Dynamic Programming

One of its most interesting characteristics is that DP can easily be applied

to games like chess, or to robust optimal control problems. Here, an adverse

player choses counter-actions, or disturbances, wk against us. They influence

both the stage costs Lk as well as the system dynamics fk and while we want to

minimize, our adversary wants to maximize. The robust DP recursion for such
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a minimax game is simply:

Jk(x) = min
u

max
w

Lk(x, u,w) + Jk+1( fk(x, u,w))
︸                                      ︷︷                                      ︸

=J̃k(x,u)

starting with

JN(x) = E(x).

The solution obtained by DP takes into account that we can react to the actions

by the adversary, i.e., that we can apply feedback, and in the model predictive

control (MPC) literature such a feedback law is sometimes called Closed-Loop

Robust Optimal Control [10].

Alternatively, we might have a stochastic system and the aim is to find the

feedback law that gives us the best expected value. Here, instead of the max-

imum, we take an expectation over the disturbances wk. The stochastic DP

recursion is simply given by

Jk(x) = min
u
Ew{Lk(x, u,w) + Jk+1( fk(x, u,w))}
︸                                      ︷︷                                      ︸

=J̃k(x,u)

where Ew{·} is the expectation operator, i.e., the integral over w weighted with

the probability density function ρ(w|x, u) of w given x and u:

Ew{φ(x, u,w)} =
∫

φ(x, u,w)ρ(w|x, u)dw.

In case of finitely many disturbances, this is just a weighted sum. Note that

DP avoids the combinatorial explosion of scenario trees that are often used in

stochastic programming, but of course suffers from the curse of dimensionality.

It is the preferred option for long horizon problems with small state spaces.

8.6 Interesting Properties of the DP Operator

Let us define the dynamic programming operator Tk acting on one value func-

tion, Jk+1, and giving another one, Jk, by

Tk[J](x) = min
u

Lk(x, u) + J( fk(x, u)).

Note that the operator Tk maps from the space of functionsX→ R∞ into itself.

With this operator, the dynamic programming recursion is compactly written

as Jk = Tk[Jk+1], and the stationary Bellman equation would just be J = T [J].

Let us for notational simplicity drop the index k in the following. An interesting

property of the DP operator T is its monotonicity, as follows.
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Theorem 8.3 (Monotonicity of DP). Regard two value functions J and J′. If

J ≥ J′ in the sense that for all x ∈ X holds that J(x) ≥ J′(x) then also

T [J] ≥ T [J′].

The proof is

T [J](x) = min
u

L(x, u) + J( f (x, u))
︸     ︷︷     ︸

≥J′( f (x,u)))

≥ min
u

L(x, u) + J′( f (x, u)) = T [J′](x).

This monotonicity property holds also for robust or stochastic dynamic pro-

gramming, and is for example used in existence proofs for solutions of the

stationary Bellman equation, or in stability proofs of model predictive control

(MPC) schemes [69].

Another interesting observation is that certain DP operators T preserve con-

vexity of the value function J.

Theorem 8.4 (Convex dynamic programming). If the system is affine in (x, u),

i.e. f (x, u,w) = A(w)x+ B(w)u+ c(w), and if the stage cost L(x, u,w) is convex

in (x, u), then the DP, the robust DP, and the stochastic DP operators T pre-

serve convexity of J, i.e. if J is a convex function, then T [J] is again a convex

function.

Proof It is interesting to note that no restrictions are given on how the func-

tions depend on w. The proof of the convexity preservation starts by noting

that for fixed w, L(x, u,w)+ J( f (x, u,w)) is a convex function in (x, u). Because

also the maximum over all w, or the positively weighted sum of an expectation

value computation, preserve convexity, the function J̃(x, u) is in all three cases

convex in both x and u. Finally, the minimization of a convex function over

one of its arguments preserves convexity, i.e. the resulting value function T [J]

defined by

T [J](x) = min
u

J̃(x, u)

is convex. �

But why would convexity be important in the context of DP? First, convexity

of J̃(x, u) implies that the computation of the feedback law arg minu J̃(x, u) is a

convex parametric program and could reliably be solved by local optimization

methods. Second, it might be possible to represent the value function J(x) more

efficiently than by tabulation on a grid, for example as the pointwise maximum

of affine functions

J(x) = max
i

a⊤i

[

1

x

]

.
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It is an interesting fact that that for piecewise linear convex costs and con-

straints and polyhedral uncertainty this representation is exact and leads to

an exact robust DP algorithm that might be called polyhedral DP [10, 34].

The polyhedral convex representability of the cost-to-go for linear systems

with piecewise linear cost is indirectly exploited in some explicit MPC ap-

proaches [75, 9]. Polyhedral representations with a limited number of facets

can also be used to approximate a convex cost-to-go and still yield some guar-

antees on the closed-loop system [19, 20, 55]. Finally, note that also the linear

quadratic regulator is a special case of convex dynamic programming.

8.7 The Gradient of the Value Function

The meaning of the cost-to-go, or the value function, Jk is that it is the cost in-

curred on the remainder of the horizon for the best possible strategy. In order to

make an interesting connection between the value function and the multipliers

λk that we encountered in derivative based optimization methods, let us now

regard a discrete time optimal control problem as in the previous chapters, but

without coupled constraints, as these cannot directly be treated with dynamic

programming. We assume further that the initial value is fixed and that all in-

equality and terminal constraints are subsumed in the stage cost L(x, u) and

terminal cost E(xN) by barrier functions that take infinite values outside the

feasible domain but are differentiable inside. For terminal equality constraints,

e.g. a fixed terminal state, assume for the moment that these are approximated

by a terminal region of non-zero volume on which again a barrier can be de-

fined. Thus, we regard the following problem:

minimize
x0,u0,x1,...,

uN−1,xN

N−1∑

k=0

L(xk, uk) + E(xN)

subject to f (xk, uk) − xk+1 = 0, k = 0, . . . ,N − 1,

x̄0 − x0 = 0.

The dynamic programming recursion for this problem is given by:

JN(x) = E(x), Jk(x) = min
u

L(x, u)+ Jk+1( f (x, u)), k = N −1, . . . , 0. (8.7)

We remember that we obtained the optimal solution by the forward recursion

x0 = x̄0, xk+1 = f (xk, uk), k = 0, . . . ,N − 1,

where uk is defined by

uk = arg min
u

L(xk, u) + Jk+1( f (xk, u)). (8.8)
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The solution of this optimization problem in u necessarily satisfies the first

order necessary optimality condition

∇uL(xk, uk) +
∂ f

∂u
(xk, uk)⊤∇Jk+1( f (xk, uk)) = 0 (8.9)

which defines uk locally if the problem is locally strictly convex, i.e., its ob-

jective has a positive definite Hessian at (xk, uk). We now formulate simple

conditions on xk and uk that follow necessarily from the DP recursion. For this

aim we first note that on the optimal trajectory holds xk+1 = f (xk, uk) and that

we trivially obtain along the optimal trajectory

JN(xN) = E(xN), Jk(xk) = L(xk, uk) + Jk+1(xk+1), k = N − 1, . . . , 0.

This implies for example that the value function remains constant on the whole

trajectory for problems with zero stage costs. However, it is even more inter-

esting to regard the gradient ∇Jk(xk) along the optimal state trajectory. If we

differentiate (8.7) at the point xk with respect to x we obtain

∇JN(xN) = ∇E(xN),

∇Jk(xk)⊤ =
d

dx
L(xk, uk) + Jk+1( f (xk, uk))
︸                           ︷︷                           ︸

=:J̃k(xk ,uk)

k = N − 1, . . . , 0.

In the evaluation of the total derivative it is needed to observe that the optimal

uk is via (8.9) an implicit function of xk. However, it turns out that the derivative

does not depend on
duk

dxk
because of

d

dx
J̃k(xk, uk) =

∂J̃k

∂x
(xk, uk) +

∂J̃k

∂u
(xk, uk)

︸       ︷︷       ︸

=0

duk

dxk

,

where the partial derivative with respect to u is zero because of (8.9). Thus,

the gradients of the value function at the optimal trajectory have to satisfy the

recursion

∇Jk(xk) = ∇xL(xk, uk) +
∂ f

∂x
(xk, uk)⊤∇Jk+1(xk+1) k = N − 1, . . . , 0.

This recursive condition on the gradients ∇Jk(xk) is equivalent to the first order

necessary condition (FONC) for optimality that we obtained previously for

differentiable optimal control problems, if we identify the gradients with the

multipliers, i.e. set

λk = ∇Jk(xk).

This is a very important interpretation of the multipliers λk: they are nothing

else than the gradients of the value function along the optimal trajectory!
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8.8 A Discrete Time Minimum Principle

Collecting all necessary conditions of optimality that we just derived, but sub-

stituting ∇Jk(xk) by λk we arrive indeed exactly to the same conditions (7.7)

that we derived in Chapter 7 in a completely different way.

x0 = x̄0

xk+1 = f (xk, uk), k = 0, . . . ,N − 1,

λN = ∇xN
E(xN)

λk = ∇xL(xk, uk) +
∂ f

∂x
(xk, uk)⊤λk+1, k = N − 1, . . . , 1,

0 = ∇uL(xk, uk) +
∂ f

∂u
(xk, uk)⊤λk+1, k = 0, . . . ,N − 1.

In the context of continuous time problems, we will arrive at a very similar

formulation, which has the interesting features that the recursion for λ becomes

a differential equation that can be integrated forward in time if desired, and

that the optimization problem in (8.8) does only depend on the gradient of

J. This will facilitate the formulation and numerical solution of the necessary

optimality conditions as a boundary value problem.

8.9 Iterative Dynamic Programming

8.10 Differential Dynamic Programming

Exercises

8.1 Consider a very simple system with state x ∈ {1, 2, . . . , 10} and controls

u ∈ {−1, 0, 1} and time invariant dynamics f (x, u) = x + u and stage cost

L(x, u) = |u| on a horizon of length N = 3. The terminal cost E(x) is

given by zero if x = 5 and by 100 otherwise. Take pen and paper and

compute and sketch the cost to go functions J3, J2, J1, J0.

8.2 Use dynamic programming to solve the following simple discrete time

OCP with one state and one control by hand. On the way towards the

solution, explicitly state the cost to go functions J2(x), J1(x), J0(x) and

feedback control laws u∗
0
(x) and u∗

1
(x).
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minimize
x0,x1,x2,

u0,u1

1∑

k=0

u2
k + 10x2

2

subject to x0 = 5,

xk+1 = xk + uk, k = 0, 1.

8.3 Regard the discrete time damped-spring system

xk+1 =

(

1 0.02

−0.1 0.992

)

xk +

(

0

0.02

)

uk

over the horizon of N = 600, with initial state x0 = [10, 0].

(a) Simulate and plot the uncontrolled system (u = 0) as a baseline.

(b) Using dynamic programming, minimize the cost function:

N−1∑

k=0

(

x⊤k Qxk + u⊤k Ruk

)

+ x⊤N PN xN

with

Q =

(
1
22 0

0 1
32

)

, R =
(

1
62

)

, PN =

(

1 0

0 1

)

Plot the two states and control against the uncontrolled system.

(c) Consider the infinite-horizon system (N → ∞) with cost function:

∞∑

k=0

(

x⊤k Qxk + u⊤k Ruk

)

What control policy will minimize this cost function? Implement this

control policy and simulate for N = 600. Plot this in state and control

against the previous two trajectories.

8.4 In this Exercise we regard again the discrete time system

xk+1 = Φ(xk, uk)

that is generated by one RK4 step applied to the controlled nonlinear

pendulum, as defined in Exercise 7.6. Furthermore, we assume that you

have the MATLAB function [xnew]=RK4step(x,u) available. If not,

refer to Exercise 7.6 for implementation.

We regard the same optimal control problem as last time, with the

initial value x̄0 = (10, 0)⊤ and N = 50 time steps, and bounds pmax =

10, vmax = 10, i.e. xmax = (pmax, vmax)⊤, and umax = 10. In contrast to

last time and because of approximation errors, we now have to relax the
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terminal constraint xN = 0 to a small box −xN,max ≤ xN ≤ xN,max with

xN,max = (5, 5)⊤. We also add a small terminal cost term 10‖xN‖22. As a

result, the optimization problem we want to solve is given by

= 0 minimize
x0,u0,x1,...,

uN−1,xN

N−1∑

k=0

‖uk‖22 + 10‖xN‖22

subject to Φ(xk, uk) − xk+1 = 0, k = 0, . . . ,N − 1,

−xmax ≤ xk ≤ xmax, k = 0, . . . ,N − 1,

−xN,max ≤ xN ≤ xN,max,

−umax ≤ uk ≤ umax, k = 0, . . . ,N − 1

(a) Discretize the state and control spaces choosing step sizes in all di-

mensions of size 1. Considering that {x ∈ R2| − xmax ≤ x ≤ xmax} and

{u ∈ R| − umax ≤ u ≤ umax} this would result in n = 21 · 21 = 441

state grid points and m = 7 control grid points. Let us denote the

gridded space and control spaces by X and U. As a first step, de-

fine the terminal cost-to-go function JN(x) on the n state grid points

x ∈ X, i.e. define all elements of 21 by 21 matrix that you might call

Jmat. For infeasible values, i.e. those that exceed the tight bounds of

the terminal state, choose a very large number, e.g. 106. For later use,

you might also define a three dimensional tensor JmatTen(i,j,kp1)

with kp1= 1, . . . , 51 in order to store all Jk.

(b) The next problem in implementing dynamic programming is that we

cannot expect that we exactly hit with Φ(x, u) any of the grid points,

i.e. unfortunately we have even for x ∈ X and u ∈ U that usually

Φ(x, u) < X. We can resolve this issue by rounding the value of the

output of Φ to the next grid point (this corresponds to a piecewise

constant representation of Jk+1 in the DP equation). Let us denote

this function by Φ̃ : X × U → X. Thus, write a MATLAB function

[xnew] = RK4round(x, u) which has the property that it always maps

to the next grid point in X. Note that we introduce uncontrolled dis-

cretiation errors here.

(c) Last, implement the dynamic programming recursion, i.e. write two

nested loop: the outer loop goes through each x ∈ X and solves the

optimization problem

Jk(x) = min
u∈U
‖u‖22 + Jk+1(Φ̃(x, u))
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by enumerating over all u ∈ U in the inner loop. Summarize your dy-

namic programming operator T in a function Jmatplus=DPoper(Jmat).

(d) Starting at JN , generate all fifty more matrices JN−1, . . . , J0, and visu-

alize your cost-to-go functions Jk by plotting the matrix entries as a

two dimensional function (cutting away the “infinitely” high values).

Compare JN and J0. Can you interpret the form of them ?

(e) In order for DP to be useful, we need to generate control actions for

a given state. They are easily obtained by

u∗k(x) = arg min
u∈U
‖u‖22 + Jk+1(Φ̃(x, u))

Write a function u=DPcont(x,J) that gives you the dynamic pro-

gramming feedback.

(f) If you want to generate the optimal trajectory for a given inititial state

x0, we can do a closed-loop simulation, i.e. we simulate

xk+1 = Φ(xk, u
∗(xk, Jk+1)).

Note that we do not use Φ̃ in this forward simulation, but Φ, because

we want the feedback to compensate for our discretization errors.

Generate the trajectories for x and u for the above optimal control

problem.

(g) Assume a small bounded perturbation against which you want to ro-

bustify your controller. Assume for this that your function Φ is per-

turbed by a perturbation wk ∈ [−1, 1]2 as follows

xk+1 = Φ(xk, uk) + 0.1ukwk
︸                   ︷︷                   ︸

=:Φrob(xk ,uk ,wk)

Discretize the cube in which w lives e.g. by a 3 by 3 grid W. Also,

you need again to round the result so that you have a function Φ̃rob :

X ×U ×W→ X. Now solve instead of the nominal DP recursion the

robust DP recursion

Jk(x) = min
u∈U

max
w∈W
‖u‖22 + Jk+1(Φ̃rob(x, u,w)).

Generate the nominal trajectory, i.e. with all wk = 0 by the closed-

loop simulation. Plot the result. What is different now?

(h) Last, generate a random scenario of values wk inside the cube of per-

turbations, and simulate your closed-loop system again. Verify that

the terminal constraint is still satisfied.

8.5 In this task we are using Dynamic Programming to find optimal controls

to swing up a pendulum. The state of the system is x = [φ, ω]⊤ where



156 Dynamic Programming

φ is the angle and ω the angular velocity of the pendulum. When φ = 0,

the pendulum is in its inverse position, e.g. the mass is at the top. The

system dynamics are given by

φ̇ = ω

ω̇ = 2 sin(φ) + u

where ω ∈ [ωmin, ωmax], and u ∈ [umin, umax].

To find the controls for the pendulum swing-up, we are solving the

following optimal control problem:

minimize
x0,...,xN ,

u0,...,uN−1

N−1∑

k=0

(φ2
k + u2

k)

subject to x̄0 = x0,

f (xk, uk) − xk+1 = 0, k = 0, . . . ,N − 1,

umin ≤ uk ≤ umax, k = 0, . . . ,N − 1,

ωmin ≤ ωk ≤ ωmax, k = 0, . . . ,N.

(8.10)

Dynamic Programming requires a system which is discrete in space

and in time. We already prepared the discretization of the continuous

system for you in the file pendulum_template.m on the course web-

page. The discretization is done in the following way:

The discrete versions of φ, ω and u live in the integer space Z and thus

are denoted by φZ , ωZ and uZ . The conversion from real space to inte-

ger space is done by projection of the variables into Nφ, Nω, Nu equally

spaced bins in the range of the variables. In the template file you find

predefined functions to convert the variables between integer and real

numbers, e.g. phiZ_to_phi and phi_to_phiZ.

To complete the tasks, fill in the missing parts of the template file

pendulum_template.m.

(a) Use the function integrate_Z to simulate the system in discrete

space with x0 = [0.4, 0]⊤ and u = 0. Do N = 60 integration steps

and use a timestep of h = 0.12. Plot the evolution of φ and ω in time

(in continuous state space). Make a plot (animation) that shows the

motion of the pendulum. Assume a rod length of 1m. You don’t need

to submit the animation in the pdf, it’s just for you to see if the system

behaves well.
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(b) In the following section of the template file you see the precalcula-

tion of all integrations in the discrete state space to avoid unnecessary

computations during Dynamic Programming. For a given combina-

tion of φZ , ωZ , and uZ , the resulting state from integration [φ+
Z
, ω+

Z
]

is stored in the lookup tables PhiNext and WNext and the costs are

stored in the table L.

Use the lookup tables to do the same simulation as in Task 1. Plot the

evolution of φ and ω in time (in continuous state space).

(c) Implement the backward pass (recursion) of Dynamic Programming,

i.e. calculate the cost-to-go function Jk(xk) going from k = N to k = 1.

For k = N, the cost-to-go is initialized zero for all states (no terminal

cost). Fill in the missing lines in the template file for this task. Use

N = 60 and h = 0.12.

(d) Simulate the system using the optimal controls which are given by

u∗k(xk) = arg min
u

φ2
k + u2 + Jk+1( f (xk, u))

starting from x0 = [−π, 0]⊤. Plot the evolution of φ and ω in time

(in continuous state space). Make a plot (animation) that shows the

motion of the pendulum to see if the pendulum swings up.

8.6 Consider the inverted pendulum problem defined by the optimal con-

trol problem given by Equation (8.10). This time, we will try to find an

approximate solution to the optimal control problem by linearising the

original non-linear problem and finding a solution to the corresponding

linear-quadratic problem of the form:

minimize
x0,...,xN ,

u0,...,uN−1

N−1∑

k=0

[

xk

uk

]⊤ [

Qk S ⊤
k

S k Rk

] [

xk

uk

]

+ x⊤N PN xN

subject to x0 = x̄0,

xk+1 =Akxk + Bkuk, k = 0, . . . ,N − 1.

In order to solve the different tasks download the lqr_template.m

from the website.

(a) Linearise the system dynamics around the point x = [0, 0]⊤, u = 0

analytically by differentiation to obtain a continuous time system of

the form: ẋ = Acx + Bcu. Then you can obtain the corresponding
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discrete time system xk+1 = Axk + Buk with a timestep of 0.1 using

the Matlab commands:

sysc = ss(Ac,Bc,eye(2),0);

sysd = c2d(sysc,0.1);

A = sysd.a;

B = sysd.b;

Specify the continuous time and discrete time system matrices Ac, Bc,

A, B.

(b) Bring the objective of the optimal control problem into a quadratic

form and specify the matrices Q, R, S .

(c) Calculate recursively the Pk matrices (Difference Ricatti Equation)

for k = N − 1, . . . , 0 with N = 60 starting from PN =

[

0 0

0 0

]

.

(d) Calculate the first cost-to-go J0 for the linear system for each state of

the dynamic programming exercise of exercise sheet 3. Make a 3D

contour plot with a fine level-step of J0 using the matlab commands:

[C,handle] = contour3(J0);

set(handle,’LevelStep’,get(handle,’LevelStep’)*0.2)

Compare the contour plot with the contour plot of the non-linear cost-

to-go function of the dynamic programming exercise the you can get

with the get_first_J() function in the template.

What are the similarities/differences of the two contour plots?

(e) Starting from x0 = [− π
8
, 2]⊤, calculate the optimal feedback and the

complete optimal trajectory of the linear quadratic optimal control

problem by forward recursion.

Make a plot with the evolution of the state in time and a plot of the op-

timal feedback controls vs. time. Does the controller bring the system

to the steady state?

(f) Apply the same optimal controls (open-loop) to the non-linear pen-

dulum system. Start from the same initial state x0 and simulate the

system using the integrate_rk4 function. Make a plot of state evo-

lution and controls as before. Does the controller bring the system to

the steady state? Discuss the result.

(g) Implement a feedback controller, i.e. calculate the optimal feedback

for the current state and simulate the non-linear system using

integrate_rk4. Make a plot of state evolution and controls as be-

fore. Does the controller bring the system to the steady state?

(h) Solve the Algebraic Ricatti Equation by iteratively calculating the

Pk matrices until convergence. We say, convergence is reached if the
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Frobenius norm of differences between the current matrix Pcur and

the next matrix Pnext is below 10−5:

norm(Pnext-Pcur, ’fro’) <= 1e-5

(i) Use the solution to the Algebraic Ricatti Equation to implement a

Linear-Quadratic-Regulator(LQR).Simulate the system with integrate_rk4.

Make a plot of state evolution and controls as before. Does the con-

troller stabilize the system at the steady state?

8.7 We shall consider a simple OCP with two states (x1, x2) and one control

(u):

minimize
x, u

∫ ⊤

0

x1(t)2 + x2(t)2 + u(t)2 dt

subject to ẋ1 = (1 − x2
2) x1 − x2 + u, x1(0) = 0,

ẋ2 = x1, x2(0) = 1,

−1 ≤ x1(t) ≤ 1,

−1 ≤ x2(t) ≤ 1,

−1 ≤ u(t) ≤ 1,

with T = 10.

To be able to solve the problem using dynamic programming, we pa-

rameterize the control trajectory into N = 20 piecewise constant inter-

vals. On each interval, we then take 1 step of a RK4 integrator in order

to get a discrete-time OCP of the form:

minimize
x, u

N−1∑

k=0

F0(x
(k)

1
, x

(k)

2
, u(k))

N−1∑

k=0

F0(x
(k)

1
, x

(k)

2
, u(k))

subject to x
(k+1)

1
= F1(x

(k)

1
, x

(k)

2
, u(k)), k = 0, . . . ,N − 1, x

(0)

1
= 0,

x
(k+1)

2
= F2(x

(k)

1
, x

(k)

2
, u(k)), k = 0, . . . ,N − 1, x

(0)

2
= 1,

−1 ≤ x
(k)

1
≤ 1, k = 0, . . . ,N,

−1 ≤ x
(k)

2
≤ 1, k = 0, . . . ,N,

−1 ≤ u(k) ≤ 1, k = 0, . . . ,N − 1.

(a) Implement the RK4 integrator for the system dynamics. Take a look

to Chapter 10 if you need help.
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(b) The continuous x1, x2 and u are uniformly discretized in 101 val-

ues. Create the vectors containing the discrete values of the variables.

Modify the integrator so that the dynamics round up to the closest

discrete value.

(c) Using the stage cost and starting at x1(T ), x2(T ), recursively compute

the cost of every possible state (x
(k)

1
, x

(k)

2
, u(k)).

(d) Using the initial conditions solve the problem using dynamic pro-

gramming.

(e) Add the additional end-point constraint x1(T ) = −0.5 and x2(T ) =

−0.5. How does the solution change?
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Continuous Time Optimal Control Problems

When we are confronted with a problem whose dynamic system lives in con-

tinuous time and whose control inputs are a continuous profile, i.e. functions

of time living in an∞-dimensional functional space, we speak of a continuous

time optimal control problem. This type of problem is the focus of this third

part of this script. We will encounter variations of the same concepts as in the

discrete time setting, such as Lagrange multipliers λ, the value function J, or

the difference between sequential or simultaneous methods. Some numerical

methods and details, however, are only relevant to the continuous time setting,

such as the indirect methods and Pontryagin’s Maximum Principle described

in Chapter 12, or the ODE solvers with sensitivity generation described in Sec-

tion 10.4.

9.1 Formulation of Continuous Time Optimal Control

Problems

In an ODE setting, many continuous-time optimal control problem can be

stated as follows:

minimize
x(·), u(·)

∫ T

0

L(x(t), u(t))dt + E (x(T ))

subject to x(0) − x0 = 0, (fixed initial value),

ẋ(t) − f (x(t), u(t)) = 0, t ∈ [0, T ], (ODE model),

h(x(t), u(t)) ≤ 0, t ∈ [0, T ], (path constraints),

r (x(T )) ≤ 0, (terminal constraints).

161
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The problem and its variables are visualized in Figure 9.1.

terminal
constraint r(x(T )) ≤ 0

✻
path constraints h(x, u) ≤ 0

initial value
x0 r

states x(t)

controls u(t)
✲♣

0 t
♣

T

Figure 9.1 The variables and constraints of a continuous time optimal control

problem.

The integral cost contribution L(x, u) is sometimes called the Lagrange term

(which should not be confused with the Lagrange function) and the terminal

cost E(x(T )) is sometimes called a Mayer term. The combination of both, like

here, is called a Bolza objective.

Note that any Lagrange objective term can be reformulated as a Mayer term,

if we add an additional “cost state” c that has to satisfy the differential equa-

tion ċ = L(x, u), and then simply add c(T ) to the terminal Mayer cost term.

Conversely, every differentiable Mayer term can be replaced by by a Lagrange

term, namely by L(x, u) = ∇E(x)⊤ f (x, u), as the cost integral then satisfies the

equality
∫ ⊤

0
L(x, u)dt =

∫ ⊤
0

dE
dt

dt = E(x(T )) − E(x0). These two equivalences

entail that formulating a problem involving only a Lagrange term or only a

Mayer term present no loss of generality. However, in this script we will use

the full Bolza objective.

9.2 Problem reformulation

So far, we wrote all functions L, E, f , h independent of time t or of parameters

p, and we will leave both of these generalizations away in the remainder of this

script. However, all the methods presented in the following chapters can easily

be adapted to these two cases, using again state augmentation, as follows. If

a time-dependency occurs in the problem, one just need to introduce a “clock

state” t with differential equation ṫ = 1, and work with the augmented system
˙̃x = f̃ (x̃, u):

x̃ =

[

x

t

]

, f̃ (x̃, u) =

[

f (x, u, t)

1

]

.
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Likewise, in case time-constant but free optimization parameters p appear in

the problem, they can be incorporated as “parameter state” p with differential

equation ṗ = 0 and free initial value.

Another interesting case specific to continuous-time problems is when the

duration T of the problem is free. As an example, we might think of a robot

arm that should move an object in minimal time from its current state to some

desired terminal position. In this case, we might rescale the time horizon to

the interval [0, 1] by a time constant but free variable T that is treated like an

optimization parameter. We then regard a scaled problem

x̃ =

[

x

T

]

, f̃ (x̃, u) =

[

T · f (x, u)

0

]

with pseudo time τ ∈ [0, 1] yielding the dynamics

˙̃x ≡ d

dτ
x̃ = f̃ (x̃, u)

and where T is treated as a parameter, i.e. the initial condition T (0) for the

“state” T is free and T satisfies Ṫ = 0.

We note that although all the above reformulations make it possible to trans-

fer the methods in this script to the respective special cases, an efficient nu-

merical implementation should exploit the structures inherent in these special

cases.

9.3 Multi-stage Problems

A special class of continuous-time optimal control problems are multi-stage

Problems, where the problem formulation can “switch” in the course of the

horizon [0, T ]. Such problems occur when e.g. the system dynamics, the cost

function or the constraints change discontinuously at some time instant. The

time instant at which the switching occurs can be fixed, free or even event-

dependent (i.e. occurring when the system states fulfil a specific condition).

Classical examples of multiple-stage optimal control problems stem from con-

tact problem such as e.g. walking robots, shocks (e.g. a bouncing ball), the land-

ing pattern of airliners (where the configuration of the plane has to be adjusted

according to prescribed rules, yielding event-based changes in the dynamics),

or industrial robots picking up and releasing objects. However, we will assume

hereafter that the ordering in which the changes occur is prescribed and inde-

pendent of the system evolution. This excludes e.g. handling problems such as

gear-shifting in vehicles, where the order in which the gears are shifted is not

prescribed but depends on the vehicle trajectory.
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A fairly simple way of framing a multi-stage problem mathematically is to

consider each stage of the problem as an optimal control problem of its own,

and to link the different stages by matching the terminal state of a state to the

initial condition of the following stage. An N-stage multi-stage problem can

then be formulated as:

minimize
x(·), u(·), T1,...N

N−1∑

k=0

∫ Tk+1

Tk

Lk(xk(t), uk(t))dt + Ek (xk(Tk+1))

subject to x0(T0) − x̄0 = 0, (initial value),

xk(Tk) − xk−1(Tk) = 0, (state continuity),

ẋk(t) − fk(xk(t), uk(t)) = 0, t ∈ [Tk, Tk+1], (ODE model),

hk(xk(t), uk(t)) ≤ 0, t ∈ [Tk, Tk+1], (path constraints),

rk (xk(Tk)) ≤ 0, (terminal const.),

Tk − Tk+1 ≤ 0, (time ordering)

where x̄0 are the assigned initial conditions for the multi-stage problem, and

the variables T0,...,N are the switching times between stages. Clearly, if they

are prescribed, they should then be excluded from the variables of the optimal

control problem. Each stage can then be treated as a separate free end time

problem, apart from the constraints xk(Tk) − xk−1(Tk) linking the state trajec-

tories between stages. Many variations of the above formulation are possible

and useful to tackle various kinds of multi-stage problems.

9.4 Overview of Numerical Approaches

Generally speaking, there are three basic families of approaches to address

continuous-time optimal control problems, (a) state-space, (b) indirect, and (c)

direct approaches, cf. the top row of Fig. 9.2. We follow here the outline given

in [40].

State-space approaches use the principle of optimality that states that each

subarc of an optimal trajectory must be optimal. While this was the basis of

dynamic programming in discrete time, in the continuous time case this leads

to the so-called Hamilton-Jacobi-Bellman (HJB) equation, a partial differential

equation (PDE) in the state space. Methods to numerically compute solution

approximations exist, but the approach severely suffers from Bellman’s “curse

of dimensionality” and is restricted to small state dimensions. This approach

is briefly sketched in Chapter 11.
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Continuous Time Optimal Control
✏✏✏✏✏✏✏✏✏✏

PPPPPPPPPP

Hamilton-Jacobi- Bellman
Equation:

Tabulation in
State Space

Indirect Methods,
Pontryagin:

Solve Boundary Value
Problem

Direct Methods:
Transform into Nonlinear

Program (NLP)

✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭

✏✏✏✏✏✏✏✏✏✏

✁
✁

✁✁

Direct Single Shooting:
Only discretized controls in

NLP
(sequential)

Direct Collocation:
Discretized controls and

states in NLP
(simultaneous)

Direct Multiple Shooting:
Controls and node start

values in NLP
(simultaneous)

Figure 9.2 The optimal control family tree.

Indirect Methods use the necessary conditions of optimality of the infinite

dimensional problem to derive a boundary value problem (BVP) in ordinary

differential equations (ODE). This BVP must numerically be solved, and the

approach is often sketched as “first optimize, then discretize”, as the condi-

tions of optimality are first written in continuous time for the given problem,

and then discretized in one way or another in order for computing a numeri-

cal solution. The class of indirect methods encompasses also the well known

calculus of variations and the Euler-Lagrange differential equations, and the

so-called Pontryagin Maximum Principle. The numerical solution of the BVP

is performed by shooting techniques or by collocation. The two major draw-

backs are that the underlying differential equations are often difficult to solve

due to strong nonlinearity and instability, and that changes in the control struc-

ture, i.e. the sequence of arcs where different constraints are active, are dif-

ficult to handle: they usually require a completely new problem setup. More-

over, on so called singular arcs, higher index differential-algebraic equations

(DAE) arise which necessitate specialized solution techniques. This approach

is briefly sketched in Chapter 12.

Direct methods transform the original infinite-dimensional optimal control

problem into a finite-dimensional nonlinear programming problem (NLP) which
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is then solved by structure-exploiting numerical optimization methods. Roughly

speaking, direct methods transform (typically via numerical methods) the continuous-

time dynamic system into a discrete-time system and then proceed as described

in the first two parts of this script. The approach is therefore often sketched as

“first discretize, then optimize”, as the problem is first converted into a dis-

crete one, on which optimization techniques are then deployed. One of the

most important advantages of direct methods over indirect ones is that they

can easily treat all sorts of constraints, such as e.g. the inequality path con-

straints in the formulation above. This ease of treatment stems from the fact

that the activation and de-activation of the inequality constraints, i.e. structural

changes in active constraints, occurring during the optimization procedure are

treated by well-developed NLP methods that can efficiently deal with such ac-

tive set changes. All direct methods are based on one form or another of finite-

dimensional parameterization of the control trajectory, but differ significantly

in the way the state trajectory is handled, cf. the bottom row of Fig. 9.2. For

solution of constrained optimal control problems in real world applications, di-

rect methods are nowadays by far the most widespread and successfully used

techniques, and are therefore the focus of this script. Brief descriptions of three

of the direct methods – single shooting, multiple shooting, and collocation –

and some algorithmic details are given in Chapter 13, while we point out that

the first two parts of the script covering finite dimensional optimization and

discrete time dynamic systems have already covered most of the algorithmic

ideas relevant for direct approaches to optimal control.
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Numerical Simulation

Deploying optimal control on problems involving non-trivial continuous-time

dynamics hinges on having efficient and accurate numerical simulations tools,

which allow for building discretizations of these continuous dynamics. This

chapter provides a brief but crucial exploration of these tools.

The existence of a solution to an Ordinary Differential Equation (ODE) with

defined initial conditions, also called Initial-Value Problem (IVP), is guaran-

teed under continuity of f with respect to to x and t according to a theorem

from 1886 due to Giuseppe Peano. But existence alone is of limited interest as

the solutions might be non-unique. For example, the scalar ODE ẋ(t) =
√
|x(t)|

with x(0) = 0 admits as solution:

x(t) =

{

0 for t < t0,
1
4
(t − t0)2 for t ≥ t0,

for any t0 ≥ 0, such that its solution is not unique. This ODE is continuous at

the origin, but its slope approaches infinity, which causes the non-uniqueness.

More important than the existence of the ODE solution is therefore its (local)

uniqueness discussed in the following theorem by Charles Émile Picard (1890)

and Ernst Leonard Lindelöf (1894):

Theorem 10.1 (Existence and Uniqueness of IVP). Regard the initial value

problem (1.1) with x(0) = x0, and assume that f is continuous with respect to

x and t. Furthermore, assume that f is Lipschitz continuous with respect to x,

i.e., that there exists a constant L such that for all x, y and all t ∈ [0, T ]

‖ f (x, t) − f (y, t)‖ ≤ L‖x − y‖.

Then there exists a unique solution x(t) of the IVP in a neighbourhood of (x0, 0).

Note that this theorem can be extended to the case where f (x, t) has finitely

many discontinuities with respect to t, in which case the solutions are still

167
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unique, but the ODE solution has to be defined in the weak sense. The fact that

unique solutions still exist in the case of discontinuities is important because

(a) many optimal control problems have discontinuous control trajectories u(t)

in their solution, and (b) many algorithms, the so called direct methods, first

discretize the controls, often as piecewise constant functions which have jumps

at the interval boundaries. These finitely many discontinuities in the control do

not cause difficulties for the existence and uniqueness of the IVPs.

Following Theorem 10.1 we know that a unique ODE (or DAE) solution

exists to the IVP ẋ = f (x, t), x(0) = x0 under mild conditions, namely the

Lipschitz continuity of f with respect to the state x and continuity with respect

to the time t. This solution exists on the whole interval [0, T ] if the time T >

0 is chosen small enough. Note that for nonlinear continuous time systems

– in contrast to discrete time systems – it is very easily possibly even with

innocently-looking functions f to obtain an “explosion” in the solution of the

ODE, i.e., a solution that tends to infinity in finite time. E.g. the trivial ODE

ẋ = x2, x(0) = 1 has the explicit solution x(t) = 1/(1− t) tending to infinity for

t → 1. This simple example reveals that we cannot guarantee the existence of

the solution to a differential equation on any given interval [0, T ] for arbitrary

T , but only on sufficiently small time intervals.

10.1 Numerical Integration: Explicit One-Step Methods

Numerical integration methods are used to approximately solve a well-posed

IVP that satisfies the conditions of Theorem 10.1. They come in many different

variants, and can be categorized according to two major branches, on the one

hand the one-step vs. the multistep methods, on the other hand the explicit vs.

the implicit methods.

In the following of our exploration of numerical optimal control we will

need to discuss the numerical integration over arbitrary time intervals, e.g.

[t0, tf]. Let us start in this section with the explicit one-step methods, which

is arguably the most basic numerical integration method. All numerical inte-

gration methods start by discretizing the state trajectories over a discretization

time grid over the integration interval [t0, tf]. For the sake of simplicity, let us

assume a uniform time grid, i.e. having fixed interval sizes of ∆t = (t0 − tf) /N,

where N is a positive integer. The discretization time grid is then setup as

tk := t0 + k∆t with k = 0, . . .N, and divides the time interval [t0, tf] into N

subintervals [tk, tk+1], each of length ∆t. Then, the solution is approximated

on the grid points tk by discrete values sk that shall satisfy sk ≈ x(tk), for

k = 0, . . . ,N, where x(t) is the exact solution to the IVP.
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Numerical integration methods differ in the ways they approximate the solu-

tion on the grid points and in between, but they all shall have the property that

if N → ∞ then sk → x(tk). This property is labelled convergence. Methods dif-

fer in how fast the integrator converges as N increases. One says that a method

is convergent with order p if

max
k=0,...,N

‖sk − x(tk)‖ = O(∆tp).

The simplest integrator is the explicit Euler method. It first sets s0 := x0 and

then recursively computes, for k = 0, . . . ,N − 1:

sk+1 := sk + ∆t f (sk, tk).

It is a first-order method, i.e. p = 1, and due to this low order it is very ineffi-

cient and should not be used in practice. Indeed, a few extra evaluations of f in

each step can easily yield higher-order methods. E.g. the explicit Runge-Kutta

(RK) methods due to Runge (1895) and Kutta (1901) use on each discretiza-

tion interval [tk, tk+1] not only one but m evaluations of f . They then hold in-

termediate state values sk,i, i = 1, . . . ,m within each interval [tk, tk+1], which

live on a grid of intermediate time points tk,i := tk + ci ∆t with suitably chosen

ci ∈ [0, 1]. One RK step is then obtained via the following construction:

sk,1 := sk,

sk,2 := sk + ∆t a21 f
(

sk,1, tk,1
)

,

sk,3 := sk + ∆t
(

a31 f
(

sk,1, tk,1
)

+ a32 f
(

sk,2, tk,2
))

,

...

sk,i := sk + ∆t

i−1∑

j=1

ai j f (sk, j, tk, j),

...

sk,m := sk + ∆t

m−1∑

j=1

am j f (sk, j, tk, j),

sk+1 := sk + ∆t

m∑

j=1

b j f (sk, j, tk, j).

Each RK method is characterized by its so-called Butcher tableau of dimen-
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sion m:

c1

c2 a21

c3 a31 a32

...
. . .

. . .

cm am1 · · · am,m−1

b1 b2 · · · bm

An integration order of m ≤ 4 is obtained from a Butcher tableau of dimension

m for an adequate choice of a, b, c. It is however important to understand here

that this equivalence between the dimension of the tableau and the integration

order holds only for m ≤ 4. In order to obtain an order of integration with

m ≥ 5, tableaus of dimension larger than 5 are needed

The explicit Euler integrator uses m = 1, c1 = 0, b1 = 1. A more efficient

and widespread choice of Butcher tableau is

0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

1
3

1
3

1
6

which yields a method of order m = 4, often simply referred to as the RK4

integration scheme.

Note that practical RK methods also have stepsize control, i.e. they adapt

∆t depending on estimates of the local error, which are obtained by comparing

two RK steps of different orders. Particularly efficient adaptive methods are

the Runge-Kutta-Fehlberg methods, which reuse as many evaluations of f as

possible between the two RK steps.

Because of its simplicity, the Euler method may appear appealing in practice,

however it is strongly recommended to favor higher-order methods. To get an

intuitive idea of why it is so, let us assume that we want to simulate an ODE

on the interval [0, 1] with an accuracy of ǫ = 10−3 and that a first-order method

gives an accuracy ǫ = 10∆t. Then a time step of ∆t = 10−4 is required, i.e.

N = 10000 steps are necessary in order to achieve the desired accuracy. If a

fourth-order method gives the accuracy ǫ = 10(∆t)4, a time step of ∆t = 0.1

is needed, i.e. only N = 10 steps are required for the same accuracy. Given

this enormous difference, the fourfold cost per RK step required to deploy

the fourth-order method is more than outweighed by the low number of steps

required, such that it is actually 250 times cheaper than the first-order Euler

method. In practice, RK integrators with orders up to 8 are used, but the Runge-



10.2 Stiff Systems and Implicit Integrators 171
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Figure 10.1 Numerical simulation of the first-order linear dynamics ẋ = −15x

using the explicit Euler method with ∆t = 0.1, starting from the initial condition

x(0) = 10. The exact solution is displayed as a plain curve, while the numerical

solution is displayed using circles, connected by dotted lines. One can observe that

due to the steep state derivative ẋ in the early time of the integration, the explicit

Euler scheme, which essentially computes the next state on the time grid via the

tangent to the trajectory, significantly overshoots the exact solution of the ODE.

Kutta-Fehlberg method of fourth order (with fifth-order evaluation for error

estimation and control) is the most popular one.

10.2 Stiff Systems and Implicit Integrators

When an explicit integrator is applied to a very stable system, its steps can

overshoot the actual trajectory of the ODE solution, resulting in an inaccurate

numerical integration, or even outright instability. The simple prototypical first-

order system is often used to discuss these issues:

ẋ = −λx.

It takes the explicit, exact solution x(t) = x(t0)e−λ(t−t0). For a very large λ ≫ 1

the ODE has a very fast stable mode decaying very quickly to zero. If we

now use an explicit Euler method with stepsize ∆t, then the trajectories of the

discrete state sk are defined by the discrete-time dynamic system:

sk+1 = sk − ∆t λsk = (1 − ∆t λ)sk, s0 = x(t0),
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which differs significantly from the exact trajectories x(t), see Fig. 10.1 for an

illustration. This discrete system actually becomes unstable if ∆t > 2
λ
, which

might be very small when λ is very large. Note that such a small stepsize is

not necessary to obtain a high accuracy, but is only necessary to render the

integrator stable.

It turns out that all explicit methods suffer from the fact that systems having

very fast modes necessitate excessively short step sizes. This becomes partic-

ularly problematic if a system has both slow and fast decaying modes, i.e., if

some of the eigenvalues of the Jacobian
∂ f

∂x
have a small magnitude while oth-

ers are strongly negative, resulting in very quickly decaying dynamics. In such

a case, one typically needs to perform fairly long simulations in order to cap-

ture the evolution of the slow dynamics, while very short steps are required in

order to guarantee the stability and accuracy of the numerical integration due

to the very fast modes. Such systems are called stiff systems.

Instead of using explicit integrators with very short stepsizes, stiff systems

can be much better treated by implicit integrators. The simplest of them is the

implicit Euler integrator, which in each integrator step solves the nonlinear

equation in the variable sk+1

sk+1 = sk + ∆t f (sk+1, tk+1).

One ought to observe the subtle yet crucial difference between this equation

and the one used for deploying an explicit Euler integrator. While explicit Eu-

ler requires implementing an explicit rule, the equation above provides sk+1

implicitly. If applied to the fast, stable test system from above, for which this

equation can be solved explicitly because of the linear dynamics, the implicit

Euler scheme yields the discrete dynamics

sk+1 = sk − ∆t λsk+1 ⇔ sk+1 = sk/(1 + ∆t λ),

which are stable for any ∆t > 0 and always converge to zero, like the true

solution of the ODE. Hence the implicit Euler scheme is always stable for this

example. This idea can be easily generalized to RK methods, which then yield

Butcher tableaus that are full squares and not only lower triangular, reflecting

the implicit nature of the integration scheme. An implicit RK method has to
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solve at each integration step k the nonlinear system of equations

sk,1 = sk + ∆t

m∑

j=1

a1 j f
(

sk, j, tk, j
)

...

sk,i = sk + ∆t

m∑

j=1

ai j f
(

sk, j, tk, j
)

...

sk,m = sk + ∆t

m∑

j=1

am j f
(

sk, j, tk, j
)

and then sets the next step to

sk+1 := sk + ∆t

m∑

j=1

b j f
(

sk, j, tk, j
)

.

The nonlinear system needs typically to be solved by a Newton method. Note

that the system is of size m · nx, such that the computational complexity of

performing the Newton iterations “naively” on an implicit RK method is un-

fortunately in general of order O(m3n3
x).

10.3 Orthogonal Collocation

Orthogonal collocation is a specific variant of implicit RK methods. The so-

lution x(t) on the collocation interval t ∈ [tk, tk+1] ⊆ [t0, tf] is approximated

by a dth-order polynomial, labelled p(t, vk) ∈ Rn in the following, where the

polynomial depends linearly on the coefficients vk ∈ Rn(d+1).

Interpolation polynomial The polynomials pk (t, vk) used in orthogonal col-

location methods are typically built as Lagrange polynomials. The Lagrange

polynomial pk(t, vk) for a time interval [tk, tk+1] and a set of collocation times

tk,0 . . . , tk,d can be simply constructed using:

pk(t, vk) =

d∑

i=0

vk,iℓk,i(t), ℓk,i(t) =

d∏

j=0, j,i

t − tk, j

tk,i − tk, j
∈ R,

where vk,i ∈ Rnx is a subset of the polynomial coefficients vk having the size

of the state vector of the system, and the collocation times are chosen as tk,i ∈
[tk, tk+1].
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tktk

tktk

tk+1tk+1

tk+1tk+1
ℓk,0(t) ℓk,1(t)

ℓk,2(t) ℓk,3(t)

tk,0tk,0

tk,0tk,0

tk,1tk,1

tk,1tk,1

tk,2tk,2

tk,2tk,2

tk,3tk,3

tk,3tk,3

Figure 10.2 Illustration of the Lagrange polynomials ℓk,i(t) on the interval

[tk , tk+1]. The property (10.1) is clearly visible here as each polynomial ℓk,i(t) take

a unitary value at the collocation time tk,i (black dots) and a zero at all other times

tk, j,i (white dots).

One can observe that the basis polynomials ℓk,i have by construction the

property:

ℓk,i

(

tk, j
)

=

{

1 if i = j

0 if i , j
(10.1)

which we illustrate in Figure 10.2. They have the additional property of being

orthogonal (though not orthonormal!), i.e.,
∫ tk+1

tk

ℓk,i(t)ℓk, j(t) dt = 0, i , j. (10.2)

Property (10.1) entails that the interpolation polynomial pk(tk,i, vk) “passes

through” the interpolation points vk,i, i.e.,

pk(tk,i, vk) = vk,i (10.3)

holds for i = 0, . . . , d. See Figure 10.3 for an illustration.

We detail later in this section the selection of the collocation times tk,i. It

is, however, useful to anticipate here with specifying that the first collocation
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tk tk+1

pk(t, vk)vk,0

vk,1 vk,2

vk,3

tk,0 tk,1 tk,2 tk,3

Figure 10.3 Illustration of the polynomial pk(t, vk) =
∑d

i=0 vk,iℓk,i(t) for d = 3

and for an arbitrary coefficient vector vk ∈ R4, and vk,i ∈ R. One can observe the

property (10.3), i.e. pk(tk,i, vk) = vk,i.

time tk,0 is systematically chosen as tk,0 = tk, such that pk (tk, pk) = vk,0 readily

provides the initial value of the interpolation.

Collocation equations Using the polynomial pk (t, vk) the integration over the

time interval [tk, tk+1] is performed via selecting adequate collocation variables

vk ∈ Rnx(d+1). This selection occurs via solving a set of algebraic equations

that ensure that the polynomial pk (t, vk) is an accurate representation of the

trajectories of the state. Assuming we have the initial value sk at time tk, the

collocation equations for the simple ODE ẋ(t) = f (x(t), t) then enforce the

following nx(d + 1) conditions, see Figure 10.4:

(i) pk (tk, vk) = sk, i.e., the polynomials pk (t, vk) must meet the initial condition

at the beginning of the interval, i.e., at time tk = tk,0. It is worth observing

here that since pk (tk, vk) = vk,0, satisfying the initial condition requires

simply vk,0 = sk to hold.

(ii) pk

(

tk,i, vk

)

must satisfy the model dynamics on the remaining collocation

times tk,1, . . . , tk,d, i.e.:

ṗk

(

tk,i, vk

)

= f (pk

(

tk,i, vk

)

︸      ︷︷      ︸

=vk,i

, tk,i) (10.4)
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ṗk(t, vk)

tk tk+1

sk
sk+1

vk,0

vk,1

vk,2
vk,3

tk,0 tk,1 tk,2 tk,3

Figure 10.4 The NLP variables in the direct collocation method for d = 3, and

for one specific time interval [tk, tk+1]. Here we illustrate the polynomial pk (t, vk)

(solid curve) vs. the actual state trajectories (dashed curve) when the collocation

equations ck

(
sk, vk, tk,i

)
= 0 are not yet satisfied.

The integration of the system dynamics over a time interval [tk, tk+1] is hence

performed via solving the collocation equations:

ck

(
vk, tk,i, sk

)
=





vk,0 − sk

ṗk

(

tk,1, vk

) − f (vk,1, tk,i)
...

ṗk

(

tk,d, vk

) − f (vk,d, tk,i)





= 0. (10.5)

The end state of the simulation x (tk+1) is then accurately approximated by

p(tk+1, vk). This principle is illustrated in Figure 10.5 for a single state.

We observe here that (10.5) is a system of n(d + 1) equations in the vk ∈
R

n(d+1) variables. We additionally observe that

ṗk(t, vk) =

d∑

i=0

vk,iℓ̇k,i(t),

such that, similarly to pk

(

tk,i, vk

)

, the time derivatives of the polynomial, i.e.

ṗk

(

tk,i, vk

)

are linear in vk. It can then be observed that for a linear dynamic

model f , (10.5) is a linear system of equations. However, in general, (10.5)

does not have an explicit solution.
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pk(tk+1, vk)

Figure 10.5 The NLP variables in the direct collocation method for d = 3, and

for one specific time interval [tk, tk+1]. Here we illustrate the polynomial pk (t, vk)

when the collocation equations ck

(
sk, vk, tk,i

)
= 0 are satisfied, such that pk (t, vk)

captures accurately the system trajectory over the time interval [tk , tk+1]. The end

state of the simulation x(tk+1) is then accurately approximated by p(tk+1, vk).

Selection of the collocation times tk,i It is very important to point out here

that an adequate choice of collocation points leads to very high orders of inte-

gration. We can understand this point using the principle of Gauss-quadrature.

Assuming that p(t, vk) is a polynomial of order 2d, the Gaussian quadrature

formula provides for any vk the equality:

∫ tk+1

tk

ṗ(t, vk) dt = (tk+1 − tk) ·
m∑

i=1

ωi · ṗ(tk,i, vk), (10.6)

for an adequate choice of weights ωi and of collocation points tk,i.

The adequate choice of collocation time, i.e. the one that yields the Gauss

quadrature formula (10.6) for polynomials of degree 2d, is obtained by choos-

ing the collocation points tk,i as the zeros of orthogonal Legendre polynomi-

als on the corresponding interval [tk, tk+1]. This choice of collocation times is

called Gauss-Legendre collocation. For the specific time interval [0, 1], the col-

location points tk,i for i = 1, . . . , 4 are provided in Table 10.1 for d = 1, . . . , 4.

For an arbitrary time interval [tk, tk+1], the adequate collocation times tk,i can

be computed by identifying ξi = (tk,i − tk)/(tk+1 − tk) with the time points ξi in
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Table 10.1 Collocation times tk,1, . . . tk,d for d = 1, ..., 4 on the interval [0, 1].

d Gauss-Legendre collocation ξ Gauss-Radau collocation ξ

1 0.50000 1

2 0.21132 0.78867 0.33333 1

3 0.11270 0.50000 0.88729 0.15505 0.64494 1

4 0.06943 0.33000 0.66999 0.93056 0.08858 0.40946 0.78765 1

Table 10.1, i.e. by computing the collocation times tk,i as

tk,i = tk + (tk+1 − tk) ξi ∈ [tk, tk+1] . (10.7)

An extra collocation point tk,0 is systematically added to the collection tk,1, . . . tk,d
in order to be able to enforce the initial value constraints vk,0 = sk. Note that

the collocation points tk,1, . . . tk,d are all in the interior of the collocation interval

and symmetric around the midpoint.

Let us then observe that the exact state trajectory x(t) of the ODE ẋ(t) =

f (x(t), t) satisfies the equation

x(tk+1) = x(tk) +

∫ tk+1

tk

f (x(t), t) dt. (10.8)

Let us then assume that the trajectory x(t) can be exactly captured on the

time interval [tk, tk+1] by the polynomial p (t, vk) of degree 2d. Using (10.5),

(10.6) and (10.8), we obtain the identity

p(tk+1, vk) = p(tk, vk) + (tk+1 − tk) ·
d∑

i=1

ωi f (p(tk,i, vk), tk,i)

such that sk+1 = p(tk+1, vk) = x (tk+1) holds.

Using Gauss-Legendre collocation times, the integration is then exact if f

is a polynomial of up to degree 2d − 1. This implies that the collocation step

sk+1 − sk is exact if the exact solution has a derivative ẋ(t) that is a polynomial

of order 2d − 1, i.e., if the solution x(t) is a polynomial of order 2d. Gauss-

Legendre collocation is the collocation method with the highest possible order

for a given d, i.e. 2d.

An alternative collocation setup sacrifices one order and chooses a set of

collocation points that includes the end point of the interval. It is called Gauss-

Radau collocation and has a desirable property for stiff systems called stiff

decay. The relative collocation point locations ξi = (tk,i−tk)/(tk+1−tk) for Gauss-

Legendre and Gauss-Radau collocation are given in Table 10.1, see [17].

It is worth stressing here that the very high order of collocation methods

hinges on using the collocation times prescribed by Table 10.1, ideally with
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minimum rounding error. Indeed, numerical experiments show that using ap-

proximate collocation times can yield a fast loss of accuracy of collocation-

based integrators.

10.3.1 Linear Multistep Methods and Backward Differentiation

Formulae

A different approach to obtain a high order are the linear multistep methods that

use a linear combination of the past M steps sk−M+1, . . . , sk and their function

values f (sk−M+1), . . . , f (sk) in order to obtain the next state, sk+1. They are

implicit, if they also use the function value f (sk+1). A major issue with linear

multistep methods is stability, and their analysis needs to regard a dynamic

system with an enlarged state space consisting of all M past values.

A very popular and successful class of implicit multistep methods are called

the backward differentiation formulae (BDF) methods. In each step, an im-

plicit equation is formulated in the variable sk+1 by constructing the interpo-

lation polynomial pk(t, sk+1) of order M that interpolates the known values

sk−M+1, . . . , sk as well the unknown sk+1, and then equates the derivative of this

polynomial with the function value, i.e., solves the nonlinear equation

d

dt
pk(tk+1, sk+1) = f (sk+1, tk+1)

in the unknown sk+1. Note that the fact that only a nonlinear system of size nx

needs to be solved in each step of the BDF method is in contrast to m-stage

implicit RK methods, which need to solve a system of size m · nx. Still, the

convergence of the BDF method is of order M. It is, however, not possible

to construct stable BDF methods of arbitrary orders, as their stability regions

shrink, i.e., they become unstable even for stable systems and very short step

lengths ∆t. The highest possible order for a BDF method is M = 6, while

the BDF method with M = 7 is not stable anymore. If e.g. it is applied to

the test equation ẋ = −λx with λ > 0 it diverges even if an arbitrarily small

step size ∆t is used. It is interesting to compare linear multistep methods with

the sequence of Fibonacci numbers that also use a linear combination of the

last two numbers in order to compute the next one (i.e., M = 2). While the

Fibonacci numbers do not solve a differential equation, the analysis of their

growth is equivalent to the analysis of the stability of linear multistep methods.

For more details, the reader is referred to, e.g., [26, 27, 4].
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10.3.2 Solution Map and Sensitivities

In the context of optimal control, derivatives of the simulation of the system

dynamics with respect to the initial conditions and control inputs need to be

provided to the numerical algorithms.

In order to discuss the issue of differentiating the solution of an ODE with

respect to its initial conditions and possibly other parameters, which in the

context of dynamic systems are often called sensitivities, let us now regard an

ODE with some parameters p ∈ Rnp that enter the function f and assume that

f satisfies the assumptions of Theorem 10.1. We regard some values x̄0, p̄, T

such that the ODE

ẋ = f (x, p, t), t ∈ [0, T ]

with p = p̄ and x(0) = x̄0 has a unique solution on the whole interval [0, T ].

For small perturbations of the values ( p̄, x̄0), due to continuity, we still have

a unique solution on the whole interval [0, T ]. Let us restrict ourselves to a

neighborhood N of ( p̄, x̄0). For each fixed t ∈ [0, T ], we can now regard the

well-defined and unique solution map x(t, ·) : N → Rnx , (p, x0) 7→ x(t, p, x0).

This map gives the value x(t, p, x0) of the unique solution trajectory at time t

for given parameter p and initial value x0. A natural question to ask is whether

this map is differentiable. Fortunately, it is possible to show that if f is m-times

continuously differentiable with respect to both x and p, then the solution map

x(t, ·) is also m-times continuously differentiable.

Let us illustrate this sensitivity question for linear, continuous-time systems

ẋ = Ax + Bp

hence with f (x, p, t) = Ax + Bp, the map x(t, p, x0) is explicitly given as

x(t, p, x0) = eAt x0 +

∫ t

0

eA(t−τ)Bpdτ,

where e. is the matrix exponential function. Similarly to function f , this map

is infinitely many times differentiable (and even well defined for all times t,

as linear systems can be unstable but cannot ”explode” in finite time). In this

simple case, having an explicit solution map, the sensitivities of the solution

can be explicitly computed, and read as:

∂

∂x0

x(t, p, x0) = eAt,
∂

∂p
x(t, p, x0) =

∫ t

0

eA(t−τ)Bdτ

In the general nonlinear case, the map x(t, p, x0) can only be generated by a

numerical simulation algorithm. The computation of derivatives of this numer-

ically generated map is a delicate issue that we discuss in detail hereafter. To
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mention already the main difficulty, note that most practical numerical integra-

tion algorithms are adaptive, i.e. they might choose to do different numbers of

integration steps for different IVPs. This renders the numerical approximation

of the map x(t, p, x0) typically non-differentiable as an infinitesimal perturba-

tion in p or x0 can trigger a discrete change in the number of integration steps.

This feature makes multiple calls of a black-box integrator and application of

finite differences problematic, as it often results in significantly wrong deriva-

tive approximations.

10.4 Sensitivity Computation for Integration Methods

Numerical optimal control methods require one to compute the derivatives

of the result of an ODE or DAE integration algorithm, on a given time in-

terval. Let us for notational simplicity regard just the autonomous ODE case

ẋ = f (x) on a time interval [0, T ]. The case of constant control or other pa-

rameters on which this ODE depends as well as time dependency can con-

ceptually be covered by state augmentation, i.e. one can e.g. rewrite the ODE

ẋ = f (x, p) , x (0) = x0 as:

[

ẋ

v̇

]

=

[

f (x, v)

0

]

,

[

x

v

]

(0) =

[

x0

p

]

Thus, we regard an initial condition x0 and the evolution of the ODE

ẋ = f (x), t ∈ [0, T ], x(0) = x0.

giving a solution x(t, x0), t ∈ [0, T ]. We are interested here in the sensitivity

matrix

G(t) =
∂x(t, x0)

∂x0

, t ∈ [0, T ],

and in particular its terminal value. This matrix G(T ) ∈ Rnx×nx can be computed

in many different ways, five of which we briefly sketch here.

(i) External Numerical Differentiation (END)

(ii) Solution of the Variational Differential Equations

(iii) Algorithmic Differentiation (AD) of the Integrator

(iv) Internal Algorithmic Differentiation within the Integrator

(v) Internal Numerical Differentiation (IND)

In all five methods we assume that the integrator to be differentiated is a state-

of-the-art integrator with inbuilt error control and adaptive stepsize selection.
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External Numerical Differentiation (END) The first approach, External Nu-

merical Differentiation (END), just treats the integrator as a black-box func-

tion and uses finite differences. We perturb x0 by some quantity ǫ > 0 in the

direction of the unit vectors ei and call the integrator several times in order to

compute directional derivatives by finite differences:

G(T )ei ≈
x(T, x0 + ǫei) − x(T, x0)

ǫ
. (10.9)

The cost of this approach to compute G(T ) is (nx + 1) times the cost of a for-

ward simulation. The approach is very easy to implement, but suffers from one

serious problem: due to integrator adaptivity, each call might have a different

discretization grid. This error control of each trajectory does not only create

an overhead, but worse, it might result in discontinuous perturbations even for

small ǫ, when a perturbation x0 + ǫei triggers a discrete adaptation of integra-

tor (e.g. a change in the number of steps). It is important to note that due to

adaptivity, the output x(T, x0) is not a differentiable function in x0, but only

guaranteed to be close to the true solution within the integrator accuracy TOL.

Thus, we need to use, as a rule of thumb, ǫ =
√

TOL in order to make large-

enough perturbations. As finite differences always mean that we loose half the

digits of accuracy, we might easily end e.g. with a derivative that has only two

valid digits.

Variational Approach A completely different approach is to formulate and

solve the variational differential equations along with the nominal trajectory.

In this context, we define a matrix G(t) with the property:

G(t) =
∂x(t, x0)

∂x0

where x(t, x0) is the solution map of the ODE. Clearly, since x(0, x0) = x0

holds, G(0) = I. Moreover, we observe that:

Ġ(t) =
d

dt

(

∂

∂x0

x(t, x0)

)

=
∂ẋ(t, x0)

∂x0

=
∂

∂x0

f (x(t, x0)) =
∂ f

∂x
(x(t, x0))

∂x(t, x0)

∂x0
︸    ︷︷    ︸

G(t)

This entails that we can obtain the sensitivities of the solution of the ODE

by solving, together with ẋ = f (x), the additional matrix differential equation

d

dt
G(t) =

∂ f

∂x
(x(t))G(t), t ∈ [0, T ], G(0) = I.

This approach is much more accurate than the previous one, at a similar com-

putational cost. However, analytic expressions for
∂ f

∂x
are required. Also, it is
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interesting to note that the computed sensitivity G(T ) might not be identical to

the derivative of the (discretized) integrator result x(T, x0).

External Algorithmic Differentiation (EAD) The last disadvantage mentioned

above is avoided in the third approach, Algorithmic Differentiation (AD) of the

Integrator or External AD. The approach requires that the time steps and the

order of the integrator are fixed at the current nominal trajectory. An AD tool

is then deployed on the whole integrator code to generate the sensitivities. Up

to machine precision, AD provides derivative that are identical to the ones of

the numerical solution x(T, x0) for a given fixed discretization grid. In a prac-

tical implementation, the integrator and right hand side function f (x) need to

be in the same or in compatible computer languages that are treated by the

corresponding AD tool (e.g. C++ when using ADOL-C).

If External AD is deployed on an implicit integrator, it should be noted that

the underlying Newton iterations will be differentiated, which might create

considerable and avoidable overhead compared to the variational differential

equation approach.

Internal Algorithmic Differentiation (IAD) A fourth approach, labelled In-

ternal Algorithmic Differentiation (AD) of the Integrator is a subtle variation

of External AD. Here, AD is applied independently to each step of the integra-

tor in a custom implementation of the integration algorithm, and care is taken

that only the components of the algorithm that need to be differentiated are

differentiated. The approach can be easily illustrated for an Euler scheme (in

this specific case it internal AD is identical to both the variational differential

equation and external AD). If the grid is given by {tk}Nk=0
and the Euler iterates

as

xk+1 = xk + (tk+1 − tk) f (xk), k = 0, . . . ,N − 1, x0 = s,

then this approach generates matrices

Gk+1 = Gk + (tk+1 − tk)
∂ f

∂x
(xk) Gk, k = 0, . . . ,N − 1, G0 = I.

Internal AD can arguably be construed as a discrete variational equation

deployed on the integration algorithm.

This approach is usually the most computationally efficient of the exact dif-

ferentiation approaches but requires a custom implementation of an ODE/DAE

solver that is explicitly designed for the generation of sensitivities. Note that as

in the previous two approaches, dealing with black-box right hand side func-

tions f (x) would require that the matrix
∂ f

∂x
(xk) must also be computed by finite

differences at every integration step.
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For the reader interested in implementing a rudimentary yet efficient inte-

gration scheme with sensitivity, we provide next the details of an efficient RK4

scheme with internal AD.

Algorithm 10.2. Input: x0, p

Output: fRK4 (x0, p) , ∂
∂x0

fRK4 (x0, p) , ∂
∂p

fRK4 (x0, p)

Set x = x0, A = I, B = 0

for n = 0 : N do

k ← F(x, p), ∆x ← k

kx ← ∇xF(x, p), ∆xx ← kx

kp ← ∇uF(x, p), ∆xp ← kp

k ← F(x + ∆t
2N

k, p), ∆x← ∆x + 2k

kx ← ∇xF(x, p)
(

I + ∆t
2N

kx

)

, ∆xx ← ∆xx + 2kx

kp ← ∇uF(x, p) + ∇xF(x, p) ∆t
2N

kp, ∆xp ← ∆xp + 2kp

k ← F(x + ∆t
2N

k, p), ∆x← ∆x + 2k

kx ← ∇xF(x, p)
(

I + ∆t
2N

kx

)

, ∆xx ← ∆xx + 2kx

kp ← ∇uF(x, p) + ∇xF(x, p) ∆t
2N

kp, ∆xp ← ∆xp + 2kp

k ← F(x + ∆t
N

k, p), ∆x ← ∆x + k

kx ← ∇xF(x, p)
(

I + ∆t
N

kx

)

, ∆xx ← ∆xx + kx

kp ← ∇u∇uF(x, p) + ∇xF(x, p)∆t
N

kp, ∆xp ← ∆xp + kp

x← x + ∆t
6N
∆x

A←
(

I + ∆t
6N
∆xx

)

A

B←
(

I + ∆t
6N
∆xx

)

B + ∆t
6N
∆xp

end for

Set fRK4 (x0, p) = x, ∂
∂x0

fRK4 (x0, p) = A, ∂
∂p

fRK4 (x0, p) = B

Such an algorithm can e.g. be easily deployed in plain C and typically deliv-

ers high computational performances for a large class of ODEs.

This last idea can be generalized to the concept of Internal Numerical Dif-

ferentiation (IND) [24]. At first sight it is similar to END, but needs a cus-

tom implementation and differs in several respects. First, all trajectories are

computed simultaneously, only the nominal trajectory is adaptive, while the

perturbed trajectories use the nominal, frozen grid. In implicit methods, also

matrix factorizations etc. will be frozen. At the end of the interval, we use the
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finite difference formula (10.9) but with a much smaller perturbation, namely

ǫ =
√

PREC where PREC is the machine precision, typically 10−16. The deriva-

tives will have the accuracy
√

PREC, i.e. usually 10−8, which is much higher

than for END.

Again, we illustrate IND at hand of the explicit Euler integration scheme,

where each perturbed trajectory with index i = 1, . . . , nx just satisfies

xi
k+1 = xi

k + (tk+1 − tk) f (xi
k), k = 0, . . . ,N − 1, xi

0 = s + ǫei.

Note that due to the fact that adaptivity and possible matrix factorizations are

switched off for the perturbed trajectories, IND is not only more accurate, but

also cheaper than END.

10.4.1 Differentiation of Implicit Integrators

Internal Numerical Differentiation adequately deployed on implicit integrators

is usually fairly simple and inexpensive as the Newton scheme used to solve

the implicit equations underlying the scheme contain already most of the infor-

mation required for computing the sensitivities. Implicit integrators are based

on solving a set of equations defining on the time interval [tk, tk+1] the end-

state of the integrator xk+1 implicitly from the initial condition xk and possible

parameters p. One can write an implicit integrator in the general form

x (tk+1, xk) = φ(w), with g (w, xk, p) = 0,

where g captures implicitly the continuous dynamics of the system via an ad-

hoc implicit integration scheme, w is a set of intermediate variables supporting

the implicit integration and φ a function delivering the end state. The integra-

tion is the performed by running the following Newton iteration:

Algorithm 10.3. Input: xk, p, w

Output: xk+1, w

while ‖g (w, xk, p)‖ > tol do

w← w −
[
∂
∂w

g (w, xk, p)
]−1

g (w, xk, p)

end while

Set xk+1 = φ (w)

The sensitivities can then be obtained using the implicit function theorem,
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by evaluating

∂xk+1

∂xk

= −∂φ (w)

∂w

[

∂

∂w
g (w, xk, p)

]−1
∂

∂xk

g (w, xk, p) (10.10a)

∂xk+1

∂p
= −∂φ

(w)

∂w

[

∂

∂w
g (w, xk, p)

]−1
∂

∂p
g (w, xk, p) (10.10b)

at the output w of Algorithm 10.3. It is important here to observe that the

computation of the sensitivities (10.10) can re-use the latest factorization of
∂
∂w

g (w, xk, p) formed in Algorithm 10.3, so that they require only the evalua-

tion of ∂
∂xk

g (w, xk, p) , ∂
∂p

g (w, xk, p),
∂φ(w)

∂w
and the matrix multiplications re-

quired to evaluate (10.10). They can therefore be usually formed at a fairly low

computational complexity.

10.5 Second-order sensitivities

We have detailed so far efficient methods to compute the first-order sensitivities

of integrators, both in the explicit and implicit case. For a given simulation

method x(t, p, x0), these computations aim at delivering the derivatives

∂

∂x0

x(t, p, x0) and
∂

∂p
x(t, p, x0) (10.11)

which are essential in the context of numerical optimal control. However, nu-

merical methods tackling the NLP underlying optimal control problems can

also make use of the second-order information on the NLP, in the form of

the Hessian of the Lagrange function. While approximations can be used to

compute the exact Hessian, see Chapter ??, providing the exact Hessian of the

Lagrange function to the NLP solver can lead to a significantly better conver-

gence of the NLP solver than when using Hessian approximations. As we will

see later in further details, computing the exact Hessian of the NLP resulting

from the discretization of a continuous optimal control problem will require the

computation of the second-order derivatives of the simulation in some specific

directions, i.e. we will be interested in computing

∂2

∂2x0

(

µ⊤x(t, p, x0)
)

,
∂2

∂2 p

(

µ⊤x(t, p, x0)
)

,
∂2

∂x0∂p

(

µ⊤x(t, p, x0)
)

(10.12)

for some specific vector λ ∈ Rnx . We will present in the following some meth-

ods to approach the problem of computing (10.12) efficiently.
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10.5.1 Second-order sensitivities for explicit integrators

In order to build a generic discussion here, let us describe explicit integrators

as a generic recursion:

Algorithm 10.4.

Input: x0, p

s0 = x0

for i = 1 : N do

si = ξ (si−1, p)

end for

Return x (t, x0, p) = sN

We observe that this generic algorithm can represent any explicit integrator

taking N steps in integrating the dynamics, depending on the choice of function

ξ. E.g. a basic explicit Euler integrators would use the function ξ (si, p) = si +
t
N

f (si, p).

Adjoint-mode sensitivities Let us then first consider the problem of comput-

ing the sensitivities not of the simulation x (t, x0, p) but of some scalar function

of the simulation, i.e. we are interested in computing:

∂

∂x0

ζ (x(t, p, x0)) and
∂

∂p
ζ (x(t, p, x0)) (10.13)

where ζ is a scalar function. Clearly, these sensitivities can be computed via a

chain-rule, using the classical sensitivities (10.11). However, for this specific

problem, the adjoint-mode offers a more straightforward approach. Let us de-

fine:

λ⊤i =
∂ζ (sN )

∂si

(10.14)

the sensitivity of the output sN of Algorithm (10.4) to some of it intermediate

state si. We then observe that:

λ⊤N =
∂ζ (sN)

∂sN

(10.15a)

λ⊤i−1 =
∂ζ (sN)

∂si−1

=
∂ζ (sN)

∂si
︸  ︷︷  ︸

=λ⊤
i

∂si

∂si−1

= λ⊤i
∂ξ (si−1, p)

∂si−1

(10.15b)

One can observe that (10.15) defines a backward recursion that can be com-

puted provided that the forward state trajectories s0,...,N are available, e.g. via

a deployment of Algorithm 10.4 with a storage of its intermediate values. The

adjoint-mode sensitivity computation then reads as:
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Algorithm 10.5.

Input: s0,...,N , p

λ← ∂ζ(sN )

∂sN

⊤

for i = N : 1 do

λ← ∂ξ(si−1,p)

∂si−1

⊤
λ

end for

Return ∂
∂x0
ζ (x(t, p, x0)) = λ⊤

If the sensitivities are needed only in the form (10.13), as opposed to the en-

tire sensitivities (10.11), then it is typically more efficient to deploy Algorithm

10.4 (forward sweep) and then Algorithm 10.5 (Adjoint mode sensitivity) in

order to compute (10.13) rather than to compute the entire state sensitivities

(10.11) to finally compute (10.13).

Forward over adjoints A classical approach to compute the second-order

sensitivity of a scalar function of the form (10.12) is to perform a forward sensi-

tivity computation over the adjoint-mode Algorithm 10.5, in order to compute

the sensitivities
∂λ0

∂x0
. To that end, we label Hi =

∂λi

∂x0
∈ Rnx×nx , and we first

observe that

HN =
∂λN

∂x0

=
∂λN

∂sN

∂sN

∂x0

=
∂2ζ (sN)

∂2sN

∂sN

∂x0

, (10.16)

where ∂sN

∂x0
can be obtained via a standard forward sensitivity computation of

the explicit integrator. In the special case we consider here, where the scalar

function ζ is linear in sN , we observe that HN = 0. We then observe that

Hi−1 =
∂λi−1

∂x0

=
∂λi−1

∂λi

∂λi

∂x0

+
∂λi−1

∂si−1

∂si−1

∂x0

(10.17)

=
∂

∂λi

(

∂ξ (si−1, p)

∂si−1

⊤
λi

)

Hi +
∂

∂si−1

(

∂ξ (si−1, p)

∂si−1

⊤
λi

)

∂si−1

∂x0

(10.18)

=
∂ξ (si−1, p)

∂si−1

⊤
Hi +

∂2

∂s2
i−1

(

λ⊤i ξ (si−1, p)
) ∂si−1

∂x0

, (10.19)

where, as before, ∂si−1

∂x0
can be obtained via a standard forward sensitivity com-

putation of the explicit integrator. A prototype of an algorithm that computes

the directional second-order sensitivities of an explicit integrator can then read

as:

Algorithm 10.6.

Input: x0, p and direction µ

Forward pass:

s0 = x0, A0 = I
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for i = 1 : N do

Ai =
∂ξ(si−1,p)

∂si−1
Ai−1 Storage needed

si = ξ (si−1, p) Storage needed

end for

Adjoint + Forward over adjoint:

λ← µ, H ← 0

for i = N : 1 do

H ← ∂ξ(si−1,p)

∂si−1

⊤
H + ∂2

∂s2
i−1

(

λ⊤ξ (si−1, p)
)

Ai−1

λ← ∂ξ(si−1,p)

∂si−1

⊤
λ

end for

Return x(t, x0, p) = sN , ∂
∂x0

x(t, x0, p) = AN

and ∂
∂x0

(

µ⊤x(t, x0, p)
)

= λ, ∂2

∂x2
0

(

µ⊤x(t, x0, p)
)

= H

It is interesting to observe that this fairly simple algorithm generates a sim-

ulation of the dynamics with first-order sensitivities, as well as the first and

second-order sensitivities of the scalar function µ⊤x(t, x0, p) of the simulation

x(t, x0, p) in the prescribed direction µ. However, it is important to underline

here that the intermediate steps si and their sensitivities Ai need to be stored

during the forward pass. In general, the storage requirements amounts to the

storage of Nn(n + 1) floats, which can be, unfortunately, fairly large.
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Exercises

10.1 Euler vs RK4: Consider a controlled harmonic oscillator described by:

d

dt

[

p(t)

v(t)

]

=

[

0 1

−1 0

] [

p(t)

v(t)

]

+

[

0

1

]

u(t), t ∈ [0, T ].

We abbreviate this ODE as ẋ = f (x, u) with x = (p, v)⊤. We choose the

fixed initial value x(0) = (10, 0)⊤ and T = 10.

(a) We are interested in comparing the simulation results for u(t) = 0

that are obtained by two different integration schemes, namely the

(explicit) Euler integrator and a Runge-Kutta integrator of 4th order.

We regard in particular the value p(10), and as the ODE is explicitly

solvable, we know it exactly, which is useful for comparisons. What

is the analytical expression for p(10)? Evaluate it numerically.

(b) Write a function named f using def f(x,u) that evaluates the right

hand side of the ODE. Then, implement an explicit Euler method with

N = 50 integrator steps, i.e. with a stepsize of ∆t = 10/50 = 0.2. The

central line in the Euler code reads

xk+1 = xk + ∆t · f (xk, uk) (10.20)

Plot your trajectories {(tk, xk)}N+1
1

for uk = 0.

(c) Now exchange in your Euler simulation code the line that generates

the step (10.20) by the following five lines:

k1 = f (xk, uk)

k2 = f (xk +
1

2
∆t · k1, uk)

k3 = f (xk +
1

2
∆t · k2, uk)

k4 = f (xk + ∆t · k3, uk)

xk+1 = xk + ∆t
1

6
(k1 + 2k2 + 2k3 + k4)

This is the classical Runge Kutta method of order four (RK4). Note

that each integrator step is four times as expensive as an Euler step.

What is the advantage of this extra effort? To get an idea, plot your

trajectories {(tk, xk)}N+1
1

for the same number N of integrator steps.

(d) Make both pieces of your integrating code reusable by creating func-

tions named euler and rk4 out them. Both should have arguments

x0, T and N and return the state at the end point. Test your implemen-

tation by comparing with the plots.
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(e) To make the comparison of Euler and RK4 quantitative, regard the

different approximations of p(10) that you obtain for different step-

sizes, e.g. ∆t = 10−k with k = 0, . . . , 5. We call these approximations

p̃(10;∆t). Compute the errors |p(10)− p̃(10;∆t)| and plot them doubly

logarithmic. Use the norm function to calculate the norm of vectors.

You should see a line for each integrator. Can you explain the different

slopes?

10.2 Code a collocation-based integrator with sensitivities. We will use the

following setup:

• Legendre polynomials of order K, using the time roots:

t = [0.0 0.06943184420297355 0.33000947820757187

0.6699905217924282 0.9305681557970262]

and build the Lagrange polynomials according to:

P j(τ) =
∏

i, j

τ − ti

t j − ti
(10.21)

• For the sake of simplicity, we will use a single finite element per shoot-

ing interval. I.e. on the shooting interval [tk, tk+1], the state trajectories

are fully interpolated as:

x (θ, t) =

K∑

j=0

θ jP j

(

t − tk

tk+1 − tk

)

, ∀t ∈ [tk, tk+1] (10.22)

• The collocation equations then read as:

x (θ, tk) − xk = 0

∂

∂t
x (θ, t)

∣
∣
∣
∣
∣
t=t j

− F
(

x
(

θ, t j

)

, uk

)

= 0, j = 1, ...,K
(10.23)

where xk is the initial condition for the shooting interval [tk, tk+1]. Note

that x
(

θ, t j

)

= θ j.

Hints:

• define your collocation polynomials P j(t) symbolically and compute

their time derivatives Ṗ j(t) by symbolic differentiation. Export them

via matlabFunction to build the interpolations you need (i.e. for ∂
∂t

x (θ, t)
∣
∣
∣
t=t j

and x (θ, tk)).

• Build the collocation constraints (10.23) also symbolically so that you

can differentiate them automatically. Export all functions for the nu-

merical part.
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• Observe (10.21) and (10.22), and reflect carefully on how and where

the duration of your shooting intervals ∆t = tk+1 − tk needs to be

inserted. This is a classic source of error !

• Think also carefully of where/when to form the updates of your collo-

cation variables in your integrator, such that your sensitivities match

the collocation variables (and therefore the ”final state”) that your

integrator delivers.

• It can be advantageous to use LU decompositions in your integrator.

E.g. in Matlab you can form your factor using the function [L,U] =

lu
(∇g⊤

)

. The solution to ∇g⊤x+ y = 0 is then given by y = −U\ (L\x).

Observe that you can then re-use your factors for the sensitivity com-

putations.

Note: collocation-based integration is rather intensive coding-wise. Make

sure you think through your coding strategy before starting.

(a) Deploy a (full-step) Newton scheme to solve the collocation equa-

tions (10.23). Have an ”integrator tolerance” tolinteg variable to con-

trol the accuracy of your Newton iterations.

(b) Introduce a computation of the integrator sensitivities.

(c) Validate your integrator by deploying it on an LTI. In this case, at

steady-state your sensitivities will match the zero-order-hold linear

discretisation of the dynamics (Matlab function ”c2d”) when tk+1 −
tk → 0.

(d) Deploy your integrator on the pendulum dynamics built by the ”Writ-

eDynamics.m”.

(e) Introduce your collocation-based integrator in your multiple-shooting

code of the ”Shooting” assignment. Use a terminal constraint to force

your system to be at x = 0 at final time. You can build a ”smart”

initial guess for your integrators. Verify that your solver converges

for moderate tolerances (try e.g. tol = 10−4)

(f) Test your solver at a tight tolerance (try e.g. tol = 10−10), and ex-

periment with the tolerance tolinteg you set in the integrator. You will

probably have to neutralise your line-search here, as it will become

the numerically very sensitive. Explain what you observe.

10.3 Adjoint-mode Differentiation Consider the discrete dynamics

xk+1 = f (xk, uk) , k = 0, ...,N − 1 (10.24)

(a) Consider the cost function

Φ = T (xN) (10.25)
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Prove the following statement:

∇x0
Φ = λ0 (10.26)

where λ0 is provided by the following recursion:

λk−1 = ∇xk
f (xk, uk) λk with λN = ∇xN

T (xN)

Hint: compute∇xk
Φ by proceeding backward, starting from∇xN

Φ and

making your way to ∇x0
Φ via chain-ruling the dynamics.

(b) We now consider a cost function made of a stage and terminal cost:

Φ = T (xN) +

N−1∑

k=0

L (xk, uk) (10.27)

Prove that (10.26) is still valid if λ0 is provided by the following re-

cursion:

λk = ∇xk
L (xk, uk, λk+1) λN = ∇xN

T (xN)

with L (x, u, λ) = L (x, u) + λ⊤ f (x, u).

Hint: we use a similar strategy as in the previous question. However

we need to be very careful here about the implicit and explicit depen-

dencies of the functions on the variables. One way of handling this

problem is to clearly distinguish between partial and total derivatives.

(c) A problem with a cost function of the form (10.27) and dynamics

(10.24) can always be rewritten as:

Φ = T (xN) + xA
N

where xA
N
∈ R arises from the state augmentation:

x̄k+1 =

[

xk+1

xA
k+1

]

=

[

f (xk, uk)

xA
k
+ L (xk, uk)

]

= f̄ (x̄k, uk) .

Such a reformulation allows one to get rid of the stage cost in any

optimisation problem, and consider only problems with terminal cost

without loss of generality. Reconcile formally this reformulation with

the results established before. In particular, what happens to the mul-

tipliers of the formulation using a stage cost when switching to the

reformulation ?
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(d) Consider the discrete dynamics (10.24), and the cost function (10.25).

Prove the more generic statement:

∇pΦ = ∇px0 (p) λ0 +

N−1∑

k=0

∇pL (xk, uk (p) , λk+1)

for any variable p entering in the construction of the inputs uk and/or

initial conditions x0, where the λk:s are given by the following recur-

sion:

λk = ∇xk
L (xk, uk, λk+1) λN = ∇xN

T (xN)

and with L (x, u, λ) = λ⊤ f (x, u).

Hint: this is a tricky one. You need to use the augmented cost func-

tion:

Φ = T (xN) +

N−1∑

k=0

λ⊤k+1

(

f (xk, uk) − xk+1

)

and take the Jacobian with respect to p. You will have to make ad-hoc

simplifications and spot the telescopic sum (i.e. a sum where each

term cancels out with the subsequent one).
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The Hamilton-Jacobi-Bellman Equation

In this short chapter we give a very brief sketch of how the concept of dy-

namic programming can be utilized in continuous time, leading to the so called

Hamilton-Jacobi-Bellman (HJB) equation. For this aim we regard the follow-

ing simplified optimal control problem:

minimize
x(·), u(·)

∫ ⊤

0

L(x(t), u(t)) dt + E (x(T ))

subject to x(0) − x̄0 = 0 (fixed initial value),

ẋ(t) − f (x(t), u(t)) = 0, t ∈ [0, T ] (ODE model).

Note that we might approximate all inequality constraints by differentiable

barrier functions that tend to infinity when the boundary of the feasible set is

reached.

11.1 Dynamic Programming in Continuous Time

In order to motivate the HJB equation, we start by an Euler discretization of

the above optimal control problem. Though we would in numerical practice

never employ an Euler discretization due to its low order, it is helpful for the

theoretical purposes we are aiming for here. We introduce a timestep h = T
N
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and then address the following discrete time OCP:

minimize
x, u

N−1∑

i=0

hL(xi, ui) + E (xN)

subject to x0 − x̄0 = 0,

xi+1 = xi + h f (xi, ui), i = 0, . . . ,N − 1.

Dynamic programming applied to this optimization problem yields

Jk(x) = minimize
u

hL(x, u) + Jk+1(x + h f (x, u)).

Replacing the index k by time points tk = kh and identifying Jk(x) = J(x, tk),

we obtain

Jk(x, tk) = minimize
u

hL(x, u) + J(x + h f (x, u), tk + h).

Assuming the differentiability of J(x, t) in (x, t), its Taylor expansion yields

J(x, t) = minimize
u

hL(x, u) + J(x, t) + h∇xJ(x, t)⊤ f (x, u) + h
∂J

∂t
(x, t) + O(h2).

Finally, bringing all terms independent of u to the left side of the equation

and dividing by h→ 0 we obtain already the Hamilton-Jacobi-Bellman (HJB)

equation:

−∂J

∂t
(x, t) = minimize

u
L(x, u) + ∇xJ(x, t)⊤ f (x, u).

This partial differential equation (PDE) describes the evolution of the value

function over time. We have to solve it backwards for t ∈ [0, T ], starting at the

end of the horizon with

J(x, T ) = E(x).

The optimal feedback control for the state x at time t is then obtained from

u∗feedback(x, t) = arg min
u

L(x, u) + ∇xJ(x, t)⊤ f (x, u).

One ought to observe that the optimal feedback control does not depend on

the absolute value, but only on the gradient of the value function, ∇xJ(x, t). In-

troducing the variable λ ∈ Rnx as this gradient, one can define the Hamiltonian

function

H(x, λ, u) := L(x, u) + λ⊤ f (x, u).
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Using the new notation and regarding λ as the relevant input of the Hamilto-

nian, the control can be expressed as an explicit function of x and λ:

u∗explicit(x, λ) = arg min
u

H(x, λ, u).

Then we can explicitly compute the so called true Hamiltonian

H∗(x, λ) := min
u

H(x, λ, u) = H(x, λ, u∗explicit(x, λ)),

where the control does not appear as input anymore. Using the true Hamilto-

nian, we can write the Hamilton-Jacobi-Bellman equation compactly as:

−∂J

∂t
(x, t) = H∗(x,∇xJ(x, t)).

Like dynamic programming, the solution of the HJB equation also suffers from

the “curse of dimensionality” and its numerical solution is very expensive in

larger state dimensions, as the solution to a partial-differential equation hav-

ing a large state size needs to be computed. In addition, differentiability of the

value function is not always guaranteed such that even the existence of solu-

tions is generally difficult to prove. However, some special cases exist that can

analytically be solved, most prominently, again, linear quadratic problems.

11.2 Linear Quadratic Control and Riccati Equation

Let us consider a linear quadratic optimal control problem of the following

form:

minimize
x(·), u(·)

∫ T

0

[

x

u

]⊤ [

Q(t) S (t)⊤

S (t) R(t)

] [

x

u

]

dt + x(T )⊤PTx(T )

subject to x(0) − x0 = 0, (fixed initial value),

ẋ−A(t)x − B(t)u = 0, t ∈ [0, T ], (linear ODE model).

As in discrete time, the value function is quadratic for this type of problem.

In order to verify this statement, let us first observe that J(x, T ) = x⊤PTx

is quadratic. Let us assume for now that J(x, t) is quadratic for all time, i.e.

J(x, t) = x⊤P(t)x for some matrix P(t). Under this assumption, the HJB Equa-

tion reads as

−∂J

∂t
(x, t) = minimize

u

[

x

u

]⊤ [

Q(t) S (t)⊤

S (t) R(t)

] [

x

u

]

+ 2x⊤P(t)(A(t)x + B(t)u).
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If symmetrized, the right reads as:

minimize
u

[

x

u

]⊤ [

Q + PA + A⊤P S ⊤ + PB

S + B⊤P R

] [

x

u

]

.

By the Schur Complement Lemma 8.2, this yields

−∂J

∂t
= x⊤

(

Q + PA + A⊤P − (S ⊤ + PB)R−1(S + B⊤P)
)

x,

which is again a quadratic term. Thus, as J is quadratic at a time T , it remains

quadratic throughout the backwards evolution. The resulting matrix differential

equation

−Ṗ = Q + PA + A⊤P − (S ⊤ + PB)R−1(S + B⊤P)

with terminal condition

P(T ) = PT

is called the differential Riccati equation. Integrating it backwards allows us

to compute the cost-to-go function for the above optimal control problem. The

corresponding feedback law is by the Schur complement lemma given as:

u∗feedback(x, t) = −R(t)−1(S (t) + B(t)⊤P(t))x.

11.3 Infinite Time Optimal Control

Let us now regard an infinite time optimal control problem, as follows:

minimize
x(·), u(·)

∫ ∞

0

L(x(t), u(t)) dt

subject to x(0) − x0 = 0,

ẋ(t) − f (x(t), u(t)) = 0, t ∈ [0,∞].

The principle of optimality states that the value function of this problem, if

it is finite and it exists, must be stationary, i.e. independent of time. Setting
∂J
∂t

(x, t) = 0 leads to the stationary HJB equation

0 = minimize
u

L(x, u) + ∇xJ(x)⊤ f (x, u)

with stationary optimal feedback control law

u∗feedback(x) = arg min
u

L(x, u) + ∇xJ(x)⊤ f (x, u).

This equation is easily solvable in the linear quadratic case, i.e., in the case of



Exercises 199

an infinite horizon linear quadratic optimal control with time independent cost

and system matrices. The solution is again quadratic and obtained by setting

Ṗ = 0

and solving

0 = Q + PA + A⊤P − (S ⊤ + PB)R−1(S + B⊤P).

This equation is called the algebraic Riccati equation in continuous time. Its

feedback law is a static linear gain:

u∗feedback(x) = −R−1(S + B⊤P)
︸           ︷︷           ︸

=K

x.

Exercises

11.1 . . .
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Pontryagin and the Indirect Approach

The indirect approach is an extremely elegant and compact way to character-

ize and compute solutions to optimal control problems. Its origins date back to

the calculus of variations and the classical work by Euler and Lagrange. How-

ever, its full generality was only developed in 1950s and 1960s, starting with

the seminal work of Pontryagin and coworkers [76]. One of the major achieve-

ments of their approach compared to the previous work was the possibility to

treat inequality path constraints, which appear in most relevant applications

of optimal control, notably in time optimal problems. Pontryagin’s Maximum

Principle describes the necessary optimality conditions for optimal control in

continuous time. Using these conditions in order to eliminate the controls from

the problem and then numerically solving a boundary value problem (BVP) is

called the indirect approach to optimal control. It was widely used when the

Sputnik and Apollo space missions where planned and executed, and is still

very popular in aerospace applications. The main drawbacks of the indirect ap-

proach are the facts, (a) that it must be possible to eliminate the controls from

the problem by algebraic manipulations, which is not always straightforward

or might even be impossible, (b) that the optimal controls might be a discontin-

uous function of x and λ, such that the BVP is possibly given by a non-smooth

differential equation, and (c) that the differential equation might become very

nonlinear and unstable and not suitable for a forward simulation. All these is-

sues of the indirect approach can partially be addressed, and most importantly,

it offers an exact and elegant characterization of the solution of optimal control

problems in continuous time.

200
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12.1 The HJB Equation along the Optimal Solution

In order to derive the necessary optimality conditions stated in Pontryagin’s

Maximum Principle, let us again regard the simplified optimal control prob-

lem:

minimize
x(·), u(·)

∫ T

0

L(x(t), u(t)) dt + E (x(T ))

subject to x(0) − x̄0 = 0 (fixed initial value),

ẋ(t) − f (x(t), u(t)) = 0, t ∈ [0, T ] (ODE model).

and let us recall that the Hamiltonian function was defined as H(x, λ, u) =

L(x, u)+ λ⊤ f (x, u) and the Hamilton-Jacobi-Bellman equation was formulated

as: − ∂J
∂t

(x, t) = minu H(x,∇J(x, t), u) with terminal condition J(x, T ) = E(x).

We already made the important observation that the optimal feedback con-

trols

u∗feedback(x, t) = arg min
u

H (x,∇xJ(x, t), u)

depend only on the gradient∇xJ(x, t), not on J itself. Thus, we might introduce

the so called adjoint variables or costates λ that we identify with this gradient.

If the state x∗(t) and costate λ∗(t) are known at a point on the optimal trajectory,

then we can obtain the optimal controls u∗(t) from u∗(t) = u⋆exp(x∗(t), λ∗(t))

where the explicit control law is defined again by

u⋆exp(x, λ) = arg min
u

H(x, λ, u).

For historical reasons, the characterization of the optimal controls resulting

from this pointwise minimum is called Pontryagin’s Maximum Principle, but

we might also refer to it as the minimum principle when convenient.

The problem of computing the optimal input is now reduced to the problem

of finding the optimal state and costate trajectories x∗(t) and λ∗(t). The idea is

to assume that the trajectory is known, and to differentiate the HJB Equation

along this optimal trajectory. Let us regard the HJB Equation

−∂J

∂t
(x, t) = minimize

u
H (x,∇xJ(x, t), u) = H

(

x,∇xJ(x, t), u⋆exp(x,∇xJ(x, t))
)

and differentiate it totally with respect to x. Note that the right-hand side de-

pends via∇xJ(x, t) and u⋆exp indirectly on x. Fortunately, we know that ∂H
∂u

(x∗, λ∗, u∗) =

0 due to the minimum principle. Moreover, it is useful to remember here that
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λ(t) = ∇xJ(x(t), t), such that ∂λ
∂x
= ∇2

xJ(x(t), t). We then obtain

− ∂
2J

∂x∂t
(x∗, t) =

∂H

∂x
(x∗, λ∗, u∗) +

∂H

∂λ
(x∗, λ∗, u∗)

︸           ︷︷           ︸

= f (x∗ ,u∗)⊤

∇2
xJ(x∗, t)

where we drop for notational convenience the time dependence for x∗(t), λ∗(t),

u∗(t). Using ẋ∗ = f (x∗, u∗) and reordering yields

∂

∂t
∇xJ(x∗, t) + ∇2

x J(x∗, t) ẋ∗

︸                              ︷︷                              ︸

= d
dt
∇x J(x∗ ,t)

= λ̇∗ = −∇xH(x∗, λ∗, u∗).

This is a differential equation for the costate λ∗. Finally, we differentiate J(x, T ) =

E(x) and obtain the terminal boundary condition

λ(T ) = ∇E(x(T )).

Thus, we have derived necessary conditions that the optimal trajectory must

satisfy. We combine them with the constraints of the optimal control problem

and summarize them as:

x∗(0) = x̄0, (initial value)

ẋ∗(t) = f (x∗(t), u∗(t)), t ∈ [0, T ], (ODE model)

λ̇∗(t) = −∇xH(x∗(t), λ∗(t), u∗(t)), t ∈ [0, T ], (adjoint equations)

u∗(t) = arg min
u

H(x∗(t), λ∗(t), u), t ∈ [0, T ], (minimum principle)

λ∗(T ) = ∇E(x∗(T )). (adjoint final value)

Due to the fact that boundary conditions are given both at the start and the

end of the time horizon, these necessary optimality conditions form a two-

point boundary value problem (TPBVP). These conditions can either be used

to check if a given trajectory can possibly be a solution; alternatively, and more

interestingly, we can solve the TPBVP numerically in order to obtain candidate

solutions to the optimal control problem. Note that this is possible due to the

fact that the number and type of the conditions matches the number and type

of the unknowns: u∗ is determined by the minimum principle, while x∗ and

λ∗ are obtained by the ODE and the adjoint equations, i.e. an ODE in R2nx ,

in combination with the corresponding number of boundary conditions, nx at

the start for the initial value and nx at the end for the adjoint final value. But

before we discuss how to numerically solve such a BVP we have to address

the question of how we can eliminate the controls from the BVP.
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12.2 Obtaining the Controls on Regular and on Singular

Arcs

Let us in this section discuss how to derive an explicit expression for the opti-

mal controls that are formally given by

u⋆exp(x, λ) = arg min
u

H(x, λ, u).

In this section we discuss two cases, first the standard case, and second the

case of so called singular arcs.

In the less demanding standard case, the optimal controls are simply deter-

mined by the equation

∂H

∂u
(x, λ, u∗) = 0.

In this case, the controls appear explicitly in the analytic expression of the

derivative. We can then solve the implicit function and compute the control

u⋆exp(x, λ) either numerically, or transform the equation in order to obtain it

explicitly. Let us illustrate this with an example.

Example 12.1 (Linear Quadratic Control with Regular Cost). Regard L(x, u) =
1
2
(x⊤Qx + u⊤Ru) with positive definite R and f (x, u) = Ax + Bu. Then

H(x, λ, u) =
1

2
(x⊤Qx + u⊤Ru) + λ⊤(Ax + Bu)

and

∂H

∂u
= u⊤R + λ⊤B.

Thus, ∂H
∂u
= 0 implies that

u⋆exp(x, λ) = −R−1B⊤λ.

Note that the explicit expression only depends on λ here. For completeness,

let us also compute the derivative of the Hamiltonian with respect to x, which

yields

∂H

∂x
= x⊤Q + λ⊤A,

so that the evolution of the costate is described by the adjoint equation

λ̇ = −∂H

∂x

⊤
= −A⊤λ − Qx.

If a fixed initial value x̄0 is provided for the optimal control problem, and
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quadratic terminal cost, i.e. E(x) = 1
2

x⊤Px is present, then the TPBVP that

we need to solve is given by

x∗(0) = x̄0, (initial value)

ẋ∗(t) = Ax∗(t) − BR−1B⊤λ∗(t), t ∈ [0, T ], (ODE model)

λ̇∗(t) = −A⊤λ∗(t) − Qx∗(t) t ∈ [0, T ], (adjoint equations)

λ∗(T ) = Px. (adjoint final value)

Note that this TPBVP is linear and therefore admits an explicit solution.

�

The second and more complicated case occurs in the case u∗ is not provided

by the implicit function

∂H

∂u
(x, λ, u∗) = 0

The implicit function theorem tells us that this occurs when ∂2H
∂u2 (x, λ, u) is rank-

deficient (i.e. null in the single-input case). We then speak of a singular arc.

This e.g. occurs if L(x, u) is independent of u and f (x, u) is linear in u, as then
∂H
∂u

does not depend explicitly on u. Roughly speaking, singular arcs are due

to the fact that singular perturbations of the controls – that go up and down

infinitely fast – would not matter in the objective and yield exactly the same

optimal solution as the well-behaved piecewise continuous control in which

we are usually interested. Note that the controls still influence the trajectory on

a singular arc, but that this influence occurs only indirectly, via the evolution

of the states.

This last fact points out to a possible remedy: if ∂H
∂u

is zero along the singular

arc, then also its total time derivative along the trajectory should be zero. Thus,

we differentiate the condition totally with respect to time

d

dt

∂H

∂u
(x(t), λ(t), u) = 0,

which yields

∂

∂x

∂H

∂u
ẋ

︸︷︷︸

= f (x,u)

+
∂

∂λ

∂H

∂u
λ̇

︸︷︷︸

=−∇xH

= 0.

We substitute the explicit expressions for ẋ and λ̇ into this equation and hope

that now u appears explicitly. If this is still not the case, we differentiate even

further, until we have found an n > 1 such that the relation
(

d

dt

)n
∂H

∂u
(x(t), λ(t), u) = 0
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explicitly depends on u. Then we can invert the relation and finally have an

explicit equation for u∗. It is interesting to observe here that an explicit de-

pendence on u can occur only for n even. Let us illustrate this with another

example.

Example 12.2 (Linear Quadratic Control with Singular Cost). Regard L(x, u) =

x⊤Qx and f (x, u) = Ax + Bu. Then

H(x, λ, u) =
1

2
x⊤Qx + λ⊤(Ax + Bu)

and
∂H

∂u
= λ⊤B.

This expression does not depend explicitly on u and thus u∗ can not be directly

obtained from it. Therefore, we differentiate totally with respect to time:

d

dt

∂H

∂u
= λ̇⊤B = −∂H

∂x
B = −(x⊤Q + λ⊤A)B.

This still does not explicitly depend on u. Once more differentiating yields:

d

dt

d

dt

∂H

∂u
= −ẋ⊤QB − λ̇⊤AB = −(Ax + Bu)⊤QB + (x⊤Q + λ⊤A)AB.

Setting this to zero and transposing it, we obtain the equation

−B⊤QAx − B⊤QBu + B⊤A⊤Qx + B⊤A⊤A⊤λ = 0,

and inverting it with respect to u we finally obtain the desired explicit expres-

sion

u⋆exp(x, λ) = (B⊤QB)−1B⊤
(

A⊤Qx − QAx + A⊤A⊤λ
)

.

12.3 Pontryagin with Path Constraints

Let us consider here OCPs with path constraints:

minimize
x(·), u(·)

∫ T

0

L(x(t), u(t)) dt + E (x(T ))

subject to x(0) − x̄0 = 0 (States initial value),

ẋ(t) − f (x(t), u(t)) = 0, t ∈ [0, T ] (ODE model),

h (x(t), u(t)) ≤ 0, t ∈ [0, T ] (Path Constraints),
(12.1)

If path constraints of the form h(x(t), u(t)) ≤ 0 are to be satisfied by the so-

lution of the optimal control problem for t ∈ [0, T ] the same formalism as
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developed before is still applicable. In this case, it can be shown that for given

x and λ, we need to determine the optimizing u from

u⋆exp(x, λ) = arg min
u

H(x, λ, u)

subject to h(x, u) ≤ 0.
(12.2)

This is simple to apply in the case of pure control constraints, i.e. if we have

only h(u) ≤ 0.

In the special case where the constraints h (x, u) are not “fully controllable”,

a singular situation usually occurs. Higher-order derivatives of the state con-

straints ought then to be considered in order to describe the trajectories along

the active state constraint at the solution; in the case of uncontrollable state

constraints, we will only have a single time point where the state trajectory

touches the constraint and the adjoints will typically jump at this point. Let us

leave all complications away and illustrate in this section only the nicest case,

the one of pure control constraints.

In the case of mixed constraints with regular solution of the above optimiza-

tion problem (12.2), a simple way to describe the optimal solution is via the

modified Hamiltonian function:

H (x, u, λ, µ) = L (x, u) + λ⊤ f (x, u) + µ⊤h (x, u) . (12.3)

One ought to note that this modification affects both the adjoint differential

equation and the Hamiltonian stationarity. Similarly to the KKT conditions,

the adjoint variables µmust be positive at their solution, and a complementarity

slackness condition must hold at every time t ∈ [0, T ]. The resulting conditions

of optimality can be written as

x(0) − x̄0 = 0, (12.4a)

λ(T ) − ∇E(x(T )) = 0, (12.4b)

ẋ(t) − ∇λH∗(x(t), λ(t), µ(t)) = 0, t ∈ [0, T ], (12.4c)

λ̇(t) + ∇xH∗(x(t), λ(t), µ(t)) = 0, t ∈ [0, T ], (12.4d)

h⋆i (x (t) , λ (t) , µ (t)) · µi (t) = 0, t ∈ [0, T ], (12.4e)

h⋆i (x (t) , λ (t) , µ (t)) ≤ 0, µ (t) ≥ 0 t ∈ [0, T ], (12.4f)

where

H∗(x(t), λ(t), µ(t)) = H
(

x (t) , u⋆exp(x (t) , λ (t) , µ (t)), λ (t) , µ (t)
)

(12.5)

h∗(x(t), λ(t), µ(t)) = h
(

x (t) , u⋆exp(x (t) , λ (t) , µ (t))
)

(12.6)
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and

u⋆exp(x, λ, µ) = arg min
u

H(x, λ, µ, u).

is based on (12.3). We consider the problem of solving (12.4) numerically in

Section 12.6.4. Let us consider here simple special cases.

Example 12.3 (Linear Quadratic Problem with Control Constraints). Let us

regard constraints h(u) = Gu+b ≤ 0 and the Hamiltonian H(x, λ, u) = 1
2

x⊤Qx+

u⊤Ru + λ⊤(Ax + Bu) with R invertible. Then

u⋆exp(x, λ) = arg min
u

H(x, λ, u)

subject to h(u) ≤ 0

is equal to

u⋆exp(x, λ) = arg min
u

1

2
u⊤Ru + λ⊤Bu

subject to Gx + b ≤ 0

which is a strictly convex parametric quadratic program (pQP) which has a

piecewise affine, continuous solution.

A special and more specific case of the above class is the following.

Example 12.4 (Scalar Bounded Control). Regard scalar u and constraint |u| ≤
1, with Hamiltonian

H(x, λ, u) =
1

2
u2 + v(x, λ)u + w(x, λ).

Then, with

ũ(x, λ) = −v(x, λ)

we have

u⋆exp(x, λ) = max{−1,min{1, ũ(x, λ)}}.

Attention: this simple “saturation” trick is only applicable in the case of one

dimensional QPs.

12.4 Properties of the Hamiltonian System

The combined forward and adjoint differential equations have a particular struc-

ture: they form a Hamiltonian system. In order to see this, first note for nota-

tional simplicity that we can directly use the true Hamiltonian H∗(x, λ) in the
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differential equation, and second recall that

∇λH∗(x, λ) = f
(

x, u⋆exp(x, λ)
)

.

Thus,

d

dt

[

x

λ

]

=

[

∇λH∗(x, λ)

−∇xH∗(x, λ)

]

which is a Hamiltonian system. We might abbreviate the system dynamics as

ẏ = ϕ(y) with

y =

[

x

λ

]

, and ϕ(y) =

[

∇λH∗(x, λ)

−∇xH∗(x, λ)

]

. (12.7)

The implications of this specific structure are, first, that the Hamiltonian is

conserved. This can be easily seen by differentiating H totally with respect to

time.

d

dt
H∗(x, λ) = ∇xH∗(x, λ)⊤ ẋ + ∇λH∗(x, λ)⊤λ̇

= ∇xH∗(x, λ)⊤∇λH∗(x, λ) − ∇λH∗(x, λ)⊤∇xH∗(x, λ) = 0.

Second, by Liouville’s Theorem, the fact that the system ẏ = ϕ(y) is a Hamil-

tonian system also means that the volume in the phase space of y = (x, λ) is

preserved. The implication of this is that even if the dynamics of x are stable

and contracting fast, the dynamics of λ must be expanding and therefore unsta-

ble. We illustrate this effect in Fig. 12.1 for the optimal control problem

minimize
x(·), u(·)

1

2

∫ T

0

x(t)2 + u(t)2 dt

subject to x(0) − 1 = 0 (fixed initial value),

ẋ(t) + sin x(t) − u(t) = 0, t ∈ [0, T ] (ODE model).

yielding the state-costate equations:

ẋ = −λ − sin x, λ̇ = λ cos x − x

This is an unfortunate fact for numerical approaches that solve the TPBVP

using a full simulation of the combined differential equation system, like single

shooting. If the system ẋ = f (x, u) has either some very unstable or some very

stable modes, in both cases the forward simulation of the combined system

is an ill-posed problem. In general, the conservation of volume in the state-

costate space makes solving the TPBVP problem numerically very difficult

with single shooting techniques. The indirect approach is however applicable

using alternative numerical approaches, but it then looses some of its appeal.
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Figure 12.1 Illustration of the volume conservation in the state-costate space.

Here an integration of the state-costate equations is displayed for a disc of ini-

tial conditions x, λ at time t = 0. The evolution of this disc of initial conditions

is displayed for various time instants in the time interval [0, 4]. The area of the

disc is preserved by the state-costate dynamics, such that a contraction of the area

along a dimension yields an expansion in others.

Different numerical approaches for solving the TPBVP are presented further

in Section 12.6.

12.5 Connection to the Calculus of Variations

Calculus of variations are fundamental to optimal control in general, and to in-

direct methods in particular. It offers powerful insights into the mathematics of

optimal control, and also allows for explaining the behavior of direct methods

in some special cases. Consider a simple optimal control problems, which we

recast as a the functional:

J [u (·)] = φ (x (tf)) +

∫ tf

t0

L (x, u) dt

where: ẋ = f (x, u) , x (t0) = x0

that maps an input profile u (·) into the corresponding cost J [u (·)] ∈ R. We can

then define the Gâteaux derivative

δJ
[

u (·) , ξ (·)] = lim
τ→0

J
[

u (·) + τξ (·)] − J [u (·)]
τ

.
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Note that Gâteaux derivatives can be construed as the extension of directional

derivatives to arbitrary vector spaces, including infinite-dimensional ones. Here

we differentiate the functional J [u (·)] in the ”direction” ξ(·). Optimality then

requires that

δJ
[

u⋆ (·) , ξ (·)
]

= 0, ∀ ξ (·) .

A useful interpretation of the stationarity of H is provided by the fundamental

Lemma of Calculus of Variations:

δJ
[

u (.) , ξ (.)
]

=

∫ tf

0

Hu (x(t), λ (t) , u (t)) · ξ (t) dt.

In particular, it follows that at the optimal solution u⋆ (·)

δJ
[

u⋆ (·) , ξ (·)
]

=

∫ tf

0

Hu

(

x⋆(t), λ⋆ (t) , u⋆ (t)
)

· ξ (t) dt = 0, ∀ ξ (t)

In the case the optimal input u⋆(·) is free to move locally at any time t ∈ [0, tf],

the perturbation ξ (t) is unrestricted and the condition of optimality becomes

Hu

(

x⋆(t), λ⋆ (t) , u⋆ (t)
)

= 0

for all t, thus we recover the observations already made in the previous sections.

A special case of the observation above will be of interest in the following. It

stems from the restriction of the control profile u(·) to the Banach space (i.e.

loosely speaking the notion of vector space extended to functions) of piecewise-

constant functions. In such a case:

u (t) = uk, ξ (t) = ξk, ∀ t ∈ [tk, tk+1] .

This restriction allows one to discuss the zero-order hold discretization of the

control input commonly used in direct methods framing it in the context of the

Calculus of Variations. In this case, optimality requires

δJ
[

u⋆ (.) , ξ (.)
]

=

∫ tf

0

Hu

(

x⋆(t), λ⋆ (t) , u⋆ (t)
)

· ξ (t) dt

=

N−1∑

k=0

∫ tk+1

tk

Hu

(

x⋆(t), λ⋆ (t) , u⋆k

)

· ξk dt = 0, ∀ξk.

Hence the optimality condition is

∫ tk+1

tk

Hu

(

x⋆(t), λ⋆ (t) , u⋆k

)

dt = 0, ∀k. (12.8)



12.6 Numerical Solution of the TPBVP 211

For a problem with a bounded, scalar input, i.e. for an OCP of the form

J [u (.)] = φ (x (tf)) +

∫ tf

t0

L (x, u) dt

subject to: ẋ = f (x, u) , x (t0) = x0,

umin ≤ u ≤ umax

with u ∈ R, the condition (12.8) then must hold at the optimum for all k for

which umin < uk < umax. These observations will be useful in Section 13.5 to

discuss the numerical solutions to singular optimal control problems via direct

methods.

12.6 Numerical Solution of the TPBVP

In this section we address the question of how we can compute a solution of

the boundary value problem (BVP) in the indirect approach. The remarkable

observation is that the only non-trivial unknown is the initial value for the ad-

joints, λ(0). Once this value has been found, the complete optimal trajectory

can in principle be recovered by a forward simulation of the combined differ-

ential equation. Let us first recall that the BVP that we want to solve is given

as

r0 = x(0) − x̄0 = 0, (12.9a)

rT = λ(T ) − ∇E(x(T )) = 0, (12.9b)

ẋ(t) − ∇λH∗(x(t), λ(t)) = 0, t ∈ [0, T ], (12.9c)

λ̇(t) + ∇xH∗(x(t), λ(t)) = 0, t ∈ [0, T ]. (12.9d)

Using the shorthands (12.7) and

b (y(0), y(T ), x̄0) =

[

r0 (y(0), x̄0)

rT (y(T ))

]

,

the system of equations can be summarized as:

b (y(0), y(T ), x̄0) = 0, (12.10a)

ẏ(t) − ϕ(y(t)) = 0, t ∈ [0, T ]. (12.10b)

This BVP has the 2nx differential equations ẏ = ϕ, and the 2nx boundary condi-

tions b and is therefore usually well-defined. We detail here three approaches

to solve this TPBVP numerically, single shooting, collocation, and multiple

shooting.
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12.6.1 Single shooting

Single shooting starts with the following idea: for any guess of the initial value

λ0, we can use a numerical integration routine in order to obtain the state-

costate trajectory as a function of λ0, x̄0, i.e. y(t, λ0, x̄0) for all t ∈ [0, T ]. This

is visualized in Figure 12.2. The result is that the differential equation (12.10b)

is by construction already satisfied, as well as the initial boundary condition

(12.9a). Thus, we only need to enforce the boundary condition (12.9b), which

we can do using the terminal trajectory value y(T, λ0, x̄0):

rT (y(T, λ0, x̄0))
︸             ︷︷             ︸

=:RT (λ0)

= 0.

For nonlinear dynamics ϕ, this equation can generally not be solved explic-

itly. We then use the Newton’s method, starting from an initial guess λ0, and

iterating to the solution, i.e. we iterate

λk+1
0 = λk

0 − tk

(

∂RT

∂λ0

(

λk
0

)
)−1

RT

(

λk
0

)

. (12.11)

for some adequate step-size tk ∈]0, 1]. It is important to note that in order to

evaluate ∂R
∂λ0

(

λk
0

)

we have to compute the ODE sensitivities
∂y(T,y0)

∂λ0
.

In some cases, as said above, the forward simulation of the combined ODE

might be an ill-conditioned problem so that single shooting cannot be em-

ployed. Even if the forward simulation problem is well-defined, the region of

attraction of the Newton iteration on RT (λ0) = 0 can be very small, such that

a good guess for λ0 is often required. However, such a guess is typically un-

available. In the following example, we illustrate these observation on a simple

optimal control problem.

Example 12.5. We consider the optimal control problem:

minimize
x(.), u(.)

∫ T

0

x1(t)2 + 10x2(t)2 + u(t)2 dt

subject to ẋ1(t) = x1(t) x2(t) + u(t), x1(0) = 0,

ẋ2(t) = x1(t), x2(0) = 1

(12.12)

with T = 5. This example does not hold a terminal cost or constraints, such that

the terminal condition reads as RT (λ0) = λ (T, λ0, x̄0) = 0. The state-costate tra-

jectory at the solution is displayed in Figure 12.2. It is then interesting to build

the function λ0 7→ λ (T, λ0, x̄0) for various values of λ0, see Figure 12.3. This

function is very nonlinear, making it difficult for the Newton iteration to find

the co-states’ initial value λ0 resulting in λ (T, λ0, x̄0) = 0. More specifically,
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Figure 12.2 Illustration of the state and co-state trajectories for problem (12.12)

at the solution delivering λ(T, λ0, x̄0) = 0 for T = 5.
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Figure 12.3 Illustration of the map λ0 7→ λ (T, λ0, x̄0), in the form of level curves

for T = 5. The black dot represents the solution of the TPBVP problem, where

RT (λ0) = λ(T, λ0, x̄0) = 0. One can observe that the map is very nonlinear, such

that the Newton method can struggle to converge to the solution λ0 of the TPBVP,

unless a very good initial guess is provided.

the Newton iteration (full steps or reduced steps) converges only for a specific

set of initial guesses λ0
0

provided to the iteration (12.11), see Figure 12.4.

A crucial observation that will motivate an alternative to the single-shooting

approach is illustrated in Figure 12.5, where the map λ0 7→ λ (t, λ0, x̄0) is dis-

played for the integration times t = 3 and t = 4. The crucial observation here

is that the map is fairly linear up to t = 3, and becomes increasingly nonlinear

for larger integration times. This observation is general and motivates the core

idea behind the alternatives to single shooting, namely that integration shall

never be performed over long time intervals, so as to avoid creating strongly

nonlinear functions in the TPBVP.
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Figure 12.4 Illustration of the region of convergence of the Newton iteration

(12.11) for problem (12.12) (in black, with full Newton steps on the left-hand side

graph and with reduced steps on the right-hand side graph). Here we note λ0,1, λ0,2

the initial guess provided to the Newton iteration. The grey dots (at (3.22, 8.48))

depict the solution to the TPBVP. Only a fairly small, disconnected and highly

convoluted set of initial guess for the co-states initial conditions leads to a conver-

gence of the Newton iteration.

12.6.2 Multiple shooting

The nonlinearity of the integration map λ0 7→ y (t, λ0, x̄0) for long integration

times t motivates the “breaking down” of the full integration in small pieces,

so as to avoid creating very nonlinear map in the TPBVP conditions. The idea

is originally due to Osborne [74], and is based on dividing the time interval

[0, T ] into (typically uniform) shooting intervals [tk, tk+1] ⊂ [0, T ], where the

most common choice is tk = k T
N

. Let us then frame the integration over a short

time interval [tk, tk+1] with initial value sk as the function Φk (sk), defined as:

Φk (sk) = y (tk+1) where (12.13a)

ẏ(t) − ϕ(y(t)) = 0, t ∈ [tk, tk+1] and y (tk) = sk (12.13b)

for k = 0, . . . ,N − 1. We then rewrite the TPBVP conditions (12.10) as:

b (s0, sN , x̄0) = 0, (boundary conditions) (12.14a)

Φk (sk) − sk+1 = 0, k = 0, . . . ,N − 1. (continuity conditions) (12.14b)

One can then rewrite the conditions (12.14) altogether as the function:

RMS (s, x̄0) = 0 (12.15)
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Figure 12.5 Illustration of the map λ0 7→ λ (t, λ0, x̄0), in the form of level curves

for different times t. The black dot represents the solution of the TPBVP problem,

where λ(T, λ0, x̄0) = 0. One can observe that the map is close to linear for “small”

integration times t (upper graphs, where t = 3), and becomes increasingly nonlin-

ear as the integration time increases (lower graph, where t = 4), until it reaches

the final time T = 5, see Figure 12.3. This observation is general, and holds for

most problems.

where we note s = (s0, . . . , sN). A Newton iteration can be then deployed on

(12.15) to find the variables s, it reads as:

sk+1 = sk − tk

(

∂RMS

∂s

(

sk, x̄0

)
)−1

RMS

(

sk, x̄0

)

. (12.16)

for some step-size tk ∈]0, 1]. We illustrate the Multiple-Shooting approach in

the following example.

Example 12.6. We consider the optimal control problem (12.12) from Exam-

ple 12.5 with T = 5. If we denote sk = (xk, λk), the boundary conditions for
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Figure 12.6 Illustration of the state and co-state trajectories for problem (12.12)

during the multiple-shooting iterations (12.16), such that the conditions Φk (sk) −
sk+1 = 0 are not yet fulfilled. Here, the discrete times tk are depicted as grey dashed

lines, the discrete state-costates sk =
(

xk,1, xk,2, λk,1, λk,2

)

are depicted as black

dots, and the resulting integrations Φk =
(

Φx
k,1
,Φx

k,2
,Φλ

k,1
,Φλ

k,2

)

are depicted as

white dots. The black curves represent the state-costate trajectories on the various

time intervals [tk, tk+1]. At the solution (12.14), the conditions Φk (sk) = sk+1 are

enforced for k = 1, . . . , N − 1, such that the black and white dots coincide on each

discrete time tk.

this example then become:

x0 =

[

0

1

]

, λN = 0. (12.17)

We illustrate the Multiple-Shooting procedure (12.14) in Figure 12.6 for N = 5.

One ought to observe that the time intervals [tk, tk+1] are of size T
N

, and

hence get shorter as N increases. Because one can “control” the length of the

time interval over which the integration is performed via N, and because the

functionsΦk (sk)− sk+1 become less nonlinear as the length of the time interval

decreases, one can make them “arbitrarily” linear by increasing N. It follows

that a sufficiently large N typically allows one to solve the Multiple-Shooting
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Figure 12.7 Illustration of sparsity pattern of the Jacobian matrix
∂RMS

∂s
in the

Newton iteration (12.16) for the optimal control problem (12.12) approached via

indirect multiple-shooting, for Example 12.6. Here we use N = 5. One can read-

ily observe that the Jacobian matrix is sparse and highly structured. This structure

arises via organising the algebraic conditions (12.15) and the variables s in time

(i.e. in the order k = 0, . . . , N). Note that here the last variables sN where elimi-

nated using the equality sN = ΦN−1 (sk−1). In the specific case of Example 12.6,

the elimination has no impact on the Newton iteration because the boundary con-

ditions b (s0, sN , x̄0) are linear.

conditions (12.14) using a Newton iteration even if no good initial guess is

available.

It is important to observe that the set of algebraic conditions (12.15) holds a

large number of variables s, such that the Newton iteration (12.16) is deployed

using large Jacobian matrices
∂RMS

∂s
. However, these matrices are sparse, and if

the algebraic conditions and variables are adequately organised, they are highly

structured (see Figure 12.7), such that their factorization can be performed

efficiently.

The second alternative to single-shooting is the object of the next section,

and can be construed as an extreme case of Multiple-Shooting. We detail this

next.

12.6.3 Collocation & Pseudo-spectral methods

The second alternative approach to single shooting is to use simultaneous col-

location or Pseudo-spectral methods. As we will see next, the two approaches

are fairly similar. The key idea behind these methods is to introduce all the

variables involved in processing the integration of the dynamics, and the re-

lated algebraic conditions into the set of algebraic equations to be processed.
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The most common implementation of this idea is based on the Orthogonal Col-

location method presented in Section 10.3.

We consider the collocation-based integration of the state-costate dynamics

on a time interval [tk, tk+1] starting from the initial value sk, as described in

equation (10.5). The integration is then based on solving a set of collocation

equations:

vk,0 = sk (12.18a)

ṗ
(

tk,i, vk

)

= ϕ(vk,i, tk,i), i = 1, . . . , d (12.18b)

for k = 0, . . . ,N − 1, where tk,i ∈ [tk, tk+1] for i = 0, . . . , d, and the variables

vk ∈ R2nx ·(d+1) hold the discretisation of the continuous state-costates dynamics.

The TPBVP discretised using orthogonal collocation then holds the variables

vk,i and sk for k = 0, . . . ,N − 1 and i = 1, . . . , d, and the following constraints:

b (s0, sN , x̄0) = 0, (boundary condition), (12.19a)

p(tk+1, vk) − sk+1 = 0, (continuity condition), (12.19b)

vk,0 − sk = 0, (initial values), (12.19c)

ṗ
(

tk,i, vk

) − ϕ(vk,i, tk,i) = 0, (dynamics). (12.19d)

One can observe that equations (12.19b) and (12.19c) are linear, while equation

(12.19d) is nonlinear when the dynamics are nonlinear. One can also observe

that the variables s0,...,N−1 can actually be eliminated from (12.19), to yield a

slightly more compact set of equation, with k = 0, . . . ,N − 1 and i = 1, . . . , d:

b
(

vk,0, vN,0, x̄0

)

= 0, (boundary condition), (12.20a)

p(tk+1, vk) − vk+1,0 = 0, (continuity condition), (12.20b)

ṗ
(

tk,i, vk

) − ϕ(vk,i, tk,i) = 0, (dynamics). (12.20c)

This elimination does not modify the behavior of the Newton iteration. We can

gather the algebraic conditions (12.20) and the variables sk, vk in the compact

form

RIC (w, x̄0) = 0, (12.21)

where w =
{

v0,0, . . . , v0,d, . . . , vN−1,0, . . . , vN−1,d, vN,0
}

. A Newton iteration can

be then deployed on (12.21) to find the variables w, it reads as

wk+1 = wk − tk

(

∂RIC

∂w

(

wk, x̄0

)
)−1

RIC

(

wk, x̄0

)

, (12.22)

for some step-size tk ∈]0, 1]. We illustrate the indirect collocation approach in

the following example.
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Figure 12.8 Illustration of the state and co-state trajectories for problem (12.12)

using the orthogonal collocation approach with N = 20. The grey curves display

the state-costate trajectories after the first full Newton step of (12.22), while the

black curves report the state-costate trajectories at convergence. The discrete times

tk are depicted as grey dashed lines, the discrete state-costates on the time grid tk,i

are depicted as dots. Note that the continuity conditions (12.19b) in the collocation

method are linear in the variables w, such that the trajectories are continuous after

the first full Newton step (hence the grey curves are continuous, even though the

problem is not solved yet).

Example 12.7. We consider the optimal control problem (12.12) from Ex-

ample 12.5 with T = 5. We illustrate the Orthogonal Collocation procedure

(12.19) in Figure 12.8 for N = 10. The sparsity pattern of the Jacobian matrix
∂RIC

∂w
from the Newton iteration (12.22) is illustrated in Figure (12.9). The vari-

ables and constraints were ordered with respect to time. Even though it is large,

the complexity of forming factorisations of the Jacobian matrix
∂RIC

∂w
is limited

as it is sparse and highly structured.

Pseudo-spectral methods deploy a very similar approach to the one described

here, to the exception that they skip the division of the time interval [0, T ] into

subintervals [tk, tk+1], and use a single set of basis functions spanning the entire
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Figure 12.9 Illustration of the sparsity structure for the Jacobian
∂RIC

∂w
in the New-

ton iteration (12.22)

time interval [0, T ]. Pseudo-spectral methods for the TPBVP problem (12.10)

can then be framed as:

b (p(0, v), p(T, v), x̄0) = 0, (12.23a)

ṗ (tk, v) − ϕ(p(tk, v), tk) = 0, i = k, . . . , n (12.23b)

where tk ∈ [0, T ], and the variables v ∈ Rnx ·n hold the discretization of the

continuous dynamics. Because they attempt to capture the state trajectories in a

single function p(t, v), with t ∈ [0, T ], the Newton iteration solving constraints

(12.23) generally holds a dense Jacobian matrix, for which structure-exploiting

linear algebra is generally inefficient.

12.6.4 Numerical solution of TPBVP with Path Constraints

In order to provide a fairly complete discussion on numerical solutions of the

TPBVP problem for optimal control, we ought to consider the case of mixed

path constraints arising in problem (12.1), resulting in a TPBVP of the form

(12.4). As hinted in Section 12.3, the treatment of mixed path constraints in the

context of indirect methods can be fairly involved.

The difficulty when solving the TPBVP (12.4) is very similar to the diffi-

culty of solving the KKT conditions in the presence of inequality constraints,

and stems from the non-smooth complementarity slackness condition (12.4e).

Similarly to solving the non-smooth KKT conditions, we can consider here an

approach similar to the Primal-Dual Interior-Point approach already detailed

to solve the KKT conditions in the presence of inequality constraints, see Sec-

tion 4.3.1. The Interior-point idea deployed on (12.4) yields the relaxation of

the complementarity condition (12.4e) and the introduction of slack variables
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s(t) such that the following relaxed PMP conditions are numerically solved:

x(0) − x̄0 = 0, (12.24a)

λ(T ) − ∇E(x(T )) = 0, (12.24b)

ẋ(t) − ∇λH∗(x(t), λ(t), µ (t)) = 0, t ∈ [0, T ], (12.24c)

λ̇(t) + ∇xH∗(x(t), λ(t), µ (t)) = 0, t ∈ [0, T ], (12.24d)

h
(

x(t), u⋆exp

)

+ s(t) = 0, t ∈ [0, T ], (12.24e)

si (t) µi (t) − τ = 0, t ∈ [0, T ], i = 1, . . . , nh (12.24f)

with the addition of the positivity conditions:

s(t) ≥ 0, µ (t) ≥ 0 t ∈ [0, T ]. (12.25)

One can observe that (12.24c)-(12.24f) is in fact an index-1 DAE (see Chap-

ter 14), as the algebraic variables s(t) and µ(t) can be eliminated using (12.24e)

and (12.24f). In practice, problem (12.24) is best suited as it is for a numeri-

cal approach, as it allows to handle the positivity constraints (12.25) easily via

taking the adequate step lengths in the Newton iterations.

The differential-algebraic conditions (12.24c)-(12.24f) can then be handled

via a collocation method, yielding a large and sparse set of algebraic conditions

that are simply added to the boundary conditions (12.24a)-(12.24b) to yield an

algebraic system that we note as:

Rτ (w) = 0, (12.26)

where w = (x, λ, µ, s) gathers the discrete states x, costates λ, slack variables s

and multipliers µ, discretized on the collocation time grid tk,i for k = 0, . . . ,N−
1 and i = 0, . . . , d. A prototype of interior-point algorithm then reads as fol-

lows.

Algorithm 12.8 (IP method for TPBVP with path constraints).

Input: guess w, algorithmic parameters τ > 0, γ ∈]0, 1[, ǫ ∈]0, 1[, Tol > 0

while ‖Rτ (w) ‖ ≥ Tol do

∆w = − ∂Rτ(w)

∂w
Rτ (w)

Update w = w + t∆w, where t ∈]0, 1] ensures

s + t∆s ≥ ǫs, µ + t∆µ ≥ ǫµ

if ‖Rτ (w) ‖X ≤ 1 then τ = γτ

end while
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where X is an ad-hoc norm on the residual Rτ. Let us consider the deploy-

ment of this Algorithm on the following example.

Example 12.9. We consider the optimal control problem (12.12) with the ad-

dition of simple mixed constraints in the form of state and input bounds:

minimize
x(.), u(.)

∫ 5

0

x1(t)2 + 10x2(t)2 + u(t)2 dt

subject to ẋ1(t) = x1(t) x2(t) + u(t), x1(0) = 0,

ẋ2(t) = x1(t), x2(0) = 1,

u(t) ≥ −1, x1(t) ≥ −0.6, t ∈ [0, T ].

(12.27)

with T = 5, which is similar to the optimal control problem treated in the previ-

ous examples, to the addition of the path constraint x1(t) ≥ −0.6 and u(t) ≥ −1.

We treat this problem using Algorithm 12.8. The resulting state-costate trajec-

tory at the solution is displayed in Figure 12.10. The resulting optimal control

input u⋆exp (x, λ, µ), the slack variables s and the adjoint variables µ are dis-

played in Figure 12.11. The sparsity pattern of the Jacobian matrix
∂Rτ(w)

∂w
used

in the Newton iterations in Algorithm 12.8 is illustrated in Figure 12.12.

Remark on Indirect Multiple-Shooting vs. Indirect Collocation At first

sight multiple shooting seems to combine the disadvantages of both single-

shooting and collocation. Like single shooting, it cannot handle strongly un-

stable systems as it relies on a forward integration, and like collocation, it

leads to a large scale equation system and needs sparse treatment of the linear

algebra. On the other hand, it also inherits the advantages of these two meth-

ods: like single shooting, it can rely on existing forward solvers with inbuilt

adaptivity so that it avoids the question of numerical discretization errors: the

choice N is much less important than in collocation and typically, one chooses

an N between 5 and 50 in multiple shooting. Also, multiple shooting can be

implemented in a way that allows one to perform in each Newton iteration

basically the same computational effort as in single shooting, by using a con-

densing technique. Finally, like collocation, it allows one to deal better with

unstable and nonlinear systems than single shooting. These last facts, namely

that a lifted Newton method can solve the large “lifted” equation system (e.g.

of multiple shooting) at the same cost per Newton iteration as the small scale

nonlinear equation system (e.g. of single shooting) to which it is equivalent,

but with faster local convergence rates, is in detail investigated in [2] where

also a literature review on such lifted methods is given.
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Figure 12.10 Illustration of the state and co-state trajectories for problem (12.12)

using the orthogonal collocation approach with N = 20. The black curves report

the state-costate trajectories at convergence. The discrete times tk are depicted as

grey dashed lines, the discrete state-costates on the time grid tk,i are depicted as

dots.
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Figure 12.11 Illustration of the input u⋆exp (x, λ, µ), slack s and adjoint variable µ

at the solution of problem (12.12) using indirect collocation with an interior-point

approach.
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Figure 12.12 Illustration of the sparsity structure for the Jacobian
∂Rτ
∂w

in the New-

ton iteration deployed within Algorithm 12.8.

Exercises

12.1 In this exercise sheet, we regard the continuous time optimal control

problem defined by:

minimize
x(·), u(·)

∫ ⊤

0

u(t)2dt (12.28a)

subject to x(0) = x̄0, (12.28b)

ẋ(t) = f (x(t), u(t)), t ∈ [0, T ], (12.28c)

X(T ) = 0, (12.28d)

−umax ≤ u(t) ≤ umax, t ∈ [0, T ]. (12.28e)

where the state is x = (x1, x2)⊤ and ẋ = f (x, u) is given by:

f (x, u) =

[

x2(t)

−C sin(x1(t)/C) + u(t)

]

.

with C := 180/π.

We choose the initial value x̄0 = (10, 0)⊤, T = 10, and at first, we will

leave away the control bound (12.28e) for first tasks.

(a) Considering that the Hamiltonian function for a general OCP with in-

tegral cost L(x, u) is defined to be H(x, λ, u) = L(x, u)+λ⊤ f (x, u), and

that in our case L(x, u) = u2, write down explicitly the Hamiltonian

function of the above optimal control problem as a function of the

five variables (x1, x2, λ1, λ2, u).

(b) Next, let us recall that the indirect approach eliminates the controls to

obtain an explicit function u∗(x, λ) that minimizes the Hamiltonian for
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a given (x, λ). This optimal u∗ can be computed by setting the gradient

of the Hamiltonian w.r.t. u to zero, i.e. it must hold ∂H
∂u

(x, λ, u∗) = 0.

Obtain an explicit expression for u∗(x, λ).

(c) We will also need the derivatives w.r.t. x, so also calculate ∂H
∂x1

(x, λ, u)

and ∂H
∂x2

(x, λ, u).

(d) Recall that the indirect approach formulates the Euler-Lagrange dif-

ferential equations for the states and adjoints together. They are given

by ẋ = f (x, u∗(x, λ)) and by λ̇ = −∇xH(x, λ, u∗(x, λ)). For nota-

tional convenience, we define the vector y = (x, λ) so that the Euler-

Lagrange equation can be briefly written as the ODE ẏ = f̃ (y).

Collect all data from above to define explicitly the ODE right hand

side f̃ as a function of the four components of the vector y = (x1, x2, λ1, λ2)

(e) The boundary value problem (BVP) that we now have to solve is

given by

x(0) = x̄0,

x(T ) = 0,

ẏ(t) = f̃ (y(t)), t ∈ [0, T ].

We will solve it by single shooting and a Newton procedure. The first

step is to write an ODE simulator that for a given initial value y0 =

(x0, λ0) simulates the ODE on the whole time horizon. Let us call the

resulting trajectory y(t; y0), t ∈ [0, T ], and denote its terminal value

by y(T ; y0). Write a simulation routine that computes for given y0 the

value yN = y(T ; y0). Use a RK4 integrator with step size ∆t = 0.2 and

N = 50 time steps.

(f) Regard the initial value y0 = (x0, λ0). As the initial value for the states,

x0, is fixed to x̄0, we only need to find the right initial value for the

adjoints, λ0, i.e. we will fix x0 = x̄0 and only keep λ0 ∈ R2 as an

unknown input to our simulator. Also, we have only to meet a termi-

nal condition on x(T ), namely x(T ) = 0, while λ(T ) is free. Thus, we

are only interested in the map from λ0 to x(T ), which we denote by

F(λ0). Note that F : R2 → R2. Using your simulator, write a MAT-

LAB function [x_end]=F(lambda_start).

(g) Add to your function functionality for plotting the trajectories of x1,

x2, λ1, λ2. To do so, extend the output of your MATLAB simualtor to

[x_end,ytraj]=F(lambda_start).

For λ0 = 0, call F(λ0) and plot the states and adjoints of your system.

In this scenario, what is the numerical value of the final state x(T ) =

F(0)?
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(h) The solution of the BVP is found if we have found λ∗
0

such that

F(λ∗
0
) = 0. This system can be solved by Newton’s method, that iter-

ates, starting with some guess λ[0]

0
(e.g. zero).

λ[k+1]

0
= λ[k]

0
−

(

∂F

∂λ0

(λ[k]

0
)

)−1

F(λ[k]

0
)

First write a routine that computes the Jacobian JF (λ0) = ∂F
∂λ0

(λ0) by

finite differences using a perturbation δ = 10−4. Then implement a

(full-step) Newton method that stops when ‖F(λ[k]

0
)‖ ≤ TOL with

TOL = 10−3.

(i) For your obtained solution, plot the resulting state trajectories and

verify by inspection that x(T ) = 0.

(j) Using your function u∗(x, λ), also plot the corresponding control tra-

jectories u(t).

(k) Add the control bounds (12.28e) with umax = 3. The only part in your

whole algorithm that you need to change is the expression for u∗(x, λ).

The new constrained function

u∗con(x, λ) = arg min
u

H(x, λ, u) s.t. − umax ≤ u ≤ umax,

is simply given by the “clipped” or “saturated” version of your old

unconstrained function u∗unc(x, λ), namely by

u∗con(x, λ) = max
{−umax,min{umax, u

∗
unc(x, λ)}}

Modify your differential equation f̃ by using this new expression for

u∗ and run your algorithm again. We remark that strictly speaking,

the ODE right hand side is no longer differentiable so that the use of

a RK4 is questionable as well as the computation of the Jacobian of F,

but we cross our fingers and are happy that it works. For initialization

of the Newton procedure, choose the multiplier λ∗
0

from the uncon-

strained solution. In the solution, plot again the resulting trajectories

for states, adjoints, and for u(t), using of course your new function.

12.2 Consider the following two-point boundary-value problem, describing a

person throwing a ball against a target:





ṗx

v̇x

ṗy

v̇y





=





vx

−α vx

√

v2
x + v2

y

vy

−α vy

√

v2
x + v2

y − g0










px(0) = 0, px(T ) = d

vx(0) = vx,0, vx(T ) = vx,T

py(0) = h, py(T ) = 0

vy(0) = vy,0, vy(T ) = vy,T
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The ball leaves the hand of the thrower with a velocity (vx,0, vy,0) a dis-

tance h = 1.5 m above the ground. It then follows an unguided trajectory

determined by standard gravity g0 = 9.81 m/s2 and air friction α = 0.02

hitting a target on the ground d = 20 m away after T = 3 s. The problem

is to determine (vx,0, vy,0).

(a) Implement e RK4 integrator scheme with 20 steps to simulate the

trajectory of the ball assuming assuming vx,0 = vy,0 = 5[m/s].

(b) Rewrite the integrator in order to get a function that given v0 :=

(vx,0, vy,0) returns pT := (px,T , py,T ).

(c) Compute the Jacobian
∂pT

∂v0
by finite differences.

(d) Write a full-step Newton method with 10 iterations to solve the root-

finding problem:

pT = F(v0).

Verify the result by simulating the trajectory as in Task 4.1.

(e) Replace the quadratic friction terms α vx

√

v2
x + v2

y and α vy

√

v2
x + v2

y

with the linear terms α vx and α vy. How does this influence the num-

ber of Newton-iterations needed to solve the problem?

12.3 Regard again Exercise 8.7. We will solve now the modified version of

that problem given by:

minimize
x, u

∫ ⊤

0

x1(t)2 + x2(t)2 + u(t)2 dt

subject to ẋ1 = (1 − x2
2) x1 − x2 + u, x1(0) = 0,

ẋ2 = x1, x2(0) = 1,

−1 ≤ u(t) ≤ 1,

(12.29)

where T = 10. Notice the lack of state path constraints since they are

difficult to handle with indirect methods.

(a) Introduce the costate λ(t) and write down the Hamiltonian H(x, λ, u)

of (12.29):

(b) Use Pontryagin’s maximum principle to derive an expression for the

optimal control u∗ as a function of x and λ. Note: u(t) may only be

a piecewise smooth function. Tip: How does u enter in the Hamilto-

nian?

(c) Derive the costate equations, i.e. λ̇(t) = . . .

(d) Derive the terminal conditions for the costate equations:
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(e) Augment the original equations with the costate equation to form a

two-point boundary-value problem (TPBVP) with four differential

equations:

(f) Casadi Part: Solve the TPBVP with single-shooting. Use [0, 0] as

your initial guess for the initial costate. To integrate the system, our

best chance is to use a variable stepsize integrator for stiff systems,

such as the CVODES integrator from the SUNDIALS suite, available

in CasADi. Note that the system is only piecewise smooth, which

could potentially cause problems in the integrator, but we will ignore

this and hope for the best. The resulting nonlinear system of equations

is also challenging to solve, and in CasADi, our best bet is to use

IPOPT with a dummy objective function (”minimize 0, subject to

g(x) = 0”). We suggest allocating an instance of CVODES as follows:

• MATLAB

tf = SX.sym(’tf’);

dae = struct(’x’, aug, ’p’, tf, ’ode’,

tf*augdot);

opts = struct(’abstol’, 1e-8, ’reltol’,

1e-8);

F = integrator(’F’, ’cvodes’, dae, opts);

• Python

tf = SX.sym(’tf’)

dae = {’x’:aug, ’p’:tf, ’ode’:tf*augdot}

opts = {’abstol’:1e-8, ’reltol’:1e-8}

F = integrator(’F’, ’cvodes’, dae, opts)

where aug and augdot are expressions for the augmented state and

augmented state derivative, respectively. We use a free parameter tf

to scale the time horizon to [0, tf] instead of the default [0, 1].
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Direct Approaches to Continuous Optimal

Control

Direct methods to continuous optimal control finitely parameterize the infinite

dimensional decision variables, notably the controls u(t), such that the origi-

nal problem is approximated by a finite dimensional nonlinear program (NLP).

This NLP can then be addressed by structure exploiting numerical NLP so-

lution methods. For this reason, the approach is often characterized as “First

discretize, then optimize.” The direct approach connects easily to all optimiza-

tion methods developed in the continuous optimization community, such as the

methods described in Chapter 3. Most successful direct methods even param-

eterize the problem such that the resulting NLP has the structure of a discrete

time optimal control problem, such that all the techniques and structures de-

scribed in Chapters 7 and 7.3 are applicable. For this reason, the current chap-

ter is kept relatively short; its major aim is to outline the major concepts and

vocabulary in the field.

We start by describing direct single shooting, direct multiple shooting, and

direct collocation and a variant pseudospectral methods. We also discuss how

sensitivities are computed in the context of shooting methods. The optimiza-

tion problem formulation we address in this chapter typically read as (but are

not limited to):

minimize
x (.) , u (.)

∫ T

0

L(x(t), u(t)) dt + E (x(T ))

subject to x(0) − x0 = 0, (initial value),

ẋ(t) − f (x(t), u(t)) = 0, (system dynamics),

h(x(t), u(t)) ≤ 0, (path constraints),

r (x(T )) ≤ 0 (terminal constraints).

For many OCPs, the system state derivatives ẋ(t) are provided via an implicit

function, or even via a Differential-Algebraic Equation (DAE). The methods

229
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presented hereafter are applicable to all these cases with some minor modifi-

cations. The direct methods differ in how they transcribe this problem into a

finite NLP. The optimal control problem above has a fixed initial value, which

simplifies in particular the single shooting method, but all concepts can in a

straightforward way be generalized to other OCP formulations with free initial

values.

13.1 Direct Single Shooting

All shooting methods use an embedded ODE or DAE solver in order to elimi-

nate the continuous time dynamic system. They do so by first parameterizing

the control function u(t), e.g. by polynomials, by piecewise constant functions,

or, more generally, by piecewise polynomials. We denote the finite control

parameters by the vector q, and the resulting control function by u(t, q). The

most widespread parameterization are piecewise constant controls, for which

we choose a fixed time grid 0 = t0 < t1 < . . . < tN = T, and N parameters

qi ∈ Rnu , i = 0, . . . ,N − 1, and then we set

u(t, q) = qk for t ∈ [tk, tk+1].

Thus, the dimension of the vector q = (q0, . . . , qN−1) is of dimension Nnu.

Single shooting is a sequential approach which has been earliest presented

in [51, 79]. In single shooting, we regard the states x(t) on [0, T ] as dependent

variables that are obtained by a forward integration of the dynamic system,

starting at x0 and using the controls input u(t, q). We denote the resulting tra-

jectory as x(t, q). In order to discretize inequality path constraints, we choose

a grid, typically the same as for the control discretization, at which we check

the inequalities. Thus, in single shooting, we transcribe the optimal control

problem into the following NLP, that is visualized in Figure 13.1.

minimize
q ∈ RNnu

∫ T

0

L(x(t, q), u(t, q)) dt + E (x(T, q))

subject to h(x(ti, q), u(ti, q)) ≤ 0, i = 0, . . . ,N − 1 (path constraints),

r (x(T, q)) ≤ 0 (terminal constraints).

NLP structure in single shooting As the only variable of this NLP is the

vector q ∈ RNnu that influences nearly all problem functions, the above problem
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can usually be solved by a dense NLP solver in a black-box fashion. As the

problem functions and their derivatives are expensive to compute, while a small

QP is cheap to solve, often Sequential Quadratic Programming (SQP) is used,

e.g. the codes NPSOL or SNOPT. Let us first assume the Hessian needs not be

computed but can be obtained e.g. by BFGS updates.

The computation of the derivatives can be done in different ways with a dif-

ferent complexity: first, we can use forward derivatives, using finite differences

or algorithmic differentiation. Taking the computational cost of integrating one

time interval as one computational unit, this means that one complete forward

integration costs N units. Given that the vector q has Nnu components, this

means that the computation of all derivatives costs (Nnu + 1)N units when im-

plemented in the most straightforward way. This number can still be reduced

by one half if we take into account that controls at the end of the horizon

do not influence the first part of the trajectory. We might call this way the

reduced derivative computation as it computes directly only the reduced quan-

tities needed in each reduced QP.

Second, if the number of output quantities such as objective and inequality

constraints is not big, we can use the principle of reverse automatic differentia-

tion in order to generate the derivatives. In the extreme case that no inequality

constraints are present and we only need the gradient of the objective, this

gradient can cheaply be computed by reverse AD, as done in the so called gra-

dient methods. Note that in this case the same adjoint differential equations of

the indirect approach can be used for reverse computation of the gradient, but

that in contrast to the indirect method we do not eliminate the controls, and we

integrate the adjoint equations backwards in time. The complexity for one gra-

dient computation is only 4N computational units. However, each additional

state constraint necessitates a further backward sweep.

Third, in the case that we have chosen piecewise controls, as here, we might

use the fact that after the piecewise control discretization we have basically

transformed the continuous time OCP into a discrete time OCP (see next sec-

tion). Then we can compute the derivatives with respect to both si and qi on

each interval separately, which costs (nx + nu + 1) units. This means a total

derivative computation cost of N(nx + nu + 1) units. In contrast to the second

(adjoint) approach, this approach can handle an arbitrary number of path in-

equality constraints, like the first one. Note that it has the same complexity that

we obtain in the standard implementation of the multiple shooting approach, as

explained next. We remark here already that both shooting methods can each

implement all the above ways of derivative generation, but differ in one re-

spect only, namely that single shooting is a sequential and multiple shooting a

simultaneous approach.
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Example 13.1. Let us illustrate the single shooting method using the following

simple OCP:

minimize
x(.), u(.)

∫ 5

0

x1(t)2 + 10x2(t)2 + u(t)2 dt

subject to ẋ1(t) = x1(t) x2(t) + u(t), x1(0) = 0,

ẋ2(t) = x1(t), x2(0) = 1,

u(t) ≥ −1, x1(t) ≥ −0.6, t ∈ [0, T ],

(13.1)

which we used already in Example 12.9 of Section 12.6.4.

The resulting solution is illustrated in Figure 13.1, together with the sparsity

patterns of the Jacobian of the inequality constraint function, i.e.

∂

∂q
h(x(ti, q), u(ti, q)),

and the one of the Hessian of the Lagrange function.

Nonlinearity propagation in direct single shooting Unfortunately, direct sin-

gle shooting often suffers from similar difficulties as the ones discussed in

Section 12.6.1 for indirect single shooting. More specifically, when deploying

single shooting in the context of direct optimal control a difficulty can arise

from the nonlinearity of the “simulation” function x(t, q) with respect to the

control inputs q for a large simulation time t. We illustrate this problem using

the following example:

ẋ1 = 10 (x2 − x1) (13.2a)

ẋ2 = x1 (q − x3) − x2 (13.2b)

ẋ3 = x1 x2 − 3x3 (13.2c)

where x = (x1, x2, x3) ∈ R3 and q ∈ R is a constant control input. Note that the

nonlinearities in this ODE result from apparently innocuous bilinear expres-

sions. We are then interested in the relationship q→ x(t, q) for different values

of t. The initial conditions of the simulation were selected as x(0) = (0, 0, 0)

and q ∈ [18, 38]. The resulting relationship is displayed in Fig. 13.2. One can

observe that while the relationship is not very nonlinear for small integration

times t, it becomes extremely nonlinear for large times t, even though the ODE

under consideration here appears simple and mildly nonlinear.

This example ought to warn the reader that the function x(t, q) resulting

from the simulation of nonlinear dynamics can be extremely nonlinear. As a

result, functions such as the constraints and cost function in the NLP resulting

form the discretization of an optimal control problem via single-shooting can
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Figure 13.1 Solution to OCP (13.1) using a discretization based on single shoot-

ing, with N = 20 and using a 4-steps Runge-Kutta integrator of order 4. The upper

graph reports the states and input trajectories. The lower graphs report the sparsity

pattern of the Jacobian of the inequality constraints in the resulting NLP and the

sparsity pattern of the Hessian of the Lagrange function.

be themselves extremely nonlinear functions of the input sequence q. Because

most NLP solvers proceed to find a candidate solution via taking successive

linearization of the KKT conditions of the problem at hand, the presence of

very nonlinear functions in the NLP problem typically invalidates these ap-

proximations outside of a very small neighborhood of the linearization point,

see Chapter 4 for more technical details on this issue.

These observations entails that in practice, when using single-shooting, a

very good initial guess for q is often required. For many problems, such an

initial guess is very difficult to construct. As in the context of indirect methods,

these observations motivate the use of alternative transcription techniques.
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Figure 13.2 Illustration of the propagation of nonlinearities in the simple dynamic

system (13.2). One can observe that for a short integration time t = 0.25 (first row),

the relationship q → x(t, q) is close to linear. However, as the integration time

increases to t = 1.33, 2.41, 3.5, the relationship q → x(t, q) becomes extremely

nonlinear. While the effect of integration time is not necessarily as dramatic as for

this specific example, large integration times yield strong nonlinear relationship

q→ x(t, q) for many nonlinear dynamics.
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13.2 Direct Multiple Shooting

The direct multiple shooting method was originally developed by Bock and

Plitt [23]. It follows similar ideas as the indirect multiple-shooting approach

discussed in Section 12.6.1, but recast in the direct optimization framework,

where the input profile is also discretized and part of the decision variables.

The idea behind the direct multiple-shooting approach stems from the obser-

vation that performing long integration of dynamics can be counterproductive

for discretizing continuous optimal control problems into NLPs, and tackles

the problem by limiting the integration over arbitrarily short time intervals. Di-

rect multiple-shooting performs first a finite-dimensional discretization of the

continuous control input u(t), most commonly using a piecewise control dis-

cretization on a chosen time grid, exacly as we did in single shooting, i.e. we

set

u(t) = qi for t ∈ [ti, ti+1].

In contrast to single shooting, it then solves the ODE separately on each inter-

val [ti, ti+1], starting with artificial initial values si:

ẋi(t, si, qi) = f (xi(t, si, qi), qi) , t ∈ [ti, ti+1],

xi(ti, si, qi) = si.

See Figure 13.3 for an illustration. Thus, we obtain trajectory pieces xi(t, si, qi).

Likewise, we numerically compute the integrals

li(si, qi) :=

∫ ti+1

ti

L (xi(t, si, qi), qi) dt.

The problem of piecing the trajectories together, i.e. ensuring the continuity

condition si+1 = xi(ti+1, si, qi) is left to the NLP solver. Finally, we choose a

time grid on which the inequality path constraints are checked. It is common to

choose the same time grid as for the discretization of the controls as piecewise

constant, such that the constraints are checked based on the artificial initial val-

ues si. However, a much finer sampling is possible as well, provided that the

numerical integrator building the simulations over the various time intervals

[tk, tk+1] report not only their final state xi(ti+1, si, qi), but also intermediate val-

ues. An integrator reporting the state (or some function of the state) over a

refined or arbitrary time grid is sometimes labelled as continuous-output inte-

grator.

The NLP arising from a discretization of an OCP based on multiple shooting
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typically reads as:

minimize
s, q

N−1∑

i=0

li(si, qi) + E (sN)

subject to x0 − s0 = 0, (initial value),

xi(ti+1, si, qi) − si+1 = 0, i = 0, . . . ,N − 1 (continuity),

h(si, qi) ≤ 0, i = 0, . . . ,N (path constraints),

r (sN ) ≤ 0 (terminal constraints).
(13.3)

It is visualized in Figure 13.3. Let us illustrate the multiple shooting method

using the OCP (13.1). Here the ordering of the equality constraints and vari-

ables is important in order to get structured sparsity patterns. In this example,

the variables are ordered in time as:

s1,0, s2,0, q0, s1,1, s2,1, q1, . . . , qN−1, s1,N , s2,N

and the constraints are also ordered in time. The resulting solution is illustrated

in Figure 13.4, together with the sparsity patterns of the Jacobian of the equal-

ity constraint function, and the one of the Hessian of the Lagrange function.

Note that by defining fi(si, qi) := xi(ti+1, si, qi), the continuity conditions

can be interpreted as discrete time dynamic system si+1 = fi(si, qi) and the

above optimal control problem has exactly the same structure as the discrete

time optimal control problem (7.8) discussed in detail in Chapter 7.3. Most

important, the sparsity structure arising from a discretization based on multiple-

shooting (see Figure 13.4 for an illustration) ought to be exploited in the NLP

solver.

Example 13.2. Let us tackle the OCP (13.1) of Example 13.1 via direct multiple-

shooting. A 4-step RK4 integrator has been used here, deployed on N = 20

shooting intervals. The variables have been ordered as:

s0, q0, s1, q1, . . . , sN−1, uN−1, sN ,

and the shooting constraints are also imposed time-wise.

The resulting solution is displayed in Figure 13.3, where one can observe

the discrete state trajectories (black dots) at the discrete time instants t0,...,N

together with the simulations delivered by the integrators at the solution. One

can also observe the very specific sparsity patterns of the Jacobian of the equal-

ity constraints and of the Hessian of the Lagrange function that arise from the

direct multiple-shooting approach.
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Figure 13.3 Illustration of the direct multiple shooting method. A piecewise-

constant input profile parametrized by q0,...,N−1 is deployed on the time grid t0,...,N .

The discrete states s0,...,N act as ”checkpoints” on the continuous state trajectories

x(t) at all discrete time points t0,...,N . Numerical integrators build the simulations

xi (t, si, qi) over each time interval [ti, ti+1]. The state trajectory held in the NLP

solver becomes continuous only when the solution of the NLP is reached, where

the continuity conditions xi (ti+1, si, qi) − si+1 are enforced.

Remark on Schlöder’s Reduction Trick: We point out here that the deriva-

tives of the condensed QP could also directly be computed, using the reduced

way, as explained as first variant in the context of single shooting. It exploits

the fact that the initial value x0 is fixed in the NMPC problem, changing the

complexity of the derivative computations. It is only advantageous for large

state but small control dimensions as it has a complexity of N2nu. It was orig-

inally developed by Schlöder [82] in the context of Gauss-Newton methods

and generalized to general SQP shooting methods by [81]. A further general-

ization of this approach to solve a “lifted” (larger, but equivalent) system with

the same computational cost per iteration is the so called lifted Newton method

[2] where also an analysis of the benefits of lifting is made.

The main advantages of lifted Newton approaches such as multiple shooting

compared with single shooting are the facts that (a) we can also initialize the

state trajectory, and (b), that they show superior local convergence properties

in particular for unstable systems. An interesting remark is that if the original

system is linear, continuity is perfectly satisfied in all SQP iterations, and single

and multiple shooting would be identical. Also, it is interesting to recall that

the Lagrange multipliers λi for the continuity conditions are an approximation

of the adjoint variables, and that they indicate the costs of continuity.
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Figure 13.4 Solution to OCP (13.1) using a discretization based on multiple shoot-

ing, with N = 20 and using a 4-steps Runge-Kutta integrator of order 4. The upper

graph reports the states and input trajectories at the solution, where the continuity

condition holds. The lower graphs report the sparsity pattern of the Jacobian of

the equality constraints in the resulting NLP and the sparsity pattern of the Hes-

sian of the Lagrange function. The Hessian of the Lagrange function arising from

multiple-shooting is block-diagonal, due to the separability of the Lagrange func-

tion. The Jacobian of the inequality constraints is diagonal in this example, and

block-diagonal in general.

Finally, it is interesting to note that a direct multiple shooting algorithm can

be made a single shooting algorithm easily: we only have to overwrite, before

the derivative computation, the states s by the result of a forward simulation us-

ing the controls q obtained in the last Newton-type iteration. From this perspec-

tive, we can regard single shooting as a variant of multiple shooting where we

perturb the result of each iteration by a “feasibility improvement” that makes

all continuity conditions feasible by the forward simulation, implicitly giving

priority to the control guess over the state guess [85].
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13.3 Direct Collocation method

A third important class of direct methods are the so-called direct transcrip-

tion methods, most notably direct collocation. The discretization method ap-

plied here is directly inspired from the collocation-based simulation already

discussed in Chapter 10, Section 10.3, and very similar to the indirect colloca-

tion method discussed in Section 12.6.3.

Here we discretize the infinite OCP in both controls and states on a fixed

and relatively fine grid tk, with k = 0, . . . ,N. We denote the discrete states on

the grid points tk as sk. We choose a parameterization of the controls on the

same grid typically as piecewise constant, with control parameters qk, which

yields on each interval [tk, tk+1] a constant control u(t) = qk.

On each collocation interval [tk, tk+1] a set of d collocation times tk,i ∈
[tk, tk+1] is chosen, with i = 0, . . . , d. The trajectory of each state on the time

interval [tk, tk+1] is approximated by a polynomial pk(t, vk) ∈ Rn having the

coefficients vk ∈ Rnx(d+1).

The collocation-based integration of the state dynamics on a time inter-

val [tk, tk+1] starting from the initial value sk, as described in equation (10.5)

hinges on solving the collocation equation:

ck (vk, sk, qk) =





vk,0 − sk

ṗk

(

tk,1, vk

) − f (vk,1, tk,1, qk)
...

ṗk

(
tk,d, vk

) − f (vk,d, tk,d, qk)





= 0 (13.4)

for the variables vk,i ∈ Rnx , with i = 0, . . . , d.

We now turn to building the NLP based on direct collocation. In addition to

solving the collocation equations (13.4) for k = 0, . . . ,N − 1, we also require

continuity accross the interval boundaries, i.e. we require that

pk(tk+1, vk) − sk+1 = 0

holds for k = 0, . . . ,N.

One finally ought to approximate the integrals
∫ tk+1

tk
L(x, u)dt on the colloca-

tion intervals by a quadrature formula using the same collocation points, which

we denote by the a term lk(vk, sk, qk). Path constraints can be enforced on the

fine time grid tk,i, though it is common to enforce them only on the interval

boundaries tk in order to reduce the amount of inequality constraints in the

resulting NLP.

It is interesting to observe, that an arbitrary sampling of the state dynamics

is possible by enforcing the path constraints at arbitrary time points t via the
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interpolation pk (t, vk). However, it is important to point out that the high inte-

gration order of collocation schemes holds only at the the main time grid tk,

such that interpolations at finer time grids, including the grid tk,i, hold a lower

numerical accuracy. In the following formulations, we will enforce the path

constraints on the main time grid tk.

Direct Collocation yields a large scale but sparse NLP, which can typically

be written in the form

minimize
v, s, q

E (sN) +

N−1∑

k=0

lk(vk, sk, qk)

subject to s0 − x0 = 0 (fixed initial value),

ck(vk, sk, qk) = 0, k = 0, . . . ,N − 1 (collocation conditions),

pk(tk+1, vk) − sk+1 = 0, k = 0, . . . ,N − 1 (continuity conditions),

h(sk, qk) ≤ 0, k = 0, . . . ,N − 1, (path constraints),

r (sN ) ≤ 0 (terminal constraints).

One ought to observe that the discrete state variables sk or alternatively the

collocation variables vk,0 can be eliminated via the first linear equality in each

collocation equations ck(vk, qk, sk) = 0. It is in fact common to formulate the

NLP arising from direct collocation without the sk and enforcing continuity

directly within the collocation equations. It then reads as follows:

minimize
v, q

E
(

vN,0
)

+

N−1∑

k=0

lk(vk, qk)

subject to v0,0 − x0 = 0,

ṗk

(

tk,i, vk

) − f (vk,i, qk) = 0, k = 0, . . . ,N − 1, i = 1, . . . , d,

pk(tk+1, vk) − vk+1,0 = 0, k = 0, . . . ,N − 1,

h(vk,0, qk) ≤ 0, k = 0, . . . ,N − 1,

r
(

vN,0
) ≤ 0.

(13.5)

We illustrate the variables and constraints of NLP (13.5) in Figure 13.5.

The direct collocation method offers two ways of increasing the numerical

accuracy of the integration. We need to remember here that the integration

error of a Gauss-Legendre collocation scheme is of O
(

(tk+1 − tk)2d
)

(respec-

tively O

(

(tk+1 − tk)2d−1
)

for the Gauss-Radau collocation scheme). In order to

gain accuracy, one can therefore increase d and thereby gain two orders in the

integration error. Alternatively, one can reduce the size of the time intervals

[tk, tk+1] by e.g. a factor ξ and thereby reduce the order of the integration error
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Figure 13.5 Illustration of the variables and constraints of NLP (13.5) for d = 3,

and for one specific time interval [tk , tk+1] before the constraints are fulfilled (early

iteration). One can observe that the continuity conditions pk(tk+1, vk) − vk+1,0 = 0

are not (yet) satisfied.

by a factor ξ2d (respectively ξ2d−1 for the Gauss-Radau collocation scheme).

However, numerical experiments often show that the conditioning of the linear

algebra underlying the NLP resulting from direct collocation tends to worsen

as d increases beyond relatively small orders. In practice, it often appears coun-

terproductive to use d > 4 for complex optimal control problems.

One ought to observe here that discretizing an OCP using direct collocation

allows for a fairly straightforward construction of the exact Hessian of the

NLP. Indeed, one can observe that the nonlinear contributions to the constraints

involved in the NLP arising from a discretization based on direct collocation

are all explicitly given by the model continuous dynamics function f , the path

constraints function h, and the terminal constraints function r. These functions

are, in most OCPs, readily provided in their symbolic forms. It follows that

assembling the Lagrange function and computing its first and second-order

derivatives is fairly straightforward using any efficient symbolic computation

tool such as e.g. AMPL or casADi.

Example 13.3. Let us tackle the OCP (13.1) of Example 13.1 via direct col-

location. The direct collocation is implemented using a Gauss-Legendre direct

collocation scheme with d = 3. Here again, the ordering of the equality con-
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Figure 13.6 Solution to OCP (13.1) using a Gauss-Legendre direct collocation

discretization scheme with d = 3, and N = 20. The upper graph reports the states

and input trajectories. The collocated states vk,i are reported as the dots. The lower

graphs report the sparsity pattern of the Jacobian of the equality constraints in the

resulting NLP and the sparsity pattern of the Hessian of the Lagrange function. Ob-

serve that the Hessian is block diagonal, while the Jacobian has a block-diagonal

pattern with some elements off the blocks corresponding to the continuity condi-

tions. The Jacobian of the inequality constraints is diagonal in this example, and

block-diagonal in general.

straints and variables is important in order to get structured sparsity patterns.

In this example, the variables are ordered in time as:

v0,0, . . . , v0,3, q0, . . . , vN−1,0, . . . , vN−1,3, qN−1

where vk,i ∈ R2, and the constraints are also ordered in time. The resulting

solution is illustrated in Figure 13.6, together with the sparsity patterns of the

Jacobian of the equality constraint function, and the one of the Hessian of the

Lagrange function.

The large NLP resulting from direct collocation need to be solved by struc-
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ture exploiting solvers, and due to the fact that the problem functions are typ-

ically relatively cheap to evaluate compared to the cost of the linear algebra,

nonlinear interior point methods are often the most efficient approach here. A

widespread combination is to use collocation with IPOPT using the AMPL in-

terface, or the casADi tool. It is interesting to note that, like in direct multiple

shooting, the multipliers associated to the continuity conditions are again an

approximation of the adjoint variables.

An interesting variant of orthogonal collocation methods that is often called

the pseudo-spectral optimal control method uses only one collocation inter-

val but on this interval it uses an extremely high order polynomial. State con-

straints are then typically enforced at all collocation points. Unfortunately, the

constraints Jacobian and Lagrange Hessian matrices arising from the pseudo-

spectral method are typically fairly dense and therefore more expensive to fac-

torize than the ones arising in direct collocation.

Alternative input parametrization We have discussed to far the use of a

piecewise-constant input parametrization in the context of direct methods. We

ought to stress here that, while this choice is simple and very popular, it is

also arbitrary. In fact, what qualifies direct methods is their use of a restric-

tion of the continuous (and therefore ∞-dimensional) input profile u(t) to a

space of finite dimension, which can then be described via a finite set of num-

bers and therefore treated in the computer. In principle, any description of the

continuous input u(t) as a finite-dimensional object is possible, though some

descriptions are less favorable than others. Indeed, it can e.g. be counterpro-

ductive to adopt an input discritization that destroys or degrades the sparsity

patterns arising in the linear algebra of the various direct methods presented

above. For this reason, it is typically preferable to adopt input discretizations

that are “local” in time. Indeed, the sparsity patterns specific to the structure

arising both in multiple-shooting and direct collocation hinge on the division

of the overall time interval [t0, tN] into the subintervals [tk, tk+1], and the fact

that the variables specific to one interval k, e.g. vk, qk in the direct collocation

method have an impact only on the neighboring intervals (k − 1 and k + 1) via

the continuity conditions. It would then be unwise to destroy this feature by

using a discretization of the continuous input u(t) where the input parameters

q influence the input profile globally (i.e. at e.g. all time instants) such that an

input parameter qk would influence all intervals. This observation rules out the

use of “global” input parametrizations such as e.g. parametrizing the inputs via

a finite Fourier series or a polynomial basis over the whole interval [t0, tN].

In the context of direct collocation, a fairly natural refinement of the contin-

uous input parametrization consists in providing as many degrees of freedom
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as the discretization of the optimal control problem allows. More specifically,

one can readily observe that the standard piecewise input parametrization is

enforced by construction of the collocation equations (13.4), where a single

input value qk is used on each collocation interval [tk, tk+1]. More degrees of

freedom in the discretized input can, however, be readily added by allowing

a different input qk,i at every collocation time point tk,i, for i = 1, . . . , d. The

collocation equations for each interval k = 0, . . . ,N − 1 then read as:

ck (vk, sk, qk) =





vk,0 − sk

ṗk

(

tk,i, vk

) − f (vk,i, tk,i, qk,i)
...

ṗk

(

tk,d, vk

) − f (vk,d, tk,d, qk,d)





= 0. (13.6)

and the NLP receives the decision variables

w =
{

v0,0, v0,1, q0,1, . . . v0,d, q0,d, v1,0, v1,1, q1,1, . . . , v1,d, q1,d, . . .
}

.

It is important to observe here that the input is parametrized as qk,i with

k = 0, . . . ,N − 1 and i = 1, . . . , d, i.e. no degree of freedom qk,0 ought to be

attributed to the discrete input on the first collocation times tk,0, as only the

continuity of the state trajectory is enforced on that collocation time.

13.4 A Classification of Direct Optimal Control Methods

It is an interesting exercise to try to classify Newton type optimal control al-

gorithms, where we follow the presentation given in [37]. Let us have a look

at how nonlinear optimal control algorithms perform their major algorithmic

components, each of which comes in several variants:

(a) Treatment of Inequalities: Nonlinear IP vs. SQP.

(b) Nonlinear Iterations: Simultaneous vs. Sequential.

(c) Derivative Computations: Full vs. Reduced.

(d) Linear Algebra: Banded vs. Condensing.

In the last two of these categories, we observe that the first variants each ex-

ploit the specific structures of the simultaneous approach, while the second

variant reduces the variable space to the one of the sequential approach. Note

that reduced derivatives imply condensed linear algebra, so the combination

[Reduced,Banded] is excluded. In the first category, we might sometimes dis-

tinguish two variants of SQP methods, depending on how they solve their un-

derlying QP problems, via active set QP solvers (SQP-AS) or via interior point

methods (SQP-IP).
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Based on these four categories, each with two alternatives, and one com-

bination excluded, we obtain 12 possible combinations. In these categories,

the classical single shooting method [79] could be classified as [SQP, Sequen-

tial, Reduced] or as [SQP, Sequential, Full, Condensing] because some vari-

ants compute directly the reduced derivatives R̄u in (??), while others compute

first the stagewise derivative matrices Ai and Bi and condense then. Tenny’s

feasibility perturbed SQP method [85] could be classified as [SQP, Sequen-

tial, Full, Banded], and Bock’s multiple shooting [23] as well as the classical

reduced SQP collocation methods [87, 16, 15] as [SQP, Simultaneous, Full,

Condensing]. The band structure exploiting SQP variants from Steinbach [84]

and Franke [45] are classified as [SQP-IP, Simultaneous, Full, Banded], while

the widely used interior point direct collocation method in conjunction with

IPOPT by Biegler and Wächter [90] as [IP, Simultaneous, Full, Banded]. The

reduced Gauss-Newton method of Schlöder [82] would here be classified as

[SQP, Simultaneous, Reduced].

13.5 Direct Methods for Singular Optimal Control Problems

In this section, we want to discuss the implications of solving a singular OCP,

as introduced in Section 12 using classical techniques from numerical optimal

control. We will focus here on the classic choice of a piecewise constant input

parametrization using a uniform, fixed time grid.

For the sake of simplicity, we will consider OCP having a scalar input u ∈ R
with only input bounds:

minimize
x(·), u(·)

φ(x(tf)) +

∫ tf

t0

L (x (t) , u (t)) dt

subject to ẋ = f (x, u) , x (t0) = x0,

umin ≤ u ≤ umax.

We will moreover consider dynamics that are affine in the input u:

ẋ = ϕ (x) + g (x) u (13.7)

and a Lagrange term L that is either affine in input u. The Hamiltonian function

reads as

H (x, λ, u) = L (x, u) + λ⊤ f (x, u) .
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The PMP equations then read as:

u⋆ (x, λ) = argmin
umin≤u≤umax

L (x, u) + λ⊤ f (x, u)

ẋ = f
(

x, u⋆
)

, x(t0) = x0,

λ̇ = −∇xH
(

x, u⋆, λ
)

, λ(tf) = ∇xφ (x (tf)) .

In particular, if L is a function of x only, Hu (x, u, λ) = λ⊤g (x) such that the

input profile reads as:

u⋆(x, λ) =






umax if λ⊤g (x) < 0

umin if λ⊤g (x) > 0

using (x, λ) if λ⊤g (x) = 0

. (13.8)

As detailed in Section 12.2, the input using (x, λ) is obtained via the time deriva-

tives of Hu. For the simple case of a scalar input, it is interesting to note that

for systems of the form (13.7), the time derivatives of Hu, up to where the de-

pendence on the control input appears, are provided by the Lie derivatives over

the vector fields f , g, i.e.,

dk

dtk
Hu = λ

⊤
L

k
f g, k < 2σ

d2σ

dt2σ
Hu = λ

⊤
L

2σ
f g + λ⊤

[

g,L2σ−1
f g

]

u,

where σ is the degree of singularity of the OCP, and the Lie derivative operator

L is defined in terms of the Lie bracket [·, ·], i.e. L f g =
[

f , g
]

. Here Lk stands

for k applications of the Lie derivative operator on itself. The input u appearing

at the differentiation 2σ can then be construed as a lack of commutativity of

the vector field g with the kth-order Lie derivative of the vector fields f , g. The

singular input using is provided by:

using (x, λ) = −
λ⊤Lk

f
g

λ⊤Lk
gg
.

An interesting special case occurs when 2σ + 1 equates the number of states

present in the dynamics, then:
[

Hu
d
dt

Hu ... d2σ

dt2σ Hu

]

= λ⊤
[

g L f g ... L
(2σ)

f
g +

[

g,L2σ
f

g
]

u
]

= 0

uniquely defines the singular input using via the condition:

det
([

g L f g ... L
(2σ)

f
g +

[

g,L2σ−1
f

g
]

using

])

= 0.

The singular input then becomes a function of the states only, i.e. using =

using (x), and therefore becomes a pure feedback law. We turn next to analysing
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the impact of using a piecewise-constant parametrization of the input profile

u(.).

13.5.1 Oscillations in singular optimal control solutions

It is important to observe here that the restriction of the input profile to a

piecewise-constant input parametrization with a fixed time grid generally pre-

vents the input profile from accurately capturing the switching times occur-

ring in the optimal input profile u⋆(.) given by (13.8). The optimal piecewise-

constant input profile will then compensate for not switching at the exact time

instant by ”oscillating” around the singular arc. This phenomenon is arguably

best explained in the light of the fundamental Lemma of the Calculus of Vari-

ations introduced in Section 12.5. For a piecewise-constant input parametriza-

tion, it states that the piecewise-constant optimal input profile

u⋆(t) = u⋆k ∀t ∈ [tk, tk+1]

satisfies:

∫ tk+1

tk

Hu

(

x⋆(t), λ⋆(t)
)

dt = 0, ∀ k such that umin < u⋆k < umax. (13.9)

For singular problems, Hu is ”controlled” by u via H
(2σ)
u , i.e. a chain of 2σ in-

tegrators. The optimal input u⋆
k

, when it is not in its bounds, is then determined

by the initial conditions of this chain at tk, i.e. by

Hu

(

x⋆(tk), λ⋆(tk)
)

, . . . , H(2σ−1)
u

(

x⋆(tk), λ⋆(tk)
)

.

via condition (13.9). Let us then define:

v̇ =





Hu

H
(1)
u

...

H
(2σ)
u





= Av + BH(2σ)
u (x, λ, u)

where

A =





0 1 0 ... 0

0 0 1 ... 0
...

0 0 ... 0 1

0 0 ... 0 0





, B =





0

0
...

0

1





.
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Whenever umin < u⋆
k
< umax, the discrete optimal control input u⋆

k
on [tk, tk+1]

then enforces:
∫ tk+1

tk

Hu (x, λ) dτ = C (v (tk+1) − v (tk)) = 0 (13.10)

where C =
[

1 ... 0 0
]

. We have that:

v (tk+1) = eA(tk+1−tk)v(tk) +

∫ tk+1

tk

eA(tk+1−τ)BH(2σ)
u (x, λ, u) dτ

such that:

C (v (tk+1) − v (tk)) = C
(

eA(tk+1−tk) − I
)

v(tk) (13.11)

+

∫ tk+1

tk

CeA(tk+1−τ)BH(2σ)
u (x, λ, u) dτ = 0.

Let us consider for the sake of simplicity that H
(2σ)
u = u⋆

k
. In this special case,

(13.11) defines the piecewise-constant optimal input in terms of a constant

linear feedback law:

u⋆k = −Kv (tk)

such that the discrete dynamics of v is given by a constant transition matrix Φ

v (tk+1) = Φv (tk) .

It can be verified that Φ takes σ real, stable eigenvalues in [−1, 0], which de-

pend only on the degree of singularity σ of the OCP. These eigenvalues then

yield a damped ”oscillatory” trajectory for v (tk) in the direction of the corre-

sponding eigenvectors. These oscillations translate directly into corresponding

oscillations in the sequence of optimal control inputs u⋆
k

. The oscillations ob-

served in the piecewise-constant optimal input u⋆
k

when discretizing and solv-

ing a singular problem numerically is therefore not a numerical artefact, but

a fundamental property of the piecewise-constant input parametrization of the

input profile.

We illustrate these observations in the following example.

Example 13.4. Consider the linear-quadratic singular optimal control prob-

lem:

minimize
x (.) , u (.)

1

2

∫ 1

0

x2
1 dt

subject to ẋ =

[

0 1

0 0

]

x +

[

0

1

]

u, x (0) =

[

0

1

]

,

− 5 ≤ u ≤ 5.

(13.12)
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It can be verified that

Hu = λ2,
d

dt
Hu = −λ1,

d2

dt2
Hu = x1,

d3

dt3
Hu = x2,

d4

dt4
Hu = u.

The optimal input profile then reads as:

u⋆ (t) =






umin if λ⋆
2

(t) > 0

umax if λ⋆
2

(t) < 0

0 if x = λ = 0

i.e. the solution is bang-bang until the states and co-states reach the zero man-

ifold. We are interested in studying the solution to problem (13.12) when

the optimal input profile u⋆(t) is approximated by a piecewise-constant pro-

file u⋆
0
, ..., u⋆

N−1
. Direct collocation was used to tackle (13.12), using Legendre

polynomials with an integration order of 10. The NLP was solved using an

interior-point method converged to machine precision.

The resulting optimal control solution u⋆
k

is reported in Fig. 13.7, together

with the continuous optimal input profile u⋆ (·). One can observe oscillations

in the piecewise-constant input after the last switching time at 0.578 s, which

is typical of singular optimal control problems. The corresponding state trajec-

tories are reported in Figure 13.8. The trajectories of v(t) for this problem are

reported in Figure 13.9, for both the continuous optimal input profile u⋆(·) and

its piecewise-constant input parametrization u⋆
k

. One can observe in the upper-

left graph that the optimality condition (13.9) is satisfied by the solution u⋆
k

,

which requires an oscillation in v(tk). Indeed, the stable eigenvalues of matrix

Φ for problem (13.12) read as −0.0431,−0.4306. The oscillation of v(tk) in

turn require a corresponding oscillation in u⋆
k

. These oscillations are also ob-

served in the states and co-states trajectories, which for problem (13.12) match

Hu and its time derivatives.
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Figure 13.7 Optimal input profile (in grey) and piecewise-constant input profile

obtained via direct collocation (in black) for problem (13.12), where the input is

discretized as piecewise-constant over N = 100 uniform time intervals. The verti-

cal dotted lines report the optimal switching times between u = umin, u = umax and

u = 0. The ”oscillation” of the optimal piecewise-constant input is symptomatic

of singular problems when the discretization of the input profile does not allow

for capturing arbitrary switching times.
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Figure 13.8 Optimal state trajectories for problem (13.12). Even though the opti-

mal input obtained from direct collocation is significantly different from the opti-

mal one, the respective resulting state trajectories are indistinguishable.
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Figure 13.9
∫

Hudτ and its time derivatives in the time interval [0.5725, 0.63].

The ”oscillations” in the input profile obtained from direct collocation can be eas-

ily understood in the light of condition (13.10). The piecewise-constant optimal

inputs u⋆
k

enforce
∫ tk+1

tk
Hudτ for all k where the input bounds are not active (see

upper-left graph), which yield damped oscillations in H
(k)
u

(
x⋆ (tk) , λ⋆ (tk)

)
.
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Exercises

13.1 Let’s regard again the OCP defined in Exercises 12.3 and 8.7:

minimize
x, u

∫ ⊤

0

x1(t)2 + x2(t)2 + u(t)2 dt

subject to ẋ1 = (1 − x2
2) x1 − x2 + u, x1(0) = 0,

ẋ2 = x1, x2(0) = 1,

−1 ≤ u(t) ≤ 1,

(13.13)

where T = 10 as earlier.

(a) Implement a RK4 integrator for the system dynamics.

(b) Use the integrator to create a function x(x0, u, T ) that simulates the

system in a time interval T , and where x0 is the initial state and u a

set of piecewise constant controls defined in a time grid with constant

step size ∆t.

(c) Use the previous function to solve the OCP using single shooting and

N = 101. Approximate the cost function using the trapezoidal rule

between the nodes where u is defined. Use fmincon from MATLAB

to solve the NLP.

(d) Modify the script to solve the same problem using direct multiple

shooting. The control parametrization and the definition of the inte-

grator can remain the same.

(e) How did the change from direct single shooting to direct multiple

shooting influence the following features?

• The number of iterations.

• The number of nonzeros in the Jacobian of the constraints.

• The number of nonzeros in the Hessian of the Lagrangian.

• The total solution time.

13.2 In the previous problem, we solved the NLP using f mincon. In the fol-

lowing, we will write our own simple SQP code to solve (13.13). As a

quick reminder, SQP employs a sequence of quadratic approximations

to solve the NLP and solves these with a QP solver. For an NLP of the
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form:

minimize
x

f (x)

subject to xlb ≤ x,

xub ≥ x,

g(x) = 0,

these quadratic approximations take the form:

minimize
∆x

1

2
∆x⊤ ∇2

xL(x(k), λ(k))∆x + ∇x f (x(k))⊤ ∆x

subject to xlb − x(k) ≤ ∆x,

xub − x(k) ≥ ∆x,

g(x(k)) +
∂g

∂x
(x(k))∆x = 0.

(13.14)

where (x(k), λ(k)) is a guess of the primal-dual solution to (13.14) and

L(x, λ) = f (x)+λ⊤ g(x) is the Lagrangian. The solution of this QP gives

the step in ∆x and a new approximation of the multipliers λ.

(a) For problems with a quadratic objective function f (x) = 1
2
‖F(x)‖2

2
,

like the NLPs arrising from both direct single shooting and direct

multiple shooting transcription of (13.13), a popular variant is to use

a Gauss-Newton approximation of the Hessian of the Lagrangian:

∇2
xL

(

x(k), λ(k)
)

≈ ∂F

∂x

(

x(k)
)⊤ ∂F

∂x

(

x(k)
)

and ∇x f (x) = ∂F
∂x

(

x(k)
)⊤

F
(

x(k)
)

.

What are the main advantages and disadvantages of such an approxi-

mation?

(b) Implement a Gauss-Newton method to solve the problem. Use algo-

rithmic differentiation or finite differences to calculate ∂F
∂x

and
∂g

∂x
and

solve the QP subproblem using the quadprog tool from MATLAB.

13.3 Jebediah Kerman is an astronaut that has gone for an aerospace walk

and lost track of time. He can’t remember when atmospheric re-entry is

scheduled, but he believes it is very soon. He needs to get back to his

spaceship as quickly as possible. He has mass 30kg including space suit

but not including fuel. He is currently carrying 10kg of fuel. He is 50m

away from his ship, with zero relative velocity. He wants to return to
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the ship as quickly as possible (to have equal position and zero relative

velocity), while still conserving 4kg of fuel for emergencies.

Jebediah ca be modeled as having three states: position p, velocity v,

and fuel mass mF . Moreover, the space suit has a rocket booster (control

u) which can fire forwards or reverse. As a result, the equation of motion

of his body are:

d

dt





p

v

mF





=





v

u/ (30 + mF)

−u2





(13.15)

(a) Write down the continuous time optimal control problem with a min-

imum time objective T .

(b) Discretize this problem using direct multiple shooting, and write down

the NLP. Use the shooting function xk+1 = frk4(xk, uk,∆t) with ∆t = T
N

being an optimization variable, so your vector of optimization vari-

ables is y = [x0, u0, . . . , uN−1, xN ,∆t]⊤.

(c) Using an RK4 integrator, implement this NLP with fmincon and

solve it. Use N = 40 as the number of control intervals and think

of a proper initialization. Plot p, v, mF , and u versus time.

(d) Make a sketch of the Hessian of the Lagrange function. You will see

that the Hessian is sparse but not block diagonal. Can you find a prob-

lem reformulation with a block diagonal Hessian? Make a sketch of

the new Hessian.

Hint: Introduce multiple copies of you timestep ∆t and make it a

pseudo state.

13.4 CasADi Exercise: Consider the following continuous-time infinite di-

mensional problem:

minimize
x, u

∫ T

0

x(t)2 + u(t)2 dt

subject to ẋ = (1 + x) x + u,

|u(t)| ≤ 0.075,

x(0) = x̄0,

x(T ) = 0,

where u ∈ R is the control input and x ∈ R is the state of the system,

T = 3 and x̄0 = 0.05. The above formulation can be discretized by
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integrating the dynamics of the system over a fixed grid with N+1 nodes

leading to the finite-dimensional discrete-time problem

minimize
x0,··· ,xN

u0,··· ,uN−1

h

N−1∑

i=0

(x2
i + u2

i ) + x2
N

subject to xi+1 = f (xi, ui), i = 0, · · · ,N − 1,

|ui| ≤ 0.075, i = 0, · · · ,N − 1,

x0 = x̄0,

xN = 0

where f describes the discretized dynamics obtained using an integra-

tion scheme, h := T
N

, xi and ui refer to the evaluation of state and control

trajectories respectively. Furthermore, we can transform the above dis-

crete OCP into the single shooting scheme as:

minimize
u

Φ(u)

subject to |ui| ≤ 0.075, i = 0, · · · ,N − 1,

xN(u) = 0

where Φ(u) := h(x̄2
0
+ u2

0
+ f (x̄0, u0)2 + u2

1
+ · · · ).

(a) Implement a CasADi Function f that takes as argument the states x

and input u and returns the ODE right-hand-side ẋ.

(b) Divide the time horizon into N = 30 equidistant control intervals,

then use the RK4 scheme to define the discrete-time dynamics as a

CasADi function. This function should take x(ti) and ui as inputs and

return x(ti+1). The key lines of the integrator implementation could

look like this:

out = f({X,U});

k1 = out{1};

% ...

X = X + h/6*(k1 + 2*k2 + 2*k3 + k4);

(c) Formulate the direct single shooting NLP and solve it with IPOPT.

Note that the NLP should have N degrees of freedom, so start by

defining a variable u ∈ RN :

u = SX.sym(’u’,N);

The key lines of the NLP formulation could look like this:
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X = X0;

for i = 1:N

out = F({X,v(i)});

X = out{1};

J = J + X(1)ˆ2 + u(i)ˆ2;

end

(d) Modify the script to so that it implements the direct multiple shooting

method. The control parametrization and the definition of the integra-

tor can remain the same. Tip: Start by replacing the line:

nv = N

with

nv = 1*N + 2*(N+1)

Make sure that you get the same solution.

(e) Compare the IPOPT output for both scripts. How did the change from

direct single shooting to direct multiple shooting influence:

• The number of iterations

• The number of nonzeros in the Jacobian of the constraints

• The number of nonzeros in the Hessian of the Lagrangian

• The total solution time

(f) Introduce the additional path constraints xi ≥ 0.05, i = 15, · · · , 17.

Change your scripts to solve the modified problem.

(g) Replace the dynamics in the NLP from the previous task with their

linearization at the origin x0 = 0. Compute the optimal solution and

apply it to the original system. Are the path constraints satisfied? Is

there a neighborhood of the origin where this linearized optimal con-

trol problem will provide a feasible solution?

13.5 CasADi Exercise: Consider the following simple OCP for controlling a

Van-der-Pol oscillator:

minimize
x, u

∫ T

0

x1(t)2 + x2(t)2 + u(t)2 dt

subject to ẋ1 = (1 − x2
2) x1 − x2 + u, x1(0) = 0,

ẋ2 = x1, x2(0) = 1,

− 1 ≤ u(t) ≤ 1

where T = 10.
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(a) Implement a CasADi Function f : R2 × R → R2 × R that takes the

states x and input u and returns the ODE right-hand-side ẋ and the

Lagrange objective term L.

(b) Divide the time horizon into N = 20 equidistant intervals, [tk, tk+1],

k = 0, . . . ,N − 1 and assume a constant control uk on each interval.

Then take M = 4 steps with a RK4 scheme to define the discrete-

time dynamics as a Function F : R2 × R → R2 × R. F should take

x(tk) and uk and return x(tk+1) and Jk =
∫ tk+1

tk
L(x, uk), the contribution

to the objective from interval k. Evaluate the integrator with x(tk) =

[0.2, 0.3] and uk = 0.4.

(c) Formulate the direct single shooting NLP and solve it with IPOPT.

Construct the NLP variables step-by-step starting with empty list:

w = []

lbw = []

ubw = []

Plot the results.

(d) Modify the script to so that it implements the direct multiple shooting

method. The control parametrization and the definition of the integra-

tor should remain the same. Introduce NLP variables corresponding

to the state for all discrete time points, including k = 0.

(e) Compare the IPOPT output for both scripts. How did the change from

direct single shooting to direct multiple shooting influence:

• The number of iterations

• The number of nonzeros in the Jacobian of the constraints

• The number of nonzeros in the Hessian of the Lagrangian

(f) Introduce the additional constraint x1(t) ≥ −0.25. You only need to

enforce this path constraint at the end of each control interval. Mod-

ify your scripts to solve the modified problem with direct multiple

shooting (easy) and direct single shooting (more tricky).

13.6 CasADi Exercise: Collocation, in its most basic sense, refers to a way of

solving initial-value problems by approximating the state trajectory with

piecewise polynomials. For each step of the integrator, corresponding

to an interval of time, we choose the coefficients of these polynomials

to ensure that the ODE becomes exactly satisfied at a given set of time

points. The time points, in turn, are chosen to get the highest possible

acuracy and, possibly, to make sure that the dynamics be satisfied at

the beginning and/or end of the time interval. In the following, we will
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choose the Legendre points of order d = 3:

τ = [0, 0.112702, 0.500000, 0.887298] (13.16)

where we have assumed that the time interval is [0, 1].

Using these time points, we define a Lagrangian polynomial basis for

our polynomials:

L j(τ) =

d∏

r=0, r, j

τ − τr

τ j − τr

(13.17)

Introducing a uniform time grid tk = k h, k = 0, . . . ,N with the corre-

sponding state values xk := x(tk), we can approximate the state trajectory

approximation inside each interval [xk, xk+1] as a linear combination of

these basis functions:

x̃k(t) =

d∑

r=0

Lr

(
t − tk

h

)

xk,r (13.18)

By differentiation, we get an approximation of the time derivative at

each collocation point:

˜̇xk(tk, j) =
1

h

d∑

r=0

L̇r(τ j) xk,r :=
1

h

d∑

r=0

Cr, j xk,r (13.19)

We can also get an expression for the state at the end of the interval:

x̃k+1,0 =

d∑

r=0

Lr(1) xk,r :=

d∑

r=0

Dr xk,r (13.20)

We can also integrate our approximation over the interval, giving a

formula for quadratures:

∫ tk+1

tk

x̃k(t) dt = h

d∑

r=0

∫ 1

0

Lr(t) dt xk,r := h

d∑

r=1

Br xk,r (13.21)

(a) Download collocation.m (MATLAB) or collocation.py (Python)

from the course website containing an implementation of the above

collocation scheme. Go through the code and make sure you under-

stand it well. Use the code to to reproduce the result from the second

task of Exercise 13.5.

(b) Replace the RK4 integrator in the direct multiple shooting implemen-

tation from Exercise 13.5 with the above collocation integrator. Make

sure that you get the same results as before.
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(c) Instead of letting the rootfinder solve the collocation equations, aug-

ment the NLP variable and constraint vectors with additional degrees

of freedom corresponding to the state at the collocation points and

let the NLP solver also solve the integration problem. For simplicity,

only consider a single collocation finite element per control interval.

Compare the solution time and number of nonzeros in the Jacobian

and Hessian matrices with the direct multiple shooting method.

(d) Form the Jacobian of the constraints and inspect the sparsity pattern

using MATLAB’s or SciPy’s spy command. Repeat the same for the

Hessian of the Lagrangian function L(x, λ) = J(x) + λT g(x).



14

Optimal Control with Differential-Algebraic

Equations

So far we have regarded optimal control problems based on model dynamics

in their simplest explicit-ODE form:

ẋ(t) = f (x(t), u(t)) .

This form of model for dynamic systems tend to arise naturally from the first-

principle modelling approaches standardly taught and used by engineers. As a

result, most continuous dynamic systems are described via explicit ODEs. It

is a common but less widespread knowledge that for a large number of appli-

cations, building a dynamic model in the form of explicit ODEs can be signif-

icantly more involved and yield dramatically more complex model equations

than via alternative model forms. Before laying down some theory, let us start

with a simple illustrative example that we will use throughout this chapter.

Consider a mass m attached to a fixed point via a rigid link of length L for

which one wants to develop a dynamic model. A classic modelling approach is

to describe the mass via two angles (azimuth and elevation of the mass), which

yields an explicit ODE. The alternative model construction we will consider

here describes the system via the cartesian coordinates p ∈ R3 of the mass in a

fixed, inertial reference frame E positioned at the attachment point of the mass,

see Figure 14.1. The rod maintains the mass at a distance L of its attachment

point by applying a force on the mass along its axis, i.e. having the support

vector p. We will then describe the force of the rod as Frod = −zp, where z ∈ R
is a variable that adjusts the force magnitude to maintain the mass on a sphere

of radius L, i.e. such that the condition p⊤p − L2 = 0 holds at all time. The

model of the system can then takes a very simple form:

mp̈ = u − zp + mgE3,
1

2

(

p⊤p − L2
)

= 0. (14.1)

where E⊤
3
=

[

0 0 1
]

. One can readily observe here that the model equation

260



14.1 What are DAEs ? 261

E2

E1

E3

p

−zp

L

−mgE3

Figure 14.1 Illustration of the example considered in this chapter. The system is

described via the cartesian position of the mass p ∈ R3 in the fixed frame E. The

mass is subject to the gravity force −mgE3 and to a force −zp from the rod, which

ensures that the mass remains at a distance L from its attachment point. Here the

scalar z is a variable in the dynamics that scales this force adequately.

(14.1) is not a simple explicit ODE. Indeed, while the scalar variable z is in-

trinsically part of the model, its time derivative does not appear in the model

equation. Hence, variable z is of a different nature than variable p. A variable

that is intrinsic to the model equation (i.e. excluding possibly time-varying pa-

rameters and inputs) but that is not time differentiated in the model equation

is labelled an algebraic state. A differential equation holding such variables is

called a Differential Algebraic Equation (DAE).

Following up on this example, we will now provide a more formal view on

the concept of Differential-Algebraic Equations.

14.1 What are DAEs ?

Let us consider a differential equation in a very generic form:

f (ẋ(t), x(t), u(t)) = 0. (14.2)
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Such a differential equation is labelled implicit as the state derivative ẋ(t) is not

provided via an explicit function of the state x(t) and input u(t), but implicitly

as the solution of (14.2). The Implicit Function Theorem guarantees that ẋ(t)

can be seen as a locally unique and continuously differentiable function of x(t)

and u(t) if the Jacobian of f with respect to ẋ(t), i.e.
∂ f

∂ẋ
, is full rank. Under

this condition, one is guaranteed that for a given state x(t) and input u(t), the

state time derivative ẋ(t) can be computed, either explicitly or numerically e.g.

via a Newton iteration. Then (14.2) is an Ordinary Differential Equation, since

ẋ(t) can be computed at every time instant, and the model can in principle be

treated as a classic explicit ODE.

Formally, Differential-Algebraic Equations are equations in the form (14.2)

for which the above rank condition fails. Let us formalise that in the following

definition.

Definition 14.1. f (ẋ(t), x(t), u(t)) = 0 is a DAE if
∂ f

∂ẋ
is rank deficient.

It is admittedly not straightforward to relate Definition 14.1 to the earlier ex-

ample (14.1). Before making this relationship clear, let us illustrate Definition

14.1 on a simple example.

Example 14.2. Let us consider the following implicit differential equation,

having the form (14.2):

f (ẋ, x, u) =

[

x1 − ẋ1 + 1

ẋ1 x2 + 2u

]

= 0, (14.3)

then the Jacobian of f with respect to the state derivatives ẋ reads as:

∂ f

∂ẋ
=

[

−1 0

x2 0

]

,

and is rank-deficient, entailing that (14.3) is, by Definition 14.1, a DAE.

Alternatively, one can also simply observe that ẋ2 does not appear time-

differentiated in (14.3), such that one can assess by simple inspection that it

is a DAE. In order to gain some further intuition in this example, consider

solving the first equation in (14.3) for ẋ1, giving

ẋ1 = x1 + 1

Upon inserting the expression for ẋ1 in the second equation, one can then write

(14.3) as

ẋ1 = x1 + 1,

0 = (x1 + 1) x2 + 2.
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We observe here that the second equation is in fact purely algebraic, such that

the model can be written as a mixture of an explicit differential equation and of

an algebraic equation. This form of DAE is actually the most commonly used

in practice. It is referred to as a semi-explicit DAE.

The above example can mislead one to believe that DAEs are fairly simple

objects. To dispel that impression, let us provide a simple example of a DAE

that possess fairly exotic properties.

Example 14.3. Let us consider the following differential equation

ẋ1 + x1 − u = 0,

(x1 − x2) ẋ2 + x1 − x2 = 0,

having the Jacobian

∂ f

∂ẋ
=

[

1 0

0 x1 − x2

]

which is rank-deficient for x1 = x2. Hence for the initial conditions:

x1(0) = x2(0)

our equation is a DAE and its solution obeys:

ẋ1 = u − x1

0 = x2 − x1,

otherwise it is an ODE. The fact that some differential equation can switch

between being DAEs and ODEs betrays the fact that DAEs are not necessarily

simple to handle and analyse. However, in the context of numerical optimal

control, simple DAEs are typically favoured.

As observed before, DAEs often simply arise from the fact that some states

in the state vector x do not appear time-differentiated in the model equations,

yielding a column of zeros in the Jacobian
∂ f

∂ẋ
, as e.g. in example (14.2). In such

a case, it is very useful to make an explicit distinction in the implicit differential

equation (14.2) between the differential variables, i.e. the variables whose time

derivative appear in f , typically labelled x, and the algebraic variables, i.e. the

variables whose time derivative do not appear in f , typically labelled z. One

can then rewrite (14.2) as:

f (ẋ, z, x, u) = 0. (14.4)

A DAE in the form (14.4) is called a fully-implicit DAE. The application of
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definition 14.1 to (14.4) must then be understood in the sense that

det
(

∂ f

∂ẋ

∂ f

∂ż

)

= det
(

∂ f

∂ẋ
0

)

= 0 (14.5)

is always rank deficient. The differential equation (14.4) is therefore always a

DAE.

As mentioned in example 14.2, a common form of DAE often used in prac-

tice is the so-called semi-explicit form. It consists in explicitly splitting the

DAE between an explicit differential equation and an implicit algebraic one. It

reads as:

ẋ = f (x, z, u) ,

0 = g (x, z, u) .

The semi-explicit form is the most commonly used form of DAEs in optimal

control. We turn next to a very important notion in the world of Differential-

Algebraic Equations, both in theory and in practice.

14.2 Differential Index of DAEs

Before introducing the notion of differential index for DAE, it will be useful

to take a brief and early tour into the problem of solving DAEs. Consider the

semi-explicit DAE:

ẋ = f (x, z, u) , (14.6a)

0 = g (x, z, u) , (14.6b)

and suppose that one can construct (possibly via a numerical algorithm such

as a Newton iteration) a function ξ (x, u) such that:

g (x, ξ (x, u) , u) = 0, ∀x, u.

That is, function ξ (x, u) delivers the algebraic state z for any differential state

x and input u. One can then proceed with eliminating the algebraic state z in

(14.6), such that the DAE reads as:

ẋ = f (x, ξ (x, u) , u) , (14.7a)

z = ξ (x, u) . (14.7b)

One can observe that (14.7a) is then an explicit ODE, and can therefore be

handled via any classical numerical integration method. Moreover, (14.7b) pro-

vides the algebraic states explicitly. When such an elimination of the algebraic

states is possible, one can consider the DAE (14.6) as ”easy” to solve. It is then
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natural to ask when such an elimination is possible. The Implicit Function The-

orem (IFT) provides here a straightforward answer, namely the function ξ (x, u)

exists (locally) if the Jacobian

∂

∂z
g (x, z, u) (14.8)

is full rank along the trajectories x, u, z of the system. The full-rankness of the

Jacobian (14.8) additionally guarantees that the Newton iteration:

z← z − ∂g (x, z, u)

∂z

−1

g (x, z, u) (14.9)

converges locally to the solution z of (14.6b). In that sense, (14.9) can be seen

as a numerical procedure for constructing the implicit function ξ (x, u).

These notions easily extend to fully-implicit DAEs in the distinct form (14.4).

More specifically, suppose that there exists two functions ξẋ (x, u) and ξz (x, u)

that satisfy the fully implicit DAE (14.4), i.e.

f (ξẋ (x, u) , ξz (x, u) , x, u) = 0, ∀ x, u.

Then one can rewrite (14.4) as:

ẋ = ξẋ (x, u) (14.10a)

z = ξz (x, u) . (14.10b)

Similarly to (14.7), one can treat (14.10a) as a simple ODE, while (14.10b)

delivers the algebraic states z explicitly. The existence of functions ξẋ (x, u)

and ξz (x, u) can then again be guaranteed by invoking the IFT, namely if for

(14.4) the Jacobian matrix
[
∂ f

∂ẋ

∂ f

∂z

]

(14.11)

is full rank, then functions ξẋ (x, u) and ξz (x, u) exist locally. The attentive

reader will want to observe the important distinction between (14.5) which

always hold for (14.4), and (14.11) whose full-rankness guarantees the local

existence of the implicit functions ξẋ (x, u) and ξz (x, u).

Let us consider two examples to illustrate these notions.

Example 14.4. Consider again the fully-implicit DAE of Example 14.2, i.e.:

f (ẋ, z, x, u) =

[

x − ẋ + 1

ẋz + 2

]

= 0.

We observe that
[
∂ f

∂ẋ

∂ f

∂z

]

=

[

−1 0

z ẋ

]
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is full rank whenever ẋ , 0, such that the implicit functions ξẋ (x, u) and

ξz (x, u) are guaranteed to exist when ẋ , 0. In this simple case, they can

actually be computed explicitly. Indeed, we observe that:

ẋ = ξẋ (x, u) = x + 1, z = ξz (x, u) = − 2

x + 1

solve f (ẋ, z, x, u) whenever ẋ = x + 1 , 0.

This simple example needs to be pitted against a more problematic one.

Example 14.5. Consider the fully-implicit DAE:

f (ẋ, z, x, u) =





ẋ1 − z

ẋ2 − x1

x2 − u





= 0.

We observe that:

[
∂ f

∂ẋ

∂ f

∂z

]

=





1 0 −1

0 1 0

0 0 0





is always rank-deficient, such that the differential state ẋ and algebraic state z

cannot be uniquely obtained (even numerically) from solving f (ẋ, z, x, u) = 0

alone.

The topic of this section is the notion of differential index of DAEs. As we

will see next, the loose idea of ”easy” DAEs presented above is directly related

to it. Let us introduce now the notion of differential index for DAEs.

Definition 14.6. The differential index of a DAE is the number of times it must

be time-differentiated before an explicit ODE is obtained.

For the specific case of a semi-explicit DAE, the above definition also reads

as follows.

Definition 14.7. The differential index of the semi-explicit DAE (14.6) is the

number of times its algebraic part (14.6b) must be time-differentiated before

an explicit ODE is obtained.

In order to clarify these definitions, let us make a simple example.

Example 14.8. Let us calculate the differential index of the DAE proposed in

Example 14.2, i.e.:

f (ẋ, z, x) =

[

x − ẋ + 1

ẋz + 2

]

= 0.
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We then consider the time derivative of f , i.e.:

ḟ (ẍ, ẋ, x, ż, z) =

[

ẋ − ẍ

ẍz + ẋż

]

= 0. (14.12)

For the sake of clarity, we label v =





x

z

ẋ





and rewrite (14.12) in the equivalent

form:

ζ (v̇, v) =





v̇1 − v3

v3 − v̇3

v̇3v2 + v3v̇2





= 0.

The Jacobian

∂ζ̇ (v̇, v)

∂v̇
=





1 0 0

0 0 −1

0 v3 v2





is then full rank, such that ζ is an ODE for v according to Definition 14.1. Since

a single time-differentiation has converted the original DAE of this example

into an ODE, we can conclude that the original DAE is of index 1.

Let us contrast this example with a DAE having a higher differential index.

Example 14.9. Let us calculate the differential index of our illustrative exam-

ple (14.1). Using v = ṗ, and defining the differential state vector

x =

[

p

v

]

one can easily verify that the DAE (14.1) can be written as a semi-explicit

DAE:

ṗ = v, (14.13a)

v̇ = m−1u − m−1zp + gE3, (14.13b)

0 =
1

2

(

p⊤p − L2
)

︸          ︷︷          ︸

=g(x,z,u)

. (14.13c)

We observe that for a given z, (14.13a)-(14.13b) are already ODEs in v and p.

As per Definition 14.7, we need to differentiate the algebraic equation (14.13c)

until (14.13) becomes an ODE. The two first time derivatives read as:

ġ (x, z, u) = p⊤v = 0, and g̈ (ẋ, x, z, u) = p⊤v̇ + v⊤v = 0
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One can then use (14.13b) in g̈ (ẋ, x, z, u) to obtain

g̈ (ẋ, x, z, u) = p⊤
(

u − m−1zp + gE3

)

+ v⊤v = 0,

As z now appears explicitly in g̈ (ẋ, x, z, u), an extra time-differentiation yields

a differential equation from which ż can be computed if p⊤p , 0. We observe

that 3 time-differentiations of (14.13c) were necessary to turn (14.13) into an

ODE. It follows that (14.13) is an index-3 DAE.

Now we ought to relate the notion of ”easy” DAEs to the notion of differ-

ential index. More specifically, we shall see next that index-1 DAEs are ”easy”

DAEs in the sense detailed previously. This observation can be formally de-

scribed in the following Lemma.

Lemma 14.10. For any fully-implicit index-1 DAE

f (ẋ, z, x, u) = 0,

there exists implicit functions ξẋ (x, u) and ξz (x, u) that satisfy:

f (ξẋ (x, u) , ξz (x, u) , x, u) = 0, ∀ x, u.

Proof We observe that if f is of index 1, then a single time-differentiation:

ḟ =
∂ f

∂ẋ
ẍ +

∂ f

∂z
ż +

∂ f

∂x
ẋ +

∂ f

∂u
u̇ = 0

yields a pure ODE. For the sake of clarity, we label v =

[

ẋ

z

]

and write:

ḟ =
[
∂ f

∂ẋ

∂ f

∂z

]

v̇ +
∂ f

∂x
ẋ +

∂ f

∂u
u̇ = 0. (14.14)

By assumption, (14.14) can be written as an explicit ODE, hence
[
∂ f

∂ẋ

∂ f

∂z

]

must be full rank, such that:

v̇ = −
[
∂ f

∂ẋ

∂ f

∂z

]−1
(

∂ f

∂x
ẋ +

∂ f

∂u
u̇

)

holds on the DAE trajectories. The IFT then guarantees the existence of the

implicit functions ξẋ (x, u) and ξz (x, u) in a neighborhood of the trajectories of

the DAE. �

A similar result can clearly be established for any index-1 semi-explicit

DAEs on the existence of an implicit function ξz (x, u) that solves the algebraic

equation, i.e. such that

g (x, ξz (x, u) , u) = 0, ∀ x, u
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The crucial practical consequence of these observations is that index-1 DAEs

can be in principle solved numerically (or sometimes even explicitly) without

difficulties, as for any state and input x(t) and u(t), the state derivative ẋ(t)

and algebraic state z(t) can be computed, and the simulation of the dynamics

performed. In practice, implicit integration methods are the most efficient ap-

proach to perform the simulations of index-1 DAEs (see Section 14.4 below

for some details on this question), while DAEs of index higher than 1 require

specially-tailored integrators.

A non-trivial but important point needs to be stressed here. DAEs of index

higher than 1, often labelled high-index DAEs, present a pitfall to uninformed

users of numerical methods. Indeed, one deploying a classical implicit integra-

tion method on a high-index DAE may observe that the implicit integration

method converges reliably and be mislead into believing that simulations of

the DAE model can be reliably computed. In order to clarify this issue, let us

consider the following example, based on a linear, high-index DAE.

Example 14.11. In this example, we are interested to observe the result of

”naively” deploying a classical implicit integration scheme on a high-index

DAE. We consider again the fully-implicit DAE of Example 14.5, i.e.

f (ẋ, z, x, u) =





ẋ1 − z

ẋ2 − x1

x2 − u





. (14.15)

The reader can easily verify that (14.15) is not an index-1 DAE. We observe

that we can rewrite (14.15) in the linear form Ev̇ = Av + Bu, where

v =

[

x

z

]

, E =





1 0 0

0 1 0

0 0 0





, A =





0 0 1

1 0 0

0 −1 0





, B =





0

0

1





.

We are interested now in naively deploying an implicit Euler scheme of step

length h on this DAE, yielding the steps:

1

h
E (v+ − v (t)) = Av+ + Bu (t + h)

where v+ is an approximation of the state at time v (t + h), i.e. v+ ≈ v (t + h). It

can be verified that the true trajectories v (t + h) satisfy:

E

[

1

h
(v (t + h) − v (t)) +

h

2
ẍ(τ)

]

= Av (t + h) + Bu (t + h)

for some τ ∈ [t, t + h]. We can then consider the one-step integration error
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e+ = v+ − v (t + h) given by:

e+ =
h2

2
(E − Ah)−1 Eẍ(τ).

For DAE (14.15), matrix h2

2
(E − Ah)−1 E reads as:

h2

2
(E − Ah)−1 E =

1

2





0 h 0

0 0 0

h 1 0





,

such that the integration error is of order O (1), i.e. much worse than the inte-

gration error expected from the implicit Euler method, which is of order O
(

h2
)

.

This simple example reveals that, even though a classic implicit integration

scheme deployed on high-index DAEs (14.15) can in some cases reliably de-

liver state trajectories, their lousy numerical accuracy typically makes them ac-

tually meaningless as simulations of the DAE model. The difficulty with DAE

(14.15) stems from its index larger than 1. These observations must be taken as

a warning that while one can sometimes deploy a classical implicit integration

scheme on a high-index DAE without observing notable numerical difficulties,

the resulting trajectories are typically nonetheless senseless. Hence, good prac-

tice in numerical optimization dictates that the index of a DAE ought to be

systematically checked before tackling it via classical integration methods.

Because index-1 DAEs are significantly easier to treat than high-index DAEs,

it is common in numerical optimal control to avoid DAEs of index larger than

1. Unfortunately, the index of a DAE stems from the nature of the physical

system it models and cannot be decided. However, a treatment of high-index

DAEs generally allows one to ultimately treat them as index-1 DAEs. We will

cover this question next.

14.3 Index reduction

As detailed in the previous Section, index-1 DAEs are simpler to treat numer-

ically than high-index DAEs, as index-1 DAEs can be approached using stan-

dard implicit integration methods. This observation motivates the deployment

of procedures for reducing the index of an arbitrary high-index DAE into an

index-1 DAE, a procedure labelled index reduction. Index-reduction proceeds

very similarly to the procedure leading to assess the index of a DAE, i.e. via

time-differentiation of the DAE (or of some parts of the DAE) until a DAE

of index 1 is obtained. In order to explain this further, let us detail it on our

illustrative example (14.1).
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Example 14.12. We consider again the semi-explicit DAE (14.13), i.e.

ṗ = v, (14.16a)

v̇ = u − m−1zp + gE3, (14.16b)

0 =
1

2

(

p⊤p − L2
)

︸          ︷︷          ︸

=g(x,z,u)

, (14.16c)

which is in a semi-explicit form. Similarly to the index evaluation presented in

Example 14.9, i.e. we consider the time-derivatives of the algebraic equation

(14.16c)

ġ (x, z, u) = p⊤v = 0, and g̈ (ẋ, x, z, u) = p⊤v̇ + v⊤v = 0

One can then easily verify that the new DAE:

ṗ = v, (14.17a)

mv̇ = u − zp + mgE3, (14.17b)

0 = p⊤v̇ + v⊤v
︸      ︷︷      ︸

=g̈(ẋ,x,z,u)

, (14.17c)

is of index 1. Alternatively, it is useful to put (14.17) in a more implicit form:

ṗ = v, (14.18a)
[

m p

p⊤ 0

] [

v̇

z

]

=

[

u + mgE3

−v⊤v

]

, (14.18b)

which shows unambiguously that the state derivatives v̇ and ṗ as well as the

algebraic state z can be computed for any state v, p and input u as long as p , 0.

This observation tells us without further investigation that (14.18) is an ”easy”

DAE, i.e. of index 1.

Index-reduction procedures can be fairly intricate to deploy on very complex

models. For the sake of completeness, let us report here a recipe proposed in

[17] for performing the index-reduction on any semi-explicit DAE:

ẋ = f (x, z, u)

0 = g (x, z, u)

(i) Check if the DAE system is index 1 (i.e.
∂g

∂z
full rank). If yes, stop.

(ii) Identify a subset of algebraic equations that can be solved for a subset of

algebraic variables.

(iii) Perform a time-differentiation on the remaining algebraic equations that

contain (some of) the differential variables x. Terms ẋ will appear in these

differentiated equations.
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(iv) Substitute the ẋ with their corresponding symbolic expressions f (x, z, u).

This generates new algebraic equations.

(v) With this new DAE system, go to step 1.

Our discussion on index reduction would not complete if we omit the ques-

tion of consistency conditions. To understand this issue, consider the index-

reduced DAE developed in Example 14.12, which takes the form:

ẋ = f (x, z, u) (14.19a)

0 = g̈ (ẋ, x, z, u) (14.19b)

One needs to observe here that while a solution to the original DAE (14.16) in

the form

ẋ = f (x, z, u) (14.20a)

0 = g (x, z, u) (14.20b)

is obviously also a solution for the index-reduced DAE (14.19), the converse

is not necessarily true, i.e. a solution of the index-reduced DAE (14.19) is not

necessarily a solution to the original DAE (14.20). To understand this state-

ment, one simply ought to imagine a trajectory that is solution of (14.19a), and

for which

g (x(t), z(t), u(t)) = g (x(0), z(0), u(0))+ tġ (x(0), z(0), u(0)) = 0 (14.21)

holds. This trajectory clearly satisfies (14.19b) but not (14.20b). Equation (14.21)

additionally reveals that the issue is not related the DAEs themselves, but rather

to the initial conditions chosen for the simulation of the DAEs. Indeed, simply

selecting the initial conditions x(0) such that

g (x(0), z(0), u(0)) = 0, and ġ (x(0), z(0), u(0)) = 0 (14.22)

ensures that the trajectories of the index-reduced DAE are solution of the orig-

inal one. More generally, enforcing

g (x(t0), z(t0), u(t0)) = 0, and ġ (x(t0), z(t0), u(t0)) (14.23)

at any time t0 on the trajectory guarantees a simulation run with the index-

reduced DAE is a valid simulation of the original DAE. Conditions that guar-

antees the validity of the simulation performed on the index-reduced DAE,

such as (14.23), are labelled consistency conditions.

In the context of optimal control based on an index-reduced DAE, consis-

tency conditions are crucial when the trajectories of the differential states of

system do not have (fully) prescribed initial or terminal values. In such a case,

the consistency conditions must be adequately enforced within the optimal
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control problem. E.g. an optimal control problem involving our index-reduced

DAE (14.18) having free initial or terminal states can e.g. be written as:

minimize
v, p, z, u

∫ T

0

L(v, p, z, u) dt

subject to ṗ = v (Differential equ.),

mv̇ = u − zp + mgE3 (Differential equ.),

0 = p⊤v̇ + v⊤v (Algebraic equ.),

0 = p(t0)⊤v(t0) (Consistency cond.),

0 = p(t0)⊤v̇(t0) + v(t0)⊤v(t0) (Consistency cond.)

(14.24)

for any t0 ∈ [0, T ].

It ought to be underlined here that imposing some constraints on the initial

and/or terminal state trajectories in conjunction with imposing the consistency

conditions must be done with great care in order to avoid generating a redun-

dant set of constraints in the OCP. As a trivial example of this difficulty, im-

posing e.g. the initial states in (14.24) in addition to the consistency conditions

with t0 = 0 would clearly over-constrain the initial state values p(0), v(0). This

issue can become significantly more involved in less obvious scenarios, such

as e.g. in periodic OCPs, where the initial and terminal states are free but must

satisfy a periodicity constraint of the form x(0) = x(T ). Handling the consis-

tency conditions and the periodicity constraints together in the OCP without

generating an over-constrained problem can then become fairly involved.

The consistency conditions can in principle be enforced at any time t0 in

the time span considered by the OCP. However, in some cases the selection of

the time t0 for imposing the consistency condition is not arbitrary. Indeed, one

ought to observe that the combination of the index-reduced algebraic constraint

and of the consistency conditions, i.e.

g̈ (x(t), z(t), u(t)) = 0 (14.25)

ġ (x(t0), z(t0), u(t0)) = 0 (14.26)

g (x(t0), z(t0), u(t0)) = 0 (14.27)

(14.28)

ensure mathematically that

g (x(t), z(t), u(t)) = g (x(t0), z(t0), u(t0)) + (t − t0)ġ (x(t0), z(t0), u(t0)) = 0

holds at any time t. However, when the DAE dynamics are handled via nu-

merical integration, numerical errors tend to accumulate over time such that
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g (x(t), z(t), u(t)) = 0 can be less accurately enforced at times that are distant

from t0. From this observation one ought to conclude that if the solution to an

OCP is e.g. more important at the beginning of the time span the OCP covers,

say [0, T ], then the consistency conditions ought to be enforced in the begin-

ning of the time span, i.e. t0 = 0. This situation occurs in Nonlinear Model

Predictive Control (NMPC), where the first control input q0 delivered by the

OCP provides the control input to be deployed on the real system, such that

the accuracy of the solution in the beginning of the time interval it covers is

the more important than later in the horizon.

Conversely, if the OCP implements a Moving Horizon Estimation (MHE)

scheme, then the differential state obtained at the very end of the time span

covered by the OCP delivers a state estimation to e.g. an NMPC scheme. In

such a case, the accuracy is most important at the very end of the time interval,

such that the consistency conditions are best imposed at t0 = T . These ideas

are detailed in [].

14.4 Direct Methods with Differential-Algebraic Equations

We will now turn to discussing the deployment of direct optimal control meth-

ods on OCPs involving DAEs. For the reasons detailed previously, we will fo-

cus on OCPs involving index-1 DAEs, possibly arising from an index-reduction

of a high-index DAE.

14.4.1 Numerical Solution of Differential-Algebraic Equations

In this Section, we will briefly discuss the numerical solution of DAEs. As

hinted above, index-1 DAEs are significantly simpler to treat numerically than

high-index ones, and are therefore often preferred in optimal control. In this

Section, we will focus in the index-1 case.

Though low-order methods generally offer a poor ratio between accuracy

and computational complexity and higher-order integrators should be preferred,

let use nonetheless start here with a simple m-step implicit Euler scheme for

the sake of illustration. For e.g. a semi-explicit DAE

ẋ = f (x, z, u) ,

0 = g (x, z, u) ,

the m-step implicit Euler scheme computes a numerical simulation x(tk+1, sk, qk)

of the model dynamics over a time interval [tk, tk+1] from the initial state sk and

the constant input qk via the following algorithm.
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Algorithm 14.13 (Implicit Euler integrator).

Input: initial value sk, input qk and times tk, tk+1

Set v = qk, and h = (tk+1 − tk)/m

for i = 0 to m − 1 do

Solve

x+ = v + h f (x+, z+, qk)

0 = g (x+, z+, qk)

for x+, z+ via a Newton iteration, set v← x+.

end for

Output: x(tk+1, sk, qk) = v

A similar approach can be deployed using any implicit integration method,

see Chapter 10, such as an IRK4 integrator.

A fairly efficient and useful type of implicit integrator already introduced in

Chapter 10 and further detailed in Section 13.3 is the orthogonal collocation

approach. Let us consider the building of the collocation equations for DAEs

in a generic implicit form

f (ẋ, x, z, u) = 0 (14.29)

on a time interval [tk, tk+1], with initial value sk and a constant input qk. The

differential states are, as in the ODE case described via polynomials p (t, vk),

with t ∈ [tk, tk+1] linearly parametrized in vk ∈ such that:

• the polynomial interpolation meets the initial value, i.e.:

p (tk, vk)
︸   ︷︷   ︸

=vk,0

= sk (14.30)

• the DAE is satisfied in the collocation times tk,i for i = 1, . . . , d, i.e.:

f ( ṗk

(

tk,i, vk

)

, pk

(

tk,i, vk

)

︸      ︷︷      ︸

=vk,i

, zk,i, qk) = 0, i = 1, . . . , d (14.31)

We can gather these requirements in the compact implicit equation:

ck (vk, zk, qk, sk) =





vk,0 − sk

f ( ṗk

(

tk,1, vk

)

, vk,1, zk,1, qk)
...

f ( ṗk

(
tk,d, vk

)
, vk,d, zk,d, qk)





= 0. (14.32)

The same observations as for the semi-explicit case hold for the general case.

One ought to observe that the discretized algebraic states zk,i appear only

for the indices i = 1, . . . , d in the collocation equations, while the discretized
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differential states vk,i appear for the indices i = 0, . . . , d. I.e. the discrete al-

gebraic states zk have one degree of freedom less that the discrete differential

states vk. The extra degree of freedom granted to the differential state is actu-

ally required in order to be able to meet the initial value sk of the differential

state trajectories, while the initial value of algebraic state trajectories cannot

be assigned as they are already defined implicitly by the DAE, subject to the

imposed state initial value sk and input qk. This observation is most obvious in

the semi-explicit case, where for a given state initial value sk and input qk, the

initial value for the algebraic state is implicitly given by g (sk, z (tk) , qk) = 0.

For the sake of completeness, let us provide the algorithm for a collocation-

based integrator for index-1 DAEs.

Algorithm 14.14 (Collocation-based integrator).

Input: initial value sk input qk, initial guess vk, zk and times tk, tk+1

Solve

ck (vk, zk, qk, sk) = 0 (14.33)

for vk, zk via a Newton iteration

Output: x(tk+1, sk, qk) = pk (tk+1, vk)

It is interesting to observe here that while the algorithm ought to receive an

initial guess for the discrete algebraic states zk, it receives an initial value sk

only for the differential state. It is also important to notice that the algebraic

states zk can in principle be entirely hidden inside the integrator (even though

they can be, of course, reported).

Sensitivities of the integrators The computation of the sensitivities of an im-

plicit integrator such as (14.14) can be done as detailed in Section 10.4. More

specifically, if we label wk =

[

vk

zk

]

, the collocation equation (14.36) in algorithm

14.14 is typically solved using a (often full-step) Newton iteration:

wk = wk −
∂ck (wk, qk, sk)

∂wk

−1

ck (wk, qk, sk) (14.34)

The sensitivities are then provided at the solution ck (wk, qk, sk) = 0 by:

∂wk

∂qk

= −∂ck (wk, qk, sk)

∂wk

−1 ∂ck (wk, qk, sk)

∂qk

, (14.35a)

∂wk

∂sk

= −∂ck (wk, qk, sk)

∂wk

−1 ∂ck (wk, qk, sk)

∂sk

. (14.35b)
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It is important to note here that a factorization of the Jacobian matrix
∂ck(wk ,qk ,sk)

∂wk

is already computed for the Newton iterations (14.34) and the last factorization

can be readily reused at the end of the iteration to form the sensitivities (14.35).

The computational complexity of obtaining the sensitivities consists then only

of the computation of the matrices
∂ck(wk ,qk ,sk)

∂sk
and

∂ck(wk ,qk ,sk)

∂qk
and the matrix

products in (14.35). A collocation-based integrator with sensitivities then reads

as:

Algorithm 14.15 (Collocation-based integrator with Sensitivities).

Input: initial value sk input qk, initial guess vk, zk and times tk, tk+1

Solve

ck (vk, zk, qk, sk) = 0 (14.36)

for vk, zk via a Newton iteration

Compute (14.35)

Form:

∂x(tk+1, sk, qk)

∂sk

=
∂pk (tk+1, vk)

∂vk

∂vk

∂wk

∂wk

∂sk

(14.37)

∂x(tk+1, sk, qk)

∂qk

=
∂pk (tk+1, vk)

∂vk

∂vk

∂wk

∂wk

∂qk

(14.38)

Output: x(tk+1, sk, qk) = pk (tk+1, vk), and
∂x(tk+1,sk ,qk)

∂sk
,
∂x(tk+1 ,sk,qk)

∂qk

where
∂vk

∂wk
=

[

I 0
]

is constant.

We can now turn to the deployment of Multiple-Shooting on DAE-based

optimal control problems.

14.4.2 Direct Multiple-Shooting with Differential-Algebraic

Equations

In the context of Multiple-Shooting for DAE-based optimal control problems,

the implicit numerical integration schemes detailed above are interacting with

the NLP solver tackling the NLP resulting from the Multiple-Shooting dis-

cretization. We illustrate this interaction in Figure 14.4.2. The NLP solver is

then responsible for closing the shooting gaps, i.e. enforcing the continuity

conditions:

x(tk+1, sk, qk) − sk+1 = 0

for k = 0, . . . ,N − 1, and solving the set of algebraic equations that capture

the conditions of optimality. It is interesting to observe here that the overall

process can be then construed as a “two-level Newton scheme”, where the
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. . . . . .

NLP solver

solves

KKT conditions

Integrator on [t0 , t1] solves

Implicit equations (e.g. alg. 14.15) Implicit equations (e.g. alg. 14.15)

for [t0 , t1], with sensitivities

Integrator on [tk, tk+1] solves

for [tk , tk+1], with sensitivities

s0, q0 sk, qk

{s0, q0, . . . , sN−1 , qN−1 , sN }

Simulation x(t1 , s0, q0) Simulation x(tk+1 , sk, qk)

upper level solve the KKT conditions (e.g. using the relaxed KKT obtained in

the primal-dual interior-point approach, or using SQP iterations) and the lower

level solves the equations underlying the numerical integration (e.g. (14.36)).

The NLP solver passes the discrete states and inputs sk, qk, which become

inputs to the numerical integration algorithms (e.g. 14.14), while the numerical

integration algorithms report to the NLP solver the end states of the simulations

x(tk+1, sk, qk) and their sensitivities.

One ought to observe here that the algebraic state dynamics can in principle

be totally “hidden” inside the integrator scheme, and not reported at all to the

NLP solver. In that sense, implicit integrators in general perform an elimination

of the algebraic variables present in the dynamics, and hide their existence to

the NLP solver.

Another crucial observation to make here is that no continuity condition

nor initial condition is enforced on the algebraic state trajectories z(t). Indeed,

for a given differential state trajectory x(t) and input profile u(t), the algebraic

state trajectories z(t) are entirely defined via the DAE (e.g. by g (x, z, u) = 0

in the semi-explicit case), such that an extra continuity condition imposed on

z(t) would yield an over-constrained problem. As a matter of fact, if a dis-

continuous input parametrization is used (such as e.g. piecewise-constant), the

algebraic state trajectories z(t) can be discontinuous at the time instants tk cor-

responding to the multiple-shooting time grid. E.g. in the semi-explicit case

and if the algebraic equation g (x, z, u) = 0 depends on u, at the time instants

tk, a discontinuous input typically requires z(t) to also be discontinuous.
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As mentioned previously, the integrator can hide the algebraic variables

from the NLP solvers and keep them as purely internal. However, one may

want to use these variables in the cost function of the OCP, or impose some

inequality constraints on them. In such a case, the algebraic states ought to be

reported to the NLP solver, where they are regarded as functions of the decision

variables sk, qk.

As illustrated in Figure 14.4.2, Multiple-Shooting with implicit integrators

can be viewed as a two-level Newton scheme, where algebraic conditions are

solved at two different levels. A natural alternative to this setup is then clearly

to introduce the algebraic conditions underlying the numerical integrators into

the NLP, and leave them to be solved by the NLP solver. Doing so leads us

back to the Direct Collocation scheme, which we revisit next in the context of

DAE-based optimal control problems.

14.4.3 Direct Collocation with Differential-Algebraic Equations

We will focus now on the deployment of the Direct Collocation method on such

DAE-based optimal control problems. The principle here is extremely similar

to those detailed in Section 13.3. However, there are a few important additional

specific details arising from the presence of algebraic states and equations that

need to be properly covered here. Let us briefly recall here the core princi-

ples of the direct collocation method. As detailed earlier in Section 13.3 and

briefly recalled in Section 14.4.1 above, the differential state trajectories are

approximated on each time intervals [tk, tk+1] via the polynomials pk (t, vk) lin-

early parametrized by the set of variables vk ∈ Rn(d+1). For an explicit ODE

ẋ = f (x, u), the collocation equations then enforce:

• the continuity conditions of the differential states at the times tk for k =

0, . . . ,N − 1

pk (tk+1, vk) − vk+1,0 = 0, (14.39)

• the state dynamics at the times tk,i for k = 0, . . . ,N − 1 and i = 1, . . . , d

ṗk

(

tk,i, vk

)

= f (vk,i, qk).

Additional conditions are typically added as boundary conditions, e.g. v0,0 −
x0 = 0 to enforce the initial condition of the state trajectories.

The extension of the collocation equations for a semi-explicit DAE

ẋ = f (x, z, u)

0 = g (x, z, u)
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follow the exact same philosophy, namely the collocation equations enforce:

• the continuity conditions of the differential states via (14.39) at the times

t0,...,N−1.

• the state dynamics at the times tk,i for k = 0, . . . ,N − 1 and i = 1, . . . , d via

ṗk

(

tk,i, vk

)

= f (vk,i, zk,i, qk) (14.40a)

0 = g
(

vk,i, zk,i, qk

)

(14.40b)

The collocation equations for a semi-implicit DAE therefore read as:

ck (vk, zk, qk, vk+1) =





ṗk

(

tk,1, vk

) − f (vk,1, qk)

g
(
vk,1, zk,1, qk

)

...

ṗk

(

tk,d, vk

) − f (vk,d, qk)

g
(

vk,d, zk,d, qk

)

pk (tk+1, vk) − vk+1,0





= 0. (14.41)

for k = 0, . . . ,N − 1.

A few details ought to be properly stressed here. First, similarly to the ob-

servations made in Section 14.4.2, no continuity condition is enforced on the

algebraic states, hence (14.39) applies to the differential state trajectories alone.

Secondly, one ought to observe that the discretized algebraic states zk,i appear

only for the indices i = 1, . . . , d in the collocation equations, i.e. the discrete

algebraic states have one degree of freedom less that the discrete differential

states vk,i which appear with the indices i = 0, . . . , d in the collocation equa-

tions. The extra degree of freedom granted to the differential state is actually

required in order to be able to impose the continuity of the differential state tra-

jectories, while the algebraic state trajectories are not required to be continuous.

When building the NLP arising from a discretization of a DAE-based OCP us-

ing direct collocation, one ought to make sure that the adequate number of

discrete algebraic states and discrete differential states are declared to the NLP

solver. Indeed, e.g. introducing by mistake the unnecessary extra variables zk,0

can create numerical difficulties in the solver, as these variables would be ”free”

in the NLP and their values not clearly fixed by the problem.

Building the collocation equations for DAEs in a generic implicit form

f (ẋ, x, z, u) = 0 (14.42)

is a natural generalization of the constraints used in the case of a semi-explicit
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DAE. In the general case, the collocation equations simply read as:

ck (vk, zk, qk, vk+1) =





f ( ṗk

(

tk,1, vk

)

, vk,1, zk,1, qk)
...

f ( ṗk

(

tk,d, vk

)

, vk,d, zk,1, qk)

pk (tk+1, vk) − vk+1,0





= 0. (14.43)

for k = 0, . . . ,N − 1. The same observations as for the semi-explicit case hold

for the general case.

Exercises

14.1 . . .



15

Model Predictive Control and Moving Horizon

Estimation

So far, we have regarded one single optimal control problem and focussed on

ways to numerically solve this problem. Once we have computed such a solu-

tion, we might try to control the corresponding real process with the obtained

control trajectory. This approach to use a precomputed control trajectory is

called open-loop control. Unfortunately, the result will most probably be very

dissatisfying, as the real process will typically not coincide completely with

the model that we have used for optimization. If we wanted for example move

a robot arm to a terminal point, the robot arm might end at a very different lo-

cation than the model predicted. This is due to the difference of the model with

the reality, sometimes called model-plant-mismatch. This mismatch might be

due to modelling errors or external, unforeseen disturbances.

On the other hand, we might be able to observe the real process during its

time development, and notice, for example, that the robot arm moves differ-

ently than predicted. This will allow us to correct the control inputs online in

order to get a better performance; this procedure is called feedback control or

closed-loop control. Feedback allows us to improve the practical performance

of optimal control enormously. In its most basic form, we could use ad-hoc

implementations of feedback that react to deviations from the planned state

trajectory by basic control schemes such as a proportional-integral (PI) con-

troller. On the other hand, we might use again optimal control techniques in

order to react to disturbances of the state, by using optimal feedback control,

which we had outlined in the Chapters 8 and 11 on dynamic programming

(DP) and the HJB Equation. In the case of the moving robot arm this would

result in the following behaviour: if during its motion the robot arm is strongly

pushed by an external disturbance, it will not try to come back to its planned

trajectory but instead adapt to the new situation and follow the new optimal

trajectory. This is straightforward in the case of DP or HJB, where we have

the optimal feedback control precomputed for all possible states. But as said,

282
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these approaches are impossible to use for nontrivial state dimensions, i.e. sys-

tems with more than, say, 3-8 states. Thus, typically we cannot precompute the

optimal feedback control in advance.

A possible remedy is to compute the optimal feedback control in real-time,

or online, during the runtime of the process. In the case of the robot arm this

means that after the disturbance, we would call our optimization solver again

in order to quickly compute the new optimal trajectory. If we could solve this

problem exactly and infinitely fast, we would get exactly the same feedback as

in optimal feedback control. In reality, we have to work with approximations:

first, we might simplify the optimal control problem in order to allow faster

computation, e.g. by predicting only a limited amount of time into the future,

and second, we might adapt our algorithms to the new task, namely that we

have to solve optimization problems again and again. This task is called real-

time optimization or embedded optimization, due to the fact that in many cases,

the numerical optimization will be carried out on embedded hardware, i.e. pro-

cessors that reside not in a desktop computer but e.g. in a feedback control

system.

While this idea of optimal feedback control via real-time optimization sounds

challenging or even impossible for the fast motion of robot arms, it is since

decades industrial practice in the process control industry under the name of

Model Predictive Control (MPC). There, time scales are often in the range of

minutes and allow ample time for each optimization. The main stream imple-

mentation of MPC can in discrete time roughly be formulated as follows: (1)

observe the current state of the system x̄0, (2) predict and optimize the future

behaviour of the process on a limited time window of N steps by solving an

open-loop optimization problem starting at the state x̄0, (3) implement the first

control action u∗
0

at the real process, (4) move the optimization horizon one

time step forward and repeat the procedure. MPC is sometimes also called re-

ceding horizon control due to this movement of the prediction horizon. The

name nonlinear MPC, short NMPC, is reserved for the special case of MPC

with underlying nonlinear dynamic systems, while linear MPC refers to MPC

with linear system models. Note that NMPC leads typically to non-convex op-

timization problems while nearly all linear MPC formulations use convex cost

and constraints.

Note that in the case of a time-invariant system and cost, the subsequent

optimization problems differ only by the initial value x̄0 and nothing else, and

thus, the MPC feedback is time-invariant as well. If we would be able to solve

the problem with an infinite prediction horizon, we would obtain the stationary

optimal feedback control. The limitation of the horizon to a finite length N
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allows us to solve the problem numerically. If we choose N large enough, it

will be a good approximation to the infinite horizon problem.

In this script, we do not focus on the different ways to formulate the MPC

problem, but on its numerical solution by suitable real-time optimization meth-

ods. This and the next chapter follows the presentation given in [37] and [33]

and focusses on the MPC optimal control problem.

15.1 NMPC Optimization Problem

Let us in this chapter regard the following simplified optimal control problem

in discrete time augmented with algebraic equations.

minimize
x, z, u

N−1∑

i=0

L(xi, zi, ui) + E (xN) (15.1a)

subject to x0 − x̄0 = 0, (15.1b)

xi+1 − f (xi, zi, ui) = 0, i = 0, . . . ,N − 1, (15.1c)

g(xi, zi, ui) = 0, i = 0, . . . ,N − 1, (15.1d)

h(xi, zi, ui) ≤ 0, i = 0, . . . ,N − 1, (15.1e)

r (xN) ≤ 0. (15.1f)

Here, xi ∈ Rnx is the differential state, zi ∈ Rnz the algebraic state, and ui ∈ Rnu

is the control. Functions f and g are assumed twice differentiable and map

into Rnx and Rnz , respectively. The algebraic state zi is uniquely determined by

(15.1d) when xi and ui are fixed, as we assume that
∂g

∂z
is invertible everywhere.

We choose to regard this difference-algebraic system form because it covers

several parametrization schemes for continuous time dynamic systems in dif-

ferential algebraic equation (DAE) form, in particular direct multiple shooting

with DAE relaxation [60] and direct collocation [87, 16]. Note that in the case

of collocation, all collocation equations on a collocation interval would be col-

lected within the function g and the collocation node values in the variables zi,

see the formulation in formula (??).

Here, the free variables are the differential state vector x =

(x0, x1 . . . , xN−1, xN) at all considered time points and the algebraic and con-

trol vector on all but the last time points: z = (z0, z1 . . . , zN−1) and u =

(u0, u1 . . . , uN−1).

The task in real-time optimization for NMPC is now the following: for a

given value of x̄0, we need to approximately solve the above optimization prob-

lem as fast as possible, and of the obtained solution, it is the optimal value u0
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that we need fastest in order to provide the NMPC feedback. We might call

the exact solution u∗
0
(x̄0) in order to express its dependence on the initial value

x̄0. The only reason why we formulate and optimize the large optimization

problem is because it delivers us this map u∗
0

: Rnx → Rnu , which is an approx-

imation to the optimal feedback control.

Remark on fixed and free parameters: In most NMPC applications there

are some constant parameters p̄ that are assumed constant for the NMPC op-

timization, but that change for different problems, like x̄0. We do not regard

them here for notational convenience, but note that they can be treated by state

augmentation, i.e. regarded as constant system states with fixed initial value p̄.

15.2 Nominal Stability of NMPC

Very often, one is interested in stabilizing the nonlinear dynamic system at a

given set point for states and controls, which we might without loss of general-

ity set to zero here. This steady state, that satisfies f (0, 0, 0) = 0, g(0, 0, 0) = 0

must be assumed to be feasible, i.e. h(0, 0, 0) ≤ 0. One then often uses as stage

cost the quadratic deviation from this set point, i.e., L(x, u) = x⊤Qx + u⊤Ru

with positive definite matrices Q,R. It is important to note that this function is

positive definite, i.e., L(0, 0) = 0 and L(x, u) > 0 otherwise. In this case, one

would ideally like to solve the infinite horizon problem with N = ∞ in order to

obtain the true stationary optimal feedback control; this would automatically

ensure stability, as the value function J(x) can be shown to decrease along the

trajectory of the nominal system in each time step by −L(x0, u
∗(x0)) and can

thus serve as a Lyapunov function. But as we have in practice to choose a finite

N, the question arises how we can ensure nominal stability of NMPC neverthe-

less. One way due to [57, 68] is to impose a zero terminal constraint i.e. to

require xN = 0 as terminal boundary condition (15.1f) in the NMPC problem

and to employ no terminal cost, i.e. E(xN) = 0.

In this case of a zero terminal constraint, it can be shown that the value

function J0 of the finite horizon problem is a Lyapunov function that de-

creases by at least −L(x̄0, u
∗(x̄0)) in each time step. To prove this, let us assume

that (x∗
0
, z∗

0
, u∗

0
, x∗

1
, z∗

1
, u∗

1
, . . . , x∗

N
) is the solution of the NMPC problem (15.1a)-

(15.1f) starting with initial value x̄0. After application of this feedback to the

nominal system, i.e. without model-plant-mismatch, the system will evolve ex-

actly as predicted, and for the next NMPC problem the initial value x̄′
0

will

be given by x̄′
0
= x∗

1
. For this problem, the shifted version of the previous
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solution (x∗
1
, z∗

1
, u∗

1
, . . . , x∗

N
, 0, 0, 0) is a feasible point, and due to the zero val-

ues at the end, no additional cost arises at the end of the horizon. However,

because the first stage cost term moved out of the horizon, we have that the

cost of this feasible point of the next NMPC problem is reduced by exactly

−L(x̄0, u
∗(x̄0)). After further optimization, the cost can only be further reduced.

Thus, we have proven that the value function J0 is reduced along the trajec-

tory, i.e. J0(x̄′
0
) ≤ J0(x̄0)− L(x̄0, u

∗(x̄0)). More generally, one can relax the zero

terminal constraint and construct combinations of terminal cost E(xN) and ter-

minal inequalities r(xN) ≤ 0 that have the same property but are less restrictive,

cf. e.g. [30, 32, 69].

15.3 Online Initialization via Shift

For exploiting the fact that NMPC requires the solution of a whole sequence of

neighboring NLPs and not just a number of stand-alone problems, we have first

the possibility to initialize subsequent problems efficiently based on previous

information.

A first and obvious way to transfer solution information from one solved

NMPC problem to the initialization of the next one is employing the shift

that we used already in the proof of nominal stability above. It is mo-

tivated by the principle of optimality of subarcs, which, in our context,

states the following: Let us assume we have computed an optimal solution

(x∗
0
, z∗

0
, u∗

0
, x∗

1
, z∗

1
, u∗

1
, . . . , x∗

N
) of the NMPC problem (15.1a)-(15.1f) starting

with initial value x̄0. If we regard a shortened NMPC problem without the

first interval, which starts with the initial value x̄1 chosen to be x∗
1
, then for this

shortened problem the vector (x∗
1
, z∗

1
, u∗

1
, . . . , x∗

N
) is the optimal solution.

Based on the expectation that the measured or observed true initial value for

the shortened NMPC problem differs not much from x∗
1

– i.e. we believe our

prediction model and expect no disturbances – this “shrinking” horizon initial-

ization is canonical, and it is used in MPC of batch or finite time processes, see

e.g. [50, 35].

However, in the case of moving horizon problems, the horizon is not only

shortened by removing the first interval, but also prolonged at the end by ap-

pending a new terminal interval – i.e. the horizon is moved forward in time. In

the moving horizon case, the principle of optimality is thus not strictly appli-

cable, and we have to think about how to initialize the appended new variables

zN , uN , xN+1. Often, they are obtained by setting uN := uN−1 or setting uN as

the steady state control. The states zN and xN+1 are then obtained by forward

simulation. In the case that zero is the steady state and we had a zero terminal
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constraint, this would just result in zero values to be appended, as in the proof

in the previous section. In any case, this transformation of the variables from

one problem to the next is called “shift initialization”. It is not as canonical as

the “shrinking horizon” case, because the shifted solution is not optimal for the

new undisturbed problem. However, in the case of long horizon lengths N we

can expect the shifted solution to be a good initial guess for the new solution.

Moreover, for most NMPC schemes with stability guarantee (for an overview

see e.g. [69]) there exists a canonical choice of uN that implies feasibility (but

not optimality) of the shifted solution for the new, undisturbed problem. The

shift initialization is very often used e.g. in [63, 18, 70, 41].

A comparison of shifted vs. non-shifted initializations was performed in [22]

with the result that for autonomous NMPC problems that shall regulate a sys-

tem to steady state, there is usually no advantage of a shift initialization com-

pared to the “primitive” warm start initialization that leaves the variables at the

previous solution. In the extreme case of short horizon lengths, it turns out to be

even advantageous NOT to shift the previous solution, as subsequent solutions

are less dominated by the initial values than by the terminal conditions. On the

other hand, shift initialization are a crucial prerequisite in periodic tracking ap-

plications [41] and whenever the system or cost function are not autonomous.

15.4 Outline of Real-Time Optimization Strategies

In NMPC we would dream to have the solution to a new optimal control prob-

lem instantly, which is impossible due to computational delays. Several ideas

help us to deal with this issue.

Offline precomputations: As consecutive NMPC problems are similar, some

computations can be done once and for all before the controller starts. In the

extreme case, this leads to an explict precomputation of the NMPC control

law that has raised much interest in the linear MPC community [9], or a solu-

tion of the Hamilton-Jacobi-Bellman Equation, both of which are prohibitive

for state and parameter dimensions above ten. But also when online optimiza-

tion is used, code optimization for the model routines is often essential, and it

is in some cases even possible to precompute and factorize Hessians or even

Jacobians in Newton-type Optimization routines, in particular in the case of

neighboring feedback control along reference trajectories [58, 29]. Also, pre-

optimized compilable computer code can be auto-generated that is specific to

the family of optimization problems, which is e.g. in convex optimization pur-

sued in [66].

Delay compensation by prediction: When we know how long our computa-
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tions for solving an NMPC problem will take, it is a good idea not to address

a problem starting at the current state but to simulate at which state the system

will be when we will have solved the problem. This can be done using the

NMPC system model and the open-loop control inputs that we will apply in

the meantime [44]. This feature is used in many practical NMPC schemes with

non-negligible computation time.

Division into preparation and feedback phase: A third ingredient of several

NMPC algorithms is to divide the computations in each sampling time into a

preparation phase and a feedback phase [36]. The more CPU intensive prepa-

ration phase (a) is performed with an old predicted state x̄0 before the new

state estimate, say x̄′
0
, is available, while the feedback phase (b) then delivers

quickly an approximate solution to the optimization problem for x̄′
0
. Often, this

approximation is based on one of the tangential predictors discussed in the next

chapter.

Iterating while the problem changes: A fourth important ingredient of some

NMPC algorithms is the idea to work on the optimization problem while it

changes, i.e., to never iterate the Newton-type procedure to convergence for

an NMPC problem getting older and older during the iterations, but to rather

work with the most current information in each new iteration. This idea is used

in [63, 36, 73].

As a historical note, one of the first true online algorithms for nonlinear

MPC was the Newton-Type Controller of Li and Biegler [62]. It is based on a

sequential optimal control formulation, thus it iterates in the space of controls

u = (u0, u1, . . . , uN−1) only. It uses an SQP type procedure with Gauss-Newton

Hessian and line search, and in each sampling time, only one SQP iteration

is performed. The transition from one problem to the next uses a shift of the

controls unew = (u1, . . . , uN−1, u
new
N

). The result of each SQP iterate is used to

give an approximate feedback to the plant. As a sequential scheme without

tangential predictor, it seems to have had sometimes problems with nonlinear

convergence, though closed-loop stability was proven for open-loop stable pro-

cesses [63].

In the next chapter, we will discuss several other real-time optimization al-

gorithms in more detail that are all based on ideas from the field of parametric

nonlinear optimization.
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Exercises

15.1 In nonlinear model predictive control (NMPC), we repeatedly solve an

optimal control problem (OCP) with changing data in order to derive an

optimal feedback strategy for a controller. Since solving an NLP is an

expensive operation, there is often a tradeoff between finding a better

solution to the NLP or returning feedback to the system more frequently.

In the most extreme case, we just do one iteration of the NLP solver for

every feedback time. In the case of an SQP solver, this means solving a

single QP.

Regard once again the simple OCP from Exercises 13.1, 13.2, 12.3

and 8.7.

minimize
x, u

∫ ⊤

0

x1(t)2 + x2(t)2 + u(t)2 dt

subject to ẋ1 = (1 − x2
2) x1 − x2 + u, x1(0) = 0,

ẋ2 = x1, x2(0) = 1,

−1 ≤ u(t) ≤ 1,

(15.2)

where T = 10 as earlier.

(a) In Exercise 13.2, you have implemented an SQP method to solve 15.2.

Use this code as an inspiration for implementing a NMPC controller

that uses a SQP solver. Remember that now the Gauss-Newton SQP

only needs to make a single iteration, so in contrast to Exercise 13.2,

you should allocate a QP solver instance just once and then call it

multiple times.

(b) When just solving a single QP per NMPC iteration, it often make

sense to divide the solution code into a preparation phase and a feed-

back phase. The preparation phase contains the part of the algorithm

that can be calculated before we obtain measurements for the state

of the system (i.e. the initial conditions of the ODE). This allows the

controller to return feedback to the system faster. What part of the

algorithm can be made part of preparation phase?

(c) Modify the solution to take more than one SQP iteration per NMPC

iteration. Does it improve the controller?
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Parametric Nonlinear Optimization

In the shift initialization discussed in the previous chapter we did assume that

the new initial value corresponds to the model prediction. This is of course

never the case, because exactly the fact that the initial state is subject to distur-

bances motivates the use of MPC. By far the most important changes from one

optimization problem to the next one are thus the unpredictable changes in the

initial value x̄0. Is there anything we can do about this in the initialization of a

new problem? It turns out that the concept of parametric sensitivities helps us

here. In order to understand this concept, in this chapter we will regard the task

of real-time optimization from a different perspective than before, namely from

the point of view of parametric optimization, which is a subfield of nonlinear

optimization [6, 49].

16.1 Parametric Nonlinear Programming

Let us come back to our original NLP (3.1), with the addition of an ”exoge-

nous” parameter to the problem:

w⋆ (p) = arg minimize
w

f (w, p)

subject to g(w, p) = 0,

h(w, p) ≤ 0.

(16.1)

One should observe here that the parameter p is fixed in the NLP (16.4), such

that a given p yields a corresponding solution w⋆ (if it exists). In that sense,

a parametric NLP defines an implicit function w⋆(p) that associates to each

parameter p a solution w⋆. The domain of this implicit function then matches

the set of p for which the NLP (16.4) has a well-defined solution. Very power-

290
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Figure 16.1 Illustration of ...

ful tools can then be derived from understanding the properties of the implicit

function w⋆ (p).

In the following, we will make the simplifying assumptions that the func-

tions f , g and h are at least C2, such that the Hessian of the Lagrange function

is guaranteed to be continuous. Let us then first state very useful results on the

continuity and differentiability of the implicit function w⋆ (p). For notational

simplicity, let us introduce the variable y = (w, λ, µ) that gathers the primal and

dual variables of our NLP.

Theorem 16.1. The implicit function f ⋆ (p) is continuous. Moreover, if the

parametric NLP (16.4) satisfies LICQ and (strict) SOSC at a solution y⋆ (p) for

a given p, then the implicit function f ⋆ (p) is differentiable in a neighborhood

of p.

Theorem 16.2. If the parametric NLP (16.4) satisfies LICQ and (strict) SOSC

at a solution y⋆ (p) for a given p, then the implicit function w⋆ (p) is continuous

in a neighborhood of p. Moreover, if no inequality constraint is weakly active,

then the implicit function y⋆ (p) is differentiable in a neighbourhood of p.

The parametric solution w⋆ (p) of an NLP can have bifurcations, i.e. it can

divide into several branches at a given parameter value. One ought to observe

that at such a bifurcation, the parametric solution w⋆ (p) cannot be differen-

tiable as it is locally non-unique. At such a point, the assumptions of Theorem

16.2 must fail. We provide next a simple example of such a bifurcation.

Example 16.3. We consider the parametric NLP with p ∈ R:

w⋆ (p) = arg minimize
w

1

2
(w1 − 2 + p)2 +

1

2
w2

2

subject to w2
1 + 2w2

2 ≥ 1,

(16.2)
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and report the resulting parametric primal solution path w⋆ (p) in Figure 16.3.

This parametric NLP is interesting insofar as a bifurcation occurs in the

solution path for p = 1.5, i.e. for parameter values p > 1.5, the problem holds

two solutions for w⋆
2

(p). In our example, the occurrence of the bifurcation in

the solution path occurs as the Hessian of the Lagrange function of the problem

becomes (at least point-wise) rank-deficient. One can observe the bifurcation

occurring at p = 1.5 in Figure 16.3, where the lowest eigenvalue of the Hessian

of the Lagrange function drops to zero.

Example 16.4. We consider the parametric NLP:

w⋆ (p) = arg minimize
w

1

2
‖w − p‖2

subject to w1 − w2
2 ≤ p2

1,

‖w‖2 ≤ ‖p‖2,
w2 − w2

1 ≤ p4
2

(16.3)

and chart in Figure 16.4 the different regions in the parameter space p ∈ R2

corresponding to different active sets A. Because the constraints are nonlinear

(and some non-convex), the different regions are not polytopes but “curved”

regions.

We should first recall a well-known but very useful result from parametric

optimization. Let us then consider the parametric optimal cost, defined as:

f ⋆ (p) = minimize
w

f (w, p)

subject to g(w, p) = 0,

h(w, p) ≤ 0.

(16.4)

In the context of parametric optimization, it is often useful to consider the
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Figure 16.3 Illustration of the solution path of the parametric NLP (16.2). The

upper graphs report the parametric primal solution paths, the lower-left graph

reports the dual parametric solution path and the lower-right graph reports the

lowest eigenvalue of the Hessian of the Lagrange function of problem (16.2). A

bifurcation occurs at p = 1.5 in the solution path when the Hessian of the problem

becomes rank-deficient.

sensitivity of the parametric optimal cost f ⋆ (p) to the parameters p. Fortu-

nately, the sensitivity of the optimal cost to the parameters is computationally

inexpensive answer:

∇p f ⋆ (p) = ∇pL
∣
∣
∣
y=y⋆(p),p

. (16.5)

A less common, but equally useful result provides the second-order derivative

of the cost function via a simple application of the chain rule, given by:

∇2
pp f ⋆ (p) =

(

∇2
ppL + ∇2

pyL
∂y⋆ (p)

∂p

)

y=y⋆(p),p

(16.6)

The existence of a derivative
∂y⋆(p)

∂p
discussed in Theorem 16.2 will allow

us to build linear predictors for the solution of parametric NLPs. Before dis-

cussing these predictors, we ought to discuss the computations of such deriva-

tives. To that end, we should consider the algebraic conditions that describe
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a (possibly local) solution of the parametric NLP (16.4). Using the Lagrange

function

L (y, p) = f (w, p) + λ⊤g(w, p) + µ⊤h(w, p),

with the Lagrange multipliers λ and µ of adequate dimensions, the parametric

KKT conditions read as:

∇wL (y, p) = 0,

g (w, p) = 0,

h (w, p) ≤ 0, µ ≥ 0,

µihi (w, p) = 0, i = 1, . . . , nh.

At a solution having no weakly active constraint, one can divide the index-set

of h between the set of indices corresponding to strictly active constraints A

and the set of indices corresponding to strictly inactive constraints Ā, i.e.

hA(w⋆, p) = 0, and hĀ(w⋆, p) < 0,

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

p1

p
2

Figure 16.4 Regions with different active sets for the parametric NLP (16.3). The

nonlinear constraints result in regions that are not polytopes, but complex “round-

shaped” sets in R2.
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and the KKT conditions can be re-stated as

RA (y, p) =





∇wL (y, p)

g (w, p)

hA(w, p)

µĀ





= 0, (16.8a)

hĀ(w, p) < 0, µA > 0. (16.8b)

Splitting the (strictly) active and inactive inequality constraints allows one to

regard (16.8a) as a set of differentiable algebraic equations locally describing

the implicit function y⋆(p), and (16.8b) as non-smooth algebraic conditions

that are locally irrelevant for the solution.

We can then deploy the Implicit Function Theorem (IFT) on the smooth con-

ditions (16.8a) in order to compute the sensitivity ∂
∂p

y⋆ (p). In order to make

this development clear, let us observe that the implicit function y⋆ (p) satisfies

RA
(

y⋆ (p) , p
)

= 0,

for any p in a neighbourhood of a given p̄ and w⋆ ( p̄) satisfying all the condi-

tions of Theorem 16.2. It follows that

∂

∂y
RA

(

y⋆(p), p
)
∣
∣
∣
∣
∣
p=p̄

= 0.

A simple chain rule deployed on the above equation then provides:

∂RA

∂y

∂y⋆

∂p
+
∂RA

∂p
= 0,

where all expressions are evaluated at p̄ and y⋆ (p̄). The above equation for the

sensitivities can be explicitly stated as:





∇2
wwL ∇wg ∇whA

∇wg⊤ 0 0

∇wh⊤
A

0 0





∂y⋆
A

∂p
+

∂

∂p





∇wL

g

hA





= 0, (16.9a)

∂µ⋆
Ā

∂p
= 0, (16.9b)

where y⋆
A
=

(

w⋆, λ⋆, µ⋆
A

)

and where all expressions are evaluated at p̄ and

y⋆ (p̄). Equation (16.9) is linear in the sensitivities
∂y⋆

∂p
which are then trivial to

compute at a solution y⋆ ( p̄).

Note that the Jacobian matrix in (16.9a) is nothing else than the matrix that

we called the KKT matrix in Chapter 3, and that it is invertible whenever the

second order sufficient optimality conditions of Theorem 3.18 hold.
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Figure 16.5 Illustration of the solution manifold of the parametric NLP (16.10)

(grey curves), and of its linearization
∂y⋆(p)

∂p

∣
∣
∣
∣
p= p̄

(dashed lines) using (16.9).

Example 16.5. In order to illustrate the sensitivity computations detailed

above, let us consider the (convex) parametric NLP with p ∈ R:

w⋆ (p) = arg minimize
w

1

2
(w1 − 1)2 +

1

2
(w2 − 2)2

subject to 4w2
1 + w2

2 − p2 ≤ 0,

(16.10)

and we consider the linearization of the parametric solution manifold y⋆ (p)

at a point p̄, computed via (16.9). The outcome is illustrated in Figure 16.5.

One can observe how the sensitivity
∂y⋆(p)

∂p

∣
∣
∣
∣
p=p̄

builds the tangent space to the

solution manifold y⋆ (p) at p̄.

The discussion would be incomplete without discussing the outcome of en-

countering a weakly active constraint at the solution y⋆ (p). Weakly active in-

equality constraints typically occur at the parameter value for which (but not

necessarily when) an inequality constraint at the solution of the parametric

NLP changes from being active to being inactive. At such a point

h
(

w⋆(p), p
)

= 0 and µ⋆(p) = 0 (16.11)

holds and the solution manifold w⋆(p) can be discontinuous.

Figure 16.5 readily provides a first illustration of the effect of a change of

active set on the solution manifold w⋆ (p), namely that the solution manifold

typically becomes non-differentiable when the active set changes, hence the

“corner” in w⋆ (p) in Figure 16.5. In the neighborhood of that corner, though,

the derivatives
∂y⋆(p)

∂p
of the solution manifold are well-defined. In that sense,

while the derivative of the solution manifold w⋆ (p) does not necessarily exist

at a change of active set, its subderivative (defined as the set between the limits
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Figure 16.6 Illustration of the solution manifold of the parametric NLP (16.12)

for p1 ∈ [0, 0.5] and p2 ∈]0, 0.5]. One can clearly observe the “edge” in the

solution manifold w⋆
2

(p).

to the left and to the right of the classical derivatives of w⋆ (p) in the case p ∈ R)

generally does.

The same holds on the higher-dimensional case p ∈ Rnp , to the difference

that the “corner” can then become an “edge” in the manifold, of dimension

np − 1. The notion of subgradient is then generally applicable. We illustrate

this in the following example.

Example 16.6. In order to illustrate the sensitivity computations detailed

above, let us consider the (convex) parametric NLP with p ∈ R:

w⋆ (p) = arg minimize
w

1

2
(w1 − p1)2 +

1

2
(w2 − p1)2 +

1

2
w1w2

subject to w2
1 + 5w2

2 − p2 ≤ 0,

(16.12)

The resulting solution manifold is illustrated in Figure 16.6.

16.1.1 Linear Predictors

The tangent space to the solution manifold y⋆ (p) generated by the sensitivi-

ties allows one to build first-order predictor for the solution, via the first-order

Taylor expansion of the solution manifold at a given point p̄:

∆yL (p, p̄) = yL (p, p̄) − y⋆ ( p̄) =
∂y⋆ (p)

∂p

∣
∣
∣
∣
∣
∣
p=p̄

(p − p̄) (16.13)



298 Parametric Nonlinear Optimization

Let us split hereafter y into yA = (w, λ, µA) and µ
Ā
, and split∆yL (p, p̄) similarly.

Using the equation for the primal-dual sensitivities (16.9), we observe that:





H ∇wg ∇whA

∇wg⊤ 0 0

∇wh⊤
A

0 0





∆yL
A +

∂

∂p





∇wL

g

hA





(p − p̄) = 0, (16.14a)

µL

Ā
− µ⋆
Ā

( p̄) = 0. (16.14b)

where H = ∇2
wwL and all functions are evaluated at p̄, y⋆ ( p̄). The linear pre-

dictor yL (p, p̄) resulting from (16.13) or equivalently (16.14) generates the

tangent space to the solution manifold y⋆ (p) at a given point p̄. However, it

does not capture changes of active sets, which often result in ”corners” i.e.

non-smooth points in the solution manifold, see Example 16.5. This issue can

be addressed by considering a QP-based first-order predictor, resulting in a

piecewise-linear prediction manifold. We detail this approach hereafter.

First we observe that the dual solution at p̄ satisfies the following system:





H ∇wg ∇whA

∇wg⊤ 0 0

∇wh⊤
A

0 0









0

λ⋆ ( p̄)

µ⋆
A

( p̄)





+





∇w f

g

hA





= 0, (16.15a)

µ⋆
Ā

( p̄) = 0. (16.15b)

We then consider the addition of (16.15) to (16.14), resulting in the following

equality:





H ∇wg ∇whA

∇wg⊤ 0 0

∇wh⊤
A

0 0









∆wL
A

(p, p̄)

λL (p, p̄)

µL
A

(p, p̄)





+
∂

∂p





∇w f

g

hA





(p − p̄) +





∇wL

g

hA





= 0,

(16.16)

µL

Ā
(p, p̄) = 0.

When no constraint is weakly active, one can verify that for p in a neighbour-

hood of p̄, equation (16.16) formulate the KKT conditions of the parametric

QP:

∆wQP (p, p̄) = arg min
∆w

1

2
∆w⊤H∆w + ∇w f⊤∆w + (p − p̄)⊤ ∇2

pwL∆w

s.t. g + ∇wg⊤∆w + ∇pg⊤ (p − p̄) = 0

h + ∇wh⊤∆w + ∇ph⊤ (p − p̄) ≤ 0 (16.17)

where all the terms H, ∇w f , ∇2
wpL, ∇wg, ∇wh, ∇pg, ∇ph are evaluated at p̄

and y⋆ ( p̄). Indeed, for p in a neighbourhood of p̄, the active set of (16.17)
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matches the one of the original NLP (16.4) such that the KKT conditions of

the parametric QP (16.17) are locally given by equations (16.16).

As a consequence, the solution delivered by the parametric QP (16.17)

yQP (p, p̄) =
(

w⋆ ( p̄) + ∆wQP (p, p̄) , λQP (p, p̄) , µQP (p, p̄)
)

where λQP (p, p̄) , µQP (p, p̄) are the multipliers associated to the linear con-

straints in the parametric QP (16.17), delivers local predictions of the primal-

dual solution as:

yQP (p, p̄) = yL (p, p̄) (16.18)

which holds for p in a neighborhood of p̄.

However, the main interest of the parametric QP (16.17) appears when p

is sufficiently far from p̄ such that the active set of the parametric QP (16.17)

no longer matches the one of the parametric NLP (16.4) at p̄. One can then

observe that the manifold yQP (p, p̄) built by the parametric QP (16.17) is a

piecewise-linear approximation of the solution manifold of the original NLP

(16.4). Let us consider the following illustrative example to explain this state-

ment.

Example 16.7. We consider again the (convex) parametric NLP (16.10) with

p ∈ R proposed in Example 16.5 and we consider the manifolds wpred (p, p̄),

µpred (p, p̄) built by the QP (16.17) at different points p̄ for the parametric NLP

(16.10). The manifold of the parametric NLP (16.10) and its first-order approx-

imation computed via the parametric QP (16.17) are illustrated in Figure 16.7.

16.1.2 Predictor-Correct methods for Online Path Following

In this section, we will consider an important practical problem in parametric

optimization, and one that is central to real-time optimal control. Let us imag-

ine a path in the parameter space, i.e. e.g. p = p(t) for t ∈ [0, T ], which has

a corresponding path in the solution space y⋆ (p(t)). Clearly, for every value t,

one could construct the corresponding parametric solution y⋆ (p(t)) and there-

fore build the solution path.

However, an important question arises when attempting such a construction

if t is a path parameter that evolves outside of our control, such as e.g. if it is

a physical time upon which we have no authority. In such a case, the iterative

construction of the solution y⋆ (p(t̄)) at a given t̄ requires a certain amount of

time, during which the actual t will keep evolving. By the time the iterative

procedure producing an accurate y⋆ (p(t̄)) is finished, the solution obtained,

even though it may be highly accurate, will be outdated as t , t̄. This simple
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Figure 16.7 Illustration of the solution manifold w⋆(p̄), µ⋆(p̄) of the paramet-

ric NLP (16.10) (grey curves), and of piecewise linear approximation wQP (p, p̄),

λQP (p, p̄), and µQP (p, p̄) (dashed lines) delivered by the parametric QP (16.17) at

various points p̄ (dotted lines).

observation motivates the devising of path-following methods that produce an

adequately accurate approximation of y⋆ (p(t̄)) for a given t in a minimum

amount of computational time.

The philosophy behind efficient path-following methods is to exploit the

expected similarity between neighbouring solutions, i.e. to use the fact that

y⋆ (p (t + ∆t)) ≈ y⋆ (p (t)), so as to minimize the work required to compute

y⋆ (p (t + ∆t)) for p (t + ∆t) using the information available at the solution

y⋆ (p (t)) computed at p (t). Methods aimed at performing the task of tracking

as accurately as possible y⋆ (p (t)) are referred to as path-following methods.

Predictor-correctors play a central role in these methods.

To approach the question of efficient path-following methods, let us recon-
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sider the following parametric QP

wpred−corr (p, p̄, ȳ) =

arg min
w

1

2
(w − w̄)⊤ H (w − w̄) + ∇w f⊤(w − w̄) + (p − p̄)⊤ ∇2

pwL (w − w̄)

s.t. g + ∇wg⊤ (w − w̄) + ∇pg⊤ (p − p̄) = 0

h + ∇wh⊤ (w − w̄) + ∇ph⊤ (p − p̄) ≤ 0, (16.19)

which is identical to the parametric QP (16.17), to the exception that all the

terms H, ∇w f , ∇2
wpL, ∇wg, ∇wh, ∇pg and ∇ph are evaluated at the arbitrary

primal-dual point ȳ =
(

w̄, λ̄, µ̄
)

provided as an argument.

We can easily see that the parametric QP (16.19) is strictly identical to our

previous parametric QP (16.17) if ȳ = y⋆ (p). However, here we are interested

in the behaviour of (16.19) when the equality does not necessarily hold, i.e.

when ȳ ≈ y⋆ (p). We ought to make the following observations:

• If ȳ = y⋆ ( p̄) and p ≈ p̄, then (16.19) delivers a piecewise linear prediction

of the solution of the parametric NLP (16.4) for a parameter value p, using

the information formed at the parameter value p̄.

• If ȳ ≈ y⋆ ( p̄) and p = p̄, then (16.19) delivers a full SQP correction step

towards the solution of the parametric NLP (16.4) for the parameter value

p = p̄.

These observations allow us to construe the parametric QP (16.19) as holding

both predictive capabilities (for p ≈ p̄) and corrective capabilities (for ȳ ≈
y⋆ (p̄)). Clearly, the case ȳ ≈ y⋆ ( p̄), p ≈ p̄ can be treated by the parametric QP

(16.19), resulting in both a predictive and corrective action. The parametric QP

(16.19) is therefore often referred to as a predictor-corrector. For notational

simplicity, let us label

D (y, p) =
{

H, ∇2
pwL, ∇w f g, ∇wg, ∇ph, h, ∇wh, ∇ph

}

the linearization data of the problem at a point y, p.

We now aim at devising an online path-following algorithm, with the spe-

cific purpose of ”beating” the physical evolution of the parameters p over time.

In that sense, for a given p(t), we aim at delivering a primal-dual solution up-

date being as close as possible to the solution path y⋆ (p (t)) in a minimum

amount of time, exploiting the predictor-corrector effect based on the previ-

ously obtained solution at a previous parameter value p̄. Such a path-following

algorithm can be devised as follows.

Algorithm 16.8 (Path-following predictor-corrector).

Input: p and ȳ, p̄, with D (ȳ, p̄)
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Take predictor-corrector step based on D (ȳ, p̄):

arg min
∆w

1

2
∆w⊤H∆w + ∇w f⊤∆w + (p − p̄)⊤ ∇2

pwL∆w

subject to g + ∇wg⊤∆w + ∇pg⊤ (p − p̄) = 0,

h + ∇wh⊤∆w + ∇ph⊤ (p − p̄) ≤ 0.

(16.20)

Update y =
(

ȳ + ∆w, λQP, µQP

)

, deploy the solution on the system

Form D (y, p)

Output: y, p and D (y, p)

We should underline here the online flavour of Algorithm (16.8). One ought

to observe that the operations performed between getting a new parameter

p and delivering a primal-dual solution update y boils down to solving the

predictor-corrector QP (16.20), while the production of a new linearization

D (y, p) is performed afterwards. It follows that, as underlined in bold in Algo-

rithm (16.8), one can deploy the solution update y on the real physical system

before computing the linearization, hence minimising the time between obtain-

ing a new parameter p and updating the solution y.

We illustrate the behaviour of Algorithm 16.8 in the following example.

Example 16.9. We consider again the (convex) parametric NLP (16.10) with

p ∈ R proposed in Example 16.5 and we consider the tracking of the solution

manifold w⋆ (p) using the predictor-corrector path-following Algorithm 16.8

with discrete steps in the parameter p of 0.39. The resulting path-following

performance is illustrated in Figure 16.9.

The predictor-corrector path-following algorithm 16.8 is intrinsically an

active-set approach, as the non-smooth KKT conditions are handled within

the algorithm. An Interior-point path following method can be devised using a

similar philosophy. We detail this alternative next.

The algebraic conditions solved by IP methods read as:

Rτ (z, p) =





∇wL (y, p)

g (w, p)

h (w, p) + s

µi si − τ





= 0 (16.21)

with the additional non-smooth conditions s, µ > 0 which are enforced sep-

arately. Let us denote by zτ (p) the parametric solution implicitly defined

by (16.21) for a given τ. A predictor-corrector Interior-point path-following

method can then be devised as follows.
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Figure 16.8 Illustration of the predictor-corrector path-following Algorithm 16.8.

The solution manifold of the parametric NLP (16.10) w⋆(p̄), µ⋆(p̄) is reported

as the grey curves. The upper-graphs report the behaviour of the path-following

Algorithm 16.8 without using the predictor effect, i.e. setting p − p̄ = 0 in the

predictor-corrector QP (16.20). The lower graphs report the behaviour of the path-

following Algorithm 16.8, implemented as described. The predictor effect allows

Algorithm 16.8 to track the solution path more accurately. The accuracy of the

tracking of the solution path by Algorithm 16.8 increases as the length of the

steps in the parameter space p decreases.

Algorithm 16.10 (IP Path-following predictor-corrector).

Input: p and z̄, p̄, with Rτ (z̄, p̄) and ∇Rτ (z̄, p̄) and τ.

Take predictor-corrector step based on Rτ (z̄, p̄) and ∇Rτ (z̄, p̄), i.e.:

∆z = −∂Rτ

∂z

−1 (

R +
∂Rτ

∂p
(p − p̄)

)

(16.22)

Update z = z + t∆z, where t ∈]0, 1] ensures s + t∆s ≥ ǫs, µ + t∆µ ≥ ǫµ
Deploy updated solution z on the system

Form Rτ (z, p) and ∇Rτ (z, p)
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Path-following algorithm 16.10 without prediction for τ = 0.03

Path-following algorithm 16.10 for τ = 0.03

Path-following algorithm 16.10 for τ = 10−4

Figure 16.9 Illustration of the predictor-corrector path-following Algorithm

16.10. The smoothened solution manifolds of the parametric NLP (16.10) wτ⋆(p̄),

µ⋆τ (p̄) for various values of τ is reported as the grey curves. The upper-graphs

report the behaviour of the path-following Algorithm 16.8 without using the pre-

dictor effect, i.e. setting p − p̄ = 0 in the predictor-corrector (16.22). The middle

graphs report the behaviour of the path-following Algorithm 16.8, implemented

as described for τ = 0.03. The predictor effect allows Algorithm 16.8 to track

the solution path more accurately. The lower graphs report the behaviour of the

path-following Algorithm 16.8, implemented as described for τ = 10−4, showing

the difficulty of the predictor-corrector algorithm to follow the solution manifold

for small values of τ. A value of ǫ = 10−1 was selected here.

Output: z and Rτ (z, p), ∇Rτ (z, p)

A difficulty often observed using the Interior-Point following approach de-

tailed in Algorithm 16.10, is the highly nonlinear complementarity slackness

conditions µi si − τ = 0 for small values of τ. Indeed, for low values of τ, the
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parametric solution path zτ (p) corresponding to a path in the parameter space

can have a very sharp curvature when changes of active set occur. The path-

following method then struggles to follow properly these parts of the solution

path. This is especially true for a very low parameter ǫ, which lets µ or s reach

values very close to zero, making it difficult for the predictor-corrector to re-

cover the manifold µi si − τ = 0.

There is then a trade-off between being able to follow the manifold ef-

fectively with the predictor-corrector algorithm 16.10, and using an accurate

smoothened manifold zτ (p). Indeed, for a low value of τ, the smoothened man-

ifold is accurate i.e. zτ (p) ≈ z⋆ (p), but the predictor-corrector algorithm may

struggle following the manifold. For a larger value of τ, the predictor-corrector

algorithm will follow the manifold zτ (p) accurately, but the manifold will be a

less accurate approximation of the genuine solution manifold z⋆ (p). It is how-

ever important to understand that solving the linear system (16.22) is typically

computationally significantly cheaper than solving the predictor-corrector QP

(16.20).

16.1.3 Predictor-Corrector Path-Following for real-time Optimal

Control and NMPC

The methods detailed above are typically the cornerstone to real-time Optimal

Control and real-time NMPC. In this context, the parametric NLP (16.4) is

typically a standard transcription of a continuous optimal control problem via

e.g. the multiple-shooting or direct-collocation approaches. In that context, the

parameter p is the initial value of the optimal control problem, which – in

a real-time context – are estimated online and then used to compute a new

optimal control solution for the system. E.g. a multiple-shooting transcription

of the form (13.3) recalled here

w⋆ (x0) = arg min
s, q

N−1∑

i=0

li(si, qi) + E (sN)

subject to x0 − s0 = 0,

xi(ti+1, si, qi) − si+1 = 0, i = 0, . . . ,N − 1,

h(si, qi) ≤ 0, i = 0, . . . ,N,

r (sN ) ≤ 0

(16.23)

where w = (s0, u0, . . . , sN−1, uN−1, sN) and the initial value assigned to the NLP

x0 acts as a parameter. Additional parameters can be present in the problem

when e.g. preview information is available for the optimal control problem
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or NMPC scheme. The methods detailed above can be readily applied to this

specific form of parametric NLP (16.23).

Due to the fact that the parameter x0 enters linearly in the constraints of

(16.23), the Jacobian of ∇wg and thus also the Lagrange gradient ∇wL and

the Hessian ∇2
wwL and derivative ∇2

wpL do not depend on x0. Moreover, the

gradient ∇wg becomes a constant matrix.

The fact that all derivatives are independent of the parameter x0 makes the

description of the path-following algorithms for optimal control problems de-

pending on initial values easier. E.g. the predictor-corrector QP (16.20) at

the core of the predictor-corrector path-following algorithm 16.8 then reads

as:

arg min
∆w

1

2
∆w⊤H∆w + ∇w f

subject to g + ∇wg⊤∆w + ∇x0
g⊤ (x0 − x̄0) = 0,

h + ∇wh⊤∆w ≤ 0.

(16.24)

where x̄0 is the initial value corresponding to the solution where the lineariza-

tion is formed, arising from the optimal control problem solved at the previous

sampling time, and x0 the one valid at the current sampling time. Let us split

the equality constraints in the parametric QP (16.24) as:

g (w, x0) =

[

gE (w, x0)

gDyn (w, x0)

]

(16.25)

where gDyn holds the shooting constraints and gE = x0−s0. It is interesting then

to observe here that the linearized equality constraint in (16.24) corresponding

to the initial value embedding can be written as:
(

gE + ∇wg⊤E∆w + ∇x0
g⊤E (x0 − x̄0)

)

x̄0,w̄
= x̄0 − s̄0 − ∆s0 + (x0 − x̄0)

= x0 − s̄0 − ∆s0 (16.26)

or equivalently
(

gE + ∇wg⊤E∆w + ∇x0
g⊤E (x0 − x̄0)

)

x̄0,w̄
=

(

gE + ∇wg⊤E∆w
)

x0,w̄
(16.27)

It follows that the parametric QP (16.24) can be equivalently written as

arg min
∆w

1

2
∆w⊤H∆w + ∇w f

subject to g + ∇wg⊤∆w = 0,

h + ∇wh⊤∆w ≤ 0.

(16.28)

where all linearization terms are evaluated at w̄ and x0 (as opposed to x̄0 in
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(16.24)). Hence, the special form of parametric NLP (16.23) results in the

”basic” QP (16.28) to be a predictor-corrector without the adjunction of the

correction terms used in the classical predictor-corrector QP (16.19).

Note that this interesting effect stems from the fact that the parameters enter

linearly in the parametric NLP (16.23). This particular formulation of the pa-

rameter dependence can be achieved in all parametric NLP by introducing in

the NLP a set of variables, e.g. v, corresponding to the parameter p and con-

straining them to match the parameters p by a constraint p− v = 0, as we have

done in (16.23). We call this in the general case a parameter embedding. In the

context of MPC, like here, we speak of the initial value embedding [33].

The Continuation/GMRES Method of Ohtsuka [73]: The Continua-

tion/GMRES method performs one predictor-corrector Newton type iteration

at each parameter update, and is based on a sequential formulation. It is based

on an IP treatment of the inequalities with fixed path parameter τ > 0, using an

exact Hessian, and the iterative GMRES method for solving the linear system

in each Newton step. Most important, it makes use of a tangential predictor.

This feature seems to allow it to follow the nonlinear IP solution manifold

well – which is strongly curved at active set changes. For a visualization, see

Fig. 16.10(a). In each sampling time, only one linear system is built and solved

by the GMRES method, leading to a predictor-corrector pathfollowing method.

The closed-loop stability of the method is in principle covered by the stability

analysis for the real-time iterations without shift given in [38]. A variant of the

method is given in [83], which uses a simultaneous approach and condensing

and leads to improved accuracy and lower computational cost in each Newton

type iteration.

Advanced Step Controller by Zavala and Biegler [93]: In order to avoid

the convergence issues of predictor-corrector pathfollowing methods, in the

“advanced step controller” of Zavala and Biegler a more conservative choice

is made. At each update of the parameters p, a complete Newton type IP pro-

cedure is iterated to convergence (with τ → 0). In this respect, it is identical

to solving the NLP offline using an Interior-Point method. However, two fea-

tures qualify it as an online algorithm: first, it takes computational delay into

account by solving an “advanced” problem with the expected state x̄0 as ini-

tial value – similar as in the real-time iterations with shift – and (b), it applies

the obtained solution not directly, but computes first the tangential predictor

which is correcting for the differences between expected state x̄0 and the actual

state x̄′
0
. Note that in contrast to the other online algorithms, several Newton

iterations are performed in part (a) of each sampling time, the “preparation
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phase”. The tangential predictor (b) is computed in the “feedback phase” by

only one linear system solve based on the last Newton iteration’s matrix fac-

torization. As in the C/GMRES method, the IP predictor cannot “jump over”

active set changes as easily as the SQP based predictor of the real-time iter-

ation. Roughly speaking, the advanced step controller gives lower priority to

sudden active set changes than to system nonlinearity. As the advanced step

controller solves each expected problem exactly, classical NMPC stability the-

ory [69] can relatively easily be extended to this scheme [93].

The Real-Time Iteration Scheme [36]: Based on the above ideas, the real-

time iteration scheme presented in [33, 36] performs one SQP type iteration

with Gauss-Newton Hessian per sampling time. However, it employs a simulta-

neous NLP parameterization, Bock’s direct multiple shooting method, with full

derivatives and condensing. Moreover, it uses the generalized tangential predic-

tor of the “initial value embedding” to correct for the mismatch between the

expected state x̄0 and the actual state x̄′
0
. In contrast to the C/GMRES method

by Ohtsuka, where the predictor is based on one linear system solve, here an

inequality constrained QP is solved. The computations in each iteration are

divided into a long “preparation phase” (a), in which the system linearization

1

2

3W∗

x̄0

(a) Ohtsuka’s C/GMRES method

1

2

3W∗

x̄0

(b) Advanced Step Controller

Figure 16.10 Subsequent solution approximations.
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and condensing are performed, and a much shorter “feedback phase” (b), see

the visualization in Fig. 16.11. The feedback phase solves just one condensed

QP. Depending on the application, the feedback phase can be several orders

of magnitude shorter than the feedback phase. The iterates of the scheme are

visualized in Fig. 16.12(a). The same iterates are obtained with a variant of

the scheme that uses Schlöder’s trick for reducing the costs of the preparation

phase in the case of large state dimensions [80]. Note that only one system lin-

earization and one QP solution are performed in each sampling time, and that

the QP corresponds to a linear MPC feedback along a time varying trajectory.

In contrast to IP formulations, the real-time iteration scheme gives priority to

active set changes and works well when the active set changes faster than the

linearized system matrices. In the limiting case of a linear system model it

gives the same feedback as linear MPC. Error bounds and closed loop stability

of the scheme have been established for shrinking horizon problems in [35]

and for NMPC with shifted and non-shifted initializations in [39] and [38].

✲ time

preparation

feedback

s

tk−1

preparation

feedback

s
x0(tk)

u0 (x0(tk))

tk

s

tk+1

s

Figure 16.11 Division of one real-time iteration into preparation and feedback

phase.

Adjoint-Based Multi-Level Real-Time Iterations [21]: A variant of real-

time iterations was presented in [21], where even cheaper calculations are per-

formed in each sampling time than one Newton or Gauss-Newton step usu-

ally requires. Within the Adjoint-Based Multi-Level Real-Time Iterations, at

the lowest level (A), only one condensed QP is solved, for the most current

initial value x̄0. This provides a form of linear MPC at the base level, taking at

least active set changes into account with a very high sampling frequency. On

the next two intermediate levels, that are performed less often than every sam-

pling time, only the nonlinear constraint residuals are evaluated (B), allowing

for feasibility improvement, cf. also [29], or the Lagrange gradient is evalu-

ated (C), allowing for optimality improvement. This level C is based on the

following QP with inexact matrices
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minimize
Y

Fk
adjQP(Y)

subject to G(x̄′0, Y
k) + B⊤k (Y − Yk) = 0,

subject to H(Yk) +C⊤k (Y − Yk) ≤ 0.

with the QP objective

Fk
adjQP(Y) = Y⊤

(

∇YL(Yk, λk, µk) − Bkλ
k − Ckµ

k
)

︸                                    ︷︷                                    ︸

”modified gradient”

+
1

2
(Y − Yk)⊤Ak(Y − Yk).

(16.29)

A crucial ingredient of this level is the fact that the Lagrange gradient can be

evaluated efficiently by the reverse mode of automatic differentiation. Note that

in all three levels A, B, and C mentioned so far, no new QP matrices are com-

puted and that even system factorizations can be reused again and again. Level

1

2

3W∗

x̄0

(a) Real-Time Iteration scheme

1

2

3

(b) Critical regions of a parametric NLP

Figure 16.12 Subsequent solution approximations (left), and critical regions

(right).
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C iterations are still considerably cheaper than one full SQP iteration [91], but

also for them optimality and NMPC closed-loop stability can be guaranteed

by the results in [38] – as long as the system matrices are accurate enough to

guarantee Newton type contraction. Only when this is not the case anymore,

an iteration on the highest level, D, has to be performed, which includes a full

system linearization and is as costly as a usual Newton type iteration.

16.2 Critical Regions and Online Active Set Strategies

It is interesting to have a look at the parameter space x̄0 visualized in

Fig. 16.12(b). The picture shows the “critical regions” on each of which the

active set in the solution is stable. It also shows three consecutive problems

on a line that correspond to the scenario used in Figures 16.10(a), 16.12(a),

and 16.10(b). Between problem 1 and 2 there is one active set change, while

problems 2 and 3 have the same active set, i.e., are in the same critical region.

The C/GMRES method and Advanced Step Controller exploit the smoothness

on each critical region in order to obtain the conventional Newton predictor

that, however, looses validity when a region boundary is crossed. The real-

time iteration basically “linearizes” the critical regions which then become

polytopic, by using the more accurate, but also more expensive QP predictor.

As the QP cost can become non-negligible for fast MPC applications, a so-

called online active set strategy was proposed in [42]. This strategy goes on

a straight line in the space of linearized regions from the old to the new QP

problem. As long as one stays within one critical region, the QP solution de-

pends affinely on x̄0 – exactly as the conventional Newton predictor. Only if

the homotopy crosses boundaries of critical regions, the active set is updated

accordingly. The online active set strategy is available in the open-source QP

package qpOASES [43], and is particularly suitable in combination with real-

time iterations of level A, B, and C, where the QP matrices do not change,

see [92].
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Exercises

16.1 Recall Exercise 7.6 where we solve the following OCP:

minimize
x0,u0,x1,...,

uN−1,xN

N−1∑

k=0

‖uk‖22

subject to x̄0 − x0 = 0,

Φ(xk, uk) − xk+1 = 0, k = 0, . . . ,N − 1,

xN = 0,

−xmax ≤ xk ≤ xmax, k = 0, . . . ,N − 1,

−umax ≤ uk ≤ umax, k = 0, . . . ,N − 1

with C = 180/π/10 and where now x̄0 is treated as a parameter. In this

problem, we will regard the simultaneous Gauss-Newton algorithm de-

veloped in Exercise 7.6. In particular, we will modify this algorithm to

perform real-time iterations for different values of x̄0, so that we can use

this algorithm to perform closed-loop NMPC simulations for stabiliza-

tion of the nonlinear pendulum.

(a) Summarizing the variables of this problem in a vector w =

(x0, u0, . . . , uN−1, xN) ∈ Rn of dimension n = 152, we note that the

problem can be summarized as a parametric NLP of the form:

pNLP(x̄0) : minimize
w ∈ R152

w⊤Hw

subject to G(x̄0,w) = 0,

−wmax ≤ w ≤ wmax.

Modify the function G from Exercise 7.6 so that it accepts as argu-

ment also the parameter x̄0.

(b) The Gauss-Newton real-time iteration solves, for varying values of x̄0,

a linearized version of this problem in each iteration. More specific,

if the last iterate was w̄, and we want to solve a problem with the

parameter x̄′
0
, the next iterate w′ is determined as the solution of the

following QP:
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pQP(x̄′0, w̄) : minimize
w ∈ R152

w⊤Hw

subject to G(x̄′0, w̄) + JG(w̄)(w − w̄) = 0,

−wmax ≤ w ≤ wmax.

Modify the function GNStep from Exercise 7.6 so that it ac-

cepts the parameter x̄0 as a second input, i.e. write a function

[wplus]=GNRTIStep(xprime,w) that performs one SQP-Gauss-

Newton real-time iteration by solving pQP(x̄′
0
,w).

(c) In order to visualize the generalized tangential predictor, fix the vari-

able vector w at zero and call your function GNRTIStepwith different

values for x̄0. Use linear interpolation of 100 points between zero and

the value (10, 0)⊤, i.e. set x̄0 = λ(10, 0)⊤ for λ ∈ [0, 1]. Plot the first

control u0 as a function of λ and keep your plot.

(d) In order to compute the exact solution manifold with relatively high

accuracy, perform now the same procedure for the same 100 increas-

ing values of λ, but this time perform in each iteration the Gauss-

Newton step, i.e. set w to the output of the last real-time iteration. Plot

the obtained values for u0 and compare with the tangential predictor

by plotting them in the same plot.

(e) In order to see how the real-time iterations work in a more realistic

setting, let the values of λ jump faster from 0 to 1, e.g. by doing only

10 steps, and plot the result again into the same plot.

(f) Modify the previous algorithm as follows: after each change of λ by

0.1 keep it for 9 iterations constant, before you do the next jump.

This will result in about 100 consecutive real-time iterations. Interpret

what you see.

(g) Now we do the first closed-loop simulation: set the value of x̄′
0

to

(10, 0)⊤ and initialize w at zero, and perform the first real-time iter-

ation by solving pQP(x̄′
0
,w). This iteration yields the new solution

guess w′ and corresponding control u′
0
. Use this control at the “real

plant”, i.e., generate the next value of x̄0, say x̄′′
0

, by calling the one

step simulation function, x̄′′
0

:= Φ(x̄′
0
, u′

0
). Close the loop by solving

now pQP(x̄′′
0
,w′), etc., and perform 100 iterations. For better observa-

tion, plot after each real-time iteration the control and state variables

on the whole prediction horizon. (It is interesting to note that the state

trajectory is not necessarily feasible).
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Also observe what happens with the states x̄0 during the scenario, and

plot them in another plot the sequence against the time index. Do they

converge, and if yes, to what value?

(h) We make our problem more difficult now by treating the swing-up of

the pendulum. This is simply done by changing the sign in front of

the sine in the differential equation, i.e. our model is now

f (x, u) =

[

v(t)

C sin(p(t)/C)

]

+

[

0

1

]

u(t). (16.30)

Start your real-time iterations again at w = 0 and set x̄′
0

to (10, 0)⊤,

and perform the same closed-loop simulation as before. Observe what

happens. You might use C = 180/π to avoid too strong nonlinearities.

Also, you might add to the cost the terms
∑N

k=0 ‖xk‖22, i.e. choose H as

a unit matrix, in order to penalize all deviations of the state from zero

stronger.
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Moving Horizon Estimation

In order to predict and optimize the future behaviour of a dynamic system,

one needs to know the state and possibly some unknown parameters of the

system. Aim of this chapter is to present methods that estimate the current

state and system parameters from a series of measurements in the past. It turns

out that many estimation formulations naturally lead to optimization problems

that have nearly the same structure as the optimal control problems treated

earlier in this course. One powerful method for online state and parameter

estimation uses the measurements on a moving time window in the past, and

is called moving horizon estimation. It is the main topic of this chapter, and a

technology often combined with nonlinear model predictive control (NMPC),

with which its optimization problems share many characteristics.

17.1 State and Parameter Estimation Problem Formulation

Throughout this chapter we regard a dynamic system of the following form

xk+1 = fk(xk,wk),

yk = gk(xk,wk) + vk, k = 0, . . . ,N − 1.
(17.1)

Here, fk describes the time varying system dynamics, gk models the measure-

ment process, xk are the unknown system states, and wk are unknown distur-

bances. The measurement noise is also unknown and given by vk, while the

only quantities that we know are the measurements yk. We assume that we

have some important other piece of information, namely some knowledge - or

an educated guess - on the probability density functions (PDF) for the noises

vk and disturbances wk for k = 0, . . . ,N − 1, as well as for the initial state x0.

For ease of notation, we sloppily denote by P(x) the PDF of a random vari-

able X at the point x, i.e. we have P(x) ≥ 0,
∫

P(x)dx = 1, and the expectation

315
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of variable X is computed as E{X} =
∫

xP(x)dx. Without loss of generality, we

assume the following form of PDFs:

P(vk) = exp(−Φk(vk)) · const, k = 0, . . . ,N − 1,

P(wk) = exp(−βk(wk)) · const, k = 0, . . . ,N − 1, and

P(x0) = exp(−α0(x0)) · const,

where the constants are just for normalization and will later not be of further

interest. Note that any PDF can be brought into this form by taking the negative

logarithm, and that a zero value of the PDF corresponds to a value +∞ for the

negative logarithm.

Remark: Note that if (x0,w0,w1, . . . ,wN−1) would be known, they would

uniquely determine all states (x1, . . . , xN). The reason why we like to give a-

priori PDFs for all variables (x0,w0,w1, . . . ,wN−1) is that this helps us to en-

sure that a unique optimal solution exists for the resulting estimation problems,

independent of the observability properties of the system. If additional a-priori

information would be known, e.g. for some of the states (x1, . . . , xN), it could

be added easily to the estimation problem formulations that follow.

17.1.1 Generality of the Considered Dynamic System Class

Though the dynamic system setting in Eqs. (17.1) is a rather compact formula-

tion, it comprises many estimation settings of practical interest. We discuss a

few of them.

Systems with known inputs

If we would have a system described by xk+1 = f̃ (xk, uk,wk) with known inputs

uk, we can bring it into the form (17.1) by defining

fk(xk,wk) := f̃ (xk, uk,wk),

i.e. the dependence of the system on the known controls makes the system time

variant.

Systems with measured inputs

How could we deal with a system described by xk+1 = f̃ (xk, uk, w̃k) with inputs

uk that we do not know exactly, but for which we have measurements ũk? If

the measurement noise on the input measurements is denoted by ṽk, we define
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a disturbance vector wk = (w̃k, ṽk) and bring the system into the form (17.1) by

setting

fk(xk,wk) := f̃ (xk, ũk + ṽk, w̃k).

Systems with unknown parameters

Very often we do not only want to know the system states but also some pa-

rameters that are unknown, but constant in time. If the original system state

would be given by x̃k and the original dynamics by x̃k+1 = f̃ (x̃k, p), we can

proceed as follows to bring the system into the form (17.1). First, we introduce

an individual parameter value pk for each time interval. Second, we define the

augmented system state xk = (x̃k, pk). Third, we define the augmented dynam-

ical system (17.1) as

fk(xk,wk) :=

[

f̃ (x̃k, pk)

pk

]

,

such that the second part of the system dynamics equation, pk+1 = pk, ensures

that the “parameter state” pk remains constant over time.

17.2 The Trajectory Estimation Problem

A first question one might want to answer is the following: given the measure-

ments y = (y0, . . . , yN−1), what are the most probable state and disturbance

trajectories x = (x0, . . . , xN) and w = (w0, . . . ,wN−1)? We decide to work

in a Bayesian estimation framework, and our aim is to find the maximum a-

posteriori (MAP) estimate that maximizes the conditional PDF P(x,w|y) of the

trajectory, given the measurements. Using Bayes’ formula, this PDF is given

by

P(x,w|y) =
P(x,w, y)

P(y)

=
P(y|x,w) · P(x,w)

P(y)

= P(y|x,w) · P(x,w) · const.

Instead of maximizing the conditional PDF, one can equivalently minimize the

negative logarithm of the PDF. Thus, the MAP estimate is given by

arg min
x,w

− log P(x,w) − log P(y|x,w).
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Fortunately, we can find explicit expressions for both terms. First, we note that

P(x,w) = P(x0, . . . , xN ,w0, . . . ,wN−1)

=

{

0, if not xk+1 = fk(xk,wk) for all k = 0, . . . ,N − 1,

P(x0)P(w0) · · ·P(wN−1), else.

This means that

− log P(x,w) =

{

∞, if not xk+1 = fk(xk,wk) for all k = 0, . . . ,N − 1,

α0(x0) +
∑N−1

k=0 βk(wk) + const, else.

For the other term, we use the fact that the conditional probability P(yk|x,w)

to obtain a measurement yk only depends on the state xk and disturbance wk

at the same time time point. Because of yk = gk(xk,wk) + vk, it is given by

P(yk|xk,wk) = P(vk), with vk = yk − gk(xk,wk). Thus, the following identities

hold:

P(y|x,w) = P(y0, . . . , yN−1|x0, . . . , xN ,w0, . . . ,wN−1)

=

N−1∏

k=0

P(yk|xk,wk)

=

N−1∏

k=0

P(vk), with vk = yk − gk(xk,wk) for k = 0, . . . ,N − 1

=

N−1∏

k=0

exp (−Φk(yk − gk(xk,wk))) · const.

Therefore, we obtain the compact expression

− log P(y|x,w) =

N−1∑

k=0

Φk(yk − gk(xk,wk)).

Taking both expressions together, we obtain the MAP estimate as solution of

the following minimization problem, where we exclude the infinite objective

values by the corresponding constraints:

minimize
x,w

α0(x0) +

N−1∑

k=0

[

Φk(yk − gk(xk,wk)) + βk(wk)
]

subject to xk+1 − fk(xk,wk) = 0, k = 0, . . . ,N−1.

(17.2)

We will often call the term α0(x0) the “arrival cost”, as it measures the “cost”

for arriving at x0. For notational convenience, we also define the shorthand

ϕk(xk,wk) := Φk(yk − gk(xk,wk)) + βk(wk)
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and call this term, as in the previous chapters, the “stage cost”. Note that the

optimization problem (17.2) is of exactly the same form as the optimal control

problems discussed previously in this lecture.

17.2.1 Examples for the stage and arrival costs

Very often the cost terms α0(x0), βk(wk) and Φk(vk) are chosen as quadratic

penalties. For notational convenience we define ‖x‖2
P

:= x⊤Px for positive

definite matrices P ≻ 0. Note that quadratic penalties correspond to weighted

ℓ2-norms, as ‖x‖2
P
= ‖P 1

2 x‖2
2
, where P

1
2 is the unique symmetric matrix square

root such that P
1
2 · P

1
2 = P. A typical choice for the arrival cost is α0(x0) =

‖x0 − x̄0‖2P, where x̄0 is an a-priori guess for the initial state, and P an inverse

covariance matrix expressing the confidence we have for this guess. For the

disturbances, a penalty βk(wk) = ‖wk‖2R expresses how unlikely we expect them

to be. For the measurement errors, the quadratic penalty Φk(vk) = ‖vk‖2Q is

often used, where Q−1 is the covariance matrix we expect for the measurement

errors.

Instead of quadratic penalties, that correspond to the assumption of Gaussian

distributions, other choices are possible as well. Mostly, one uses convex func-

tions, because of their beneficial properties for optimization. Two other popular

convex penalty functions are the (possibly weighted) ℓ1-norm ‖v‖1 =
∑nv

i=1
|vi|,

which corresponds to a Laplace distribution, and the Huber penalty, that is for

a scalar input v ∈ R defined as

ΦHuber,σ(v) =

{

v2 if |v| < σ,
2σ|v| − σ2 else.

The Huber penalty corresponds to a distribution that looks like a Gaussian in

the neighborhood of zero, but which has “fatter tails” than a Gaussian. These

fat tails can express our expectation that outliers might appear, i.e. that we

expect that large residuals have a higher probability than a normal distribution

would suggest. From the penalty function perspective, both the ℓ1- and the

Huber-penalty have the property that they penalize large error residuals less

than a quadratic penalty would do. Thus, using ℓ1- or Huber-penalties for the

measurement error functions Φk(vk) allows one to design estimators that are

more robust against outliers than the usual ℓ2-norm based estimators.

Remark on parameter jumps: An interesting other application of the ℓ1-

norm arises in the case when we want to detect jumps in some parameter p,

but we expect these jumps to occur only rarely. In addition to the usual system
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dynamics and measurement equation, one can then model the parameter dy-

namics by pk+1 = pk + wk and penalize the parameter jumps with an ℓ1-norm,

i.e. choose βk(wk) := ‖wk‖1. This discourages changes in pk, and nonzero val-

ues for wk, i.e. changes in pk, will only occur in the optimal solution if there is

a significant benefit in terms of the other optimization objective terms.

17.3 Dynamic Programming for the Trajectory Estimation

Problem

Because the trajectory estimation problem is an optimal control problem, it

can also be solved by dynamic programming. In this context, it is interesting to

observe that dynamic programming can in principle be performed in forward as

well as in backwards direction. In estimation problems, in contrast to standard

optimal control problems, one usually chooses to go in forward direction. The

reason is that dynamic programming then allows us to “forget the past” and to

just summarize the contribution of the past in one function, which we call the

“arrival cost”. The arrival cost is the equivalent to the “cost-to-go” in the usual

backwards dynamic programming recursion. We define the arrival cost αn(xn)

for any n ≤ N as the cost to arrive after n steps at state xn:

αn(xn) := minimize
x0,w0,...,
xn−1,wn−1

α0(x0) +

n−1∑

k=0

ϕk(xk,wk)

subject to xk+1 = fk(xk,wk), k = 0, . . . , n − 1.

Note that xn is not a variable, but a fixed parameter for the optimization prob-

lem. By the dynamic programming principle, one can compute the arrival cost

recursively, using the fact that the only connection between time n and n + 1

is via the state xn+1. The dynamic programming recursion proceeds as follows,

for n = 0, . . . ,N − 1:

αn+1(xn+1) = minimize
xn,wn

αn(xn) + ϕn(xn,wn)

subject to xn+1 = fn(xn,wn).
(17.3)

Again, note that xn+1 is a fixed parameter to the optimization problem. To

use dynamic programming to solve the trajectory estimation problem, one pro-

ceeds as follows:

(i) Start with the given arrival cost α0(·).
(ii) Compute α1(·) up to αN(·), using the dynamic programming recur-

sion (17.3)
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(iii) Compute x∗
N
= arg min

xN

αN(xN).

(iv) For n = N − 1, . . . , 0, compute (x∗n,w
∗
n) = arg min

xn,wn

αn(xn) +

ϕn(xn,wn) s.t. x∗n+1= fn(xn,wn).

Note that very often one is only interested in the estimate for the last state,

x∗
N

, which is already obtained after Step 3. Thus, Step 4 is optional, and only

needed if one wants to know an estimate of the complete trajectory. However,

if one is really only interested in the last state xN , why should one first try

to maximize the MAP P(x,w|y) of the complete trajectory? In this case, one

should rather maximize directly the PDF P(xN |y) of the last state, as we will

do in Section 17.5. It will later turn out that both estimation formulations, the

trajectory estimation and the direct estimation of the last state, lead to the same

results for linear quadratic estimation problems.

17.4 Linear Quadratic Trajectory Estimation

Let us specialize the trajectory estimation problem to the special case of linear

dynamic systems with quadratic costs, i.e. with underlying Gaussian PDFs for

disturbances and measurement errors. In this case we deal with the following

quantities.

fk(xk,wk) = Ak xk + bk + wk,

gk(xk,wk) = Ck xk,

βk(wk) =
1

2
‖wk‖2R,

Φk(vk) =
1

2
‖vk‖2Q, for k = 0, . . . ,N − 1, and

α0(x0) =
1

2
‖x0 − x̄0‖2P0

.

(17.4)

Note that we have chosen a formulation for the system dynamics in which the

disturbances affect every state directly. This will allow us to simplify some later

expressions. The optimal control problem resulting from this linear quadratic

estimation setup is the following.

minimize
x,w

1

2
‖x0 − x̄0‖2P0

+

N−1∑

k=0

[

1

2
‖yk −Ck xk‖2Q +

1

2
‖wk‖2R

]

subject to xk+1 − Ak xk − bk − wk = 0, k = 0, . . . ,N − 1.

(17.5)
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One can easily eliminate all wk using the equality constraints, and then one

obtains the following unconstrained quadratic optimization problem.

minimize
x

1

2
‖x0 − x̄0‖2P0

+

N−1∑

k=0

[

1

2
‖yk − Ck xk‖2Q +

1

2
‖xk+1 − Akxk − bk‖2R

]

.

To solve it, one might just differentiate the objective function with respect to x

and set the gradient to zero, which results in a sparse linear equation system for

the optimal state trajectory x∗. On the other hand, one could also use dynamic

programming to solve it. To formulate the dynamic programming recursion,

we first state a useful lemma and corollary.

Lemma 17.1 (Schur Complement Lemma). If R ≻ 0, the following identity

holds

[

x

u

]⊤ [

Q S ⊤

S R

] [

x

u

]

= x⊤(Q − S ⊤R−1S ) x + ‖R−1S x + u‖2R.

In particular,

min
u

[

x

u

]⊤ [

Q S ⊤

S R

] [

x

u

]

= x⊤(Q − S ⊤R−1S ) x.

If in addition

[

Q S ⊤

S R

]

≻ 0, then also Q − S ⊤R−1S ≻ 0.

The proof of the lemma uses the matrix decomposition

[

Q S ⊤

S R

]

=

[

Q − S ⊤R−1S 0

0 0

]

+

[

S ⊤R−1S S ⊤

S R

]

and the fact that the second term can be expressed as

[

x

u

]⊤ [

S ⊤R−1S S ⊤

S R

] [

x

u

]

= x⊤S ⊤R−1S x + 2u⊤S x + u⊤Ru = ‖R−1S x + u‖2R.

From this we also obtain the following corollary.

Corollary 17.2 (Summarizing Linear Quadratic Costs). If R ≻ 0 then





1

x

u





⊤


c q⊤ s⊤

q Q S ⊤

s S R









1

x

u





=c − s⊤R−1s + 2x⊤(q − S ⊤R−1s)

+ x⊤(Q − S ⊤R−1S )x + ‖R−1(s + S x) + u‖2R.
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The proof of the corollary uses the previous lemma with S̃ = [s|S ], Q̃ =
[

c q⊤

q Q

]

and x̃ =

[

1

x

]

, and the fact that

Q̃ − S̃ ⊤R−1S̃ =

[

c q⊤

q Q

]

−
[

s⊤R−1s s⊤R−1S

S ⊤R−1s S ⊤R−1S

]

.

To formulate the dynamic programming recursion, we assume that αk(xk) =
1
2
‖xk − x̄k‖2Pk

and eliminate wk, which results in the following formula.

αk+1(xk+1) = minimize
xk

1

2
‖xk − x̄k‖2Pk

+
1

2
‖yk −Ck xk‖2Q +

1

2
‖xk+1 − Ak xk − bk‖2R.

(17.6)

Using the above corollary, we know that the solution is a quadratic function.

We use the identity

‖xk − x̄k‖2Pk
+ ‖yk − Ck xk‖2Q + ‖xk+1 − Ak xk − bk‖2R

= const +





1

xk+1

xk





⊤ 



const (−Rbk)⊤ s̃⊤

(−Rbk) R (−A⊤
k

R)⊤

s̃ (−A⊤
k

R) R̃









1

xk+1

xk





,

with R̃ := Pk +C⊤
k

QCk + A⊤
k

RAk and s̃ := (Pk x̄k −C⊤
k

Qyk + A⊤
k

Rbk). Based on

the corollary, with ũ = xk, the quadratic function is explicitly given by

αk+1(xk+1) = const+
1

2
x⊤k+1

(

R − (A⊤k R)⊤R̃−1A⊤k R
)

xk+1+x⊤k+1

(

−Rbk + (A⊤k R)⊤R̃−1 s̃
)

.

We define the matrix Pk+1 :=
(

R − (A⊤
k

R)⊤R̃−1A⊤
k

R
)

, which is positive def-

inite due to the fact that the original quadratic function was positive defi-

nite in (xk, xk+1). To bring αk+1(xk+1) into a more compact form, we define

x̄k+1 = −P−1
k+1

(

−Rbk + (A⊤
k

R)⊤R̃−1 s̃
)

. We can then show that

αk+1(xk+1) =
1

2
‖xk+1−x̄k+1

‖2Pk+1
+ const

as an immediate consequence of the following basic lemma.

Lemma 17.3. If P ≻ 0 and x̄ = −P−1g then 1
2

x⊤Px + g⊤x = ‖x − x̄‖2
P
+ const.

Disregarding the constants, we have described an algorithm to generate the

data Pk+1 and x̄k+1 that are necessary to represent the negative logarithm of

the PDF P(xn|y), i.e. αk+1(xk+1). The only inputs to the algorithm are the data

describing the negative logarithm of the PDF of the prior information, Pk and

x̄k, as well as the measurement yk.
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17.5 Recursive Bayesian Estimation of the Last State

Very often, one is only interested in estimating the last state xN , not in the

whole trajectory. For this aim, a technique that is very similar to dynamic pro-

gramming can be used that is called Recursive Bayesian Estimation. The idea

is to recursively compute the conditional PDF of the state xn+1 given all mea-

surements y0, . . . , yn. We note that the only memory of the system is the state

xn, and that the latest measurement yn helps us to learn more about the PDF of

xn. For these reasons, one can derive the following identity.

P(xn+1|y0, . . . , yn) =

∫

P(xn+1|xn)P(xn|y0, . . . , yn) dxn

=

∫

P(xn+1|xn,wn)P(xn,wn|y0, . . . , yn) dxndwn

=

∫

fn(xn,wn)=xn+1

P(xn,wn|y0, . . . , yn) dxndwn

=

∫

fn(xn,wn)=xn+1

P(xn,wn|y0, . . . , yn−1)P(yn|xn,wn)

P(yn|y0, . . . , yn−1)
dxndwn

= const ·
∫

fn(xn,wn)=xn+1

P(xn,wn|y0, . . . , yn−1)P(yn|xn,wn) dxndwn

= const ·
∫

fn(xn,wn)=xn+1

P(wn)P(xn|y0, . . . , yn−1)P(yn|xn,wn) dxndwn

= const ·
∫

fn(xn,wn)=xn+1

e−βn(wn)P(xn|y0, . . . , yn−1)e−Φ(yn−gn(xn,wn)) dxndwn.

(17.7)

The result is a recursive formula to compute P(xn+1|y0, . . . , yn) from the last

measurement yn and from P(xn|y0, . . . , yn−1). There are many ways to rep-

resent the probability density P(xn|y0, . . . , yn−1). One way would be to use

a fine grid in state space which creates many rectangular volumes, each of

which represents a constant probability density. Another way would be to use

“Gaussian-Mixtures”, i.e. to represent P(xn|y0, . . . , yn−1) by a sum of Gaussian

PDFs. Yet another way would be to sample the PDFs of xn and wn by using

“particles” each possibly with some weight, and then propagate the particles

through the system dynamics and to modify their weights according to the fac-

tor e−Φ(yn−gn(xn,wn)) that depends on how compatible each particle is to the actual

measurement. Particle resampling allows one to let very unprobable particles

“die” and save computation speed.

The problem of all approaches mentioned above is that they suffer, like dy-

namic programming, from the “curse of dimensionality”, i.e. they are difficult

to apply for state spaces of nontrivial dimensions (not higher than e.g. nx = 6).
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For this reason, very often one chooses to approximate the conditional PDF

with a single Gaussian, and to use some form of linearization to propagate

the PDF through the system dynamics. This approach leads to the Extended

Kalman Filter (EKF), that is a generalization of the Kalman Filter equations

to nonlinear systems. An approach that is very closely related to the EKF, but

which uses a very specific form of sampling instead of the system linearization,

is called the Unscented Kalman Filter (UKF).

17.6 Estimation of Last State for Linear Systems with

Gaussian Noises

One interesting special case is, again, the linear system with Gaussian measure-

ment and state noises. We regard the same setup as before in Eqs. (17.4), but

instead of solving the trajectory estimation problem given all measurements y,

which was equivalent to the QP (17.5), we now want to propagate the PDFs

P(xn|y0, . . . , yn−1) for the current state given only the previous measurements.

For this we use the Bayesian estimation framework (17.7), and apply it to the

special case where we start with a Gaussian distribution, i.e. we assume that

P(xn|y0, . . . , yn−1) = const · exp

(

−1

2
‖xn − x̄n‖2Pn

)

where the two data items x̄n and Pn describe the Gaussian PDF completely, up

to a constant. We deliberately use the same names for these two quantities like

before in the dynamic programming solution of the linear quadratic trajectory

estimation problem, because they will turn out to obey the same propagation

rule, i.e. they are identical. The recursion formula

P(xn+1|y0, . . . , yn) = const ·
∫

fn(xn,wn)=xn+1

P(wn)P(xn|y0, . . . , yn−1)P(yn|xn,wn) dxndwn

becomes in this special case the following expression:

P(xn+1|y0, . . . , yn) = const ·
∫

An xn+bn+wn=xn+1

e−
1
2
‖wn‖2R e−

1
2
‖xn−x̄n‖2Pn e−

1
2
‖yn−Cxn‖2Q dxndwn

= const ·
∫

e−
1
2
‖An xn+bn−xn+1‖2R e−

1
2
‖xn−x̄n‖2Pn e−

1
2
‖yn−Cxn‖2Q dxn

= const ·
∫

e−
1
2

(‖An xn+bn−xn+1‖2R+‖xn−x̄n‖2Pn
+‖yn−Cxn‖2Q) dxn.
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The exponent in the last line is the same expression as we had before in

Eq. (17.6), and can therefore, following Corollary 17.2, be written as

‖Anxn+bn − xn+1‖2R + ‖xn − x̄n‖2Pn
+ ‖yn −Cxn‖2Q

= const + ‖xn+1 − x̄n+1‖2Pn+1
+ ‖m+Mxn+1 + xn‖2R̃

using the same definitions of Pn+1 and x̄n+1 and R̃ as before, and where m and

M are a constant vector and matrix of suitable dimensions that we could, but

do not want to write down in detail here, as their values are not relevant. Using

this identity and the fact that a sum of exponentials translates into a product,

we can further simplify the integral above to obtain the following expressions.

P(xn+1|y0, . . . , yn) = const · e−
1
2
‖xn+1−x̄n+1‖2Pn+1

∫

e−
1
2
‖m+Mxn+1+xn‖2R̃ dxn

︸                       ︷︷                       ︸

=const

= const · e−
1
2
‖xn+1−x̄n+1‖2Pn+1 .

Here, we have used the fact that the integral is constant because it is the integral

over a Gaussian distribution with variable mean value but constant covariance

matrix. The value of such an integral is indeed independent of the location of

the mean, and therefore independent of xn+1. This simple fact is the reason

why the recursive Bayesian estimation of the last state gives exactly the same

result – up to a constant – as the arrival-cost computation via dynamic pro-

gramming. We remark that this identity is only true for linear systems with

Gaussian measurement noise and state disturbances. An interesting subject for

future research is to investigate the general nonlinear or non-Gaussian case

and to compare the PDF that is implied by the dynamic programming compu-

tation of the arrival cost with the PDF resulting from the recursive Bayesian

estimation of the last state.

17.7 The Kalman Filter and the Extended Kalman Filter

Equations

Let us summarize again, from a user perspective, the recursive algorithm to

compute the arrival cost – or, equivalently, the negative logarithm of the condi-

tional PDF – for linear systems with Gaussian noises. This algorithm was first

derived by Rudolf E. Kalman and is therefore called the Kalman filter.

Input data: An initial mean x̄n and inverse covariance Pn, a measurement yn

with inverse measurement noise covariance Q of noise vk and matrix Cn in the
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measurement model yn = Cnxn + vn, the matrix An and drift term bn in the

propagation model xn+1 = Anxn + bn + wn, and an inverse covariance R of the

state noise wk. We note that we might have chosen Q and R to depend on n

without changing the algorithm. The following set of real valued vectors and

matrices forms thus the input of the algorithm:

(x̄n, Pn,Q,Cn, An, bn,R).

Computational steps: Compute the intermediate quantities

R̃ := Pn +C⊤n QCn + A⊤n RAn and s̃ := (Pn x̄n −C⊤n Qyn + A⊤n Rbn),

as well as the result

Pn+1 :=
(

R − (A⊤n R)⊤R̃−1A⊤n R
)

and x̄n+1 = −P−1
n+1

(

−Rbn + (A⊤n R)⊤R̃−1 s̃
)

.

Output data: A mean x̄n+1 and inverse covariance Pn+1 that represent the

conditional PDF P(xn+1|y0, . . . , yn), or, alternatively, the arrival-cost αn+1(xn+1).

The Extended Kalman Filter

The Extended Kalman Filter (EKF) applies the same algorithm to nonlinear

systems of the form

xn+1 = f (xn) + wn and y′n = g(xn) + vn

by linearizing the nonlinear functions f and g at the currently most probable

value, namely at x̄n. This means that we use the following linear models:

xn+1 = f (x̄n) +
∂ f

∂x
(x̄n)(xn − x̄n) + wn

and

y′n = g(x̄n) +
∂g

∂x
(x̄n)(xn − x̄n) + vn.

To bring the data into exactly the same format as the above Kalman filter equa-

tions require, we define the corresponding Kalman filter input data as follows:

An :=
∂ f

∂x
(x̄n) and bn := f (x̄n) − An x̄n

as well as

Cn :=
∂g

∂x
(x̄n) and yn := y′n − g(x̄n) + Cn x̄n.

After the Kalman filter computations, the new mean value x̄n+1 is obtained, and

can be used as the linearization point for the next step of the EKF.
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