
Grundvorlesung Optimierung (Prof. Rolf Backofen)
Abschnitt Nichtlineare Programmierung (Prof. Moritz Diehl)

Albert-Ludwigs-Universität Freiburg – Wintersemester 2025/26

Übung 5: Nichtlineare Programmierung und CasADi

Prof. Moritz Diehl, Florian Messerer

Einführung in CasADi

CasADi1 ist eine open-source Toolbox zur schnellen Implementierung von nichtlinearen Optimie-
rungsproblemen. Der CasADi Code selber ist in C++ geschrieben, aber es gibt Interfaces für Python,
Matlab und Octave. Ableitungen werden automatisch über Algorithmische Differenzierung (AD)
berechnet, ein effizientes und gleichzeitig präzises Verfahren. Zum Lösen der Probleme kann Ca-
sADi diese an verschiedene (alleinstehende) Solver übergeben. Der open-source Solver IPOPT, ein
nichtlineares Innere-Punkt-Verfahren, ist in einer CasADi-Installation bereits enthalten.
Nichtlineare Programme werden in CasADi in der Standardform

min
x ∈ Rn

f(x)

s.t. xlb ≤ x ≤ xub,

glb ≤ g(x) ≤ gub

(1)

formuliert, wobei die vektorwertige Funktion g : Rn → Rm zusammen mit den Begrenzungen
glb, ulb ∈ Rm die nichtlinearen Nebenbedingungen ausdrückt. Für dieses Übungsblatt werden wir die
Hilfsumgebung Opti Stack2 nutzen, welche eine Syntax bietet, die sehr nah an die Papiernotation
angelehnt ist. Die so formulierten NLP werden automatisch in die Standardform (1) übertragen.

Aufgaben:

1. Installieren Sie CasADi via pip install casadi in Ihr gewünschtes Environment.

2. Machen Sie sich mit den bereitgestellten Codebeispielen vertraut und führen diese aus.
puppy.py enthält eine Implementierung der Bildrekonstruktion, die Sie bereits aus Übung 2
kennen. chain.py implementiert eine hängende Kette. Beide Beispiele werden in den folgenden
Abschnitten kurz vorgestellt.

Beispiel 1: Bildrekonstruktion

Wir haben ein verrauschtes schwarz-weiß Bild in Form der Matrix Y ∈ Rr×c gegeben, sodass die Ele-
mente die Intensität der einzelnen Pixel definieren, 0 ≤ Yi,j ≤ 256. Ziel ist es, eine weniger verrauschte
Version X ∈ Rr×c zu rekonstruieren. Dies kann als das unbeschränkte Optimierungsproblem

min
X ∈ Rr×c

r∑
i=1

c∑
j=1

(√
(Xi,j − Yi,j)2 + 1 + α

√
(Xi,j −Xi+1,j)2 + (Xi,j −Xi,j+1)2 + 1

)
(2)

formuliert werden. Hierbei haben wir “Phantompixel” Xr+1,j und Xi,c+1 angenommen, mit Xr+1,j =
Xr,j und Xi,c+1 = Xi,c, um das Definieren der Summenindizes zu erleichtern. Abbildung 1 zeigt ein
Beispiel einer so erhaltenen Rekonstruktion mit α = 0.5.

1https://web.casadi.org
2https://web.casadi.org/docs/#document-opti

1

https://web.casadi.org
https://web.casadi.org/docs/#document-opti

Abbildung 1 – Beispiel einer durch Lösung von Problem (2) erhaltenen Rekonstruktion. Links: Verrauschtes
Original Y . Rechts: Rekonstruierte Version X mit α = 0.5.

Beispiel 2: Hängende Kette

Wir betrachten eine Kette, bestehend aus N Massepunkten, die durch N−1 Federn verbunden sind.
Die Massepunkte haben Masse m und Positionen (yi, zi), mit i ∈ {0, . . . , N}. Die beiden äußersten
Massepunkte sind fixiert, (y1, z1) = (−2, 1) sowie (yN , zN) = (2, 1). Wir wollen eine Ruheposition der
Kette finden, was der Minimierung der Kettenenergie V (y, z) entspricht. Diese setzt sich zusammen
aus der Lageenergie der Massen sowie der potentiellen Energie der Federn:

V (y, z) =
N∑
i=0

mgzi +
1

2

N−1∑
i=0

D
(
(yi − yi+1)

2 + (zi − zi+1)
2
)
, (3)

wobei g die Erdbeschleunigung ist und D die Federkonstante. Wir führen nun zwei Variationen
dieses Problems ein.

1. Unterhalb der Kette befindet sich eine ebene Fläche, die die Kette nach unten hin beschränkt.
Dies drücken wir durch die Nebenbedingung zi ≥ 0 aus.

2. Unterhalb der Kette befindet sich ein Hügel. Diesen drücken wir durch die Nebenbedingung
zi ≥ −y2i aus.

Alles zusammen führt uns zu folgenden nichtlinearen Programmen:

Variation 1

min
y, z ∈ RN

V (y, z) (4a)

s.t. (y1, z1) = (−2, 1), (4b)

(yN , zN) = (2, 1), (4c)

zi ≥ 0, 1 ≤ i ≤ N (4d)

Variation 2

min
y, z ∈ RN

V (y, z) (5a)

s.t. (y1, z1) = (−2, 1), (5b)

(yN , zN) = (2, 1), (5c)

zi ≥ −y2i , 1 ≤ i ≤ N (5d)

Beachten sie, dass es sich bei NLP (4) um ein konvexes QP handelt (wieso?), während (5) ein
nichtkonvexes NLP ist (wieso?). In chain.py finden Sie eine vollständige Implementierung beider
Probleme hiervon. Abbildung 2 zeigt die Lösungen der beiden Variationen. Für Variation 2 sind
zwei mögliche Lösungen dargestellt.

Aufgabe 1: Optimale Kreisplatzierung

Im Rahmen eines Produktionsprozesses sollen fünf Kreise, s1, . . . , s5, aus einer quadratischen Platte
mit Kantenlänge a = 10 cm ausgeschnitten werden. Drei dieser Kreise sollen den Radius R haben, die
anderen beiden den Radius 2R. Die Position eines Kreises si auf der Platte ist durch die Koordinaten
(xi, yi) seines Mittelpunktes bestimmt. Ziel ist es, die Kreise so anzuordnen, dass der Radius R so

2

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
y

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

z
Mit Bedingung zi 0

Boden
Loesung

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
y

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

z

Mit Bedingung zi y2
i

Huegel
Loesung 1
Loesung 2

Abbildung 2 – Illustration der hängenden Kette in beiden Variationen.

groß wie möglich gewählt werden kann. Dabei muss sowohl sichergestellt werden, dass alle Kreise
auf der Platte liegen, als auch dass sich diese nicht überschneiden. Eine Illustration der Situation ist
in Abbildung 3 gegeben.

0 2 4 6 8 10
x

0

2

4

6

8

10

y

s1

s2

s3

s4

s5

Abbildung 3 – Beispiel einer möglichen – aber nicht optimalen – Anordnung der Kreise.

Wir können dies als das folgende nichtlineare Optimierungsproblem ausdrücken:

min
R,x1,...,x5,
y1,...,y5

−R (6a)

s.t. xi − ri(R) ≥ 0, i = 1, ..., 5, (6b)

xi + ri(R) ≤ a, i = 1, ..., 5, (6c)

yi − ri(R) ≥ 0, i = 1, ..., 5, (6d)

yi + ri(R) ≤ a, i = 1, ..., 5, (6e)

(xi − xj)
2 + (yi − yj)

2 ≥ (ri + rj)
2, i, j = 1, . . . , 5 mit i < j (6f)

mit ri(R) = R für i ∈ {1, 2, 3} und ri(R) = 2R für i ∈ {4, 5}.

3

Aufgaben:

1. Diskutieren Sie kurz, ob das Problem konvex ist.

2. Vervollständigen Sie das bereit gestellte Template, um das Optimierungsproblem mit CasADi
und IPOPT zu lösen. Wie groß ist der Radius, den Sie erhalten?

3. Im Template war bereits eine konkrete Initialisierung der Entscheidungsvariablen gegeben.
Verändern Sie diese, um mindestens eine bessere Lösung zu erhalten. Was ist die beste Lösung,
die Sie finden können? Ist es möglich, dass es eine noch bessere gibt?

Aufgabe 2: Optimale Steuerung eines Pendels

0 20 40 60 80
diskrete Zeit k

2.50

2.75

3.00

3.25

3.50

3.75

4.00

Pe
nd

el
po

sit
io

n

Abbildung 4 – Links: Skizze des Pendels. Rechts: Trajektorie des Pendels mit Initialzustand x0 = [34π 0]⊤

und ohne Steuerung, uk = 0 ∀k.

Wir betrachten ein Pendel. Dessen Position ist durch den Winkel θ eindeutig bestimmt. Dabei
entspricht θ = π der Position, in der es gerade nach unten hängt. Eine Illustration finden Sie in
Abbildung 4. In der Aufhängung des Pendels sitzt ein Motor, sodass es anhand eines Drehmoments u
gesteuert werden kann. Die Winkelgeschwindigkeit ist ω = θ̇. Fassen wir Position und Geschwindigkeit

im Zustandsvektor x =
[
θ ω

]⊤
zusammen, können wir die Dynamik des Pendels durch die

gewöhnliche Differentialgleichung (ordinary differential equation, ODE)

ẋ =

[
θ̇

ω̇

]
= f(x, u) :=

[
ω

sin θ + u

]
(7)

beschreiben3.
Wir betrachten das Pendel über die Zeitdauer T und diskretisieren diese in N Zeitschritte. Zur
Simulation verwenden wir das Runge-Kutta-Verfahren 4. Ordnung (RK4)4 und erhalten dadurch die
diskretisierte Dynamik

xk+1 = Fh(xk, uk). (8)

Hierbei ist xk der Zustand zum diskreten Zeitpunkt k, k ∈ {0, . . . , N}, und h := T
N

der Inte-
grationsschritt. Wir fassen die Zustände und die Steuerungsinputs zu allen Zeitpunkten in den
Matrizen

X :=
[
x0 . . . xN

]
∈ R2×N+1 und U :=

[
u0 . . . uN−1

]
∈ R1×N (9)

3Zur Vereinfachung haben wir hier alle Einheiten ignoriert. Eigentlich müsste vor den Sinus ein Faktor mit Einheit,
da dieser dann mit dem Drehmoment summiert wird.

4https://de.wikipedia.org/wiki/Klassisches_Runge-Kutta-Verfahren

4

https://de.wikipedia.org/wiki/Klassisches_Runge-Kutta-Verfahren

zusammen. Unser Ziel ist es nun, das Pendel aus seiner herabhängenden Ruhelage x̄0 =
[
π 0

]⊤
zum

Zeitpunkt k = 0 in die aufrechtstehende Position x̄N =
[
0 0

]⊤
zum Zeitpunkt k = N zu schwingen.

Dabei wollen wir den Steuerungsaufwand L(U) :=
∑N−1

k=0 u2
k minimieren.

Aufgaben:

1. Formulieren Sie unser Optimalsteuerungsproblem als nichtlineares Programm. Dabei sollen
x0, . . . , xN und u0, . . . , uN−1 die Entscheidungsvariablen sein. Die Nebenbedingungen sind die
Dynamik, sowie die Start- und Zielposition.

2. Diskutieren Sie kurz, ob das Problem konvex ist.

3. Benutzen Sie das bereitgestellte Template, um das NLP mit CasADi und IPOPT zu lösen.
Erstellen sie Plots der optimalen Trajektorien von θ, ω und u, mit der diskreten Zeit k auf der
x-Achse. Sie können ihre Lösung außerdem mit der bereitgestellten Animation (pendulum.gif)
vergleichen.

4. Wir führen nun eine zusätzliche Beschränkung der Steuerung ein. Zu allen Zeitpunkten soll
gelten: |uk| ≤ umax. Diskutieren Sie kurz, wie sich der optimale Wert der Zielfunktion dadurch
verändert.

5. Erweitern Sie ihre NLP Formulierung um die zusätzliche Beschränkung. Beachten Sie, dass
Sie hierbei die Betragsfunktion | · | nicht verwenden sollten, da diese an der Stelle 0 nicht
differenzierbar ist. Dies kann zu Problemen führen. Finden Sie stattdessen eine Umformulierung
dieser Nebenbedingung.

6. Erweitern Sie Ihre Implementierung um die zusätzliche Nebenbedingung. Verwenden Sie
umax = 0.13.

Aufgabe 3: Optimalsteuerung mit acados (Bonus)

In dieser Aufgabe lernen wir das open-source Softwarepaket acados kennen. acados bietet eine
Sammlung effizienter Algorithmen, die auf das Lösen von Optimalsteuerungsproblemen spezialisiert
sind. Dafür implementiert acados ein SQP-Verfahren sowie numerische Integratoren für Differenti-
algleichungen. Zum Lösen der im SQP-Verfahren anfallenden QP wird auf moderne open-source
QP-Löser zurückgegriffen, z.B. HPIPM, qpOASES, OSQP, DAQP. Optimalsteuerungsprobleme werden mit
CasADi’s symbolischen Variablen definiert, welches auch zur Berechnung von Ableitungen verwendet
wird. Für die grundlegenden Operationen der linearen Algebra (z.B. Matrix-Matrix-Multiplikationen)
wird BLASFEO verwendet. Auf Grundlage der erwähnten Komponenten generiert acados dann C-Code,
welcher ohne externe Abhängigkeiten auskommt. Dieser kann insbesondere auch auf eingebetteten
Systemen ausgeführt werden, was die Optimalsteuerung technischer Systeme in Echtzeit ermöglicht.
Unter folgenden Links finden Sie weitere Informationen:

▶ Dokumentation: https://docs.acados.org/

▶ Installation: https://docs.acados.org/installation/

▶ Python-Interface Installation: https://docs.acados.org/python_interface/

▶ acados OCP-Formulierung: https://github.com/acados/acados/blob/master/docs/

problem_formulation/problem_formulation_ocp_mex.pdf

▶ acados Forum: https://discourse.acados.org

5

https://docs.acados.org/
https://docs.acados.org/installation/
https://docs.acados.org/python_interface/
https://github.com/acados/acados/blob/master/docs/problem_formulation/problem_formulation_ocp_mex.pdf
https://github.com/acados/acados/blob/master/docs/problem_formulation/problem_formulation_ocp_mex.pdf
https://discourse.acados.org

px

θ

M

m

l

F

Abbildung 5 – Illustration des Pendels auf einem Wagen.

Pendel auf einem Wagen Als Beispielproblem betrachten wir ein Pendel, das auf einem Wagen
befestigt ist, siehe Abb. 5. Der Mittelpunkt des Wagens hat die horizontale Position px, welche wir
durch Ausüben einer Kraft F beinflussen können. Die Auslenkung des Pendels, welches die Länge l
hat, ist durch den Winkel θ beschrieben. Der Wagen hat die Masse M , und an der Spitze des Pendels
ist ein Ball mit Masse m befestigt. Auf die Pendelmasse wirkt außerdem die Erdbeschleunigung g.
Die horizontale Geschwindigkeit des Wagens ist vx und die Winkelgeschwindigkeit des Pendels ist ω.
Durch Zusammenfassen der (Winkel)positionen und -geschwindigkeiten im Zustandsvektor x können
wir das System durch folgende Differentialgleichung beschreiben:

x =


px

θ

vx

ω

 , ẋ =


vx

ω
−mlω2 sin θ+mg cos θ sin θ+F

M+(1−cos2 θ)m
−mlω2 cos θ sin θ+F cos θ+(M+m)g sin θ

l(M+(1−cos2 θ))m


︸ ︷︷ ︸

=: f(x,u)

. (10)

Unser Ziel ist es nun das Pendel aus einer herabhängenden Position in eine aufrechte Position (θ = 0)
zu schwingen, während der Wagen am Ende die Position px = 0 haben soll. Unser Steuereingang ist
hierbei u = F . Dies soll innerhalb des Zeitintervals t ∈ [0, T] passieren. Wir drücken dies als das
folgende Optimalsteuerungsproblem aus,

min
x(·), u(·)

∫ T

0

1
2
x(t)⊤Qx(t) + 1

2
u(t)⊤Ru(t)dt+ 1

2
x(T)⊤Qex(T) (11a)

s.t. x(0) = x̄0, (11b)

ẋ(t) = f(x(t), u(t)), t ∈ [0, T], (11c)

−umax ≤ u(t) ≤ umax, t ∈ [0, T], (11d)

wobei x̄0 der gegebene initiale Zustand des Systems ist.
Anders als wir es bisher in der Vorlesung gesehen haben, sind in dem obigen Optimalsteuerungs-
problem die Entscheidungsvariablen x(·) und u(·) Funktionen der Zeit. Es handelt es sich deshalb
nicht um ein NLP, und wir können es auch nicht ohne weiteres auf einem Computer repräsentieren.
Hierfür muss es erst durch numerische Integration in der Zeit diskretisiert werden, wie wir es bereits
in der vorherigen Aufgabe mit dem RK4-Verfahren gemacht haben. Da allerdings acados dies für
uns übernimmt und eine Vielzahl effizienter Integrationsverfahren hierfür bereitstellt, übergeben wir
das Optimalsteuerungsproblem in kontinuierlicher Zeit.

Aufgaben:

1. Installieren Sie acados sowie das zugehörige Python-Interface. Die Links dafür sind weiter oben
gegeben. Versichern Sie sich, dass ihre Installation funktioniert, in dem Sie das Minimalbeispiel
minimal example ocp.py ausführen (vgl. Installationsanleitung Python-Interface).

6

2. Das Optimalsteuerungsproblem ist für Sie bereits in cartpole.py implementiert. Machen Sie
sich kurz mit dem Code vertraut und führen Sie ihn dann aus.

3. Wir wollen eine zusätzliche Nebenbedingung auf die Geschwindigikeit vx einführen. Diese ist

−vmax ≤ vx(t) ≤ vmax, t ∈ [0, T], (12)

mit vx = 5 m
s
. Erweitern Sie cartpole.py um diese Nebenbedingung, und lösen Sie das

Optimalsteuerungsproblem erneut.

7

