Grundvorlesung Optimierung (Prof. Rolf Backofen)
Abschnitt Nichtlineare Programmierung (Prof. Moritz Diehl)
Albert-Ludwigs-Universitét Freiburg — Wintersemester 2025/26

Ubung 5: Nichtlineare Programmierung und CasADi
Prof. Moritz Diehl, Florian Messerer

Einfiihrung in CasADi

CasADi! ist eine open-source Toolbox zur schnellen Implementierung von nichtlinearen Optimie-
rungsproblemen. Der CasADi Code selber ist in C+4 geschrieben, aber es gibt Interfaces fiir Python,
Matlab und Octave. Ableitungen werden automatisch iiber Algorithmische Differenzierung (AD)
berechnet, ein effizientes und gleichzeitig préazises Verfahren. Zum Losen der Probleme kann Ca-
sADi diese an verschiedene (alleinstehende) Solver iibergeben. Der open-source Solver IPOPT, ein
nichtlineares Innere-Punkt-Verfahren, ist in einer CasADi-Installation bereits enthalten.
Nichtlineare Programme werden in CasADi in der Standardform
x%llﬁ” f@)
S.t. T < < Ty, (1)

an < 9(x) < gup

formuliert, wobei die vektorwertige Funktion g : R* — R™ zusammen mit den Begrenzungen
b, U, € R™ die nichtlinearen Nebenbedingungen ausdriickt. Fiir dieses Ubungsblatt werden wir die
Hilfsumgebung Opti Stack? nutzen, welche eine Syntax bietet, die sehr nah an die Papiernotation
angelehnt ist. Die so formulierten NLP werden automatisch in die Standardform (1) iibertragen.

Aufgaben:

1. Installieren Sie CasADi via pip install casadi in Ihr gewiinschtes Environment.

2. Machen Sie sich mit den bereitgestellten Codebeispielen vertraut und fithren diese aus.
puppy . py enthilt eine Implementierung der Bildrekonstruktion, die Sie bereits aus Ubung 2
kennen. chain.py implementiert eine héingende Kette. Beide Beispiele werden in den folgenden
Abschnitten kurz vorgestellt.

Beispiel 1: Bildrekonstruktion
Wir haben ein verrauschtes schwarz-weifl Bild in Form der Matrix Y € R"*¢ gegeben, sodass die Ele-

mente die Intensitét der einzelnen Pixel definieren, 0 <Y; ; < 256. Ziel ist es, eine weniger verrauschte
Version X € R"*¢ zu rekonstruieren. Dies kann als das unbeschrankte Optimierungsproblem

v mll{g} »> (\/(Xz‘,j —Yij)?+ 1+ Of\/(Xz‘,j — Xip15)? + (Xiy — Xijn)* + 1) (2)
eR™ T4

formuliert werden. Hierbei haben wir “Phantompixel” X, ; und X; .1 angenommen, mit X, ; =
X, und X, .41 = X; ., um das Definieren der Summenindizes zu erleichtern. Abbildung 1 zeigt ein
Beispiel einer so erhaltenen Rekonstruktion mit o = 0.5.

'https://web.casadi.org
Zhttps://web.casadi.org/docs/#document-opti


https://web.casadi.org
https://web.casadi.org/docs/#document-opti

Abbildung 1 — Beispiel einer durch Lsung von Problem (2) erhaltenen Rekonstruktion. Links: Verrauschtes
Original Y. Rechts: Rekonstruierte Version X mit o = 0.5.

Beispiel 2: Hangende Kette

Wir betrachten eine Kette, bestehend aus N Massepunkten, die durch N—1 Federn verbunden sind.
Die Massepunkte haben Masse m und Positionen (y;, 2;), mit i € {0, ..., N}. Die beiden dufersten
Massepunkte sind fixiert, (yi, 21) = (—2,1) sowie (yn, zn) = (2,1). Wir wollen eine Ruheposition der
Kette finden, was der Minimierung der Kettenenergie V' (y, z) entspricht. Diese setzt sich zusammen
aus der Lageenergie der Massen sowie der potentiellen Energie der Federn:

N N-1
1
Vi(y, z) = Z mgz; + 2 Z D ((yz — yip1)” + (2 — Zi+1>2) ’ (3)
i=0 i=0
wobei g die Erdbeschleunigung ist und D die Federkonstante. Wir fithren nun zwei Variationen

dieses Problems ein.

1. Unterhalb der Kette befindet sich eine ebene Fléche, die die Kette nach unten hin beschrankt.
Dies driicken wir durch die Nebenbedingung z; > 0 aus.

2. Unterhalb der Kette befindet sich ein Hiigel. Diesen driicken wir durch die Nebenbedingung
2 > —y? aus.

Alles zusammen fiihrt uns zu folgenden nichtlinearen Programmen:

Variation 1 Variation 2
min Viy,z) (4a) min V(y,z) (ba)
y,z € RN y,z € RN
s.t. (y1,21) = (=2,1), (4b) s.t. (y1,21) = (—2,1), (5b)
(va ZN) = (27 1)’ (4C) (yNa ZN) - (2a 1)7 (5C)
>0, 1<i<N (4d) z > —y?, 1<i<N (5d)

Beachten sie, dass es sich bei NLP (4) um ein konvexes QP handelt (wieso?), wéhrend (5) ein
nichtkonvexes NLP ist (wieso?). In chain.py finden Sie eine vollsténdige Implementierung beider
Probleme hiervon. Abbildung 2 zeigt die Losungen der beiden Variationen. Fiir Variation 2 sind
zwei mogliche Losungen dargestellt.

Aufgabe 1: Optimale Kreisplatzierung

Im Rahmen eines Produktionsprozesses sollen fiinf Kreise, sq,..., s5, aus einer quadratischen Platte
mit Kantenldnge a = 10 cm ausgeschnitten werden. Drei dieser Kreise sollen den Radius R haben, die
anderen beiden den Radius 2R. Die Position eines Kreises s; auf der Platte ist durch die Koordinaten
(x;,y;) seines Mittelpunktes bestimmt. Ziel ist es, die Kreise so anzuordnen, dass der Radius R so

2



Mit Bedingung z; = 0 Mit Bedingung z; = — y?

1.0 1 —— Boden 1.0 1 —— Huegel
—e— Loesung —e— Loesung 1
0.8 1 0.8 A —e— Loesung 2
0.6 A 0.6
0.4 1 0.4
N N
0.2 A 0.2
0.0 0.0
—0.2 1 —0.2 1
-0.4 T T T T T T T T T -0.4 T T T T T T T T T
-20 -15 -10 -05 00 05 10 15 2.0 -20 -15 -10 -05 00 05 10 15 2.0
y y

Abbildung 2 — Illustration der hingenden Kette in beiden Variationen.

grol wie moglich gewéhlt werden kann. Dabei muss sowohl sichergestellt werden, dass alle Kreise
auf der Platte liegen, als auch dass sich diese nicht iiberschneiden. Eine Illustration der Situation ist
in Abbildung 3 gegeben.

10 - \
8- @ xss
6-
S
> X2
4-
2- @
0-
0 2 4 6 8 10

X

Abbildung 3 — Beispiel einer moglichen — aber nicht optimalen — Anordnung der Kreise.

Wir konnen dies als das folgende nichtlineare Optimierungsproblem ausdriicken:

min — R (6a)
R,x1,...,x5,

y17“'7y5

s.t. z; —ri(R) >0, 1=1,...,5, (6b)

x; +1ri(R) < a, 1=1,...,5, (6¢)

yi —ri(R) >0, 1=1,..,5, (6d)

yz—i_rz(R) Saa Z_ ) "75> (66)

(zi —2;)° + (y; — y;)* > (ri +15)%, i,j=1,...,5miti < j (6f)

mit r;(R) = R fiir i € {1,2,3} und r;(R) = 2R fiir ¢ € {4, 5}.

3



Aufgaben:

1. Diskutieren Sie kurz, ob das Problem konvex ist.

2. Vervollstandigen Sie das bereit gestellte Template, um das Optimierungsproblem mit CasADi
und IPOPT zu 16sen. Wie grof ist der Radius, den Sie erhalten?

3. Im Template war bereits eine konkrete Initialisierung der Entscheidungsvariablen gegeben.
Veréndern Sie diese, um mindestens eine bessere Losung zu erhalten. Was ist die beste Losung,
die Sie finden konnen? Ist es moglich, dass es eine noch bessere gibt?

Aufgabe 2: Optimale Steuerung eines Pendels

4.00

3.75 1

3.50 A

3.25 1

3.00 A

Pendelposition 6

2.75 A

2.50 A

0 20 40 60 80
diskrete Zeit k

Abbildung 4 — Links: Skizze des Pendels. Rechts: Trajektorie des Pendels mit Initialzustand zg = [%77 0"
und ohne Steuerung, ug = 0 Vk.

Wir betrachten ein Pendel. Dessen Position ist durch den Winkel 6 eindeutig bestimmt. Dabei
entspricht & = 7 der Position, in der es gerade nach unten héngt. Eine Illustration finden Sie in
Abbildung 4. In der Aufhéingung des Pendels sitzt ein Motor, sodass es anhand eines Drehmoments u

gesteuert werden kann. Die Winkelgeschwindigkeit ist w = 6. Fassen wir Position und Geschwindigkeit
T

im Zustandsvektor x = [0 w| zusammen, konnen wir die Dynamik des Pendels durch die

gewohnliche Differentialgleichung (ordinary differential equation, ODE)

7
sinf + u (")

beschreiben?.

Wir betrachten das Pendel iiber die Zeitdauer 7" und diskretisieren diese in N Zeitschritte. Zur
Simulation verwenden wir das Runge-Kutta-Verfahren 4. Ordnung (RK4)* und erhalten dadurch die
diskretisierte Dynamik

Tp1 = Fp(xg, ug). (8)

Hierbei ist z; der Zustand zum diskreten Zeitpunkt k, k& € {0,..., N}, und h = % der Inte-
grationsschritt. Wir fassen die Zustédnde und die Steuerungsinputs zu allen Zeitpunkten in den
Matrizen

X = [IO INi| € R2xN+L und U:=|uy ... uy_q| € RV (9)

3Zur Vereinfachung haben wir hier alle Einheiten ignoriert. Eigentlich miisste vor den Sinus ein Faktor mit Einheit,
da dieser dann mit dem Drehmoment summiert wird.
‘https://de.wikipedia.org/wiki/Klassisches_Runge-Kutta-Verfahren

4


https://de.wikipedia.org/wiki/Klassisches_Runge-Kutta-Verfahren

-
zusammen. Unser Ziel ist es nun, das Pendel aus seiner herabhéngenden Ruhelage 7o = [77 0} zZum

.
Zeitpunkt k = 0 in die aufrechtstehende Position zy = [O O} zum Zeitpunkt k = N zu schwingen.

Dabei wollen wir den Steuerungsaufwand L(U) := Zi\:ol u? minimieren.

Aufgaben:

1. Formulieren Sie unser Optimalsteuerungsproblem als nichtlineares Programm. Dabei sollen
Zg,...,xy und ug,...,uy_1 die Entscheidungsvariablen sein. Die Nebenbedingungen sind die
Dynamik, sowie die Start- und Zielposition.

2. Diskutieren Sie kurz, ob das Problem konvex ist.

3. Benutzen Sie das bereitgestellte Template, um das NLP mit CasADi und IPOPT zu lésen.
Erstellen sie Plots der optimalen Trajektorien von 6, w und u, mit der diskreten Zeit k£ auf der
x-Achse. Sie konnen ihre Losung auerdem mit der bereitgestellten Animation (pendulum.gif)
vergleichen.

4. Wir fithren nun eine zusétzliche Beschrénkung der Steuerung ein. Zu allen Zeitpunkten soll
gelten: |ug| < umax. Diskutieren Sie kurz, wie sich der optimale Wert der Zielfunktion dadurch
verdndert.

5. Erweitern Sie ihre NLP Formulierung um die zusétzliche Beschriankung. Beachten Sie, dass
Sie hierbei die Betragsfunktion |- | nicht verwenden sollten, da diese an der Stelle 0 nicht
differenzierbar ist. Dies kann zu Problemen fiihren. Finden Sie stattdessen eine Umformulierung
dieser Nebenbedingung.

6. Erweitern Sie Thre Implementierung um die zusétzliche Nebenbedingung. Verwenden Sie
Umax = 0.13.

Aufgabe 3: Optimalsteuerung mit acados (Bonus)

In dieser Aufgabe lernen wir das open-source Softwarepaket acados kennen. acados bietet eine
Sammlung effizienter Algorithmen, die auf das Losen von Optimalsteuerungsproblemen spezialisiert
sind. Dafiir implementiert acados ein SQP-Verfahren sowie numerische Integratoren fiir Differenti-
algleichungen. Zum Losen der im SQP-Verfahren anfallenden QP wird auf moderne open-source
QP-Loser zuriickgegriffen, z.B. HPIPM, qpOASES, 0SQP, DAQP. Optimalsteuerungsprobleme werden mit
CasADi’s symbolischen Variablen definiert, welches auch zur Berechnung von Ableitungen verwendet
wird. Fiir die grundlegenden Operationen der linearen Algebra (z.B. Matrix-Matrix-Multiplikationen)
wird BLASFEQ verwendet. Auf Grundlage der erwédhnten Komponenten generiert acados dann C-Code,
welcher ohne externe Abhéngigkeiten auskommt. Dieser kann insbesondere auch auf eingebetteten
Systemen ausgefiithrt werden, was die Optimalsteuerung technischer Systeme in Echtzeit ermoglicht.
Unter folgenden Links finden Sie weitere Informationen:
» Dokumentation: https://docs.acados.org/

» Installation: https://docs.acados.org/installation/
» Python-Interface Installation: https://docs.acados.org/python_interface/

» acados OCP-Formulierung: https://github.com/acados/acados/blob/master/docs/
problem_formulation/problem_formulation_ocp_mex.pdf

» acados Forum: https://discourse.acados.org


https://docs.acados.org/
https://docs.acados.org/installation/
https://docs.acados.org/python_interface/
https://github.com/acados/acados/blob/master/docs/problem_formulation/problem_formulation_ocp_mex.pdf
https://github.com/acados/acados/blob/master/docs/problem_formulation/problem_formulation_ocp_mex.pdf
https://discourse.acados.org

Abbildung 5 — Illustration des Pendels auf einem Wagen.

Pendel auf einem Wagen Als Beispielproblem betrachten wir ein Pendel, das auf einem Wagen
befestigt ist, siehe Abb. 5. Der Mittelpunkt des Wagens hat die horizontale Position p,, welche wir
durch Ausiiben einer Kraft F' beinflussen konnen. Die Auslenkung des Pendels, welches die Lange [
hat, ist durch den Winkel # beschrieben. Der Wagen hat die Masse M, und an der Spitze des Pendels
ist ein Ball mit Masse m befestigt. Auf die Pendelmasse wirkt aulerdem die Erdbeschleunigung g.
Die horizontale Geschwindigkeit des Wagens ist v, und die Winkelgeschwindigkeit des Pendels ist w.
Durch Zusammenfassen der (Winkel)positionen und -geschwindigkeiten im Zustandsvektor x kénnen
wir das System durch folgende Differentialgleichung beschreiben:

Px Ux
0 ) w
Tr = ) T = —mlw? sin 0+mg cos 0 sin 6+ F (]‘0)

Ux M+(1—cos? 0)m
—mlw? cos 0 sin 6+ F cos +(M+m)gsin 0
I(M+(1—cos? 6))m

=: f(zu)
Unser Ziel ist es nun das Pendel aus einer herabhéngenden Position in eine aufrechte Position (6 = 0)
zu schwingen, wiahrend der Wagen am Ende die Position p, = 0 haben soll. Unser Steuereingang ist
hierbei u = F. Dies soll innerhalb des Zeitintervals ¢ € [0, 7] passieren. Wir driicken dies als das
folgende Optimalsteuerungsproblem aus,

min %x )T Qx(t) + %u )" Ru(t)dt + %x ) Qex(T 11a
i [ 47 Qu0 + T Ru(t + 31 Qur(r) (112
s.t. z(0) = Ty, (11Db)
o(t) = fa(t),ult)), tel0,T], (11c)

—Umax < U(t) < Upax, ¢ € [0,T], (11d)

wobei Ty der gegebene initiale Zustand des Systems ist.

Anders als wir es bisher in der Vorlesung gesehen haben, sind in dem obigen Optimalsteuerungs-
problem die Entscheidungsvariablen z(-) und u(-) Funktionen der Zeit. Es handelt es sich deshalb
nicht um ein NLP, und wir kénnen es auch nicht ohne weiteres auf einem Computer repréasentieren.
Hierfiir muss es erst durch numerische Integration in der Zeit diskretisiert werden, wie wir es bereits
in der vorherigen Aufgabe mit dem RK4-Verfahren gemacht haben. Da allerdings acados dies fiir
uns iibernimmt und eine Vielzahl effizienter Integrationsverfahren hierfiir bereitstellt, iibergeben wir
das Optimalsteuerungsproblem in kontinuierlicher Zeit.

Aufgaben:

1. Installieren Sie acados sowie das zugehorige Python-Interface. Die Links dafiir sind weiter oben
gegeben. Versichern Sie sich, dass ihre Installation funktioniert, in dem Sie das Minimalbeispiel
minimal example ocp.py ausfiithren (vgl. Installationsanleitung Python-Interface).

6



2. Das Optimalsteuerungsproblem ist fiir Sie bereits in cartpole.py implementiert. Machen Sie
sich kurz mit dem Code vertraut und fithren Sie ihn dann aus.

3. Wir wollen eine zusétzliche Nebenbedingung auf die Geschwindigikeit vy einfithren. Diese ist
—Umax S Ux<t) S Umax t € [07 T]7 (12)

mit v, = 57. Erweitern Sie cartpole.py um diese Nebenbedingung, und lésen Sie das
Optimalsteuerungsproblem erneut.



