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Exercises for Lecture Course on Numerical Optimal Control (NOC)
Albert-Ludwigs-Universität Freiburg – Winter Term 2025 / 26

Exercise 5: Optimal Control Formulations

Prof. Dr. Moritz Diehl, Andrea Zanelli, Dimitris Kouzoupis, Florian Messerer, Yizhen Wang,
Armin Nurkanović

Figure 1: Sketch of the pendulum with its position defined by the angle θ.

In this exercise we will have a look at the special structures of the optimal control formulations
discussed in the class. To this end, we will consider the control of a pendulum, as illustrated in
Figure 1. The pendulum position is described by the angle θ with corresponding angle velocity w
and we can control it by applying a torque τ . This system can be described by idealized dynamics

θ̇ = ω,

ω̇ = sin(θ) + τ,
(1)

where for simplicity we are ignoring all units. Defining the state x = (θ, ω), with control u = τ , our
control aim is to swing up the pendulum to the upright position and balancing it there, corresponding
to a state of xref = (0, 0). We start with the pendulum hanging down in a rest position, i.e.,
x̄ = (π, 0). We can express this as the discrete time optimal control problem

min
x0,...,xN ,
u0,...,uN−1

N−1∑
i=0

(
x⊤
i xi + 2u2

i

)
+ 10x⊤

NxN

s.t. x0 = x̄0,

xi+1 = F (xi, ui), i = 0, ..., N − 1,

(2)

where x0, . . . , xN ∈ R2, u0, . . . , uN−1 ∈ R, and F (x, u) are the discretized dynamics obtained by
applying the explicit RK4 integration scheme to (1). The objective expresses our desire to bring
the state x close to the origin, while using not too much control effort, as quantified by deviations
of the control variable from 0. We will consider different reformulations of problem (2) and analyze
their structure.

1. Sequential approach: The state variables in (2) can be eliminated by means of a forward
simulation such that a more compact optimization problem is obtained,

min
U

Φ(U), (3)
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with U = (u0, . . . , uN−1). Using CasADi, formulate Φ(U) and set up problem (3), where
F (xi, ui) is an RK4 integrator with 10 intermediate RK4 steps over a total integration time
of h = 0.1. Use N = 50 for the discrete time horizon (such that the continuous time horizon
is T = 5) and x̄0 = (π, 0) as initial state. Solve the problem using IPOPT and plot the state
and control trajectories in two separate plots. Use ui = 0.1, i = 0, ..., N − 1, as initial guess.
Before solving the problem, compute the Hessian of Φ(u) for some non-zero u and plot its spar-
sity pattern using the MATLAB command spy / Python function matplotlib.pyplot.spy

(often aliased as plt.spy).

Hint: You can use rk4step.m / rk4step.py provided with this exercise to do one step of the
RK4 scheme.

2. Simultaneous approach: If both states and controls are kept as decision variables, a larger
problem is obtained with a special sparsity structure that can be exploited by tailored algo-
rithms.

(a) Using CasADi and the provided template simultaneous.m / simultaneous.py, formu-
late problem (2) without eliminating the state variables, solve it with IPOPT and plot
the state and control trajectories. Make sure that you obtain the same result as with
the sequential approach. Eliminate the initial state, by fixing it to x0 = x̄0 and use
ui = 0.1, i = 0, ..., N − 1 and xi = (0.1, 0.1), i = 1, ..., N as initial guess. Before solving
the problem compute the Hessian of the Lagrangian and plot its sparsity pattern using
the MATLAB command spy / Python function matplotlib.pyplot.spy (often aliased
as plt.spy). In order to highlight the block-banded structure of the Hessian, reorder the
variables as [u0, λ1, x1, u1, λ2, ... ]. For this last part, you can set the equality multipliers
to any arbitrary non-zero value since we are only interested in the sparsity pattern here.

(b) Implement now your own full-step Newton method and use it to solve problem (2).
Initialize both primal and dual variables to 0.1. Terminate the algorithm when the 2-
norm of the right-hand-side is less than 10−6. Plot the resulting trajectories and make
sure you obtain the same results as with the previous implementations.

Hint: you already have the Lagrangian of the problem from a) which can be used to
compute the right-hand-side of the linear system associated with the Newton steps. Anal-
ogously, the matrix coefficient of the linear system can be obtained by computing the
Hessian of the Lagrangian.

(c) Make a copy of your script from a) and modify the formulation in order to include box
constraints on the inputs:

−1 ≤ ui ≤ 1, ∀i = 0, ..., N − 1. (4)

Solve the modified problem with IPOPT using the same initial guess as before and plot
the obtained trajectories.

(d) [Bonus] Make a copy of your script from b) and modify the formulation by including
logarithmic barrier terms in the cost that approximate the constraints introduced in c):

N−1∑
i=0

(
∥xi∥22 + 2u2

i − ρ (log(−ui + 1) + log(ui + 1) )
)
+ 10 ∥xN∥22 , (5)

where ρ = 0.01 is a fixed parameter. Solve the formulation with your implementation
of the Newton method. In order to make sure that the arguments of the logarithms in
the cost are always positive, implement a line search: starting from a full step, check
whether any of the constraints are violated and half the step size until the arguments of
the logarithms are positive. Initialize both primal and dual variables to 0.1.
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