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In this sheet we will build on the previous exercise by implementing a Newton-type algorithm for
equality constrained problems and looking into linear independence constraint qualification.

1. Newton method for equality constrained problems. Consider the following equality cons-
trained optimization problem:
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In this exercise we will implement a simple Newton-type algorithm that can be used to solve
problem (1).

(a) Compute on paper the gradients of f and g and their Hessian.

(b) Write on paper the Karush-Kuhn-Tucker (KKT) conditions for problem (1). Are these
conditions necessary for optimality? Are they sufficient?

(¢) In the provided template implement f and g and their Jacobians and Hessians as CasADi
functions.

(d) The KKT conditions derived in (b) can be written in compact form as
r(w) =0, (2)

where w := (z,y, A) and X is the Lagrange multiplier associated with the equality constraint
g(x,y) = 0. Using the template provided, implement the following Newton-type method:

Wry1 = wyp — M7 'r(wy), (3)

where My ~ Vr(wy) is an approximation of the Jacobian of r. One block of Vr(wy) corre-
sponds to the Hessian of the Lagrangian of (1). Test your implementation with two diffe-
rent Hessian approximations: i) By = pl for different values of p and ii) the exact Hessian
By = V2 f(xi,yr) + AV2g(xy, y). Initialize the iterates at wy = (1, —1,1) and run the al-
gorithm for N = 100 iterations. Plot the iterates in the xr—y space. When using the fixed
Hessian approximation, does the algorithm converge for p = 1007 And for p = 6007



2. Linear independence constraint qualification. Consider the problem of finding the optimal
way of throwing a ball as far as possible within a fixed time window [0, T]. The dynamics of the
system in two dimensional space can be modeled by the differential equation

py = Uy,

pz = Uy,
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with state © = (py,ps, vy, v,), where p, and p, represent the y and z coordinate of the ball
respectively and v, and v, the components of its velocity. The ball is subject to drag force with
drag coefficient d, side wind w and gravitational acceleration g. The initial state is given by
z(0) = Ty, where Ty = (py,pz,vy, v2). In order to throw the ball, we need to pick the initial
velocity 1% = (v)),0?), for a given initial position. Denote by pf (v ), pL(v°) the final position of
the ball after simulating forward over time T for the initial velocity v°, using the RK4 scheme
for integration. Furthermore, the final position of the ball should be above ground, which has a

flat region and a region with slope a. We can formulate our goal as the optimization problem

i — 1, (") (42)
s.t. —Pz< )S (4b)
—a(p,(v°) = 10) = pL(+°) <0, (4c)

o]l < 0%, (4d)

The slope « is an externally set parameter of the optimization problem and may take values as
€ [-1,1].

(a) Implement the differential equation of the system in the provided ballistic dynamics.m.

(b) Using the provided template, implement and solve the optimization problem for different
values of a € [—1,1]. The template shows how the NLP constructed by CasADi can be
parametrized by a. Like this the value of o can be conveniently changed without needing to
construct a new NLP each time. Plot the normalized gradients of the constraints as three
vectors. What happens when a = 07 For a > & for some & > 0 the problem becomes
infeasible. What happens to the three vectors as « approaches a? It is not required to
compute the exact value of a.



