
i
i

“ex3” — 2025/10/21 — 13:57 — page 1 — #1 i
i

i
i

i
i

Exercises for Lecture Course on Numerical Optimal Control (NOC)
Albert-Ludwigs-Universität Freiburg – Winter Term 2025 / 26

Exercise 3: Equality Constrained Optimization

Prof. Dr. Moritz Diehl, Andrea Zanelli, Dimitris Kouzoupis, Florian Messerer, Yizhen Wang,
Armin Nurkanović

In this sheet we will build on the previous exercise by implementing a Newton-type algorithm for
equality constrained problems and looking into linear independence constraint qualification.

1. Newton method for equality constrained problems. Consider the following equality cons-
trained optimization problem:

min
x, y ∈ R

=: f(x,y)︷ ︸︸ ︷
1

2
(x− 1)2 +

1

2
(10(y − x2))2 +

1

2
x2 (1a)

s.t. x+ (1− y)2︸ ︷︷ ︸
=: g(x,y)

= 0. (1b)

In this exercise we will implement a simple Newton-type algorithm that can be used to solve
problem (1).

(a) Compute on paper the gradients of f and g and their Hessian.

(b) Write on paper the Karush-Kuhn-Tucker (KKT) conditions for problem (1). Are these
conditions necessary for optimality? Are they sufficient?

(c) In the provided template implement f and g and their Jacobians and Hessians as CasADi
functions.

(d) The KKT conditions derived in (b) can be written in compact form as

r(w) = 0, (2)

where w := (x, y, λ) and λ is the Lagrange multiplier associated with the equality constraint
g(x, y) = 0. Using the template provided, implement the following Newton-type method:

wk+1 = wk −M−1r(wk), (3)

where Mk ≈ ∇r(wk) is an approximation of the Jacobian of r. One block of ∇r(wk) corre-
sponds to the Hessian of the Lagrangian of (1). Test your implementation with two diffe-
rent Hessian approximations: i) Bk = ρI2 for different values of ρ and ii) the exact Hessian
Bk = ∇2f(xk, yk) + λ∇2g(xk, yk). Initialize the iterates at w0 = (1,−1, 1) and run the al-
gorithm for N = 100 iterations. Plot the iterates in the x−y space. When using the fixed
Hessian approximation, does the algorithm converge for ρ = 100? And for ρ = 600?

1



i
i

“ex3” — 2025/10/21 — 13:57 — page 2 — #2 i
i

i
i

i
i

2. Linear independence constraint qualification. Consider the problem of finding the optimal
way of throwing a ball as far as possible within a fixed time window [0, T ]. The dynamics of the
system in two dimensional space can be modeled by the differential equation

ṗy = vy,

ṗz = vz,

v̇y = −(vy − w)
∥∥v − [w, 0]T

∥∥ d,
v̇z = −vz

∥∥v − [w, 0]T
∥∥ d− g,

with state x = (py, pz, vy, vz), where py and pz represent the y and z coordinate of the ball
respectively and vy and vz the components of its velocity. The ball is subject to drag force with
drag coefficient d, side wind w and gravitational acceleration g. The initial state is given by
x(0) = x̄0, where x̄0 = (p0y, p

0
z, v

0
y, v

0
z). In order to throw the ball, we need to pick the initial

velocity v0 = (v0y, v
0
z), for a given initial position. Denote by pfy(v

0), pfz(v
0) the final position of

the ball after simulating forward over time T for the initial velocity v0, using the RK4 scheme
for integration. Furthermore, the final position of the ball should be above ground, which has a
flat region and a region with slope α. We can formulate our goal as the optimization problem

min
v0

− pfy(v
0) (4a)

s.t. −pfz(v
0) ≤ 0, (4b)

−α(pfy(v
0)− 10)− pfz(v

0) ≤ 0, (4c)

∥v∥22 ≤ v̄2. (4d)

The slope α is an externally set parameter of the optimization problem and may take values as
α ∈ [−1, 1].

(a) Implement the differential equation of the system in the provided ballistic dynamics.m.

(b) Using the provided template, implement and solve the optimization problem for different
values of α ∈ [−1, 1]. The template shows how the NLP constructed by CasADi can be
parametrized by α. Like this the value of α can be conveniently changed without needing to
construct a new NLP each time. Plot the normalized gradients of the constraints as three
vectors. What happens when α = 0? For α ≥ ᾱ for some ᾱ ≥ 0 the problem becomes
infeasible. What happens to the three vectors as α approaches ᾱ? It is not required to
compute the exact value of ᾱ.

2


