
i
i

“ex1” — 2025/10/13 — 10:38 — page 1 — #1 i
i

i
i

i
i

Exercises for Lecture Course on Numerical Optimal Control (NOC)
Albert-Ludwigs-Universität Freiburg – Winter Term 2025 / 26

Exercise 1: Initial Value Problems

Prof. Dr. Moritz Diehl, Florian Messerer, Andrea Zanelli, Dimitris Kouzoupis, Yizhen Wang,
Armin Nurkanović

In this exercise we will have a first look at initial value problems (IVPs). We will analyze some of the
conditions necessary for the existence and uniqueness of solutions to IVPs and we will implement
and compare explicit integration methods for the solution of ordinary differential equations.

1. Existence and uniqueness of solutions to IVPs: Lipschitz-continuity. In order to gua-
rantee that a solution to an IVP exists and it is unique, we can rely on Theorem 1.2. Among the
conditions that have to be satisfied for the results of the theorem to hold, the function f(x(t), t)
describing the dynamics of the system, has to be Lipschitz continuous with respect to x.

(a) Indicate (without proof) which of the following functions are globally Lipschitz (GL), locally
Lipschitz (LL) or not locally Lipschitz (NLL):

(GL) (LL) (NLL)

i. x2

ii. |x| 12

iii. sign(x)|x| 12

iv. ∥x∥22
v. ∥x∥2

vi. ∥x∥
1
2
2

vii. ∥Ax∥2
viii. sinxTAx

ix. sin ∥x∥2

2. Explicit integrators. In Section 1.2 we will introduce integration schemes for ordinary diffe-
rential equations (ODEs). These schemes allow one to compute a numerical approximation of
the true solution to a initial value problem (IVP) of the form

ẋ(t) = f(x(t)), t ∈ [0, T]

x(0)= x0.
(1)

In this exercise we will compare three different explicit integration schemes.

(a) The scipy.integrate.solve ivp function provides a user-friendly interface to an imple-
mentation of the Runge-Kutta integrator of type Dormand-Prince. It is suitable for the
integration of non-stiff ODEs of the form ẋ = f(t, x) and it can provide reasonable accu-
racy in reasonable computation times in many practical cases. Complete the template to
call solve ivp in order to obtain a numerical approximation of the solution to the IVP for a
damped oscillator

x(0) = x0,

ẋ1(t) = x2(t),

ẋ2(t) = −0.2x2 − x1(t),

(2)

1

i
i

“ex1” — 2025/10/13 — 10:38 — page 2 — #2 i
i

i
i

i
i

with x0 = (1, 0)⊤. As output time grid, use the grid defined by t = kTs, where k = 0, . . . , 20
and Ts = 0.5. Plot the obtained trajectories.

(b) We will now implement two other explicit integration schemes. First, implement the explicit
Euler scheme

xn+1 = xn + hf(xn). (3)

Second, implement the explicit Runge-Kutta scheme of order four (RK4):

k1 = f(xn) k2 = f(xn +
h

2
k1) k3 = f(xn +

h

2
k2) k4 = f(xn + hk3)

xn+1 = xn +
h

6
(k1 + 2k2 + 2k3 + k4).

(4)

Using the two schemes (h = 0.5 for the RK4 scheme and h = 0.125 for explicit Euler),
compute numerical approximations of the solution to the IVP in (2) and plot the obtained
trajectories in the same figure as (a).

(c) Implement an RK4 integrator for our IVP as a CasADi function and use it to perform the
numerical simulation.

Hint: you can build an expression from CasADi variables and then use it to declare a func-
tion, as in the following example. Use .full() to convert the CasADi DM arrays resulting
from the evaluation of a CasADi function to a NumPy ndarray.

1 import casadi as ca
2 x = ca.MX.sym('x',2,1)
3 expr = ca.sin(x[0])*x[1]
4 f = ca.Function('f', [x], [expr])
5 y = f([ca.pi/2, 2])
6 y2 = y.full()

3. The Lorenz attractor. We will now use the integrators implemented to simulate some intere-
sting systems.

(a) In 1963, Edward Lorenz developed a simplified mathematical model for atmospheric con-
vection. The model is a system of three ordinary differential equations now known as the
Lorenz equations:

ẋ1 = σ(x2 − x1)

ẋ2 = x1(ρ− x3)− x2

ẋ3 = x1x2 − βx3

(5)

with ρ = 28, σ = 10 and β = 8
3
.

i. Does the Lorenz attractor satisfy the conditions necessary for the Picard-Lindeloef
theorem to be applicable?

ii. Using the RK4 integrator implemented before, simulate the system for x0 = [1, 0, 0]T

and t ∈ [0, 100] with step-size h = 0.01. Plot the resulting trajectory in 3D. You can
use the provided template.

2

