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Preface to the Manuscript

This lecture manuscript is written to accompany a lecture course on “Modelling and System Identification” given
since winter 2013 at the University of Freiburg. This script was written by the author with help by Benjamin Völker,
Jesus Lago Garcia, Honghu Xue, Robin Verscheuren, Jonas Koenemann, Katrin Baumgärtner, Alexander Petrov,
Tobias Schoels, Mohammad Hababeh, Yizhen Wang, Jakob Harzer, Leo Simpson, and Ashwin Karichannavar.
The script is far from perfect and surely contains some errors, which can be reported to
moritz.diehl@imtek.uni-freiburg.de.

Aim of the manuscript is that it shall serve to the students of the course as a reference for self study and exam
preparation, together with the video lectures and the slides. In addition, we strongly recommend to consult the
book by Lennart Ljung [Lju99] as well as the script by Johan Schoukens [Sch13].

Freiburg, September 2025, Moritz Diehl
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Chapter 1

Introduction

The lecture course on Modelling and System Identification (MSI) aims to enable students to create models that
help predict the behaviour of systems. In particular, we are interested in dynamic system models, i.e., systems
that evolve over time. With good models, one can not only predict future behaviour (as in weather forecasting),
but also control and optimise the performance of technical systems through feedback control or intelligent input
design. A well-constructed model thus grants access to powerful engineering tools.

This course focuses on the process of obtaining such models. It draws on foundational knowledge from three
core fields: Systems Theory, Statistics, and Optimization. Key concepts from these fields will be recalled as needed
throughout the course.

To motivate the importance of statistics in system identification, we begin with a simple example taken from
the excellent lecture notes by J. Schoukens [Sch13]. The course will first cover identification methods for static
models and their statistical properties, including a review of relevant concepts from statistics and optimization.
Later, we will explore various approaches to modelling dynamic systems and identifying their parameters. For a
more comprehensive and detailed treatment of system identification, we refer to the textbook by L. Ljung [Lju99].

1.1 Mathematical Notation

Within this script, we use R for the set of real numbers, R+ for the non-negative ones, and R++ for the positive
ones, Z for the set of integers, and N for the set of natural numbers including zero, i.e., we identify N = Z+.
The set of real-valued vectors of dimension n is denoted by Rn, and Rn×m denotes the set of matrices with n
rows and m columns. By default, all vectors are assumed to be column vectors, i.e., we identify Rn = Rn×1.
We usually use square brackets when presenting vectors and matrices elementwise. Because we will often deal
with concatenations of several vectors, say x ∈ Rn and y ∈ Rm, yielding a vector in Rn+m, we, abbreviate
this concatenation sometimes as (x, y) in the text, instead of the correct but more clumsy equivalent notations
[x⊤, y⊤]⊤ or [

x
y

]
.

Square and round brackets are also used in a very different context, namely for intervals in R. For two real numbers
a < b, the expression [a, b] ⊂ R denotes the closed interval containing both boundaries a and b, while an open
boundary is denoted by a round bracket, e.g., (a, b) denotes the open interval and [a, b) the half-open interval
containing a but not b.

When dealing with norms of vectors x ∈ Rn, we denote by ∥x∥ an arbitrary norm, and by ∥x∥2 the Euclidean
norm, i.e., we have ∥x∥22 = x⊤x. We denote a weighted Euclidean norm with a positive definite weighting matrix
Q ∈ Rn×n by ∥x∥Q, i.e., we have ∥x∥2Q = x⊤Qx. The L1 and L∞ norms are defined by ∥x∥1 =

∑n
i=1 |xi|

and ∥x∥∞ = max{|x1|, . . . , |xn|}. Matrix norms are the induced operator norms, unless stated otherwise. The
Frobenius norm ∥A∥F of a matrix A ∈ Rn×m is defined by ∥A∥2F = trace(AA⊤) =

∑n
i=1

∑m
j=1AijAij .

When we deal with derivatives of functions f with several real inputs and several real outputs, i.e., functions
f : Rn → Rm, x 7→ f(x), we define the Jacobian matrix ∂f

∂x (x) as a matrix in Rm×n, following standard
conventions. For scalar functions with m = 1, we denote the gradient vector as ∇f(x) ∈ Rn, a column vector,
also following standard conventions. Slightly less standard, we generalize the gradient symbol to all functions

9
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10 CHAPTER 1. INTRODUCTION

f : Rn → Rm even when m > 1, i.e., we generally define in this lecture

∇f(x) = ∂f

∂x
(x)⊤ ∈ Rn×m.

Using this notation, the first-order Taylor expansion is written as

f(x) = f(x̄) +∇f(x̄)⊤(x− x̄) + o(∥x− x̄∥)

The second derivative, or Hessian matrix will only be defined for scalar functions f : Rn → R and be denoted by
∇2f(x).

For square symmetric matrices of dimension n we sometimes use the symbol Sn, i.e., Sn = {A ∈ Rn×n|A =
A⊤}. For any symmetric matrixA ∈ Sn we writeA≽0 if it is a positive semi-definite matrix, i.e., all its eigenvalues
are non-negative, and A≻0 if it is positive definite, i.e., all its eigenvalues are strictly positive. This notation also
applies to matrix inequalities that compare two symmetric matrices A,B ∈ Sn, where we define for example
A≽B by A−B≽0.

When using logical symbols, A⇒ B indicates that proposition A implies proposition B. In words the same is
expressed by “If A then B”. We write A ⇔ B for “A if and only if B”, and we sometimes shorten this to “A iff
B”, with a double “f”, following standard practice.

A remark is in order about how we refer to the components of a vector, say x ∈ Rn. Here, we use the standard
convention, i.e. refer to the components by x1, x2, . . . , xn, i.e. have x = [x1, x2, . . . , xn]

⊤. Sometimes we want
to express that the length of the whole vector increases with time, we then write x1:N ∈ RN .

To denote that a vector is recursively updated in equations as new measurements arrive, we often assign the
full vector an index using square brackets. For instance, we write x[N ] ∈ Rn to denote the vector that has been
recursively updated at time step N .

We usually place a “hat” above estimated quantities, e.g. R̂ indicate that that they are estimates of R rather
than the true value. The true value is sometimes denote using the same variable name but an index true, i.e., Rtrue

is the true value of R. If the estimate depends on a series of samples, we often also add an index. For example,
R̂N is the estimate of R given the first N measurements.

1.2 A Simple Example: Resistance Estimation
To motivate the need to think about statistical properties, we start with a simple example taken from [Sch13]. Aim
is to estimate the resistance of a resistor based on measurements of current and voltage, see Fig. 1.1. In order to
increase the accuracy of our estimate, we repeat the same experiment many times, where we measure each time
current ik and voltage uk. Due to measurement noise, all these values will be different, see Fig. 1.2.

Figure 1.1: Resistance estimation example with resistor R, current measurements ik, and voltage measurements
uk for k = 1, 2, ...., N. [Sch13]

Another way to look at the same series of measurements is the voltage-current diagram in Fig. 1.3. In a perfect
world without noise, we would expect all measurements to be at the same point, but in reality they are spread out.

We know by Ohm’s law that u = Ri. For a single measurement, u1 and i1, we would clearly have R̂[1] = u1

i1
.

We would expect that taking many measurements should help us to reduce the effect of noise and improve our
estimates. But given a series of measurements uk and ik, how should we compute an estimate R̂[N ] for the
unknown resistance? Let us look at three different approaches, which we will denote by names that are partly ad
hoc and partly motivated by later considerations.
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1.2. A SIMPLE EXAMPLE: RESISTANCE ESTIMATION 11

Figure 1.2: The measurements are a time series of discrete noisy values.

Figure 1.3: The same measurements in a voltage-current diagram.

1.2.1 Simple Approach

A first simple approach is to compute the average of the resistance estimates one would obtain for each experiment.

R̂
[N ]
SA =

1

N
·

N∑
k=1

uk
ik

(1.1)

We can take a long sequence of measurements and apply this formula each time. The resulting sequence of
numbers R̂[N ]

SA is shown as a function of N in the curve in Fig. 1.4 at the top. It seems to converge for large N . But
does it converge to the right value?

Figure 1.4: Different estimations of R for increasing sample size N . At least two of the estimators are wrong.
But which estimator gives us the true value of R when N goes to infinity?
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12 CHAPTER 1. INTRODUCTION

1.2.2 Error-in-Variables
A different approach to reduce the noise would be to first take the average of all voltage measurements and of all
current measurements, and then divide the two averages. This gives the following formula that we call “error-in-
variables” because it will correspond to an estimator with this name that we investigate later.

R̂
[N ]
EV =

1
N

∑N
k=1 uk

1
N

∑N
k=1 ik

(1.2)

The corresponding sequence of numbers R̂[N ]
EV is shown in Fig. 1.4 in the middle for the same measurements as

before. Unfortunately, the two approaches give different results, and the curve does not converge to the same value
as the previous approach.

1.2.3 Least Squares
A third approach uses the method of least squares. The idea is to find R by minimizing the sum of the squared
differences between the model predictions for the voltage based on the measurement ik, i.e., R · ik, and the
measurement of the voltage, uk, see Fig. 1.5. The defining formula is thus given by the following expression.

R̂
[N ]
LS = argmin

R∈R

N∑
k=1

(R · ik − uk)
2 (1.3)

=
1
N

∑N
k=1 uk · ik

1
N

∑N
k=1 i

2
k

(1.4)

Here, the second line is obtained by differentiating the function to be optimized, i.e., f(R) =
∑N

k=1(R · ik−uk)2,
and setting the derivative to zero, ∂f

∂R (R∗) = 0, and solving this equation to get the minimizer R∗ (deriving the
formula is left as an easy exercise to the reader). The least squares approach is very powerful, in particular when
we deal with more than one unknown parameter, and is very often used in this lecture.

The sequence of numbers R̂[N ]
LS resulting from the method of least squares is shown in Fig. 1.4 in the lowest

graph. The values seem to converge to a fixed value, but they converge to a different value than the two previous
approaches. We still do not know which of the three might be the true value of R, unfortunately.

Figure 1.5: Principle behind the Least Squares approach: minimize the squared differences between uk and Rik.

In order to resolve the problem to decide which of the three estimators gives the correct value (or if they are all
three wrong), we need to look into the statistical properties of estimators. These are based on probability theory,
which we treat in the next chapter.
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Chapter 2

Probability and Statistics in a Nutshell

In this chapter we review concepts from the fields of mathematical statistics and probability that we will often need
in this course.

2.1 Random Variables and Probabilities
Random variables are used to describe the possible outcomes of experiments. Random variables are slightly
different from the usual mathematical variables, because a random variable does not yet have a value. A random
variable X can take values from a given set, typically the real numbers. A specific value x ∈ R of the random
variable X will typically be denoted by a lowercase letter, while the random variable itself will usually be denoted
by an uppercase letter; we will mostly, but not always, stick to this convention. Note that the random variable
X itself is not a real number, but just takes values in R. Nevertheless, we sometimes write sloppily X ∈ R, or
Y ∈ Rn to quickly indicate that a random variable takes scalars or vectors as values.

The probability that a certain event A occurs is denoted by P (A), and P (A) is a real number in the interval
[0, 1]. The event A is typically defined by a condition that a random variable can satisfy or not. For example, the
probability that the value of a random variable X is larger than a fixed number a is denoted by P (X > a). If the
event contains all possible outcomes of the underlying random variable X , its probability is one. If two events A
and B are mutually exclusive, i.e., are never true at the same time, the probability that one or the other occurs is
given by the sum of the two probabilities: P (A ∨ B) = P (A) + P (B). Two events can also be independent of
each other. In that case, the probability that they both occur is given by the product: P (A ∧ B) = P (A)P (B). If
this is not the case, the two events are called dependent. We will often also write P (A,B) for the joint probability
P (A ∧ B). One can define the conditional probability P (A|B) that an event A occurs given that event B has
already occurred. It is easy to verify the identity

P (A|B) =
P (A,B)

P (B)
.

An immediate consequence of this identity is

P (A|B) =
P (B|A)P (A)

P (B)
.

which is known as Bayes Theorem after Thomas Bayes (1701-1761), who investigated how new evidence (event
B has occurred) can update prior beliefs - the a-priori probability P (A) - in order to obtain the a-posteriori
conditional probability of A given B.

Example (Bayes’ Rule). Two MSI-students are working at an antique store in Freiburg and their boss jokingly
asks them what is the probability, if a customer spends more than 1000 EUR, that they come from Switzerland.
They decide to put their MSI knowledge to the test and take a look at the store’s database and find out that every
10th customer is Swiss. Further, they find that 3% of customers have spent more than 1000 EUR and that the
probability of a Swiss customer spending more than the aforementioned amount is 20%. First they denote all the
information they have:

• probability that a customer is Swiss: P (A) = 0.1

13
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14 CHAPTER 2. PROBABILITY AND STATISTICS IN A NUTSHELL

• probability that a customer spends more than 1000 EUR: P (B) = 0.03

• probability of a Swiss customer spending more than 1000 EUR: P (B|A) = 0.2

By applying Bayes Rule they easily see that

P (A|B) =
P (B|A)P (A)

P (B)
=

0.2 · 0.1
0.03

=
2

3
≈ 66.6%.

2.2 Scalar Random Variables and Probability Density Functions
For a real-valued random variable X , one can define the Probability Density Function (PDF) pX(x) which de-
scribes the behaviour of the random variable, and which is a function from the real numbers to the real numbers,
i.e., pX : R → R, x 7→ pX(x). Note that we use the name of the underlying random variable (here X) as index,
when needed, and that the input argument x of the PDF is just a real number. We will sometimes drop the index
when the underlying random variable is clear from the context.

The PDF pX(x) is related to the probability that X takes values in any interval [a, b] in the following way:

P (X ∈ [a, b]) =

∫ b

a

pX(x) dx

Conversely, one can define the PDF as

pX(x) = lim
∆x→0

P (X ∈ [x, x+∆x])

∆x

Two random variablesX,Y are independent if the joint PDF pX,Y (x, y) is the product of the individual PDFs, i.e.,
pX,Y (x, y) = pX(x)pY (y), otherwise they are dependent. The conditional PDF pX|Y of X for given Y is defined
by

pX|Y (x|y) =
pX,Y (x, y)

pY (y)
.

As the above notation can become very cumbersome, we will occasionally also omit the index of the PDF and, for
example, just express the above identity as

p(x|y) = p(x, y)

p(y)
.

2.2.1 Mean and Variance

The expectation value or mean of a random variable is often denoted by µX and computed as
∫∞
−∞ x pX(x)dx.

More generally, one can compute the expectation of any function f(X) of a random variable, which is by itself a
random variable. It is convenient to introduce the expectation operator E{·}, which is defined by

E{f(X)} :=

∫ ∞

−∞
f(x) pX(x)dx.

Due to the linearity of the integral, the expectation operator is also linear. This means that for any affine function
f(X) = a+ bX with fixed numbers a, b ∈ R, we have that

E{a+ bX} = a+ b E{X}.

Note that this is not possible for nonlinear functions f(X), i.e., in general E{f(X)} ≠ f(E{X}).
The variance of a random variable X is a measure of how much the variable varies around the mean and is

denoted by σ2
X . It is defined as

σ2
X := E{(X − µX)2}.

The square root of the variance, σX =
√
σ2
X , is called the standard deviation.
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2.2. SCALAR RANDOM VARIABLES AND PROBABILITY DENSITY FUNCTIONS 15

Example (Variance). Given the random variable X with mean µX and variance σ2
X , we want to prove that σ2

X =
E{X2} − (E{X})2. We start with the variance’s definition

σ2
X = E{(X − µX)2}

= E{(X − E{X})2}
= E{X2 − 2XE{X}+ (E{X})2}
= E{X2} − 2E{X}E{X}+ (E{X})2

= E{X2} − (E{X})2

= E{X2} − µ2
X

Note that we can rewrite the result in the following form: E{X2} = σ2
X + µ2

X .

2.2.2 Simple Example: Uniform Distribution
One simple example for a PDF is the uniform distribution on an interval [a, b] ⊂ R with a < b. Here, the PDF of
the random variable X is defined as

pX(x) =

{
1

b−a if x ∈ [a, b]

0 else

It is easy to check that
∫∞
−∞ pX(x)dx = 1. The mean is given by∫ ∞

−∞
pX(x)x dx =

∫ b

a

1

b− a
x dx =

b2 − a2

2(b− a)
=
a+ b

2
=: µX .

The variance σ2
X is given by ∫ ∞

−∞
pX(x) (x− µX)2 dx =

∫ b

a

1

b− a
(x− µX)2 dx.

By a change of variables, y = x− µX and using the shorthand c = b− a one obtains

σ2
X =

1

c

∫ c/2

−c/2

y2 dy =
1

c

[
1

3

( c
2

)3
− 1

3

(
− c
2

)3]
=
c2

12
=

(b− a)2

12

2.2.3 The Normal Distribution
An important PDF in many applications is given by the normal distribution. A random variable X is called
Gaussian or normally distributed, if its PDF is given by

p(x) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
.

Here, the two numbers µ ∈ R and σ > 0 are numbers that characterize the distribution. One can again show by
integration that this PDF is normalized, i.e.,

∫∞
−∞ pX(x)dx = 1. Also, one can compute its mean µX and variance

σ2
X , which turn out to be given exactly by the parameters µ and σ2. For this reason, one denotes the above PDF

as a normal distribution with mean µ and variance σ2. To express this fact in a compact way, one also writes
X ∼ N (µ, σ2), where the calligraphic N stands for “normal”. The normal distribution is also called “Gaussian
distribution” due to the fact that it was discovered by Carl Friedrich Gauss (1777 - 1855), a German mathematician
who contributed to a variety of fields, including statistics.

2.2.4 Covariance and Correlation
Let us now regard two scalar random variables Y and Z with joint PDF pY,Z(y, z). The PDF of Y is then
given by the integral over z, i.e., pY (y) =

∫∞
−∞ pY,Z(y, z)dz, and likewise for Z. These are called the marginal

distributions, and with their help one can compute the individual means µY , µZ and variances σ2
Y , σ

2
Z . In addition
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16 CHAPTER 2. PROBABILITY AND STATISTICS IN A NUTSHELL

to the variances, one is also interested in the so-called covariance σ(Y, Z) between Y and Z that is defined as the
expectation of (Y − µY )(Z − µZ), i.e.

σ(Y, Z) := E{(Y − µY )(Z − µZ)} =

∫ ∞

−∞

∫ ∞

−∞
(y − µY )(z − µZ) pY,Z(y, z) dy dz.

The physical unit of the covariance is the product of the units of the two random variables. To obtain a unitless
quantity, one often divides the covariance by the two standard deviations, which yields the correlation ρ(Y, Z)
between Y and Z:

ρ(Y, Z) :=
σ(Y, Z)

σY σZ
.

One can show that the correlation is always in the interval [−1, 1]. If the correlation is zero, one says that the two
variables are uncorrelated. If two variables are statistically independent, then they are always uncorrelated, but the
converse is not true in general.

2.3 Multidimensional Random Variables
When we regard two random variables Y ∈ R and Z ∈ R, one could also form the vector X = [Y, Z]⊤ ∈ R2.
The random variable is now characterized by the joint PDF pY,Z(y, z) = pX(x). More generally, we can regard a
random vector X ∈ Rn. The expectation of any function f : Rn → R of X can then be computed by

E{f(X)} =

∫
Rn

f(x) pX(x) dnx.

2.3.1 Mean and Covariance Matrix
We denote the mean of an n-dimensional random vector X by µX = E{X} ∈ Rn. Note that µX is a vector of the
same dimension as X . We generalize the variance to the so-called covariance matrix ΣX ∈ Rn×n, which contains
all variances and covariances in a single matrix. It is given by ΣX = cov(X) where the covariance operator is
defined by

cov(X) = E{(X − µX)(X − µX)⊤}.
It is easy to verify the identity cov(X) = E{XX⊤} − µXµ

⊤
X .

2.3.2 Multidimensional Normal Distribution
We say that a vector-valued random variable X is normally distributed with mean µ and covariance Σ, if its PDF
p(x) is given by a multidimensional Gaussian as follows

p(x) =
1√

det(2πΣ)
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
As a shorthand, one also writes X ∼ N (µ,Σ) to express that X follows a normal distribution with mean µ and
covariance Σ. One can verify by integral computations that indeed E{X} = µ and cov(X) = Σ.

Example (Dependent Multidimensional Normally Distributed Random Variables). Consider the random variable
X ∼ N (µX ,ΣX) ∈ Rn and the dependent random variable Y = Q · X ∈ Rm, with Q ∈ Rm×n. We want to
compute the expected value µY = E{Y } and the covariance matrix ΣY = cov(Y ).

µY = E{Y } = E{QX} = QE{X} = QµX

ΣY = E{(Y − µY )(Y − µY )
⊤}

= E{(QX −QµX)(QX −QµX)⊤}
= E{Q(X − µX)(X − µX)⊤Q⊤}
= QE{(X − µX)(X − µX)⊤}Q⊤

= QΣXQ
⊤
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2.4. STATISTICAL ESTIMATORS 17

For the case that m = n and Q is an orthogonal matrix, i.e., Q−1 = Q⊤ and Q⊤Q = I, we can observe the
following relation for the inverse of Y ’s covariance matrix

Σ−1
Y =

(
QΣXQ

⊤)−1
= (Q⊤)−1(ΣX)−1Q−1 = QΣ−1

X Q⊤

2.4 Statistical Estimators
From now on, we will simplify the lengthy but correct notation for probability densities by just writing p(x) instead
of pX(x). We will also stop to use a different notation for the random variable X and the values x ∈ R which it
takes, and instead only use the lowercase letter x for both. The meaning should be clear from the context.

An estimator uses possibly many measurements in order to estimate the value of some parameter vector that
we typically denote by θ in this script. The parameter is not random, but its true value, θtrue, is not known to
the estimator. If we group all the measurements in a vector-valued random variable y = (y1, . . . , yN ) ∈ RN , the
estimator is a function of y. We can denote this function by θ̂(y). Due to its dependence on y, the estimate θ̂(y)
is itself a random variable, for which we can define mean and covariance. Ideally, the expectation value of the
estimator is equal to the true parameter value θtrue. We then say that the estimator is unbiased.

Definition 1 (Biased- and Unbiasedness). An estimator θ̂ is called unbiased iff E{θ̂(y)} = θtrue, where θtrue is
the true value of a parameter. Otherwise, it is called biased.

Example (Unbiasedness - estimating the mean by an average). One of the simplest estimators tries to estimate the
mean θ ≡ µy of a scalar random variable yk = θ + vk by averaging N independent measurements of y1, . . . , yN .
Each of these measurements yk is random. The estimator θ̂(y) is given by

θ̂(y) =
1

N

N∑
k=1

yk.

It is easy to verify that this estimator is unbiased, because

E{θ̂(y)} =
1

N

N∑
k=1

E{yk} =
1

N

N∑
k=1

µy = µy

Because this estimator is often used, it has a special name. It is called the sample mean.

Example (Covariance of the sample mean and a single measurement). In this example we want to see how a single
measurement affects the sample mean estimator as introduced in the example above. Statistically this is measured
by the covariance of M(y) = 1

N

∑N
k=1 yk and yk, that is cov(M(y), yk) for an arbitrary k.

cov(M(y), yk) = E{(M(y)− E{M(y)})(yk − E{yk})}
= E{M(y)yk − E{yk}M(y)− E{M(y)}yk + E{M(y)}E{yk}}
= E{M(y)yk} − E{yk}E{M(y)} − E{M(y)}E{yk}+ E{M(y)}E{yk}
= E{M(y)yk} − E{yk}E{M(y)}
= E{M(y)yk} − µ2

y

= E{yk
y1 + . . .+ yk + . . .+ yN

N
} − µ2

y

=
1

N
E{yky1 + . . .+ y2k + . . .+ ykyN} − µ2

y

=
1

N
(E{y2k}+ E{yk}E{y1}+ . . .+ E{yk}E{yN})− µ2

y

=
1

N
(σ2

y + µ2
y + (N − 1)µ2

y)− µ2
y

=
σ2
y

N
+ µ2

y − µ2
y

=
σ2
y

N
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18 CHAPTER 2. PROBABILITY AND STATISTICS IN A NUTSHELL

In order to assess the performance of an unbiased estimator, one can regard the covariance matrix of the
estimates, i.e., cov(θ̂(y)). The smaller this symmetric positive semi-definite matrix, the better the estimator. If two
estimators θ̂A and θ̂B are both unbiased, and if the matrix inequality cov(θ̂A)≽cov(θ̂B) holds, we can conclude
that the estimator θ̂B has a better performance than estimator θ̂A. Typically, the covariance of an estimator becomes
smaller when an increasing number N of measurements is used. Often the covariance even tends to zero as
N → ∞. Some estimators are not unbiased, but if N tends to infinity, their bias – i.e., the difference between the
true value and the mean of the estimate – tends to zero.

Definition 2 (Asymptotic Unbiasedness). With y = (y1, . . . , yN ), an estimator θ̂(y) is called asymptotically
unbiased iff

lim
N→∞

E{θ̂(y1, . . . , yN )} = θtrue.

Example (Asymptotic unbiasedness – estimating the variance by the mean squared deviations). One of the sim-
plest biased, but asymptotically unbiased estimators tries to estimate the variance θ ≡ σ2

y of a scalar random
variable yk from N measurements y = (y1, . . . , yN ), computing the experimental mean M(y) = 1

N

∑N
k=1 yk,

and then averaging the squared deviations from the mean

θ̂(y) =
1

N

N∑
k=1

(yk −M(y))2

To show that it is biased, one has to consider that the sample mean M(y) is a random variable that is not indepen-
dent of y. One can compute its expectation value as follows

E{θ̂(y)} = E{ 1

N

N∑
k=1

(yk −M(y))2}

=
1

N
NE{y2k − 2ykM(y) +M(y)2}

= E{y2k} − 2E{ykM(y)}+ E{M(y)2}.

We have already computed the expectation E{ykM(y)} in the previous example and we can compute E{y2k}
analogously to the variance example in Section 2.2.1. The only term that is missing is E{M(y)2}. So we compute
it as

E{M(y)2} =
1

N2
E{(y1 + . . .+ yN )2}

=
1

N2
E{(y21 + . . .+ y2N + y1y2 + . . .+ ynyN−1)}

=
1

N2
(NE{y2k}+N(N − 1)E{yk}E{yj}) j ̸= k

=
1

N2
(N(σ2

y + µ2
y) +N(N − 1)µ2

y)

=
1

N2
(Nσ2

y +N2µ2
y)

=
σ2
y

N
+ µ2

y.

Now we have all the information we need to compute the expectation of the variance.

E{θ̂} = E{y2k} − 2E{ykM(y)}+ E{M(y)2}

= µ2
y + σ2

y − 2(
σ2
y

N
+ µ2

y) +
σ2
y

N
+ µ2

y

= σ2
y −

σ2
y

N

=
N − 1

N
σ2
y
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Only for N → ∞, this estimator tends to the true value, so it is indeed asymptotically unbiased.

Because the bias is very easy to correct, in practice one rarely uses the above formula. Instead, to estimate the
variance of a random variable yk, one uses the so-called sample variance S2 that is defined by

S2 =
1

N − 1

N∑
k=1

(yk −M(y))2.

Note the division byN−1 instead ofN . A stronger and even more desirable property than asymptotic unbiasedness
is called consistency.

Definition 3 (Consistency). With y = (y1, . . . , yN ), an estimator θ̂(y) is called consistent if, for any ϵ > 0, the
probability P (θ̂(y1, . . . , yN )) ∈ [θtrue − ϵ, θtrue + ϵ]) tends to one as N → ∞.

It can be shown that an estimator is consistent if (a) it is asymptotically unbiased and (b) its covariance tends
to zero as N → ∞.

2.5 Analysis of the Resistance Estimation Example
In the previous chapter, we introduced the Resistance Estimation Example where we used three different ways to
generate an estimator: the so-called ”Simple approach” represented by Equation (2.1), the ”Error in Variables”
estimator represented by Equation (2.2) and finally the ”Least Squares” estimator represented by Equation (2.3).

R̂
[N ]
SA =

1

N
·

N∑
k=1

uk
ik

(2.1)

R̂
[N ]
EV =

1
N

∑N
k=1 uk

1
N

∑N
k=1 ik

(2.2)

R̂
[N ]
LS = argmin

R∈R

N∑
k=1

(R · ik − uk)
2 =

1
N

∑N
k=1 uk · ik

1
N

∑N
k=1 i

2
k

(2.3)

The aim of this section is to analyse each of the estimators and in particular, because this is easiest to analyze,
to find out if they are asymptotically unbiased or not. In order to perform this analysis, we need to make some
assumptions on the origin of the measurement errors, i.e., we analyse a model situation where one assumes to
know the true value and the noise properties. We model the voltage uk and the current ik at time k as the true value
of the voltage utrue and current itrue, plus a zero- mean i.i.d. noise nu,k and ni,k. This means that we write

uk = utrue + nu,k

ik = itrue + ni,k.
(2.4)

Of course, the quotient of the true values utrue and itrue is the true value of the resistance, i.e., Rtrue = utrue

itrue
.

We also make some assumptions on the disturbing noise, namely that ni,k and nu,k are independent of each other
and are each independent identically distributed (i.i.d.), have distributions with zero mean, and have the (finite)
variances σ2

i and σ2
u.

In order to analyze the estimators, we need to make use of a result that is intuitively easy to accept, while a
rigorous treatment would be involved. The result regards an infinite sequence of measurements yk of a random
variable y and states that

lim
N→∞

1

N

N∑
k=1

yk = E{y}.

This implies, for example, that

lim
N→∞

1

N

N∑
k=1

uk = utrue.
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20 CHAPTER 2. PROBABILITY AND STATISTICS IN A NUTSHELL

Because the noises are zero mean and independent, which implies zero correlation, also their product has zero
expectation, i.e.,

lim
N→∞

1

N

N∑
k=1

ni,knu,k = 0.

However, the limit of their squares is non-zero, because the mean of their squares is given by the variance. For
example,

lim
N→∞

1

N

N∑
k=1

ni,kni,k = σ2
i .

In the following, we regard the three estimators in a different order than before, because the analysis of the
simple approach is more involved than the one of the other two, and is therefore postponed to the end of the section.

2.5.1 Error in Variables estimator
Let us first look at the “error in variables” estimator:

R̂
[N ]
EV =

1
N

∑N
k=1 uk

1
N

∑N
k=1 ik

(2.5)

Let us now calculate the limit of R̂[N ]
EV for N → ∞, as follows.

lim
N→∞

R̂
[N ]
EV = lim

N→∞

{ 1
N

∑N
k=1 uk

1
N

∑N
k=1 ik

}
=

limN→∞{ 1
N

∑N
k=1(utrue + nu,k)}

limN→∞{ 1
N

∑N
k=1(itrue + ni,k)}

=
utrue + limN→∞{ 1

N

∑N
k=1 nu,k}

itrue + limN→∞{ 1
N

∑N
k=1 ni,k}

=
utrue
itrue

= Rtrue

(2.6)

We can conclude from this result that the Error in Variables estimator is asymptotically unbiased.

2.5.2 Least Squares estimator
Assuming the same properties for the measurements uk and ik as before, the Least Squares estimator can be
analysed as follows. We start by separating true values and noise in the formula.

R̂
[N ]
LS =

1
N

∑N
k=1 uk · ik

1
N

∑N
k=1 i

2
k

=
1
N

∑N
k=1(utrue + nu,k) · (itrue + ni,k)

1
N

∑N
k=1(itrue + ni,k)2

. (2.7)

Now, following the same procedure as before, we can calculate the limit when N → ∞ for the numerator and
denominator separately. For the numerator, we have:

lim
N→∞

1

N

N∑
k=1

(utrue + nu,k) · (itrue + ni,k)

= lim
N→∞

(
1

N

N∑
k=1

utrue · itrue +
1

N

N∑
k=1

itrue · nu,k +
1

N

N∑
k=1

utrue · ni,k +
1

N

N∑
k=1

ni,k · nu,k
)

= utrue · itrue.

(2.8)

The last line follows since nu,k, ni,k are zero mean, and limN→∞
1
N

∑N
k=1 nu,k, ni,k = 0. For the denominator,

we have:

lim
N→∞

1

N

N∑
k=1

(itrue + ni,k)
2 = lim

N→∞

1

N

N∑
k=1

itrue
2 + lim

N→∞

1

N

N∑
k=1

2 · itrue · ni,k + lim
N→∞

1

N

N∑
k=1

ni,k
2

= itrue
2 + σ2

i

(2.9)
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The last line follows since limN→∞
1
N

∑N
k=1(ni,k)

2 = σ2
i . As a result, the limit of the expected value of R̂[N ]

LS is
not the real value Rtrue, but instead:

lim
N→∞

E{R̂[N ]
LS } =

utrue · itrue
i2true + σ2

i

=
Rtrue

1 +
σ2
i

i2true

(2.10)

This means that the estimated value is always lower than the real value, making this estimator a biased es-
timator. It is interesting to note that the size of the bias depends only on the size of the noise on the current
measurements relative to the true current, but not on the size of the noise of the voltage measurements. This is a
general property of least squares estimators where the noise on the regression variable (here: the current) has an
influence on the bias.

2.5.3 Simple Approach
Finally we take a look at the Simple Approach estimator defined by:

R̂
[N ]
SA =

1

N
·

N∑
k=1

uk
ik

(2.11)

Using the same assumptions as before, we could already conclude that limN→∞ R̂
[N ]
SA might not even converge,

since ik can take zero values, and R̂[N ]
SA would be an average of numbers, some of which take the value of infinity.

In spite of this fact, we can still try to find an approximate value for the expected value, assuming that no ik
would take the value of zero. For this purpose, let us first expand the denominator using a Taylor series:

1

ik
=

1

itrue ·
(
1 +

ni,k

itrue

) ≈ 1

itrue
·
(
1− ni,k

itrue
+

(
ni,k
itrue

)2

−
(
ni,k
itrue

)3

+ . . .

)
(2.12)

Though this series might not converge for noise values that are too large, we can use it to analyse the estimator
under optimistic assumptions, namely under the assumption that all noise terms are small enough that the series
converges. If we find a bias even under these optimistic assumptions, we can conclude that the overall estimator is
biased as well. Let us continue as follows:

lim
N→∞

1

N

N∑
k=1

R̂
[N ]
SA = lim

N→∞

1

N

N∑
k=1

{
utrue + nu,k

itrue
·
(
1− ni,k

itrue
+

(
ni,k
itrue

)2

−
(
ni,k
itrue

)3

+ . . .

)}

=

{
utrue
itrue

lim
N→∞

1

N

N∑
k=1

(
1 +

nu,k
utrue

− ni,k
itrue

− ni,k · nu,k
itrue · utrue

+
n2i,k
i2true

+ . . .

)}
≈ utrue
itrue

·
(
1 +

σ2
i

i2true

)
(2.13)

Therefore, even when every ik ̸= 0, the estimator would be biased. In this case, in contrast to the least squares
estimator, the biased value is higher than the true value.

2.5.4 Discussing the results
When we first looked at the graph in Fig. 1.4, it was not possible to state which was the real value, and which of
the estimators were biased. Now, with the analysis done in the previous section, it is pretty obvious that only the
error in variables estimator R̂[N ]

EV converges to the true value of the resistance for high values of N , due to the fact
that it is the only asymptotically unbiased estimator. In the case of the least squares estimator, we can check that
the theoretical analysis matches the graph: the least squares estimator produces a value smaller than the true one.
Finally, in the case of the simple approach, we observed that it might not even converge. But if it does, the value
that it estimates is higher than the real one. All this can be seen in the graphs in Fig. 1.4.
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Chapter 3

Unconstrained Optimization in a Nutshell

Very often estimators for unknown parameters are obtained by minimizing some form of “misfit” between mea-
surement data and model predictions. One simple example for this is the least-squares estimator that we encoun-
tered in the introduction. Most often, the optimization is with respect to the unknown parameters as decision
variables, which are usually called θ in this script, and the objective function of the optimization problem de-
pends on the measurement data, which we often call y. For least squares, we would, for example, minimize the
misfit between the vector y ∈ RN and the model predictions M(θ), i.e., the function to be minimized would be
f(θ) := ∥y−M(θ)∥22. But let us abstract from the estimation context in this chapter, and simply use, as customary
in the field of optimization, the variable x ∈ Rn as the unknown decision variable in the optimization problem.
Thus, let us in this chapter regard unconstrained optimization problems of the form

min
x∈D

f(x), (3.1)

where we regard objective functions f : D → R that are defined on some open domain D ⊂ Rn. We are only
interested in minimizers that lie inside D. We might have D = Rn, but often this is not the case, e.g., as in the
following example where the domain is only the positive numbers:

min
x∈(0,∞)

1

x
+ x. (3.2)

3.1 Optimality Conditions
Let us state a few simple and well-known results from unconstrained optimization that are often used in this course.

Theorem 1 (First-Order Necessary Conditions). If x∗ ∈ D is a local minimizer of f : D → R and f ∈ C1, then

∇f(x∗) = 0. (3.3)

Definition 4 (Stationary Point). A point x̄ with ∇f(x̄) = 0 is called a stationary point of f .

Given the above theorem, stationarity is a necessary, but of course not a sufficient condition for optimality.
There will be one surprisingly large class of functions f(x) for which stationarity is also sufficient for global
optimality, namely the class of convex functions which we treat in the next section. For general nonlinear cost
functions f(x), however, we need to look at second order derivatives in order to decide if a stationary point is a
minimizer or not. There exist necessary and sufficient conditions that are straightforward generalizations of well-
known results from one dimensional analysis to Rn. First, we recall the definition of positive (semi) definiteness
for matrices.

Definition 5 (Generalized Inequality for Symmetric Matrices). We write for a symmetric matrix B = B⊤, B ∈
Rn×n that “B≽0” if and only if B is positive semi-definite i.e., if ∀z ∈ Rn : z⊤Bz ≥ 0, or, equivalently, if all
(real) eigenvalues of the symmetric matrix B are non-negative:

B≽0 ⇐⇒ min eig (B) ≥ 0.

23
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24 CHAPTER 3. UNCONSTRAINED OPTIMIZATION IN A NUTSHELL

We write for two such symmetric matrices that “A≽B” iff A− B≽0, and “A≼B” iff B≽A. We say B≻0 iff
B is positive definite, i.e., if ∀z ∈ Rn \ {0} : z⊤Bz > 0, or, equivalently, if all eigenvalues of B are positive

B≻0 ⇐⇒ min eig(B) > 0.

Theorem 2 (Second-Order Necessary Conditions). If x∗ ∈ D is a local minimizer of f : D → R and f ∈ C2,
then

∇2f(x∗)≽0. (3.4)

Note that the matrix inequality is identical with the statement that all eigenvalues of the Hessian ∇2f(x∗) must
be non-negative. It is possible that the Hessian has one or more zero eigenvalues – whose eigenvectors correspond
to directions of zero curvature in the cost function. Due to this fact, the second-order necessary condition (3.4)
is not sufficient for a stationary point x∗ to be a minimizer. This is illustrated by the simple one-dimensional
functions f(x) = x3 or f(x) = x4 for which x∗ = 0 is a saddle point and a minimizer, respectively, though
for both the necessary conditions ∇f(x∗) = 0 and ∇2f(x∗)≽0 are satisfied. How can we obtain a sufficient
optimality condition for general nonlinear, but smooth functions f?

Theorem 3 (Second-Order Sufficient Conditions and Stability under Perturbations). Assume that f : D → R is
C2. If x∗ ∈ D is a stationary point and

∇2f(x∗)≻0. (3.5)

then x∗ is a strict local minimizer of f . In addition, this minimizer is locally unique and is stable against small
perturbations of f , i.e., there exists a constant C such that for sufficiently small p ∈ Rn holds

∥x∗ − argmin
x

(f(x)+p⊤x)∥ ≤ C∥p∥.

This last theorem, which ensures stability under perturbations for optimal points that satisfy the second order
sufficient conditions, is particularly important in the context of parameter estimation. Note that it requires that the
Hessian matrix of the objective function is positive definite. If this condition is not satisfied, and we will see that
it is not satisfied for so-called “ill-posed” estimation problems, the optimization result, i.e., the estimate, will not
be unique or vary strongly when the data vary.

3.2 Convex Optimization
As said above, convex optimization problems are particularly easy to solve to global optimality. In this section we
first define convexity of sets and functions, state the main properties of convex optimization problems, and give
some conditions to check if a function is convex.

First, a set is convex if all connecting lines between two points are fully contained in the set as well. Mathe-
matically, this can be expressed in the following definition.

Definition 6 (Convex Set). A set Ω ⊂ Rn is convex if

∀x, y ∈ Ω, t ∈ [0, 1] : x+ t(y − x) ∈ Ω. (3.6)

Second, a function is convex if all secants are above the graph:

Definition 7 (Convex Function). A function f : Ω → R is convex, if its domain Ω is a convex set and if

∀x, y ∈ Ω, t ∈ [0, 1] : f(x+ t(y − x)) ≤ f(x) + t(f(y)− f(x)). (3.7)

Note that this definition is equivalent to saying that the epigraph of f , i.e., the set {(x, s) ∈ Rn × R|x ∈
Ω, s ≥ f(x)}, is a convex set. Finally, a convex optimization problem is an optimization problem where we want
to minimize a convex function over a convex set. For unconstrained convex optimization problems, we assume that
the minimizer lies in the interior of the convex set. The reasons that statisticians and other scientists like convex
optimization problems much more than the non-convex ones are the following two theorems.

Theorem 4 (Local Implies Global Optimality for Convex Problems). For a convex optimization problem, every
local minimum is also a global one.
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Theorem 5 (Convex First-Order Sufficient Conditions). Assume that f : D → R is C1 and convex. If x∗ ∈ D is
a stationary point of f , then x∗ is a global minimizer of f .

We will extensively make use of this second theorem, because many of the optimization problems formulated
in system identification are convex and we can then easily compute the minimizer by setting the gradient ∇f(x) to
zero. An important convex objective function is the least squares cost function f(x) = ∥y−Φx∥22 with Φ ∈ RN×n,
that is the subject of the next chapter.

There exists a whole algebra of operations that preserve convexity of functions and sets, which is excellently
explained in good text textbooks on convex optimization such as [BV04]. Here we only mention one important
fact that is related to the positive curvature of a function.

Theorem 6 (Convexity for C2 Functions). Assume that f : Ω → R is twice continuously differentiable and Ω
convex and open. Then f is convex if and only if for all x ∈ Ω the Hessian is positive semi-definite, i.e.,

∀x ∈ Ω : ∇2f(x)≽0. (3.8)

Example. Let us regard the simple scalar optimization problem from the beginning, where we want to minimize
f(x) = 1

x + x for all positive x. We compute the gradient ∇f(x) = − 1
x2 + 1 and the Hessian ∇2f(x) = 2

x3 . For
positive numbers, the Hessian is always positive, i.e., ∇2f(x)≽0, and therefore, the function is convex. Thus, we
can find its global minimum x∗ by setting the gradient to zero:

∇f(x) = − 1

x2
+ 1 = 0.

This equation admits only one positive solution, x∗ = 1. This point must be the global minimizer.
It is interesting to also investigate the stability of this minimizer under perturbations, which is guaranteed by

the fact that it also satisfies the second order sufficient conditions for local optimality (because the Hessian is
strictly positive). Thus, let us compute the minimizer of f(x) + px for arbitrary p ∈ R. By the same reasoning as
above, we obtain

− 1

x2
+ 1 + p = 0,

and for small p the only positive solution is given by

x∗(p) =
1√
1 + p

,

and indeed, the difference is bounded by a linear term

∥x∗(0)− x∗(p)∥ =
|√1 + p− 1|√

1 + p
≤ C|p|

e.g., with C = 1 for sufficiently small p.



i
i

“msi” — 2025/10/10 — 9:28 — page 26 — #26 i
i

i
i

i
i



i
i

“msi” — 2025/10/10 — 9:28 — page 27 — #27 i
i

i
i

i
i

Part II

General Parameter Estimation Methods

27



i
i

“msi” — 2025/10/10 — 9:28 — page 28 — #28 i
i

i
i

i
i



i
i

“msi” — 2025/10/10 — 9:28 — page 29 — #29 i
i

i
i

i
i

Chapter 4

Linear Least Squares Estimation

Linear least squares (LLS or just LS) is a technique that helps us find a model that is linear in some unknown
parameters θ ∈ Rd. For this purpose, we regard a sequence of measurements y1, . . . , yN ∈ R that shall be
explained – they are also called the dependent variables – and another sequence of regression vectors ϕ1, . . . , ϕN ∈
Rd, which are regarded as the inputs of the model and are also called the independent or explanatory variables.
Prediction errors are modelled by additive measurement noise ϵ1, . . . , ϵN with zero mean, such that the overall
model is given by

yk = ϕ⊤k θ + ϵk, for k = 1, . . . , N.

Let us in this section consider only scalar measurements yk, though LLS can be generalized easily to the case of
several dependent variables. The task of LLS is to find an estimate θ̂LS for the true but unknown parameter vector
θtrue. Often the ultimate aim is to be able to predict y for any given new value of the regression vector ϕ by the
model y = ϕ⊤θ̂LS.

4.1 Least Squares Problem Formulation
The idea of linear least squares is to find the θ that minimizes the sum of the squares of the prediction errors
yk − ϕ⊤k θ, i.e., the least squares cost function

N∑
k=1

(
yk − ϕ⊤k θ

)2
.

Stacking all values yk into one long vector y ∈ RN and all regression vectors as rows into one matrix Φ ∈ RN×d,
i.e.,

y =

 y1...
yN

 and Φ =

 ϕ
⊤
1
...
ϕ⊤N


we can write the least squares cost function1 as

f(θ) = ∥y − Φθ∥22.

The least squares estimate θ̂LS is the value of θ that minimizes this function. Thus, we are faced with an uncon-
strained optimization problem that can be written as

min
θ∈Rd

f(θ).

In estimation, we are mainly interested in the input arguments of f that achieve the minimal value, which we call
the minimizers. The set of minimizers S∗ is denoted by

S∗ = arg min
θ∈Rd

f(θ).

1We recall that for any vector x ∈ Rn, we define the Euclidean norm as ∥x∥2 =
(∑n

i=1 x
2
i

)1/2
= (x⊤x)1/2.

29
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Note that there can be several minimizers. If the minimizer is unique, we have only one value in the set, that we
denote θ∗, and we can slightly sloppily identify θ∗ with {θ∗}. The least squares estimator θ̂LS is given by this
unique minimizer, such that we will often write

θ̂LS = arg min
θ∈Rd

f(θ).

But in order to compute the minimizer (or the set of minimizers), we need to solve an optimization problem. Let
us therefore recall a few concepts from optimization, and then give an explicit solution formula for θ̂LS.

4.2 Solution of the Linear Least Squares Problem
The function f(θ) = 1

2∥y − Φθ∥22 is convex. Therefore, local minimizers are found by just setting the gradient
to zero. The factor of 1

2 in the objective does not affect the minimizer and, is included to conveniently cancel the
factor of two that would otherwise appear in the first and second derivatives of f . To find the minimizer, let us
compute the gradient of f .

∇f(θ∗) = 0 ⇔ Φ⊤Φθ∗ − Φ⊤y = 0

⇔ θ∗ = (Φ⊤Φ)−1Φ⊤︸ ︷︷ ︸
=Φ+

y (4.1)

Definition 8 (Pseudo inverse). Φ+ is called the pseudo inverse of the matrix Φ and is a generalization of the
inverse matrix. If Φ⊤Φ ≻ 0, the pseudo inverse Φ+ is given by

Φ+ = (Φ⊤Φ)−1Φ⊤ (4.2)

So far, (Φ⊤Φ)−1 is only defined when Φ⊤Φ ≻ 0. This holds if and only if rank(Φ) = d, i.e., if the columns
of Φ are linearly independent. In this context, it is interesting to note that ∇2f(θ) = Φ⊤Φ, i.e., the pseudo inverse
is well-defined if and only if the second order sufficient conditions for optimality are satisfied.

Later, we will generalize the pseudo inverse to the case that Φ has linearly dependent column vectors, i.e.,
that the matrix Φ⊤Φ has one or more zero eigenvalues. Due to convexity of f , points with ∇f(θ) = 0 will still
be minimizers in that case, but they will not be unique anymore. But let us first illustrate the regular case with
Φ⊤Φ ≻ 0 in two examples.

Example (Fitting a constant equals taking the average). Let us regard the simple optimization problem:

min
θ∈R

1

2

N∑
i=1

(yi − θ)2.

This is a linear least squares problem, where the vector y and the matrix Φ ∈ RN×1 are given by

y =


y1
y2
...
yN

 , Φ =


1
1
...
1

 . (4.3)

Because Φ⊤Φ = N , it is easy to see that

Φ+ = (Φ⊤Φ)−1Φ⊤ =
1

N

[
1 1 · · · 1

]
(4.4)

so we conclude that the local minimizer equals the average of the given points yi:

θ∗ = Φ+y =
1

N

N∑
i=1

yi. (4.5)
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ti

ηi

Figure 4.1: Linear regression for a set of data points (ti, yi)

Example (Fitting a line). Given data points {ti}Ni=1 with corresponding values {yi}Ni=1, find the 2-dimensional
parameter vector θ = (θ1, θ2), so that the polynomial of degree one p(t; θ) = θ1 + θ2t provides a prediction of y
at time t. The corresponding optimization problem looks like:

min
θ∈R2

1

2

N∑
i=1

(yi − p(ti; θ))
2 = min

θ∈R2

1

2

∥∥∥∥y − Φ

[
θ1
θ2

]∥∥∥∥2
2

(4.6)

where y is the same vector as in (4.3) and Φ is given by

Φ =


1 t1
1 t2
...

...
1 tN

 . (4.7)

The local minimizer is found by equation (4.1), where the calculation of (Φ⊤Φ) is straightforward:

Φ⊤Φ =

[
N

∑
ti∑

ti
∑
t2i

]
. (4.8)

4.3 Weighted Least Squares
One might want to give different weights to different residuals in the sum of the linear least squares cost func-
tion. This is important if the measurement errors ϵk have zero mean and are independent, but are not identically
distributed, such that they have different variances σ2

ϵ,k. We would intuitively like to give less weight to those
measurements which are corrupted by stronger noise. Weighting is mandatory if different measurements represent
different physical units, if we want to avoid that we add squared apples to squared pears. Fortunately, the variance
of each measurement has the same unit as the measurement squared, such that a division of each residual by the
variance would make all terms free of units. For this reason one nearly always uses the following weighted least
squares cost function:

fWLS(θ) =

N∑
k=1

(yk − ϕ⊤k θ)
2

σ2
ϵ,k

,

and we will see that this cost function ensures the best possible performance of the least squares estimator. To
bring this into a more compact notation, we can introduce a diagonal weighting matrix

W =

σ
−2
ϵ,1

. . .
σ−2
ϵ,N


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and then write2

fWLS(θ) = ∥y − Φθ∥2W .

Even more generally, one might use any symmetric positive definite matrix W ∈ RN×N as weighting matrix. The
optimal solution is given by

θ̂WLS = argmin fWLS(θ) = (Φ⊤WΦ)−1Φ⊤Wy.

There is an alternative way to represent the solution, using the matrix Φ̃ = W
1
2Φ and its pseudo inverse. To

derive this alternative way, let us first state the fact that there exists a unique symmetric square root W
1
2 for any

symmetric positive definite matrix W . For example, for a diagonal weighting matrix as above, the square root is
given by

W
1
2 =

σ
−1
ϵ,1

. . .
σ−1
ϵ,N

 .
With this square root matrix, we have the trivial identity ∥x∥2W = ∥W 1

2x∥22 for any vector x ∈ RN and can
therefore write

fWLS(θ) = ∥W 1
2 y︸ ︷︷ ︸

=:ỹ

−W
1
2Φ︸ ︷︷ ︸

=:Φ̃

θ∥22.

Thus, the weighted least squares problem is nothing other than an unweighted least squares problem with rescaled
measurements ỹ = W

1
2 y and rescaled regressor matrix Φ̃ = W

1
2Φ, and the solution can be computed using the

pseudo inverse of Φ̃ and is simply given by
θ̂WLS = Φ̃+ỹ.

This way of computing the estimate is numerically more stable, so it is in general preferable. An important
observation is that the resulting solution vector θ̂WLS does not depend on the total scaling of the entries of the
weighting matrix, i.e., for any positive real number α, the weighting matrices W and αW deliver identical results
θ̂WLS. Only for this reason it is meaningful to use unweighted least squares – they deliver the optimal result in
the case that the measurement errors are assumed to be independent and identically distributed. But generally
speaking, all least squares problems are in fact weighted least squares problems, because one always has to make
a choice of how to scale the measurement errors. If one uses unweighted least squares, one implicitly chooses
the unit matrix as weighting matrix, which makes sense for i.i.d. measurement errors, but otherwise not. For ease
of notation, in the following we will nevertheless continue discussing the unweighted LS formulation, keeping in
mind that any weighted least squares problem can be brought into this form by the above rescaling procedure.

4.4 Ill-Posed Least Squares and the Moore Penrose Pseudo Inverse
In some cases, the matrix Φ⊤Φ is not invertible, i.e., it contains at least one zero eigenvalue. In this case the
estimation problem is called ill-posed, because the solution is not unique. But there is still the possibility to obtain
a solution of the least squares problem that might give a reasonable result. For this we have to use a special type of
pseudo inverse. Let us recall that definition (4.2) of the pseudo inverse does only hold if Φ⊤Φ is invertible. This
implies that the set of optimal solutions S∗ has only one optimal point θ∗, given by S∗ = {θ∗} = (Φ⊤Φ)−1Φy. If
Φ⊤Φ is not invertible, the set of solutions S∗ is given by

S∗ = {θ | ∇f(θ) = 0} = {θ|Φ⊤Φθ − Φ⊤y = 0} (4.9)

In order to pick a unique point out of this set, we might choose to search for the “minimum norm solution”, i.e.,
the vector θ∗ with minimum norm satisfying θ∗ ∈ S∗.

min
θ∈Rn

1

2
∥θ∥22 subject to θ ∈ S∗ (4.10)

We will show below that this minimal norm solution is given by the so- called “Moore Penrose Pseudo Inverse”.

2Recall that for any positive definite matrix W the weighted Euclidean norm ∥x∥W is defined as ∥x∥W =
√
x⊤Wx.
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x1

x2

Figure 4.2: Φ⊤Φ is invertible, resulting in a unique minimum.

x1

x2

S∗

f(x)

Figure 4.3: An example of an ill-posed problem, Φ⊤Φ is not invertible
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Definition 9 (Singular value decomposition (SVD)). Assume A ∈ Rm×n with rank(A) = r ≤ min(m,n). In
that case, A can be factored as:

A = USV ⊤, (4.11)

where U ∈ Rm×m, V ∈ Rn×n, and both of them are unitary matrices, i.e, both satisfy U⊤U = I and
V ⊤V = I , where I is the identity matrix. Furthermore, S ∈ Rm×n is a matrix with non-negative elements
(σ1, . . . , σr, 0, . . . , 0) on the diagonal and zeros everywhere else, where σ1 ≥ σ2 ≥ . . . ≥ σr > 0. This is known
as the singular value decomposition (SVD) of A.

Definition 10 (Moore Penrose Pseudo Inverse). Assume Φ ∈ Rm×n and that the singular value decomposition
(SVD) of Φ is given by Φ = USV ⊤. Then, the Moore Penrose Pseudo Inverse Φ+ is given by:

Φ+ = V S+U⊤, (4.12)

where for

S =



σ1
σ2

. . .
σr

0
. . .

0
0 . . . 0 . . . 0


holds S+ =



σ−1
1 0

σ−1
2

. . .
...

σ−1
r 0

0
...

. . .
0 0


(4.13)

If Φ⊤Φ is invertible, then Φ+ = (Φ⊤Φ)−1Φ⊤ what easily can be shown:

(Φ⊤Φ)−1Φ⊤ = (V S⊤U⊤USV ⊤)−1V S⊤U⊤

= V (S⊤S)−1V ⊤V S⊤U⊤

= V (S⊤S)−1S⊤U⊤

= V


σ2
1

σ2
2

. . .
σ2
r


−1 

σ1
σ2 0

. . .
σr

U⊤

= V S+U⊤

4.4.1 Regularization for Least Squares

The minimum norm solution can be approximated by a “regularized problem”

min
θ

1

2
∥y − Φθ∥22 +

α

2
∥θ∥22, (4.14)

with small α > 0, to get a unique solution

∇f(θ) = Φ⊤Φθ − Φ⊤y + αθ (4.15)
= (Φ⊤Φ+ αI)θ − Φ⊤y, (4.16)

thus θ∗ = (Φ⊤Φ+ αI)−1Φ⊤y (4.17)
(4.18)

Lemma 1. limα→0(Φ
⊤Φ+ αI)−1Φ⊤ = Φ+, with Φ+ the Moore Penrose Pseudo Inverse.
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Proof: Taking the SVD of Φ = USV ⊤, (Φ⊤Φ+ αI)−1Φ⊤ can be written in the form:

(Φ⊤Φ+ αI)−1Φ⊤ = (V S⊤U⊤USV ⊤ + α I︸︷︷︸
V V ⊤

)−1 Φ⊤︸︷︷︸
V S⊤U⊤

= V (S⊤S + αI)−1V ⊤V S⊤U⊤

= V (S⊤S + αI)−1S⊤U⊤

Rewriting the right-hand side of the equation explicitly:

= V



σ2
1 + α

. . .
σ2
r + α

α
. . .

α



−1


σ1 0
. . .

σr
...

0
. . .

0 0


U⊤

Calculating the matrix product simplifies the equation:

= V



σ1

σ2
1+α

0

. . .

σr

σ2
r+α

...
0
α

. . .
0
α 0


UT

It is easy to see that for α→ 0 each diagonal element has the solution:

lim
α→0

σi
σ2
i + α

=

{
1
σi

if σi ̸= 0

0 if σi = 0
(4.19)

With the above lemma, we have shown that the Moore Penrose Pseudo Inverse Φ+ solves the problem (4.14) for
infinitely small α > 0. Thus it selects θ∗ ∈ S∗ with minimal norm.

4.5 Statistical Analysis of the Weighted Least Squares Estimator

In the following, we analyse the weighted least squares estimator, and we make the following assumptions:

• The N measurements y1, . . . , yN are generated by a model yk = ϕ⊤k θtrue + ϵk with θtrue the true but
unknown parameter value

• The N regression vectors ϕ1, . . . , ϕN are deterministic and not corrupted by noise (attention: this assump-
tion is often violated in practice).

• The N noise terms ϵk have zero mean. Often, we can also assume that they are independent of each other,
or even that they are i.i.d., and this will have consequences on the optimal choice of the weighting matrix,
as we will see. We abbreviate ϵN = [ϵ1, . . . , ϵN ]⊤.

• the weighted least squares estimator is computed as θ̂WLS = (Φ⊤WΦ)−1Φ⊤Wy.

We are most interested in the following questions: Is the estimator biased or unbiased? What is its performance,
i.e., what covariance matrix does the estimate have?
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4.5.1 The expectation of the least squares estimator

Let us compute the expectation of θ̂WLS.

E{θ̂WLS} = E
{
(Φ⊤WΦ)−1Φ⊤Wy

}
(4.20)

= (Φ⊤WΦ)−1Φ⊤W E {y} (4.21)

= (Φ⊤WΦ)−1Φ⊤W E {Φθtrue + ϵ } (4.22)

= (Φ⊤WΦ)−1(Φ⊤WΦ) θtrue + (Φ⊤WΦ)−1Φ⊤W E {ϵ} (4.23)
= θtrue + 0 (4.24)

Thus, the weighted least squares estimator has the true parameter value θtrue as expectation value, i.e., it is an
unbiased estimator. This fact is true independent of the choice of weighting matrix W .

4.5.2 The covariance of the least squares estimator

In order to assess the performance of an unbiased estimator, one can look at the covariance matrix of θ̂WLS.
The smaller this covariance matrix in the matrix sense, the better is the estimator. Let us therefore compute the
covariance matrix of θ̂WLS. Using the identity θ̂WLS − θtrue = (Φ⊤WΦ)−1Φ⊤Wϵ, it is given by

cov(θ̂WLS) = E{(θ̂WLS − θtrue)(θ̂WLS − θtrue)
⊤} (4.25)

= (Φ⊤WΦ)−1Φ⊤W E
{
ϵϵ⊤
}
WΦ(Φ⊤WΦ)−1 (4.26)

= (Φ⊤WΦ)−1Φ⊤W Σϵ WΦ(Φ⊤WΦ)−1. (4.27)

Here, we have used the shorthand Σϵ = cov(ϵ). For different choices of W , the covariance cov(θ̂WLS) will be
different. However, there is one specific choice that makes the above formula very easy: if we happen to know Σϵ

and would choose W := Σ−1
ϵ , we would obtain

cov(θ̂WLS) = (Φ⊤WΦ)−1Φ⊤W W−1 WΦ(Φ⊤WΦ)−1 (4.28)

= (Φ⊤WΦ)−1(Φ⊤WΦ)(Φ⊤WΦ)−1 (4.29)

= (Φ⊤WΦ)−1 (4.30)

= (Φ⊤Σ−1
ϵ Φ)−1. (4.31)

Interestingly, it turns out that this choice of weighting matrix is the optimal choice, i.e., for all other weighting
matrices W one has

cov(θ̂WLS)≽(Φ⊤Σ−1
ϵ Φ)−1.

Even more, one can show that in case of Gaussian noise with zero mean and covariance ΣϵN , the weighted linear
least squares estimator with optimal weights W = Σ−1

ϵ achieves the lower bound on the covariance matrix that
any unbiased estimator can achieve (the so-called Cramer-Rao lower bound).

4.5.3 Optimality of the Inverse Noise Covariance as Weighting Matrix
As mentioned at the end of the previous section, the choice of the inverse of the noise covariance as weighting
matrix is optimal in the sense that no other choice of weighting matrix delivers a smaller covariance. We will be
able to prove an even stronger statement, namely that the optimally weighted least squares estimator is the best
among all unbiased linear estimators. In this subsection we drop the subindex (·)N for notational simplicity.

Theorem 7 (Cramer-Rao Lower Bound for Unbiased Linear Estimators). Assume measurements y ∈ RN are
generated according to a model y = Φθtrue + ϵ with θtrue ∈ Rd the true (but unknown) parameter and ϵ ∈ RN

zero-mean measurement noise with positive definite covariance matrix cov(ϵ) = Σϵ and rank(Φ) = d. Regard
any unbiased linear estimator θ̂A := Ay with fixed matrix A ∈ Rd×N . Then

cov(θ̂A) ≽ (Φ⊤Σ−1
ϵ Φ)−1. (4.32)

The lower bound is achieved by the optimally weighted least squares estimator with matrixA∗ := (Φ⊤W ∗Φ)−1Φ⊤W ∗

using W ∗ := Σ−1
ϵ , i.e., it has the smallest covariance matrix among all unbiased linear estimators.
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Proof: First, we note that for any given matrix A, the estimator is unbiased if and only if AΦ = I, because
E{Ay} = E{AΦθtrue + ϵ} = AΦθtrue. Second, we observe that cov(θ̂A) = AΣϵA

⊤. Third, we have shown
above in Eq. (4.31) that cov(θ̂A∗) = (Φ⊤Σ−1

ϵ Φ)−1, i.e., that the lower bound is indeed achieved by the optimally
weighted least squares estimator. Now, the main statement of the above theorem is equivalent to

∀A ∈ Rd×N :
(

AΦ = I
)

⇒
(

AΣϵA
⊤ ≽ (Φ⊤Σ−1

ϵ Φ)−1
)
. (4.33)

We thus need to show that the matrix AΣϵA
⊤ − (Φ⊤Σ−1

ϵ Φ)−1 is positive semidefinite if AΦ = I. In order to
show this we introduce the matrix

B =

[
A Σ

1
2
ϵ

Φ⊤Σ
− 1

2
ϵ

]
for which we have BB⊤ =

[
AΣϵA

⊤ AΦ
(AΦ)⊤ Φ⊤Σ−1

ϵ Φ

]
Now there is a famous lemma about the ”Schur complement” (cf. A 5.5 in [BV04]) that states that if the lower
right block in a symmetric matrix is positive definite, the whole matrix is positive semidefinite if and only if the
so-called ”Schur complement” of the lower right block is positive definite.

In our case, the lower right block is given by Φ⊤Σ−1
ϵ Φ, which is positive definite. The Schur complement –

which must be positive semidefinite due to the fact that the whole matrix BB⊤ is positive semidefinite – is in our
case given byAΣϵA

⊤−AΦ (Φ⊤Σ−1
ϵ Φ)−1(AΦ)⊤. BecauseAΦ = I we deduce thatAΣϵA

⊤−(Φ⊤Σ−1
ϵ Φ)−1≽0.

This is what we wanted to prove.

4.6 Measuring the Goodness of Fit using R-Squared
In the previous sections we have provided an indicator of how good an unbiased estimator can be: the covariance
matrix. Nevertheless, the covariance is a matrix which provides information relative to the problem that is solved,
so a simple change of units of the parameters would change the values of the covariance. Also, it does not really
say if we have a good fit or not. Furthermore, because of its matrix structure, it is a rather difficult indicator to
read. As a consequence, one would like to use another indicator that is just assessing the “goodness of fit” and that
is easier to interpret. Ideally, we would like to have one scalar number, which can take values from a fixed range
of values that is independent of the problem’s data size. Such an indicator is given by the so-called coefficient of
determination or R-squared (R2) value which is represented by the following expression:

R2 = 1− ∥y − Φ · θ̂∥22
∥y∥22

(4.34)

Here, one usually first subtracts the mean from the measurement data before computing the denominator ∥y∥22,
i.e., one ensures that

∑N
k=1 y(k) = 0.

The R2 value is always between zero and one. A value of one means that the fit is perfect, i.e., the estimated
values of the linear fit, ŷ := Φ · θ̂, coincide with the measurements, y. A value of zero means that the linear
model is not able to explain any of the data. To get a more intuitive interpretation of intermediate R2 values, it is
interesting to regard the residuals ϵ = y − ŷ and exploit the fact that ŷ and ϵ are orthogonal vectors. This implies
that

R2 = 1− ∥ϵ∥22
∥y∥22

=
∥y∥22 − ∥ϵ∥22

∥y∥22
=

∥ŷ∥22
∥y∥22

.

This means that the R2 value can be regarded as a measure of how much of the variation in the data can be
explained by the linear model. In the derivation above, the relation ∥ŷ∥22 = ∥y∥22 − ∥ϵ∥22 can be proved taking into
account the orthogonality condition of ϵ and ŷ that is due to optimality of θ̂. The optimality condition of θ̂ in the
least squares problem is Φ⊤ · (Φ · θ̂− y) = 0, i.e., ΦT · ϵ = 0. This implies that θ̂⊤ ·Φ⊤ · ϵ = ŷ⊤ · ϵ = 0, i.e., that
ŷ and ϵ are orthogonal. Orthogonality and the fact that y = ŷ + ϵ implies that ∥y∥22 = ∥ŷ∥22 + ∥ϵ̂∥22.

4.7 Estimating the Covariance with a Single Experiment
So far, we have analysed the theoretical properties of the LS estimator, and we know that for independent identi-
cally distributed measurement errors, the unweighted least squares estimator gives us the optimal estimator. If the
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variance of the noise is σ2
ϵ , the least squares estimator θ̂LS = Φ+y is a random variable with the true parameter

value θtrue as mean and the following covariance matrix:

Σθ̂ := cov(θ̂LS) = σ2
ϵ (Φ

⊤Φ)−1.

In addition, if the number of measurementsN in one experiment is large, by a law of large numbers, the distribution
of θ̂LS follows approximately a normal distribution, even if the measurement errors were not normally distributed.
Thus, if one repeats the same experiment with the same N regression vectors many times, the estimates θ̂LS
would follow a normal distribution characterized by these two parameters, i.e., θ̂LS ∼ N (θtrue,Σθ̂). In a realistic
application, however, the situation is quite different than in this analysis:

• First, we do of course not know the true value θtrue.

• Second, we do not repeat our experiment many times, but just do one single experiment.

• Third, we typically do not know the variance of the measurement noise σ2
ϵ .

Nevertheless, and surprisingly, if one makes the assumption that the noise is independent identically distributed,
one is able to make a very good guess of the covariance matrix of the estimator, which we will describe here.
The main reason is that we know the deterministic matrix Φ exactly. The covariance is basically given by the
matrix (Φ⊤Φ)−1, which only needs to be scaled by a factor, the unknown σ2

ϵ . Thus, we only need to find an
estimate for the noise variance. Fortunately, we have N measurements y(k) as well as the corresponding model
predictions ϕ(k)⊤θ̂LS for k = 1, . . . , N , so their average difference can be used to estimate the measurement noise.
Because the predictions are based on fitting the d-dimensional vector θ̂LS to the same measurements y(k) that we
want to use to estimate the measurement errors, we should not just take the average of the squared deviations
(y(k) − ϕ(k)⊤θ̂)2 – this would be a biased (though asymptotically unbiased) estimator. It can be shown that an
unbiased estimate for σ2

ϵ is obtained by

σ̂2
ϵ :=

1

(N − d)

N∑
k=1

(y(k)− ϕ(k)⊤θ̂LS)
2 =

∥y − Φθ̂LS∥22
(N − d)

Thus, our final formula for a good estimate Σ̂θ̂ of the true but unknown covariance cov(θLS) is

Σ̂θ̂ := σ̂2
ϵ (Φ

⊤Φ)−1 =
∥y − Φθ̂LS∥22
(N − d)

(Φ⊤Φ)−1.

What we have now are two quantities, an estimate θ̂LS of the true parameter value θtrue, as well as an estimate Σ̂θ̂
for the covariance matrix of this estimate. This knowledge helps us to make a strong statement about how probable
it is that our estimate is close to the true parameter value. Under the assumption that our linear model structure
is correct and thus our estimator is unbiased, and the (slightly optimistic) assumption that our covariance estimate
Σ̂θ̂ is equal to the true covariance Σθ̂ of the estimator θ̂LS, we can compute the probability that an uncertainty set
around the estimated θ̂LS contains the (unknown) true parameter value θtrue.

* (A) Catching the true value with a confidence ellipsoid

In order to compute this probability, we need to use the cumulative density function (CDF) – i.e., the integral of the
PDF – of the so-called χ2-distribution (Chi-squared) with k := d degrees of freedom. We denote this CDF, which
is illustrated for up to k = 9 degrees of freedom in Figure 4.4, by F (x, k). This function tells us how probable it is
that the square of a k-dimensional, normally distributed variable X ∼ N (0, I) with zero mean and unit covariance
has a value smaller than x, i.e.

P (∥X∥22 ≤ x) = F (x, k).
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Figure 4.4: Cumulative density function F (x, k) for the χ2-distribution with k degrees of freedom (image:
wikipedia).

Using the fact that under the above assumptions, the random variable X := Σ
− 1

2

θ̂
(θ̂LS − θtrue) is normally dis-

tributed with zero mean and unit covariance 3 , we thus know that for any positive x we have

P (∥θtrue − θ̂LS∥2Σ−1

θ̂

≤ x) = F (x, d).

We can give another interpretation to the same fact: the probability that the true value θtrue is contained in the
confidence ellipsoid Ex(θ̂LS) defined by

Ex(θ̂LS) := {θ ∈ Rd | ∥θ − θ̂LS∥2Σ−1

θ̂

≤ x}

is given by
P
(
θtrue ∈ Ex(θ̂LS)

)
= F (x, d).

Note that in this expression, it is the ellipsoid which is random, not the true but unknown value θtrue. We call the
confidence ellipsoid for x = 1, i.e., the set

E1(θ̂LS) := {θ ∈ Rd | ∥θ − θ̂LS∥2Σ−1

θ̂

≤ 1}

the one-sigma confidence ellipsoid. The probability that the true value is contained in it decreases with increasing
dimension d = k of the parameter space and can be found in Figure 4.4 at x = 1. For an example consider the left
plot in Figure 4.5.

(B) Catching the true value of one component with a confidence interval

Note that the variance for a single component of the parameter vector can be found as a diagonal entry in the
covariance matrix, and that the probability that the true value of this single component is inside the one-sigma
interval around the estimated value is always 68.3%, independent of the parameter dimension d. This is due to the
fact that each single component of θ̂ follows a one-dimensional normal distribution. For an example consider the
right plot in Figure 4.5.

3For mathematical correctness, we have to note that we will in the following assume that the covariance matrix Σθ̂ is exactly known in
order to make use of the χ2 or Gaussian distribution. On the other hand, in practice, we can only use its estimate Σ̂θ̂ in the definition of the
confidence ellipsoid. A refined analysis, which is beyond our ambitions, would need to take into account that also Σ̂θ̂ is a random variable,

which implies that X := Σ̂
− 1

2

θ̂
(θ̂LS − θtrue) follows a distribution which is similar to, but not equal to a standard normal distribution. For

the practice of least squares estimation, however, the following characterization of confidence ellipsoids or intervals with the χ2 or Gaussian
distribution is accurate enough and can help us to assess the quality of an estimation result after a single experiment.
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θ1

θ 2

θ̂LS

θ0

39.3%

(A)

θ̂LS,1 − σ̂1 θ̂LS,1 θ̂LS,1 + σ̂1

θ1

θ 2
,P

(θ
1
)

θ̂LS

θ0

68.3%

(B)

Figure 4.5: Example with θ ∈ R2: (A) The probability that the true value θtrue lies (with both components of the
vector) within the 1-σ̂ confidence ellipsoid is only 39.3%, (B) The probability that the first component of the true
value θtrue,1 lies within the 1-σ̂1 confidence interval is 68.3%, where σ̂1 is the first diagonal entry of the covariance
matrix, (compare the values of Fk(1) from Figure 4.4 for k = 1, 2).
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Chapter 5

Maximum Likelihood and Bayesian
Estimation

In the last chapters, we assumed that the measurements are generated from a linear model with additive noise as
y = Φθ + ϵ. Now we will discuss a more general estimation technique, for which we utilize the probability of
obtaining the measurements y, given that the parameters take the value θ. Note that each θ[k] is a vector in the
space Rd and that we use rectangular parentheses ·[k] in the index in order to distinguish it from the component
index. In the following, we will give two examples for such parameter dependent probability distributions p(y|θ).

Example (Flipping a rigged coin). Suppose we perform a series ofN coin flips where, for each flip, the probability
to land on the ‘head’ side is given by the unknown parameter θ that we would like to estimate. We note y =
[y1, . . . , yN ]⊤ the results of this experiment, where yi = 1 if the i-th coin landed on the ‘head’ side and yi = 0
otherwise. The probability for the result of a single flip yi is described by the Bernoulli distribution:

p(yi|θ) =
{
θ if yi = 1

1− θ if yi = 0
(5.1)

Then, assuming independent measurements, the probability for the result of a series of flips y is given by:

p(y|θ) =
N∏
i=1

p(yi|θ) = θm · (1− θ)N−m, (5.2)

where m =
∑n

i=1 yi is the number of times the coin landed on the ‘head’ side. An intuitive estimate of the
parameter θ is the relative frequency of ‘head’ occurrence, i.e., θ̂ = m

N . The Maximum Likelihood method that
will be introduced in the following justifies this choice.

Example (Nonlinear Model with Additive Noise). Consider a nonlinear measurement model where each of the N
measurements follows the equation

yi = mi(θ) + ϵi, (5.3)

with additive i.i.d. zero-mean Gaussian noise ϵi with variance σ2
i . Here mi : Rd → R is a nonlinear function

that computes the model prediction for the single scalar i-th measurement (in the linear case this was mi(θ) =
ϕ⊤i θ). For a concrete example, suppose we want to fit a sinusoidal model with unknown frequency θ ∈ R to
noisy measurements y1, . . . , yN at known times t1, . . . , tN : yi ≈ sin(θti). This would be covered by choosing
mi(θ) = sin(θti). We can summarize the model for all N measurements as y1...

yN

 =

m1(θ)
...

mN (θ)

+

 ϵ1...
ϵN

 (5.4)

41
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for which we write in shorthand y = M(θ) + ϵ, where now M : Rd → RN . The probability for a single
measurement is given by the probability density function

p(yi|θ) =
1√
2πσ2

i

exp

(
− (yi −mi(θ)

2)

2σ2
i

)
, (5.5)

since the mean and variance of the random variable yi are given by µi = E {yi} = mi(θ) and σ2
i = var (yi) =

var (ϵi), respectively. For the vector of measurements y, the probability p(y|θ) is given by a multidimensional
Gaussian with mean µ = [µ1, . . . , µN ]⊤ = [m1(θ), . . . ,mN (θ)]⊤ and covariance matrix Σ = diag(σ2

1 , . . . , σ
2
N ).

In this chapter, we will treat two related types of estimators, the maximum likelihood estimator and the Bayesian
estimator, which both involve solving a nonlinear optimization problem. We conclude the chapter with the famous
Cramer-Rao inequality, which provides a lower bound on the estimation error of an unbiased estimate of θ.

5.1 Maximum Likelihood Estimation
Definition 11 (Likelihood). The likelihood functionL(θ) is a function of θ for given measurements y that describes
how likely the measurements would have been if the parameter would have the value θ. It is defined as L(θ) =
p(y|θ), using the PDF of y for given θ.

Definition 12 (Maximum-Likelihood Estimate). The maximum-likelihood estimate of the unknown parameter θ is
the parameter value that maximizes the likelihood function, i.e.

θ̂ML = argmax
θ

L(θ). (5.6)

Example (Nonlinear Model with Additive Noise, cont.). Assume yi = mi(θ) + ϵi where ϵi is Gaussian noise
with expectation value E(ϵi) = 0, E(ϵi ϵi) = σ2

i and ϵi, ϵj independent for i ̸= j . Then holds

p(y|θ) =

N∏
i=1

p(yi | θ) (5.7)

= C

N∏
i=1

exp

(−(yi −mi(θ))
2

2σ2
i

)
(5.8)

with C =
∏N

i=1
1√
2πσ2

i

. Taking the logarithm of both sides gives

log p(y|θ) = log(C) +

N∑
i=1

− (yi −mi(θ))
2

2σ2
i

(5.9)

with a constant C. Due to monotonicity of the logarithm holds that the argument maximizing p(y|θ) is given by

argmax
θ∈Rd

p(y|θ) = arg min
θ∈Rd

− log(p(y|θ)) (5.10)

= arg min
θ∈Rd

N∑
i=1

(yi −mi(θ))
2

2σ2
i

(5.11)

= arg min
θ∈Rd

1

2
∥S−1(y −M(θ))∥22 (5.12)

Thus, the least squares problem has a statistical interpretation. Note that due to the fact that we might have different
standard deviations σi for different measurements yi we need to scale both measurements and model functions in
order to obtain an objective in the usual least squares form ∥ŷ − M̂(θ)∥22, as

min
θ

1

2

N∑
i=1

(
yi −mi(θ)

σi

)2

= min
θ

1

2
∥S−1(y −M(θ))∥22 (5.13)

= min
θ

1

2
∥S−1y − S−1M(θ)∥22 (5.14)
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with S =

σ1 . . .
σN

 .
Statistical Interpretation of Regularization terms: Note that a regularization term like α∥θ − θ̄∥22 that is
added to the objective can be interpreted as a “pseudo measurement” θ̄ of the parameter value θ, which includes
a statistical assumption: the smaller α, the larger we implicitly assume the standard deviation of this pseudo-
measurement. As the data of a regularization term are usually given before the actual measurements, regularization
is also often interpreted as “a priori knowledge”. Note that not only the Euclidean norm with one scalar weighting
α can be chosen, but many other forms of regularization are possible, e.g. terms of the form ∥A(θ − θ̄)∥22 with
some matrix A.

5.1.1 L1-Estimation
Instead of using ∥.∥22, i.e., the L2-norm in the fitting problem, we might alternatively use ∥.∥1, i.e., the L1-norm.
This gives rise to the so-called L1-estimation problem:

min
θ

∥y −M(θ)∥1 = min
θ

N∑
i=1

|yi −mi(θ)| (5.15)

Like the L2-estimation problem, also the L1-estimation problem can be interpreted statistically as a maximum-
likelihood estimate. However, in the L1-case, the measurement errors are assumed to follow a Laplace distribution
instead of a Gaussian.

An interesting observation is that the optimal L1-fit of a constant θ to a sample of different scalar values
y1, . . . , yN just gives the median of this sample, i.e.

argmin
θ∈R

N∑
i=1

|yi − θ| = median of {y1, . . . , yN}. (5.16)

Remember that the same problem with the L2-norm gave the average of yi. Generally speaking, the median is less
sensitive to outliers than the average, and a detailed analysis shows that the solution to general L1-estimation prob-
lems is also less sensitive to a few outliers. Therefore, L1-estimation is sometimes also called “robust” parameter
estimation.

5.2 Bayesian Estimation and the Maximum A Posteriori Estimate
The Maximum Likelihood estimation solves the problem argmaxθ∈Rd p(y|θ). However, one might instead want to
maximise the probability of θ given the measurements y, i.e., p(θ|y). This last probability is not known beforehand,
but Bayes’ rule can be applied to obtain a computable expression:

p(θ|y) = p(y, θ)

p(y)
=
p(y|θ) · p(θ)

p(y)
(5.17)

From Equation (5.17) it can be seen that the probability to maximise p(θ|y) depends on three factors:

1. A constant term, p(y), that need not be regarded when optimizing over θ.

2. The same term which was maximised for Maximum Likelihood, p(y|θ).
3. An extra term p(θ) that introduces the need for a priori knowledge, or an assumption, on the value of θ.

The systematic approach to incorporate the prior knowledge is always the same: to incorporate an extra min-
imisation term representing the negative log-probability of this prior knowledge (as it was done with the ML term).
This resulting estimate is known as the Maximum a Posteriori Estimate (MAP) and represented by:

θ̂MAP = argmin
θ∈R

{− log(p(y|θ))− log(p(θ))} (5.18)

The problem with this method is that it leads to a bias when the prior knowledge on θ is not accurate (which it
usually is not, otherwise we would not need to estimate θ).
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5.2.1 MAP example: Regularised Least Squares
Assumptions:

1. The measurements y ∈ RN have i.i.d. Gaussian noise, the model is linear M(θ) = Φ · θ, and θ ∈ R.

2. The prior knowledge on the parameter θ is given: θ ∼ N (θ̄, σ2
θ), where θ̄ is the a priori most probable value

and σθ its standard deviation.

With the first assumption, it is obvious that the minimisation problem will have a term that will minimize a
standard least squares problem, and with the second assumption a second minimization term proportional to the
difference θ − θ̄ and representing the probability of the noise σθ must be included. The final expression is:

θ̂MAP = argmin
θ∈R

1

2
· 1

σ2
ϵ

· ∥y − Φ · θ∥22 +
1

2
· 1

σ2
θ

· (θ − θ̄)2 (5.19)

5.2.2 Differences between ML and MAP estimation
MAP and ML are very closely related. On the one hand, MAP could be considered as a generalisation of ML,
where in the case of ML the weight in the prior-knowledge is zero. On the other hand, MAP can be regarded as a
special case of ML with ”pseudo-measurements” θ̄ of θ.

5.3 Recursive Linear Least Squares
In all previous sections, we have introduced several optimisation methods which provide a useful tool for parameter
estimation. Nevertheless, they have a main disadvantage: they can only be used offline, i.e., they optimise and fit
a finite number N of measurements to a given model.

In real-life applications, problems where the flow of data is continuous are not unusual. Here, online parameter
estimators must be used, i.e., the number of measurements is infinite [y1, y2, . . . , yN , yN+1, . . . ].

The main aim of this section is to provide a tool that can minimise the problem:

θ̂
[N ]
ML = argmin

θ∈R

1

2
∥y1:N − Φ1:N · θ∥22 (5.20)

for increasing N but without increasing the computational time. This task is fairly complex since Φ1:N ∈
RN×d becomes infinitely large when N → ∞. In order to achieve the goal stated above, the main idea is to find
a recursive equation which allows the calculation of θ̂[N+1]

ML using the previous optimal estimator θ̂[N ]
ML , the new

measurement yN+1 and the new regressor φN+1. We want to do so without the need of storing and/or using in the
calculation the previous measurement or regressor values. We make the following assumptions:

1. The sequence of measurements [y1, y2, . . . , yN , yN+1, . . . ] is infinite and updated with a new value at each
time step.

2. The sequence of regressors [ϕ1, ϕ2, . . . , ϕN , ϕN+1, . . . ] is infinite and updated with a new value at each time
step.

3. There is only measurement noise and it is i.i.d. and Gaussian.

Lemma 2. Let y ∈ RN be a set of N measurements used on a Least Squares problem, Φ ∈ RN×d the regressor
of the problem, and θ ∈ Rd the estimator, then:

1

2
· ∥y − Φ · θ∥22 =

1

2
· ∥θ − θ̂

[N ]
ML∥2Φ⊤·Φ + const. (5.21)

Proof: The linear least squares equation we are solving is Φ⊤ ·Φ · θ̂ = Φ⊤ ·y. Remember that this equation only
has a unique solution if the inverse of Φ⊤ · Φ exists, which we assume here. In the following, we will use the fact
that Φ⊤ · Φ · θ̂[N ]

ML = Φ⊤ · y holds, after N measurements have been made.
We can expand the minimisation term of the LS problem as follows:
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1

2
∥y − Φθ∥22 =

1

2
∥y∥22 +

1

2
· θ⊤Φ⊤Φθ − θ⊤Φ⊤y

=
1

2
∥y∥22 +

1

2
· θ⊤Φ⊤Φθ − θ⊤Φ⊤Φθ̂ML

=
1

2
∥y∥22 −

1

2
· θ̂⊤MLΦ

⊤Φθ̂ML +
1

2
(θ − θ̂ML)

⊤Φ⊤Φ(θ − θ̂ML)

= const +
1

2
· ∥θ − θ̂

[N ]
ML∥2Φ⊤·Φ. (5.22)

Theorem 8 (Recursive Least Squares). Let θ̂[N+1]
ML be the optimal estimator to the problem (5.20), then θ̂[N+1]

ML can
be calculated by a recursive algorithm consisting of two steps that are computed with every new measurement N
and which are defined by the equations below:

Q[N+1] = Q[N ] + ϕN+1 · ϕ⊤N+1 (5.23)

θ̂
[N+1]
ML = θ̂

[N ]
ML + (Q[N+1])−1 · ϕN+1 · [yN+1 − ϕ⊤N+1 · θ̂[N ]

ML] (5.24)

Remark: The first term of Equation (5.24) represents the best prior guess, and the second term the so-called
“innovation”.

Proof: Let Q[N ] be Φ⊤Φ ∈ Rd×d, then Q[N ] follows a recursion:

Q[N+1] = Φ⊤
N+1 · ΦN+1 =

[
ΦN

ϕ⊤N+1

]⊤
·
[
ΦN

ϕ⊤N+1

]
=

= Q[N ] + ϕN+1 · ϕ⊤N+1

(5.25)

Let θ̂[N+1]
ML be the optimal estimator given N + 1 measurements, then θ̂[N+1]

ML can be expressed in a recursive
manner:

θ̂
[N+1]
ML = (Φ⊤

1:N+1 · Φ1:N+1)
−1 · Φ⊤

1:N+1 · y1:N+1

= (Q[N+1])−1 · (Φ⊤ · y) = (Q[N+1])−1 ·
[

Φ
ϕ⊤N+1

]⊤
·
[

y
yN+1

]
= (Q[N+1])−1 · (Φ⊤ · y + ϕN+1 · yN+1)

= (Q[N+1])−1 · (Φ⊤ · Φ · θ̂[N ]
ML + ϕN+1 · yN+1)

= (Q[N+1])−1 · ([Φ⊤ · Φ+ ϕN+1 · ϕ⊤N+1] · θ̂[N ]
ML

− ϕN+1 · ϕ⊤N+1 · θ̂[N ]
ML + ϕN+1 · yN+1)

= (Q[N+1])−1 ·Q[N+1] · θ̂[N ]
ML + (Q[N+1])−1 · (ϕN+1 · [yN+1 − ϕ⊤N+1 · θ̂[N ]

ML])

= θ̂
[N ]
ML + (Q[N+1])−1 · ϕN+1 · [yN+1 − ϕ⊤N+1 · θ̂[N ]

ML]

(5.26)

It is an interesting observation that the RLS algorithm solves in each step the following minimisation problem:

θ̂
[N+1]
ML = arg min

θ∈Rd

1

2
∥y1:N+1 − Φ1:N+1 · θ∥22

= arg min
θ∈Rd

(
1

2
· ∥θ − θ̂

[N ]
ML∥2Q[N] +

1

2
· ∥yN+1 − ϕ⊤N+1 · θ∥22

) (5.27)

5.3.1 Initialisation and implementation considerations of RLS
In practice, two fundamental questions arise when implementing a RLS algorithm:
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1. How should Q[0] be initialised? It is important to avoid singularity.
Answer: Considering the way that Q[N ] enters Equation (5.27), it is clear that Q[N ] is in a way the inverse
of the covariance of the θ parameter, Q[N ] ≈ Σ−1

θ̂
[N]
ML

.

Moreover, if some prior knowledge on θ can be assumed, for example, θ ∼ N (θ̄, (Q[0])−1), this knowledge
can be included as a regularisation term of the form ∥θ∥2

Q[0] , where Q[0] is small and positive definite. This
regularisation with a positive definite matrix Q[0] leads to consistently non-singular Q[N ], because adding
successive terms would only increase the eigenvalues of the matrix, keeping it positive definite and thus
non-singular.

2. How to avoid that Q[N ] → ∞ when N → ∞? The higher the Q[N ] the less influence will have the new
measurements.

The solution of this problem is easier than the previous one. The only thing that is necessary is to down-
weight past information using a ”forgetting factor” α. The main idea is that αmultipliesQ[N ] in the equation
of Q[N+1], so that past measurements have less weight than the most recent ones, and on top of that, Q[N ]

does not increase to infinity (if the new contributions ϕN+1ϕ
⊤
N+1 are bounded).

These two implementations can be seen on the set of equations below. These equations re-write Equation (5.27)
as:

θ̂
[N+1]
ML = arg min

θ∈Rd

(
α · 1

2
· ∥θ − θ̂

[N ]
ML∥2Q[N] +

1

2
· ∥yN+1 − ϕ⊤N+1 · θ∥22

)
(5.28)

In the recursive update this translates to:

Q[0] given, and θ̂
[0]
ML given,

Q[N+1] = α ·Q[N ] + ϕN+1 · ϕ⊤N+1,

θ̂
[N+1]
ML = θ̂

[N ]
ML + (Q[N+1])−1 · ϕN+1 · [yN+1 − ϕ⊤N+1 · θ̂[N ]

ML]

(5.29)

5.3.2 Example of RLS: estimate position of a robot in a plane
Imagine that we have a moving robot in a 2D plane whose position is given as the Cartesian coordinates Z = [x, y].
Given a continuous flow of position measurements [(x1, y1), . . . , (xN , yN ), (xN+1, yN+1), . . .], the goal is to esti-
mate the position of the robot at every time point tN+1 with every new set of noisy measurements (xN+1, yN+1),
but considering all the past measurements [(x1, y1), . . . , (xN , yN )] and without increasing the computational time
with increasing number of measurements. In figure 5.1 we show a set of measured data for an example system
with sampling time ∆T = 0.1282:

Due to the lack of information on the dynamics of the robot as well as on the controls, we propose a fourth-
order polynomial as the local model for the position in the x-axis x(tk) = a0 + a1 · tk + a2 · t2k + a3 · t3k + a4 · t4k,
and another polynomial for the position in the y-axis y(tk) = b0+ b1 · tk + b2 · t2k + b3 · t3k + b4 · t4k. The estimation
problem is linear in the parameters θ = (a0, a1, a2, a3, a4, b0, b1, b2, b3, b4), thus we could in principle use both
Linear Least Squares or Recursive Least Square for estimation purposes.

If we use LLS, not only the computational time would increase with every new measurement, but since the
proposed models x(tk) and y(tk) are expected to be valid only locally, increasing the number of measurements
and giving the same weight to every measurement leads to a very poor estimation. Figure 5.2 shows the LLS
estimation using the total set of measurements.

On the other hand, in RLS we can include a forgetting factor α to indicate that the polynomial models are
only local approximations of the movement, and therefore, that the last measurement values are much more im-
portant. Figure 5.3 represents this estimation using RLS, it can be seen how the estimation now is quite similar
to the original measured data. Furthermore, we can see how the estimated local polynomial at each time interval
approximates the trajectory quite well in a neighbourhood of the last measurement point, and how they deviate for
farther points.

5.4 Cramer-Rao-Inequality
Theorem 9 (Cramer-Rao-Inequality: lower bound on the covariance of an unbiased estimator). Let p(y|θ) be the
probability density function of obtaining the measurements y given the parameters θ (the one to be maximized in a
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Figure 5.1: Robot movement in a 2D plane in space and time.
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Figure 5.2: Robot position estimation of the robot using LLS (without downweighting).
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Figure 5.3: Robot position estimation of the robot using RLS (with downweighting)

Maximum Likelihood problem). Furthermore, assume that the probability density function p(y|θtrue) for the true
θtrue is known. Then, any unbiased estimator θ̂(y) is a random variable due to its dependence on the random
variable y, and it has a covariance matrix Σθ̂ := cov(θ̂(y)) that is bigger than the inverse of the so-called Fisher
information matrix M :

Σθ̂ ⪰M−1 (5.30)

Definition 13 (Fisher information matrix M ). Let L(θ, y) := − log p(y|θ) be the negative log likelihood function
(which is minimised in a general Maximum Likelihood problem). Then, the Fisher information matrix associated
with such a problem is defined as:

M = E{∇2
θL(θtrue, y)} =

∫
y

∇2
θL(θtrue, y) · p(y|θtrue) · dy (5.31)

We will not prove the Cramer-Rao theorem here but refer e.g. to the book of Ljung [Lju99] for the proof. We
can however apply the theorem to the case that we are minimising a linear model with gaussian noise N (0,Σ).
Then the Cramer-Rao-Inequality states that

Σθ̂ ⪰M−1 = (Φ⊤ · Σ−1 · Φ)−1. (5.32)

To see this, we use the fact that in the case of a linear model with Gaussian noise, L(θ, y) becomes:

L(θ, y) =
1

2
· (Φ · θ − y)⊤ · Σ−1 · (Φ · θ − y). (5.33)

Its Hessian can be easily calculated as:

∇2
θL(θ, y) = Φ⊤ · Σ−1 · Φ (5.34)

where it is easily seen that the Hessian is constant and independent from θ and y, thus its expectation, which equals
the Fisher information matrix, is identical to this constant value:

M = E{∇2
θL(θ, y)} = ∇2

θL(θ, y) = Φ⊤ · Σ−1 · Φ. (5.35)
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This application of the Cramer-Rao inequality confirms the result mentioned previously in Section 4.5.2, where
the smallest covariance for a weighted least squares estimator was obtained when choosing the correct weighting
matrix W = Σ−1.

An interesting result which we will not formalise and prove here is that the covariance matrix of the ML-
estimator for i.i.d. measurements y1, . . . , yN approaches, for N → ∞, the Cramer-Rao lower bound, i.e., the
inverse of the corresponding Fisher information matrix M [N ] and the distribution of θ̂[N ]

ML becomes asymptotically
normal, i.e., θ̂[N ]

ML ∼ N (θtrue, (M
[N ])−1).

For models which are more general than a linear model with Gaussian noise, the Fisher information matrix M
cannot be easily computed. The reason for that is that in general the true value of the parameter θtrue is unknown,
and therefore, the Hessian matrix ∇2

θL(θtrue, y) and the probability p(y|θtrue) have to be approximated using the
estimated parameter θ̂. Furthermore, the integral in (5.31) is difficult to compute in practice.

A heuristic approximation that can be used to compute an estimate of the covariance of a ML-estimate is to
first assume that Σθ̄ ≈ M−1, i.e., the Cramer-Rao limit is reached. Second, one could approximate the Fisher
information matrix by M ≈ ∇2

θL(θ̂, y) using the actual measurements y.

5.4.1 *Proof of the Cramer-Rao-Inequality
We use the following definitions from the previous section. Let p(y|θ) be the probability density function of ob-
taining the measurements y given the parameters θ, and let L(θ, y) := − log p(y|θ) be the negative log-likelihood.
In addition, assume p(y|θtrue) for the true θtrue is known and that θ̂(y) is an unbiased estimator. We define the
Fisher information matrix as

M = E{∇2
θL(θtrue, y)} (5.36)

The covariance of our estimator θ̂(y) is given by

C = cov(θ̂) = E{(θ̂(y)− θtrue)(θ̂(y)− θtrue)
⊤} (5.37)

The Cramer-Rao inequality states that
C ⪰M−1 (5.38)

and this is what we will prove. The main idea of the proof is to define a random vector B ∈ R2d as follows:

B(θtrue, y) =

[
θ̂(y)− θtrue
∇θL(θtrue, y)

]
(5.39)

Because for any matrix or vector B holds that BB⊤ ⪰ 0, and because this positive semi-definiteness property is
preserved by the expectation operator, we know that

0 ⪯ E{B(θtrue, yN )B(θtrue, y)
⊤} =


C E{(θ̂(y)− θtrue)∇θL(θtrue, y)

⊤}︸ ︷︷ ︸
:=Z

Z⊤ E{∇θL(θtrue, y)∇θL(θtrue, y)
⊤}︸ ︷︷ ︸

:=M̃

 =: A (5.40)

The matrix M̃ is positive semi-definite by construction. But to be able to use the Schur complement lemma below,
we will from now on assume that M̃ is strictly positive definite, which is the case for any well-posed estimation
problem.1 The Schur complement lemma states that, if M̃ is positive definite, then the matrix A is positive semi-
definite if and only if the Schur complement of M̃ in A, which is given by C − ZM̃−1Z⊤, is also positive
semi-definite. The Schur complement lemma can be expressed in compact mathematical notation as follows:

If M̃ ≻ 0 then
( [

C Z

Z⊤ M̃

]
⪰ 0 ⇐⇒ C − ZM̃−1Z⊤ ⪰ 0

)
(5.41)

Thus, from A ⪰ 0 follows that C ⪰ ZM̃−1Z⊤. This would be equivalent to the desired Cramer-Rao inequal-
ity (5.38) if we could show that ZM̃−1Z⊤ = M−1. We will do this in two steps, first computing M̃ and second

1If M̃ would be singular, one could imagine adding a small epsilon to all diagonal entries of it to ensure positive definiteness, then apply
the same matrix operations, and finally take the limit as epsilon goes to zero. The result would be a Cramer-Rao lower bound that tends to
infinity in the singular directions, reflecting the ill-posedness of the estimation problem.
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computing Z. Both steps use the following basic fact from calculus:

d log f(x)

dx
=

1

f(x)
· df(x)

dx
which allows us to express any derivative as

df(x)

dx
= f(x) · d log f(x)

dx
(5.42)

First, we show that M̃ =M , starting from the trivial statement that 1 = E{1} =
∫
p(y|θtrue)dyN . Differentiating

left and right side of this statement with respect to θtrue leads to the following:

0 =
d

dθtrue

∫
p(y|θtrue) dy =

∫
dp(y|θtrue)

dθtrue
dy

=

∫
p(y|θtrue)

d log p(y|θtrue)
dθtrue

dy = E{−∇θL(θtrue, y)
⊤}

(5.43)

We differentiate the negative transpose of the statement, 0 = E{∇θL(θtrue, y)}, a second time with respect to
θtrue and obtain the following

0 =
d

dθtrue

∫
p(y|θtrue) · ∇θL(θtrue, y)) dy

=

∫
p(y|θtrue)∇2

θL(θtrue, y)dy +

∫
p(y|θtrue)∇θL(θtrue, y)(−∇θL(θtrue, y))

⊤dy

= E{∇2
θL(θtrue, y)}︸ ︷︷ ︸

=M

− E{∇θL(θtrue, y)∇θL(θtrue, y)
⊤}︸ ︷︷ ︸

=M̃

=M − M̃

(5.44)

Thus, we have shown that M̃ =M , i.e., that there are two equivalent ways to define the Fisher information matrix.
Second, we will compute Z, in order to close the remaining gap in the proof. We start by noting that

Z = E{(θ̂(y)− θtrue)∇θL(θtrue, y)
⊤}

= E{θ̂(y)∇θL(θtrue, y)
⊤} − θtrue E{∇θL(θtrue, y)

⊤}︸ ︷︷ ︸
=0

= E{θ̂(yN )∇θL(θtrue, y)
⊤} (5.45)

Now, we will finally make use of the crucial assumption that the estimator is unbiased, which can be stated as

θtrue = E{θ̂(y)} =

∫
θ̂(y) · p(yN |θtrue) dy (5.46)

Differentiating both sides of this statement with respect to θtrue yields

I =
∫
θ̂(y) · p(y|θtrue) · (−∇θL(θtrue, y))

⊤dy

= E{θ̂(y)(−∇θL(θtrue, y))
⊤} = −Z

(5.47)

Thus, we have shown that Z = −I, and with M̃ = M we can finally evaluate ZM̃−1Z⊤ = (−I)M−1(−I) =
M−1, proving the Cramer-Rao inequality (5.38). □

5.5 Practical solution of the Nonlinear Least Squares Problem
When we formulate and solve a nonlinear least squares problem, we need to use a numerical optimization routine
to find the maximum likelihood estimate. In order to do this, we first scale the vector of model-measurement-
mismatch residuals y −M(θ) by using a – usually diagonal – guess Σϵ of the covariance matrix of the noise, in

order to obtain the scaled residual vector R(θ) := Σ
− 1

2
ϵ (M(θ)− y) such that the maximum likelihood estimate

θ̂ = θ∗ is obtained by the solution of the optimization problem

θ∗ = argmin
θ

1

2
∥R(θ)∥22︸ ︷︷ ︸
=:f(θ)

(5.48)

Note that the residual function R maps from Rd to RN , and that most solution algorithms require the user to pass
this function R(θ) – and not the objective function f(θ) = 1

2∥R(θ)∥22 – to the solver. We want to answer three
questions in this section:
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• How do we solve the nonlinear least squares optimization problem (5.48) in practice?

• How can we obtain an estimate of the covariance matrix of the parameter estimate?

• How can we assess if the modelling assumptions, in particular on the noise, were correct?

We will answer the three questions in the following three subsections.

5.5.1 The Gauss-Newton Algorithm
In practice, nonlinear least squares problems are solved with specialized nonlinear optimization routines like MAT-
LAB’s lsqnonlin, which expect the user to provide an initial guess for the parameter θ – which we call θ[0] in
this section – and a pointer to the function R : Rd → RN . Most available algorithms can only guarantee to find lo-
cal minima. Starting at the initial guess θ[0], they generate a sequence of iterates that we call θ[0], θ[1], θ[2], . . .Note
that each θ[k] is a vector in the space Rd and that we use rectangular parentheses ·[k] in the index in order to distin-
guish it from the component index. A basic requirement of all algorithms is that they should converge to a point θ∗

that satisfies at least the first order necessary optimality condition, i.e., to a point that satisfies ∇f(θ∗) = 0. Most
algorithms are variants of the so-called Gauss-Newton method described next, though often these variants come
under very different names such as ”Levenberg-Marquardt Algorithm” or ”Trust-Region-Reflective Method”.

Idea: Because we know very well how to solve linear least squares problems and because all nonlinear functions
can locally be approximated by their first order Taylor series, a straightforward idea would be to solve a linear least
squares problem based on the linearization at a solution guess θ[k] in order to obtain a better solution guess θ[k+1].
More concretely, for any solution guess θ[k] we have that R(θ) = R(θ[k]) + ∂R

∂θ (θ
[k])(θ− θ[k]) +O(∥θ− θ[k]∥22),

and if we use the first order Taylor series to formulate a linear least squares problem in order to find θ[k+1], we
obtain the expression

θ[k+1] = argmin
θ

1

2

∥∥∥R(θ[k]) + ∂R

∂θ
(θ[k])︸ ︷︷ ︸

=:J(θ[k])

(θ − θ[k])
∥∥∥2
2

(5.49)

= argmin
θ

1

2

∥∥∥− J(θ[k]) θ[k] +R(θ[k]) + J(θ[k]) θ
∥∥∥2
2

(5.50)

= (J(θ[k])⊤J(θ[k]))−1J(θ[k])⊤ (J(θ[k]) θ[k] −R(θ[k])) (5.51)
= θ[k] − (J(θ[k])⊤J(θ[k]))−1J(θ[k])⊤R(θ[k]) (5.52)
= θ[k] − J(θ[k])+R(θ[k]) (5.53)

Note that the iteration above is only well defined if the Jacobian matrix J(θ[k]) is of full rank, but that in prac-
tical implementations, small algorithm modifications ensure that each iteration is well defined. With the above
expression, we have already defined the basic Gauss-Newton algorithm. One can show that – if it converges – the
Gauss-Newton algorithm converges linearly to a stationary point θ∗ with ∇f(θ∗) = 0, but a proof of this result is
beyond our interest here.

However, in order to understand the algorithm a bit better and to see at least why the algorithm does not move
away from a stationary point, it is useful to look at explicit expressions for the derivatives of the objective function
f , which are given by

f(θ) =
1

2
∥R(θ)∥22 =

1

2

N∑
i=1

Ri(θ)
2 (5.54)

∇f(θ) =

N∑
i=1

∇Ri(θ)Ri(θ) = J(θ)⊤R(θ) (5.55)

∇2f(θ) = J(θ)⊤J(θ)︸ ︷︷ ︸
=:BGN(θ)

+

N∑
i=1

∇2Ri(θ)Ri(θ) (5.56)

Using some of the above expressions, the iterations of the Gauss-Newton algorithm can be written as

θ[k+1] = θ[k] −BGN(θ
[k])−1∇f(θ[k])
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It can be seen, as expected from an optimization algorithm, that the algorithm would not move away from a
stationary point with ∇f(θ[k]) = 0. But the inverted matrix BGN(θ

[k])−1 in front of the gradient could also be
chosen differently. If one would choose the inverse of the exact Hessian matrix, ∇2f(θ[k])−1, one would obtain
the so-called Newton method; different choices of Hessian approximation give rise to different members in the
class of so-called Newton-type optimization methods, which comprises the family of Gauss-Newton methods. The
matrix BGN(θ) is called the Gauss-Newton Hessian approximation. Note that it is a positive semidefinite matrix,
but not necessarily positive definite. In variants of the Gauss-Newton method, for example in the Levenberg-
Marquardt algorithm, the Gauss-Newton Hessian approximation is first computed but then modified in the actual
step computation, for example to ensure that the Hessian approximation becomes positive definite or that the steps
remain small enough for the first order Taylor series to remain a good approximation of the actual function.

Independent of which algorithm is used, at the end of the call of the optimization solver, the solver will return
a value θ∗ that is an approximate local minimizer of f(θ). We will use it as the maximum-likelihood estimate,
i.e., set θ̂ := θ∗. Interestingly, it is useful to also obtain from the algorithm – or to recompute afterwards – the
inverse Gauss-Newton HessianBGN(θ

∗)−1, because it can serve as approximation of the covariance matrix of this
estimate.

5.5.2 Estimating the Covariance Matrix and Extracting its Relevant Entries
The easiest way to obtain a rough estimate of the covariance matrix Σθ̂ of the parameter estimate θ∗ would be to
assume that the linearization of R at the solution is the correct model, and that all the statistical assumptions we
made in the formulation of the function R were correct, i.e., that we indeed had Gaussian noise with covariance
matrix Σϵ). Following the linear least squares analysis, we could then directly use BGN(θ

∗)−1 as parameter

covariance matrix. Note that, due to the scaling in the expression R(θ) = Σ
− 1

2
ϵ (M(θ)− y), our assumption

would be that the scale of the residual vector components is not only unitless, but also in the order of one. For
this reason, the optimal squared residual value is expected to be in the order of N . More precisely, due to the fact
that we have a d-dimensional vector fitting the data and minimizing the residual, we expect ∥R(θ∗)∥22 ≈ N − d,
as already discussed in Section 4.7. In practice, however, we might have made an error in estimating the absolute
size of the noise covariance Σϵ, such that the size of the squared residual ∥R(θ∗)∥22 can be different from N − d.
Because this is easy to correct, we follow the reasoning of Section 4.7, and in practice use the parameter covariance
estimate

Σθ̂ :=
∥R(θ∗)∥22
N − d

(
J(θ∗)⊤J(θ∗)

)−1

If one wants to express the result of the parameter estimation, one often only uses the diagonal entries from this
matrix, which contain, for i = 1, . . . , d, the variances σ2

i of the respective parameter components θ̂i, as seen in the
following detailed matrix expression:

Σθ̂ =


σ2
1 ∗ ∗ ∗
∗ σ2

2 ∗ ∗
∗ ∗ . . . ∗
∗ ∗ ∗ σ2

d


Taking the square root of the variances yields the standard deviations, such that the final result of the whole
parameter estimation procedure could be presented by only 2d numbers in the form

θi = θ∗i ±
√
σ2
i , for i = 1, . . . , d

5.5.3 Checking the Optimal Residual Vector
Because the whole analysis in this section is based on the measurement data that we use for the estimation, we
will not be able to completely answer the question of model validation, namely if our model is able to make valid
predictions for new situations. For model validation, we would need another set of measurement data that were
not involved in the estimation procedure, for example a new experiment that is performed after the estimation
procedure is finished, or a previously conducted experiment that was kept secret during the parameter estimation
procedure and was just reserved for model validation.

However, what we can do with the existing data of the single experiment that we use for parameter estimation,
is to look at the residual values Ri(θ

∗) for i = 1, . . . , N . If we plot them as a function of i, they should look like
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a sequence of random numbers. In order to check this in more detail, one typically creates and plots a histogram
of the residual values Ri(θ

∗). One should then think hard and change the system or noise model and restart the
parameter estimation procedure, based on the same data, but on a different model.
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Chapter 6

Dynamic System Models

In this lecture, our major aim is to model and identify dynamic systems, i.e., processes that are evolving with time.
These systems can be characterized by states x and parameters p that allow us to predict the future behavior of
the system. If the state and the parameters are not known, we first need to estimate them based on the available
measurement information. Often, a dynamic system can be controlled by a suitable choice of inputs that we denote
as controls u in this script, and the ultimate purpose of modelling and system identification is to be able to design
and test control strategies.

As an example of a dynamic system, we might think of an electric train where the state x consists of the current
position and velocity, and where the control u is the engine power that the train driver can choose at each moment.
We might regard the motion of the train on a time interval [tinit, tfin], and the ultimate aim of controller design
could be to minimize the consumption of electrical energy while arriving in time. Before we can decide on the
control strategy, we need to know the current state of the train. Even more important, we should know important
model parameters such as the mass of the train or how the motor efficiency changes with speed.

To determine the unknown system parameters, we typically perform experiments and record measurement
data. In optimization-based state and parameter estimation, the objective function is typically the misfit between
the actual measurements and the model predictions.

A typical property of a dynamic system is that knowledge of an initial state xinit and a control input trajectory
u(t) for all t ∈ [tinit, tfin] allows one to determine the whole state trajectory x(t) for t ∈ [tinit, tfin]. As the motion
of a train can very well be modelled by Newton’s laws of motion, the usual description of this dynamic system is
deterministic and in continuous time with continuous states.

But dynamic systems and their mathematical models can come in many variants, and it is useful to properly
define the names given commonly to different dynamic system classes. In this chapter, we will first discuss
continuous time systems that come in the form of ordinary differential equations (ODE), and then discrete time
systems, both in state space form. Next, we discuss input-output models and show how they can be converted
to state space models. Last, we discuss how noise can affect the system behaviour, leading to different forms of
stochastic system models. The appendix B gives some more information on interesting other system classes and
discusses in particular some relevant other forms of differential equation models.

6.1 Continuous Time Systems

Most systems of interest in science and engineering are described in form of deterministic differential equations
which live in continuous time. On the other hand, all numerical simulation methods have to discretize the time
interval of interest in some form or the other and thus effectively generate discrete time systems. We will thus
briefly sketch some relevant properties of continuous time systems in this section, and show how they can be
transformed into discrete time systems. Later, we will mainly be concerned with discrete time systems, while we
occasionally come back to the continuous time case.

Continuous time systems can often be described by ordinary differential equations (ODE), but sometimes
they are described by other forms of differential equations such as differential-algebraic equations (DAE), partial
differential equations (PDE) or delay differential equations (DDE). As a part of the main content of the script, only
ODE are explained in more detail here, but the reader is referred to Appendix B to see how DAE, PDE and DDE
could be addressed with similar simulation and estimation methods after some form of discretization.

57
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6.1.1 Ordinary Differential Equations (ODE)

A controlled dynamic system in continuous time can be described by a general ODE which is represented by:

ẋ(t) = f(x(t), u(t), ϵ(t), p). (6.1)

Here, the different elements of the ODE are vector valued, and can be defined as:

• States x(t) ∈ Rnx , which describe the internal behaviour of the system. All states together form the state
vector, which describes the memory of the system.

• Exogenous control inputs u(t) ∈ Rnu , which modify the behaviour of the system, and which are often
chosen actively by a digital control system.

• Disturbances ϵ(t) ∈ Rnϵ that are unknown and may change over time, which represent stochastic influences
and/or modelling errors (”model-plant-mismatch”)

• Unknown parameters p ∈ Rnp that are constant in time, and which should be estimated via the system
identification procedure.

In the case of an ODE, the total and partial derivative coincide, as the state x only depends on t. We define the
”dot” of any quantity as its time derivative, i.e., we equate ẋ = dx

dt = ∂x
∂t . For notational simplicity, we often omit

the time dependence of states, controls and disturbances, and write

ẋ = f(x, u, ϵ, p)

as a shorthand for Eq. (6.1). The function f is a map from states, controls, disturbances and parameters to the rate
of change of the state, i.e. f : Rnx × Rnu × Rnϵ × Rnp → Rnx .

Modelling and System Identification

”Modelling” is the task of creating this function f , i.e., to find an ordinary differential equation (ODE) that de-
scribes the system well enough. ”System Identification” is the task of estimating the parameters p within the
function f from suitably collected experimental data. The overall aim is to obtain a model with validated parame-
ters that allows one to make predictions for the future system behaviour. The first step, modelling, is typically the
more difficult one, and is based on several important and consequential decisions, in particular the decision what
quantities should constitute the state vector x ∈ Rnx of the system. The state vector of a dynamic system model
should comprise all quantities that one needs to know in order to predict its future behaviour. From another per-
spective, one could say that the state vector summarizes everything we need to know about the system’s behaviour
in the past in order to be able to predict its future.

Let us give some examples of systems that can be described by an ODE and state for each some of the typically
needed states.

• Pendulum: rotational angle and angular velocity.

• Hot plate with pot: temperature of the pot and the plate.

• Continuously Stirred Tank Reactors (CSTR): concentrations of reactants, temperatures.

• Robot arms: angles and angular velocities of the joints.

• Moving robots: position (x, y) and orientation.

• Race cars: position (x, y), orientation, time derivatives of these three.

• Airplanes in free flight: 3 location parameters and 3 orientation parameters plus the derivatives (velocities)
of all these 6.

We discuss two interesting system models in more detail.
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• Pandemic modelling in its simplest form: number of ”susceptible people” S(t) and number of infected
people I(t). The number of susceptible people is reduced by the daily number of vaccinations u(t) and the
daily number of new infections, which is proportional to the probability of infected and susceptible people
to meet. This probability is proportional to the product of S(t) and I(t) and the daily transition from S(t) to
I(t) can thus be represented by βS(t)I(t) with some constant β. On the other hand, infected people recover
(or die) at a rate γ that is assumed to be constant here – leading to exponential decay of infected people in the
absence of new infections – and can be represented by a daily recovery (+death) rate of γI(t). Altogether,
we obtain two differential equations Ṡ(t) = −βS(t)I(t)− u(t) and İ(t) = βS(t)I(t)− γI(t). Of course,
much more complicated models can be developed and are better at predicting future infection rates, e.g., by
differentiating between different cities or different age groups.

• Climate modelling: typical climate models, like weather forecast models, rely on a 3D-spatial discretization
of the atmosphere and can only be simulated on supercomputers. Contrary to weather forecast models, which
can reliably predict the weather for only about one week nowadays, the overall prediction accuracy of climate
models seems much more reliable. This can be seen for example by comparing climate predictions made in
the 1980ies with today’s measurements. The higher accuracy of climate models compared to weather fore-
cast might be related to the fact that climate models represent overall an energy balance: how much power
Pin does the earth receive from the sun in form of short wavelength solar irradiation, and how much power
Pout does it emit back in form of long wavelength radiation? The latter is influenced by the greenhouse gas
concentration, in particular by the concentration of CO2 that we might denote by cCO2

(t). One of the sim-
plest possible models would have only two states, namely the average surface temperature T (t) (in Kelvin)
and the CO2-concentration cCO2(t) (in parts-per-million, or ppm). For the temperature evolution, one would
need to know the heat capacity of the relevant part of the earth surface, e.g. of the upper 100 meters of water
and land plus the atmosphere, that we describe by a total heat capacity Cheat, such that one would have the
following energy balance equation: Ṫ =

Pin−Pout(cCO2
,T )

Cheat
. Here, the total incoming solar power Pin would

be a constant, while the outgoing power Pout(cCO2
, T ) is a function of both cCO2

and T and could e.g. be
given by Pout(cCO2

, T ) = (C1 − C2cCO2
)T 4 with positive constants C1 and C2 (in suitable units) that

describe how the CO2-concentration influences the emissivity of the earth. The fourth power in the term T 4

comes from the Stefan-Boltzmann law. The evolution of cCO2 would be in the simplest form be given by an
accumulation of humanity’s yearly CO2 emissions u(t) (in mol/year), that needs to be divided by the total
amount of gas molecules in the atmosphereM (in mol) in order to make it a molar concentration (like ppm),
such that we obtain ċCO2

= u
M . Due to the slow time constants in the earth’s climate system, today’s climate

predictions for the next 30 years are unfortunately not very strongly affected by humanity’s upcoming emis-
sions – or emission reductions – in the coming 30 years. Thus, a significant rise in the earth’s average tem-
perature in 2050 is nearly unavoidable. However, if humanity manages to reduce its emissions significantly
today and in the next decade, we can positively influence the climate in 2100, with a high chance that the
earth’s temperature achieves its maximum between 2050 and 2100 and the climate of the year 2100 becomes
similar to the climate in 2050. More detailed, but still relatively simple climate models can, e.g., be found
on the following websites: https://www.e-education.psu.edu/meteo469/node/137 and
https://en.wikipedia.org/wiki/Climate_model#cite_note-10. An interesting descrip-
tion of the predicted climate in Germany in 2050 is given in the (German language) book ”Deutschland 2050:
Wie der Klimawandel unser Leben verändern wird” by Toralf Staud and Nick Reimer.

6.1.2 Properties of Continuous Time Systems

Let us regard the simplified ODE (6.2) to sketch some relevant properties of continuous time systems. We are
first interested in the question if this differential equation has a solution if the initial value x(tinit) is fixed and
also the controls u(t) are fixed for all t ∈ [tinit, tfin]. In this context, the dependence of f on the fixed controls
u(t) is equivalent to an additional time-dependence of f , and we can redefine the ODE as ẋ = f̃(x, t) with
f̃(x, t) := f(x, u(t), t). Thus, let us first leave out the dependence of f on the controls, and just regard the
time-dependent uncontrolled ODE:

ẋ(t) = f(x(t), t), t ∈ [tinit, tfin]. (6.2)
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Initial Value Problems

An initial value problem (IVP) is given by (6.2) and the initial value constraint x(tinit) = xinit with some fixed
parameter xinit. Existence of a solution to an IVP is guaranteed under continuity of f with respect to x and t
according to a theorem from 1886 that is due to Giuseppe Peano. But existence alone is of limited interest as the
solutions might be non-unique.

Example (Non-Unique ODE Solution). The scalar ODE with f(x) =
√
|x(t)| can stay for an undetermined

duration in the point x = 0 before leaving it at an arbitrary time t0. It then follows a trajectory x(t) = (t− t0)
2/4

that can be easily shown to satisfy the ODE (6.2). We note that the ODE function f is continuous, and thus
existence of the solution is guaranteed mathematically. However, at the origin, the derivative of f approaches
infinity. It turns out that this is the reason which causes the non-uniqueness of the solution.

As we are only interested in systems with well-defined and deterministic solutions, we would like to formulate
only ODE with unique solutions. Here helps the following theorem by Charles Émile Picard (1890) and Ernst
Leonard Lindelöf (1894).

Theorem 10 (Existence and Uniqueness of IVP). Regard the initial value problem (6.2) with x(tinit) = xinit,
and assume that f : Rnx × [tinit, tfin] → Rnx is continuous with respect to x and t. Furthermore, assume that f
is Lipschitz continuous with respect to x, i.e., that there exists a constant L such that for all x, y ∈ Rnx and all
t ∈ [tinit, tfin]

∥f(x, t)− f(y, t)∥ ≤ L∥x− y∥. (6.3)

Then there exists a unique solution x : [tinit, tfin] → Rnx of the IVP.

Lipschitz continuity of f with respect to x is not easy to check. It is much easier to verify if a function is
differentiable. It is therefore a helpful fact that every function f that is differentiable with respect to x is also
locally Lipschitz continuous, and one can prove the following corollary to the Theorem of Picard-Lindelöf.

Corollary 1 (Local Existence and Uniqueness). Regard the same initial value problem as in Theorem 10, but
instead of global Lipschitz continuity, assume that f is continuously differentiable with respect to x for all t ∈
[tinit, tfin]. Then there exists a possibly shortened, but non-empty interval [tinit, t′fin] with t′fin ∈ (tinit, tfin] on
which the IVP has a unique solution.

Note that for nonlinear continuous time systems – in contrast to discrete time systems – it is very easily possible
to obtain an “explosion”, i.e., a solution that tends to infinity for finite times, even with innocently looking and
smooth functions f .

Example (Explosion of an ODE). Regard the scalar example f(x) = x2 with tinit = 0 and xinit = 1, and let
us regard the interval [tinit, tfin] with tfin = 10. The IVP has the explicit solution x(t) = 1/(1 − t), which is
only defined on the half-open interval [0, 1), because it tends to infinity for t → 1. Thus, we need to choose some
t′fin < 1 in order to have a unique and finite solution to the IVP on the shortened interval [tinit, t′fin]. The existence
of this local solution is guaranteed by the above corollary. Note that the explosion in finite time is due to the fact
that the function f is not globally Lipschitz continuous, so Theorem 10 is not applicable.

Discontinuities with Respect to Time

It is important to note that the above theorem and corollary can be extended to the case that there are finitely many
discontinuities of f with respect to t. In this case the ODE solution can only be defined on each of the continuous
time intervals separately, while the derivative of x is not defined at the time points at which the discontinuities
of f occur, at least not in the strong sense. But the transition from one interval to the next can be determined by
continuity of the state trajectory, i.e., we require that the end state of one continuous initial value problem is the
starting value of the next one.

The fact that unique solutions still exist in the case of discontinuities is important because many state and
parameter estimation problems are based on discontinuous control trajectories u(t). Fortunately, this does not
cause difficulties for existence and uniqueness of the IVPs.
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Linear Time Invariant (LTI) Systems

A special class of tremendous importance are the linear time invariant (LTI) systems. These are described by an
ODE of the form

ẋ = Ax+Bu (6.4)

with fixed matrices A ∈ Rnx×nx and B ∈ Rnx×nu . LTI systems are one of the principal interests in the field
of automatic control and a vast literature exists on LTI systems. Note that the function f(x, u) = Ax + Bu is
Lipschitz continuous with respect to x with Lipschitz constant L = ∥A∥, so that the global solution to any initial
value problem with a piecewise continuous control input can be guaranteed.

For system identification, we usually need to add output equations y = Cx + Du to our model, where the
outputs y may be the only physically measurable quantities. In that context, it is important to remark that the states
are not even unique, because different state space realizations of the same input-output behavior exist.

Zero Order Hold and Solution Map

In the age of digital control, the inputs u are often generated by a computer and implemented at the physical
system as piecewise constant between two sampling instants. This is called zero-order hold. The grid size is
typically constant, say of fixed length ∆t > 0, so that the sampling instants are given by tk = k · ∆t. If our
original model is a differentiable ODE model, but we have piecewise constant control inputs with fixed values
u(t) = uk with uk ∈ Rnu on each interval t ∈ [tk, tk+1], we might want to regard the transition from the state
x(tk) to the state x(tk+1) as a discrete time system. This is indeed possible, as the ODE solution exists and is
unique on the interval [tk, tk+1] for each initial value x(tk) = xinit.

If the original ODE system is time-invariant, it is enough to regard one initial value problem with constant
control u(t) = uconst

ẋ(t) = f(x(t), uconst), t ∈ [0,∆t], with x(0) = xinit. (6.5)

The unique solution x : [0,∆t] → Rnx to this problem is a function of both, the initial value xinit and the control
uconst, so we might denote the solution by

x(t;xinit, uconst), for t ∈ [0,∆t]. (6.6)

This map from (xinit, uconst) to the state trajectory is called the solution map. The final value of this short trajectory
piece, x(∆t;xinit, uconst), is of major interest, as it is the point where the next sampling interval starts. We might
define the transition function fdis : Rnx ×Rnu → Rnx by fdis(xinit, uconst) = x(∆t;xinit, uconst). This function
allows us to define a discrete time system that uniquely describes the evolution of the system state at the sampling
instants tk:

x(tk+1) = fdis(x(tk), uk). (6.7)

Solution Map of Linear Time Invariant Systems

Let us regard a simple and important example: for linear continuous time systems

ẋ = Ax+Bu

with initial value xinit at tinit = 0, and constant control input uconst, the solution map x(t;xinit, uconst) is explicitly
given as

x(t;xinit, uconst) = exp(At)xinit +

∫ t

0

exp(A(t− τ))Buconstdτ,

where exp(A) is the matrix exponential. It is interesting to note that this map is well defined for all times t ∈ R,
as linear systems cannot explode. The corresponding discrete time system with sampling time ∆t is again a linear
time invariant system, and is given by

fdis(xk, uk) = Adisxk +Bdisuk (6.8)

with

Adis = exp(A∆t) and Bdis =

∫ ∆t

0

exp(A(∆t− τ))Bdτ. (6.9)
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One interesting observation is that the discrete time system matrix Adis resulting from the solution of an LTI
system in continuous time is by construction an invertible matrix, with inverse A−1

dis = exp(−A∆t). For systems
with strongly decaying dynamics, however, the matrix Adis might have some very small eigenvalues and will thus
be nearly singular.

Numerical Integration Methods

A numerical simulation routine that approximates the solution map is often called an integrator. A simple but very
crude way to generate an approximation for x(t;xinit, uconst) for t ∈ [0,∆t] is to perform a linear extrapolation
based on the time derivative ẋ = f(x, u) at the initial time point:

x̃(t;xinit, uconst) = xinit + tf(xinit, uconst), t ∈ [0,∆t]. (6.10)

This is called one Euler integration step. For very small ∆t, this approximation becomes very good. In fact,
the error x̃(∆t;xinit, uconst) − x(∆t;xinit, uconst) is of second order in ∆t. This motivated Leonhard Euler to
perform several steps of smaller size, and propose what is now called the Euler integration method. We subdivide
the interval [0,∆t] into M subintervals each of length h = ∆t/M , and perform M such linear extrapolation steps
consecutively, starting at x̃0 = xinit:

x̃j+1 = x̃j + hf(x̃j , uconst), j = 0, . . . ,M − 1. (6.11)

It can be proven that the Euler integration method is stable, i.e., that the propagation of local errors is bounded with
a constant that is independent of the step size h. Therefore, the approximation becomes better and better when we
decrease the step size h: since the consistency error in each step is of order h2, and the total number of steps is of
order ∆t/h, the accumulated error in the final step is of order h∆t. As this is linear in the step size h, we say that
the Euler method has the order one. Taking more steps is more accurate, but also needs more computation time.
One measure for the computational effort of an integration method is the number of evaluations of f , which for
the Euler method grows linearly with the desired accuracy.

In practice, the Euler integrator is rarely competitive, because other methods exist that deliver the desired
accuracy levels at much lower computational cost. We discuss several numerical simulation methods later, but
present here already one of the most widespread integrators, the Runge-Kutta Method of Order Four, which we
will often abbreviate as RK4. One step of the RK4 method needs four evaluations of f and stores the results in
four intermediate quantities ki ∈ Rnx , i = 1, . . . , 4. Like the Euler integration method, the RK4 also generates a
sequence of values x̃j , j = 0, . . . ,M , with x̃0 = xinit. At x̃j , and using the constant control input uconst, one step
of the RK4 method proceeds as follows:

k1 = f(x̃j , uconst) (6.12a)

k2 = f(x̃j +
h

2
k1, uconst) (6.12b)

k3 = f(x̃j +
h

2
k2, uconst) (6.12c)

k4 = f(x̃j + h k3, uconst) (6.12d)

x̃j+1 = x̃j +
h

6
(k1 + 2k2 + 2k3 + k4) (6.12e)

One step of RK4 is thus as expensive as four steps of the Euler method. But it can be shown that the accuracy of the
final approximation x̃M is of order h4∆t. In practice, this means that the RK4 method usually needs tremendously
fewer function evaluations than the Euler method to obtain the same accuracy level.

From here on, and throughout the major part of the lecture, we will leave the field of continuous time systems,
and directly assume that we control a discrete time system xk+1 = fdis(xk, uk). Let us keep in mind, however, that
the transition map fdis(xk, uk) is usually not given as an explicit expression but can instead be a relatively involved
computer code with several intermediate quantities. In the exercises of this lecture, we will usually discretize the
occurring ODE systems by using only one Euler or RK4 step per control interval, i.e., use M = 1 and h = ∆t.
The RK4 step often gives already a sufficient approximation at relatively low cost.
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6.2 Discrete Time Systems
Let us now discuss in more detail the discrete time systems that are at the basis of the estimation problems in the
second part of this lecture. Discrete time systems in state space are characterized by the dynamics

xk+1 = f(xk, uk), k = 0, 1, . . . , N − 1 (6.13)

on a time horizon of length N , with N control input vectors u0, . . . , uN−1 ∈ Rnu and (N + 1) state vectors
x0, . . . , xN ∈ Rnx .

If we know the initial state x0 and the controls u0, . . . , uN−1 we could recursively call the functions fk in
order to obtain all other states, x1, . . . , xN . We call this a forward simulation of the system dynamics.

Definition 14 (Forward simulation). The forward simulation is the map

fsim : Rnx+Nnu → R(N+1)nx

(x0;u0, u1, . . . , uN−1) 7→ (x0, x1, x2, . . . , xN )
(6.14)

that is defined by solving Equation (6.13) recursively for all k = 0, 1, . . . , N − 1.

The inputs of the forward simulation routine are the initial value x0 and the controls uk for k = 0, . . . , N − 1.
In many practical problems we can only choose the controls while the initial value is fixed. In estimation, we might
have very different requirements: we might, for example, know the controls but do not know the initial value, so
that we want to choose x0 in an optimal way in order to fit the data.

Linear Time Invariant (LTI) Systems

As discussed already for the continuous time case, linear time invariant (LTI) systems are not only one of the
simplest possible dynamic system classes, but also have a rich and beautiful history. In the discrete time case, they
are determined by the system equation

xk+1 = Axk +Buk, k = 0, 1, . . . , N − 1. (6.15)

with fixed matrices A ∈ Rnx×nx and B ∈ Rnx×nu . An LTI system is asymptotically stable if all eigenvalues of
the matrix A are strictly inside the unit disc of the complex plane, i.e., have a modulus smaller than one. It is easy
to show that the forward simulation map for an LTI system on a horizon with length N is given by

fsim(x0;u0, . . . , uN−1) =


x0
x1
x2
...
xN

 =


x0

Ax0 +Bu0
A2x0 +ABu0 +Bu1

...
ANx0 +

∑N−1
k=0 A

N−1−kBuk


. In order to check controllability, due to linearity, one might ask the question if after N steps any terminal state
xN can be reached from x0 = 0 by a suitable choice of control inputs. Because of

xN =
[
AN−1B AN−2B · · · B

]︸ ︷︷ ︸
=CN


u0
u1
...

uN−1


this is possible if and only if the matrix CN ∈ Rnx×Nnu has the rank nx. Increasing N can only increase the rank,
but one can show that the maximum possible rank is already reached for N = nx, so it is enough to check if the
so-called controllability matrix Cnx

has the rank nx.

Systems with Outputs and Noise

In practice, we also need to incorporate a measurement model and we need to model how the system and the
measurements are affected by random variables and by the unknown system parameters.
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xt+1 = f(xk, uk, ϵk, p)

yk = g(xk, uk, ϵk, p), k = 0, 1, 2, . . . ,

with given initial value x0

(6.16)

Here, ϵk ∈ Rnϵ is a vector of unknown noise values at time k and p ∈ Rnp is the vector of unknown pa-
rameters. If one would know all relevant quantities for simulation, i.e., the initial conditions, inputs, noises, and
parameters that are together in the very large vector (x0, u0, u1, . . . , uN , ϵ0, ϵ1, . . . ϵN , p), then one can use the
forward simulation in order to create the ”full model for prediction” that we will abbreviate by the map

yk =Mk(x0, u0, u1, . . . , uN , ϵ0, ϵ1, . . . ϵN , p)

6.3 Input Output Models
So far, all system models we have treated were so-called “state space models” given by Equation (6.13) in the case
of discrete time systems, and by Equation (6.2) in the continuous time case. This representation is particularly
interesting when the state of the system represents meaningful information like the chemical composition in a
chemical process, or the velocity of a car, etc.

However, there are many systems where the only information required is just the output of the system. The
representation of the output without considering any internal states is the main idea of the input-output represen-
tation. This model is shown by Equation (6.17) in the discrete time case, where y represents the output variable of
the system, and as it can be seen it depends only on the output values and control values in the past, but not on an
internal state.

yk = h(uk, . . . , uk−n, yk−1, . . . , yk−n) (6.17)

Transformation from Input-Output to State Space model

Input-output models can be easily transformed to an equivalent state space model. For instance, the discrete
time equation of an input-output model given by (6.17) can easily be transformed to an equivalent state space
model as follows: We first define the state xk to be the concatenation of all relevant past inputs and outputs,
xk = [y⊤k−1, u

⊤
t−1, . . . , y

⊤
t−n, u

⊤
t−n]

⊤ and then

xk+1 = f(xk, uk) =



h(uk, . . . , yk−1 . . .)
uk
yk−1

uk−1

...
yk−n+1

uk−n+1


yk = g(xk, uk) = h(uk, . . . , yk−1 . . .)

(6.18)

The reverse transformation from a state space to an input-output model is not always possible, but in many
cases it is, e.g. LTI systems which are observable and controllable.

Discrete time LTI Input-Output Models

A linear time invariant (LTI) input-output model in discrete time is given by the following recursion.

yk + a1yk−1 + . . .+ ana
yk−na

= b0uk + . . .+ bnb
uk−nb (6.19)

where

na, nb < 0, n = max(na, nb), k ∈ [n+ 1, n+ 2, . . .] (6.20)
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with initial conditions y1, . . . , yn, u1, . . . un. The main equation can also be written as

yk = −a1yk−1 − . . .− ana
yk−na

+ b0uk + . . .+ bnb
uk−nb︸ ︷︷ ︸

=h(yk−1,...,yk−na ,uk,...,uk−nb
,p)

where the parameters p could contain all system coefficients, i.e., p = (a1, . . . , ana
, b0, . . . , bnb

). Note that the
choice of the sign of a1, . . . is done by convention.

Finite Impulse Response (FIR) Models

This is a special case of LTI system. As the name states, the response of a Finite Impulse Response (FIR) system
is finite, meaning that the output of the system at any moment k is a weighted sum of the nb previous inputs
[uk−nb , . . . , uk], therefore, if the input is set to 0, after nb time intervals the output of the system will also be zero,
making the response of the system finite. The general equation of a FIR system can be seen in Equation (6.21).
Note that a FIR system can also be defined as a general LTI system where na = 0 (na was the number of past
outputs entering the system as inputs).

yk = b0uk + . . .+ bnb
uk−nb

(6.21)

Infinite Impulse Response (IIR ) or Auto Regressive Models with Exogenous Inputs (ARX)

This kind of model is a generalisation of the FIR, representing a system where the output is a weighted sum of the
past inputs [u1, . . . , uN ] and past outputs [y1, . . . , yN ], and it is defined by:

a0yk + . . .+ ana
yk−na

= b0uk + . . .+ bnb
uk−nb (6.22)

These models are also known as infinite impulse response models (IIR) due to the fact that the dependence on
the previous inputs results in a non-zero value for the output (with the exception of the trivial case where the output
is 0 at the beginning and no further input is applied). One requires a0 ̸= 0, and by dividing the whole equation by
a0 one can create an equivalent model with a0 = 1 which makes it equivalent to the form stated above.

Another kind of model is the autoregressive (AR) model, which is completely autonomous, meaning that the
response does not depend on the input. Such systems have no transfer function since the numerator of a classic
transfer function using a z-transform would be always 0. An example of a system that could be represented by an
AR model would be the Fibonacci numbers: [1, 1, 2, 3, 5, 8, 13, 21, . . .]. The equation of the system is represented
by:

yk = −a1yk−1 − . . .− ana
yk−na

(6.23)

6.4 Stochastic Models
In reality, dynamic systems are far from being deterministic. Instead we have so-called stochastic models, and the
three main differences with respect to a deterministic model are:

• In reality, we always have stochastic noise ϵk, e.g. external disturbances or measurement errors.

• Also, we have unknown, but constant system parameters p.

• Measured outputs yk depend on both, ϵk and p.

It can be assumed that the noise is i.i.d., and that these noise terms ϵk enter the model like a normal input, but
as a random value. In this way, we can define the different stochastic models. First, we introduce the equivalent
model to the state space model, the so-called stochastic state-space model:

xk+1 = f(xk, uk, ϵk)

yk = g(xk, uk, ϵk)

for k = 1, 2, . . .
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-
input uk

Dynamic System

?

stochastic noise ϵk

6

initial conditions

6

parameters p

-
output yk

Figure 6.1: Model with stochastic disturbances (equation errors)

-input uk Dynamic System ?

measurement noise ϵk

+

6

initial conditions

6

parameters p

-
output yk

Figure 6.2: Model with measurement noise (output errors)

and secondly the equivalent stochastic input-output model:

yk = h(uk, . . . , uk−n, yk−1, . . . , yk−n, ϵk, . . . , ϵk−n)

for k = n+ 1, n+ 2, . . .

6.4.1 Model with Measurement Noise (Output Error Model)

One special case of stochastic models are models with the error only modelled in the output, and where the error
ϵk can be assumed to be additive measurement noise. In this case, the equation of the output can be defined as:

yk =Mk(U, xinit, p) + ϵk (6.24)

where M(k;U, xinit, p) can be the deterministic model used in the previous section. Figure 6.2 illustrates this
concept in a graphical manner.
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Its main advantage is that assuming that there is only noise on the output is often a realistic noise assumption.
Of course, there are many systems where this assumption is not valid, and where noise should also be modeled on
e.g. the input of the system.

The main disadvantage of this model is that M is typically nonlinear, thus non-convex, and finding a global
minimum is often an impossible task.

6.4.2 Model with Stochastic Disturbances (Equation Errors)
As was said previously, the assumption of having only noise at the output is not always correct. Sometimes it
is more correct to assume that stochastic noise ϵk can enter also the model internally, and not only at the output
equation. Furthermore, the measured outputs yk depend on both ϵk and p. A schematic representation is given in
Figure (6.1).

One special case arises when the i.i.d. noise ϵk enters the input-output equation as additive disturbance:

yk = h(p, uk, . . . , uk−n, yk−1, . . . , yk−n) + ϵk

for k = n+ 1, n+ 2, . . .

Linear In the Parameter models (LIP)

A general form of LIP model with equation error noise is given below:

yk =

d∑
i=1

θi ϕi(uk, . . . , yk−1, . . .) + ϵk (6.25)

where ϕ1, . . . , ϕd are called the basis functions of the LIP model. The unknown coefficients enter the above
equation linearly. In the case of a general input-output model, the basis functions depend on the past inputs u and
the outputs y.

Another way to express the model is given by:

yk = φ⊤
k θ + ϵk (6.26)

where φk = [ϕ1(·), . . . , ϕd(·)]⊤ is the regression vector and it is formed by the basis functions of the LIP model.

Special Case: LIP-LTI Models with Equation Errors (ARX)

A general ARX model with equation errors can be stated by Equation (6.27). This model is both LTI and LIP, thus
combining the best of two worlds:

a0yk + . . .+ anayk−na = b0uk + . . .+ bnb
uk−nb

+ ϵk. (6.27)

Other Stochastic System Classes

Besides the two explained models, there are plenty of different stochastic models out there. Some of the most
well-known are:

• Auto-regressive moving average with eXogeneous input (ARMAX), where the noise term ϵk goes through
a FIR filter before becoming part of the equation error:

a0yk + . . .+ ana
yk−na

=b0uk + . . .+ bnb
uk−nb

+ ϵk + c1ϵk−1 + . . . cnc
ϵk−nc

• Auto-regressive moving average models without inputs (ARMA):

a0yk + . . .+ ana
yk−na

= ϵk + c1ϵk−1 + . . . cnc
ϵk−nc

Where the ci represent the noise coefficients, and when estimating them, we will have to use nonlinear least
squares, because ci are multiplied with the unknown noise terms ϵk−i.



i
i

“msi” — 2025/10/10 — 9:28 — page 68 — #68 i
i

i
i

i
i



i
i

“msi” — 2025/10/10 — 9:28 — page 69 — #69 i
i

i
i

i
i

Chapter 7

Parameter Estimation with Dynamic
System Models

Let us give a short summary of the previous chapter, which will help us to better understand this chapter: General
stochastic models are a type of model that include a variable noise term ϵk. Such stochastic noise ϵk enters the
model either internally or in the output equation. The model has the output yk, which depends on initial conditions,
inputs uk, parameters p, and ϵk the stochastic noise. A diagram of the model that includes the error internally is
depicted below:

-

input uk
Dynamic System

?

stochastic noise ϵk

6

initial conditions

6

parameters p

-

output yk

Figure 7.1: Model with stochastic disturbances.

The noise terms ϵk are i.i.d., and they enter the model as stochastic input. In the case of stochastic state-space
models, the model is:

xk+1 = f(xk, uk, ϵk)

yk = g(xk, uk, ϵk) for k = 1, 2, . . .

whereas for input-output models, it is:

yk = h(uk, . . . , uk−n, yk−1, . . . , yk−n, ϵk, . . . , ϵk−n)

for k = n+ 1, n+ 2, . . .

In the case of additive measurement noise ϵ(t), a deterministic model can be used:

yk =Mk(U, xinit, p) + ϵk

A schematic representation of this model is given in Figure 7.2.

69
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-
input uk

Dynamic System ?

measurement noise ϵk

+

6

initial conditions

6

parameters p

-
output yk

Figure 7.2: Model with measurement noise (output errors).

7.1 Pure Output Error (OE) Minimization

When we can assume i.i.d. Gaussian noise that is only affecting the output, a maximum likelihood estimate for
θ = [x⊤init, p

⊤]⊤ can be obtained by nonlinear least squares using the following algorithm:

θML = argmin
θ

N∑
k=1

( yk −Mk(U, xinit, p) )
2 (7.1)

Here U = [u1, . . . , uN ]⊤ and xinit represents the initial conditions. This algorithm has several disadvantages:

1. Usual models are nonlinear and non-convex, therefore a global minimum cannot be guaranteed.

2. Unstable systems are very difficult to identify using this kind of model.

3. In reality, the inputs of the systems also have noise, which the model does not account for.

7.1.1 Output Error Minimization for FIR Models: Convex Minimization

A nice property of FIR models is that when using the Output Error representation, they lead to convex problems,
which implies that a global minimum can be found.

Let θ = p = (b0, . . . , bnb
)⊤ be the unknown parameter that needs to be estimated. An FIR model with output

errors predicts measurements which are modelled by the following equation:

yk = (uk, uk−1, . . . , uk−nnb
) · θ + ϵk (7.2)

Therefore, for k ≥ nb + 1, the deterministic part of this model can be expressed as M(k;U, xinit, p) =
(uk, uk−1, . . . , uk−nnb

) · θ, and the OE minimization problem for a generic FIR model is the linear least squares
problem stated below:

min
θ

N∑
k=nb+1

( yk − (uk, uk−1, . . . , uk−nnb
)θ )2 (7.3)

The main disadvantage of this problem is that even though we could represent our system by an FIR model,
they often need a very high dimension nb to obtain a reasonable fit. As a consequence, ARX models are usually
used instead. Furthermore, with FIR models no physical interpretation is possible.
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7.2 Equation Error Minimization
One special case of equation error models arises when the i.i.d. noise ϵk enters the input-output equation as additive
disturbance:

yk = h(p, uk, . . . , uk−n, yk−1, . . . , yk−n) + ϵk

for k = n+ 1, n+ 2, . . .

In this case, if the noise is i.i.d. Gaussian, a maximum likelihood formulation to estimate the unknown param-
eter vector θ = p is given by:

θML = argmin
θ

N∑
k=n+1

( yk − h(p, uk, . . . , yk−1, . . .)) )
2 (7.4)

where uk and yk are the known input and output measurements, and where the algorithm minimises the sum of the
so-called equation errors or prediction errors, which are represented by the differences yk−h(p, uk, . . . , yk−1, . . .)).

The problem (7.4) is also known as Prediction error minimisation (PEM). Such a problem is convex if p enters
linearly in f , i.e. if the model is linear-in-the-parameters (LIP). In this case, because of the convexity of the
problem, the prediction error minimization is globally solvable.

PEM of LIP Models

A way to express a LIP model is given by:

yk = φ⊤
k θ + ϵk (7.5)

where φk = [ϕ1(·), . . . , ϕd(·)]⊤ is the regression vector and it is formed by the basis functions of the LIP model.
Considering this last expression, the prediction error minimisation (PEM) problem then can be formulated as:

min
θ

N∑
k=n+1

( yk − φ⊤
k θ) )

2

︸ ︷︷ ︸
=∥y−Φθ∥2

2

(7.6)

which can be solved using the well-known analytical solution for linear least squares: θ∗ = Φ+y

Special Case: PEM of LIP-LTI Models with Equation Errors (ARX)

A general ARX model with equation errors can be stated by Equation (6.27). In order to have a determined
estimation problem, a0 has to be fixed, otherwise the number of optimal solutions would be infinite. Therefore, we
usually fix a0 = 1, and use θ = (a1, . . . , ana

, b0, . . . , bnb
)⊤ as the parameter estimator vector. Then the regression

vector is given by:

φk = (−yk−1, . . . ,−yk−na , uk, . . . , uk−nb
)⊤ (7.7)

leading to the unique optimal solution provided by the LLS algorithm:

yk = φ⊤
k θ + ϵk (7.8)

7.3 Models with Input and Output Errors
To model input and output errors, we make the simple assumption that we have two noise terms ϵu(t) and ϵy(t)
affecting the input and the output of our deterministic model:

yk =Mk(U+ϵuN , xinit, p) + ϵyk (7.9)
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-

measured
input

uk

?

input noise ϵuk

+
-

true
input

ũk

System ?

output noise ϵyk

+

6

initial conditions

6

parameters p

-

measured
output

yk

For this particular problem, assuming once again i.i.d. Gaussian noise on both inputs and outputs, with vari-
ances σ2

u for the inputs and σ2
y for the outputs, it is straightforward to establish the ML estimation problem for the

unknown parameter vector θ = [x⊤init, p
⊤, ϵu⊤]⊤. The noise vector is defined by ϵu = [ϵu1 , . . . , ϵ

u
N ]⊤. This is a

nonlinear least squares problem, given by:

min
θ

N∑
k=1

1

σ2
y

(yk −Mk(U + ϵu, xinit, p))
2 +

1

σ2
u

(ϵuk)
2 (7.10)

Making the transformation of θ → θ̃, where θ̃ = (x⊤init, p
⊤, Ũ⊤)⊤ with Ũ = U + ϵu, the equation stated before

can be written as:

min
θ̃

N∑
k=1

1

σ2
y

(yk −Mk(Ũ , xinit, p))
2 +

1

σ2
u

(uk − ũk)
2 (7.11)

In contrast to Output-Error Models, Input-Output-Error Models are more complete and accurate because they take
into account the input noise. They can also better deal with unstable systems.
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Chapter 8

Online Estimation for Dynamic Systems

8.1 Recursive Least Squares
Before explaining the Kalman filter from the perspective of system identification, it is important to revise the
algorithm called Recursive Least Squares, which was presented in Section 5.3, and it is convenient to remember.
This algorithm was basically used for online parameter/state estimation, i.e., to estimate the optimal parameters
when the flow of incoming information is not finite but always updated, and the need for an algorithm that computes
the updated optimised state from the previous optimised state (and without increasing the computational load) is
necessary.

Basically we saw that for linear models yk = ϕ⊤k θ + ϵk and i.i.d. Gaussian noise, we could set the following
recursive algorithm to solve the problem stated above:

1. First of all, we had to start with some a priori knowledge on θ in the form of a mean θ̂0 and inverse covariance
Q[0], so that the first loop at k = 1 could be computed.

2. Then, at each time k, when a new measurement yk arrives, the first thing to do is to compute the new inverse
covariance Q[k] as:

Q[k] = Q[k−1] + ϕkϕ
⊤
k (8.1)

What that equation represents is the fact that adding measurements increases the “information”, where the
amount of information is measured by the inverse of the covariance matrix.

3. After the computation of the covariance, we can compute the new estimate θ̂[k] (“innovation update”)

θ̂[k] = θ̂[k−1] + (Q[k])−1ϕk(yk − ϕ⊤k θ̂
[k−1])︸ ︷︷ ︸

”innovation”

(8.2)

Step 1 is only executed once at the beginning, whereas Steps 2 and 3 are done recursively for each new measure-
ment. This problem can also be expressed in the form of a general optimisation problem as follows:

θ̂[k] = argmin
θ

(θ − θ̂true)
⊤Q[0] (θ − θ̂true) +

k∑
i=1

(yi − ϕ⊤k θ)
2 (8.3)

1

8.2 Recursive Least Squares for State Estimation: An Approach to Kalman
Filter Derivation

Let us assume now that we have a known deterministic linear system defined by

xi+1 = Aixi (8.4)
1Note: For the sake of convenience, we are going to represent the matrix notation x[N ] with x[N ]. This change is notational only. The

recursive update meaning of x[N ] is preserved.
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with also a linear measurement equation defined by:

yi = Cixi + vi (8.5)

where vi is an i.i.d. zero-mean noise, and initial knowledge on the initial state is known and has the form of a mean
x̂0 and inverse covariance Q0.

Clearly, due to linearity, the state at any point xk can be expressed as xk = Ak−1 · · ·A0x0 and in turn the
measurement yk at any given point k becomes:

yk = CkAk−1 · · ·A0x0 + vk (8.6)

Taking a look at the structure of this algorithm and comparing it with the RLS algorithm presented before, it is
obvious that using θ ≡ x0, ϵk ≡ vk and ϕ⊤k = CkAk−1 · · ·A0, this problem can be cast into the standard RLS
framework defined before. Particularly, our recursion becomes:

Q[k] = Q[k−1] + (CkAk−1 · · ·A0)
⊤CkAk−1 · · ·A0

θ̂[k] = θ̂[k−1] +Q−1
[k] (CkAk−1 · · ·A0)

⊤(yk − CkAk−1 · · ·A0θ̂k−1)
(8.7)

which solves in each step the following problem:

θ̂[k] = argmin
x0

k∑
i=1

1

2
· ∥yi − CiAi−1 · · ·A0x0∥22

= argmin
x0

(
1

2
· ∥x0 − θ̂[k−1]∥2Q[k−1]

+
1

2
· ∥yk − CkAk−1 · · ·A0x0∥22

) (8.8)

However, this last expression is not really that helpful, since very often what we are most interested in is the
current state xk rather than x0, thus let us try to derive a recursive expression for xk. Let us denote the optimal
estimator of state xi given the data (y1, . . . , yk) as x̂[i|k]. Clearly,

x̂[0|k] := θ̂k (8.9)

x̂[i|k] = Ai−1 · · ·A0θ̂k (8.10)

cov{x̂[i|k]}︸ ︷︷ ︸
=:P[i|k]

= Ai−1 · · ·A0 ·Q−1
k ·A⊤

0 · · ·A⊤
i−1 (8.11)

where x̂[i|k] represents the best estimator of xi given k measurements. Ideally we would like to obtain x̂[k|k], to
have always the state update with the most recent measurement data. If we multiply every term of the second
equation of (8.7) by Ak−1 · · ·A0 we obtain:

Ak−1 · · ·A0 · θ̂k = Ak−1 · · ·A0 · θ̂k−1 +Ak−1 · · ·A0 ·Q−1
k (CkAk−1 · · ·A0)

⊤(yk − CkAk−1 · · ·A0θ̂k−1)

⇔ x̂[k|k] = x̂[k|k−1] + P[k|k] · C⊤
k (yk − Ckx̂[k|k−1])

(8.12)

where this expression is usually known as the update of the mean. Basically what it does is, it checks how good
the prediction x̂[k|k−1] is, and if it is not perfect it corrects it by using the covariance.

Furthermore, assuming for simplicity invertibility ofAk−1 · · ·A0, and multiplying every term of the first equa-
tion of (8.7) by (Ak−1 · · ·A0)

−1 on the right and by (A⊤
0 · · ·A⊤

k−1)
−1 on the left, we obtain the covariance update

step:
P−1
[k|k] = P−1

[k|k−1] + C⊤
k Ck (8.13)

That equation basically means that the previous P−1
[k|k−1] predicted inverse covariance, is still modified by the

new information coming in. Moreover, to obtain the x̂[k|k−1] and P−1
[k|k−1], the so-called time propagation (or

prediction) step, we can use directly:
x̂[k|k−1] = Ak−1 · x̂[k−1|k−1] (8.14)

and
P[k|k−1] = Ak−1 · P[k−1|k−1] ·A⊤

k−1 (8.15)
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where this propagation step means to predict the future value of the variables, without new information coming in,
prediction values which are checked and updated in the previously defined update step.

Thus, we can summarise the RLS for State Estimation as the computation of two steps in order to compute the
estimates x[k|k] and covariances P[k|k]:

1. Prediction Step (before measurement):

x̂[k+1|k] = Ak · x̂[k|k] (8.16)

P[k+1|k] = Ak · P[k|k] ·A⊤
k (8.17)

2. Innovation Update Step (after measurement):

P[k|k] =
(
P−1
[k|k−1] + C⊤

k Ck

)−1

(8.18)

x̂[k|k] = x̂[k|k−1] + P[k|k] · C⊤
k (yk − Ckx̂[k|k−1]) (8.19)

Another thing to keep in mind is the meaning of P in this equations. If P represent the covariance of the
estimator x̂, then it is clear that the bigger the covariance the less we should trust our model. If we look at P
in the innovation step, we see that the bigger P is, the more we change the updated state according to the new
mesasurement. However, if P is small, it means that the covariance is small, therefore we should trust the model
more than the measurements, and that is why in this case the expression (yk − Ckx̂[k|k−1]) gets less weight than
the previously predicted state x[k|k−1].

So far we have just solved the problem of RLS, however, with two limitations: the noise is i.i.d. and the system
is deterministic. Several questions shall natually arise:

• When the noise is not identically distributed, can we adapt the equations by proper modification on the
problem?

• When the system is not deterministic, can we interpret the x̂[k|k−1] and P[k|k−1] as a-priori information on
xk based on a prediction model? If so, how can we model the uncertainty for that prediction model?

The answer to the first questions is relatively simple. We can formulate a WLS problem at the starting point:

x̂[0|k] = argmin
x0

k∑
i=1

1

2
· ∥yi − CiAi−1 · · ·A0x0∥2V −1

i

(8.20)

where Vi denotes the covariance of the independent zero-mean Gaussian noise vi. After a very similar derivation,
it results in the update step as follows:

P[k|k] =
(
P−1
[k|k−1] + C⊤

k V
−1
k Ck

)−1

(8.21)

x̂[k|k] = x̂[k|k−1] + P[k|k] · C⊤
k V

−1
k (yk − Ckx̂[k|k−1]) (8.22)

Not surprisingly, the inverse of the covariance enters all equations as a weighting matrix.
The answer to the second questions is that we can model the a-priori information on xk by

xk = Ak−1xk−1 + wk−1 (8.23)

where wk−1 is an i.i.d. state noise on the state model with zero mean and covarianceWk−1. Does this make sense?
In practice it does: from an intuitive point of view we can say that, since no model is perfect, if we do not know
anything about the model, a good way to approximate the uncertainty of a model is adding i.i.d. noise, so that
we take into account that the model predictions are not 100% accurate. As a result, it is intrinsic to interpret the
update step as a MAP estimation, with the result from the prediction step as the a-priori information:

x̂[k|k] = argmin
xk

(
1

2
· ∥xk − x̂[k|k−1]∥2P−1

[k|k−1]

+
1

2
· ∥yk − Ckxk∥2V −1

k

)
(8.24)

Because of these perturbations on the state model, an extra term must be added to the equation of the prediction
step where the covariance of the estimator is predicted. A good way to point this uncertainty is by not only
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predicting the new covariance by a linear mapping, but also add at each iteration the covariance of the noise, Wk−1

so that the uncertainty on the model at each prediction step is accounted for. The predicted covariance is now
defined by:

P[k|k−1] = Ak−1 · P[k−1|k−1] ·A⊤
k−1 +Wk−1 (8.25)

Likewise, we can also modify the optimisation problem so that it would explicitly demonstrate that extra uncer-
tainty is introduced through the prediction step.

(x̂[k−1|k], x̂[k|k]) = arg min
xk−1,xk

(
∥xk−1 − x̂[k−1|k−1]∥2P−1

[k−1|k−1]

+ ∥xk −Ak−1xk−1∥2W−1
k−1

+ ∥yk − Ckxk∥2V −1
k

)
(8.26)

The solution to this problem is exactly the set of equations that we have derived. They are basically known as
the Kalman filter.

8.3 Kalman Filter
In the previous section we have basically obtained the Kalman filter; only one further remark is necessary. We can
consider the more general model, where we assume affine state and measurement models that are both perturbed
by additive zero-mean Gaussian noise, i.e., we consider state-space models of the following form:

xk+1 = Akxk + bk + wk (8.27)
yk = Ckxk + dk + vk (8.28)

where wk ∼ N (0,Wk) and vk ∼ N (0, Vk) are independent. Here we use bk and dk as a shorthand for Bkuk,
Dkuk, respectively. In this case, the Kalman filter prediction and innovation update steps are given by:

1. Prediction Step:

x̂[k+1|k] = Akx̂[k|k] + bk (8.29)

P[k+1|k] = AkP[k|k]A
⊤
k +Wk (8.30)

2. Innovation Update Step

P[k|k] =
(
P−1
[k|k−1] + C⊤

k V
−1
k Ck

)−1

(8.31)

x̂[k|k] = x̂[k|k−1] + P[k|k]C
⊤
k V

−1
k (yk − Ckx̂[k|k−1] − dk) (8.32)

Note that from a computational point of view, it is beneficial to rewrite the innovation update step for the
covariance estimate as follows:

P[k|k] =
(
P−1
[k|k−1] + C⊤

k V
−1
k Ck

)−1

=
(
P−1
[k|k−1]

(
I+ P[k|k−1]C

⊤
k V

−1
k Ck

))−1

=
(
I+ P[k|k−1]C

⊤
k V

−1
k Ck

)−1
P[k|k−1]

With this formulation, we do not need to invert the matrix P[k|k−1] which can become close to singular when
the uncertainty of our estimate gets close to zero (in some directions). This is only one way of reformulating the
innovation update step and there are indeed several other formulas.
Similarly to RLS, we can state the optimization problem that the Kalman filter recursively solves as:

(x∗0, . . . , x
∗
N ) = arg min

x0,...,xN

∥x0 − x̂0∥2P−1
0

+

N∑
i=1

∥yi −Cixi − di∥2V −1
i

+

N−1∑
i=0

∥xi+1 −Aixi − bi∥2W−1
i

(8.33)

Despite the minimisation over (x0, . . . , xN ), the only thing that is of interest is the last value xN which corresponds
to our current state estimate x̂[k|k]. Note that this optimization problem that we can recursively solve using the
Kalman filter is the same problem we introduced in Section ?? as the trajectory estimation problem.
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8.4 *Kalman Filter in Continuous Time2

So far, the equations that we have derived corresponded to the discrete version of the Kalman filter. However, we
can easily transfer this knowledge to the continuous Kalman filter, considering first of all a continuous-time model
with noises wc, vc:

ẋ(t) = Ac(t)x(t) + wc(t)

y(t) = Cc(t)x(t) + vc(t)

Noting that wc(t) has unit [x]/[t] and vc(t) has unit [y]. Furthermore, it is a reasonable assumption to consider
that we have white noise in both the state model and the measurement, and with that we can define the covariance
as a diagonal matrix of the form:

• cov(wc(t1), w
c(t2)) = δ(t1 − t2) ·W c where [W c] = [x]2/[t]

• cov(vc(t1), v
c(t2)) = δ(t1 − t2) · V c where [V c] = [y]2 · [t]

We can then try to transfer this continuous model to discrete time, so that we can compare it with the previously
derived Kalman filter. For that, we can use a small time step ∆t and time points tk = k ·∆t. Then, we can identify
the discrete variables as follows:

• xk = x(tk).

• wk =
∫ tk+1

tk
wc(t) dt. This makes sense, since the random walk theory says W = ∆t ·W c (the longer we

wait, the more uncertain we become).

• Ck = C(tk).

• yk = 1
∆t

∫ tk+1

tk
y(t) dt, and thus vk = 1

∆t

∫ tk+1

tk
vc(t) dt. That equation represents the fact that the measure-

ment errors have an opposite behaviour to state noise, since because of the averaging, the covariance matrix
shrinks with longer time intervals, i.e., V = Vc

∆t .

With that set, we can directly write the equivalent discrete-time model as follows.

xk+1 = [I +∆t ·Ac(tk)]︸ ︷︷ ︸
=:Ak

xk + wk

yk = Cc(tk)︸ ︷︷ ︸
=Ck

xk + vk

where the covariances are also described as cov(wk) = W = ∆t ·W c and cov(vk) = V = ∆t−1 · V c. With that
we can set directly the discretised Kalman filter in the case that we discretise the continuous-time model:

• Prediction step (up to first order):

x̂[k+1|k] = x̂[k|k] +∆t ·Ac(tk)x̂[k|k]

P[k+1|k] = P[k|k] +∆t
[
Ac(tk)P[k|k] + P[k|k]A

c(tk)
⊤ +W c

]
• Innovation update step:

P[k|k] =
(
P−1
[k|k−1] +∆t · C⊤

k (V c)−1Ck

)−1

(8.34)

x̂[k|k] = x̂[k|k−1] +∆t · P[k|k] · C⊤
k (V c)−1(yk − Ckx̂[k|k−1])

By Taylor expansion, Eq. (8.34) becomes

P[k|k] = P[k|k−1] −∆t · P[k|k−1]C
⊤
k (V c)−1CkP[k|k−1] (8.35)

2not covered in the lecture
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Finally adding both steps together, identifying x̂(tk) ≡ x̂[k+1|k] and P (tk) ≡ P[k+1|k], and taking the limit
∆t→ 0, the previously discretised Kalman filter yields the two differential equations:

˙̂x(t) = Ac(tk)x̂(t) + P (t)Cc(t)⊤(V c)−1 (y(t)− Cc(t)x̂(t))

Ṗ (t) = Ac(t)P (t) + P (t)Ac(t)⊤ +W c − P (t)Cc(t)⊤(V c)−1Cc(t)P (t)

These continuous-time equations are called the “Kalman–Bucy filter” and represent the Kalman filter in con-
tinuous time.

8.5 Extended Kalman Filter
The Extended Kalman Filter (EKF) is the nonlinear version of the Kalman filter, i.e., it can be applied to any
dynamic system of the form

xk+1 = fk(xk) + wk (8.36a)
yk = gk(xk) + vk (8.36b)

where fk : Rnx → Rnx and gk : Rnx → Rny are nonlinear differentiable functions. Furthermore, we assume that
wk, vk are independent and follow Gaussian distributions with zero mean and covariance matrices Wk and Vk,
respectively. Note that by augmenting the state to also include constant parameters and using the equivalence

fk(xk) ↔ f(xk, uk),

gk(xk) ↔ g(xk, uk),

any model of the form introduced in Section ?? can be rewritten in the form of 8.36.
The main idea of the EKF is to first linearize fk and gk at the current state estimate and then apply the same

update and prediction formulas we derived in Section 8.3 for the case of linear systems. Let x̄k denote the lin-
earization point (which we will specify later on). The first order Taylor expansion of fk at x̄k is then given by

fk(xk) = fk(x̄k) +Ak(xk − x̄k)︸ ︷︷ ︸
f LIN
k (xk;x̄k)

+O
(
∥xk − x̄k∥2

)

where Ak = ∂
∂xk

fk(x̄k). The function f LIN
k (xk; x̄k) denotes the linearization of fk at x̄k. Similarly, linearizing

the function g at the linearization point ¯̄xk yields

gk(xk) = gk(¯̄xk) + Ck(xk − ¯̄xk)︸ ︷︷ ︸
gLIN
k (xk;¯̄xk)

+O
(
∥xk − ¯̄xk∥2

)

where Ck = ∂
∂xk

gk(¯̄xk). Thus, the linearized system is given by:

xk+1 = fk(x̄k) +Ak(xk − x̄k) + wk

= Akxk + fk(x̄k)−Akx̄k︸ ︷︷ ︸
bk

yk = gk(¯̄xk) + Ck(xk − ¯̄xk)

= Ckxk + gk(¯̄xk)− Ck ¯̄xk︸ ︷︷ ︸
dk

where Ak = ∂
∂xk

fk(x̄k) and Ck = ∂
∂xk

gk(¯̄xk). Choosing the current estimate x̂[k|k] as linearization point x̄k and
applying the update step we derived in Section 8.3, we obtain

x̂[k|k+1] = Akx̂[k|k] + fk(x̄k)−Akx̄k = fk
(
x̂[k|k]

)
P[k|k+1] = AkP[k|k]A

⊤
k +Wk
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where Ak = ∂
∂xk

fk(x̂[k|k]). For the innovation update step, we choose our current prediction x̂[k+1|k] as lineariza-
tion point ¯̄xk+1 and obtain:

P[k+1|k+1] =
(
P−1
[k+1|k] + C⊤

k+1V
−1
k+1Ck+1

)−1

x̂[k+1|k+1] = x̂[k+1|k] + P[k+1|k+1]C
⊤
k+1V

−1
k+1

(
yk+1 − Ck+1x̂[k+1|k] − gk+1(¯̄xk+1) + Ck+1 ¯̄xk+1

)
= x̂[k+1|k] + P[k+1|k+1]C

⊤
k+1V

−1
k+1

(
yk+1 − gk+1(x̂[k+1|k])

)
where Ck = ∂

∂xk+1
gk+1(x̂[k+1|k]). Analogously to the linear Kalman filter, the term yk+1 − g(x[k+1|k]) corre-

sponds to the prediction error, i.e., the deviation of the predicted output gk+1(x̂[k+1|k]) and the measured output
yk+1. If our prediction coincides with the actual measurement, this term is zero and we do not update the current
state estimate.
In summary, the prediction and innovation update step are given by

1. Prediction Step:

x̂[k+1|k] = fk
(
x̂[k|k]

)
(8.37)

P[k+1|k] = AkP[k|k]A
⊤
k +Wk (8.38)

where Ak = ∂
∂xk

fk(x̂[k|k]).

2. Innovation Update Step

P[k+1|k+1] =
(
P−1
[k+1|k] + C⊤

k+1V
−1
k+1Ck+1

)−1

(8.39)

x̂[k+1|k+1] = x̂[k+1|k] + P[k+1|k+1]C
⊤
k+1V

−1
k+1

(
yk+1 − gk+1

(
x̂[k+1|k]

))
(8.40)

where Ck+1 = ∂
∂xk+1

gk+1(x̂[k+1|k]).

As for the linear Kalman filter, the Extended Kalman Filter estimates the current state of the system in a
recursive manner. The computations that have to be performed in each recursive step are rather cheap and in
particular constant for each time step. In contrast to the linear Kalman filter, the EKF is no longer an optimal
estimator due to the linearization of the dynamics. Thus, we have to carefully choose the initial guess of the state
of the system, as the EKF might not recover from a large initial estimation error and diverge from the actual system
state.

An alternative state estimation method which is closely related to EKF is the so-called Unscented Kalman
Filter (UKF) [JU04]. While the EKF propagates the covariance of the estimate through the linearized model,
the UKF tries to capture the nonlinearity of the system by (deterministically) sampling the nonlinear dynamics
at several so-called sigma points. These sigma points are propagated through the nonlinear function f and then
combined to compute the predicted state and covariance.

Yet another approach to state estimation are Particle Filters. Here, the main idea is to approximate the condi-
tional probability distribution of the current state of the system given the available observations by particles which
are random samples from this distribution. As the number of particles that are required to effectively represent the
conditional distribution increases exponentially with the dimension of the state space, these methods are usually
only applicable for low dimensional systems.

Another powerful alternative to EKF is presented in the next section.

8.6 Moving Horizon Estimation for State Estimation

In this section, we introduce Moving Horizon Estimation (MHE) as an optimization-based approach to (nonlinear)
state estimation. As for the EKF, we consider a nonlinear dynamic system of the following form:

xk+1 = fk(xk) + wk

yk = gk(xk) + vk
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with random state and measurement noise wk ∈ Rnx and vk ∈ Rny with known probability distributions that are
described by the following PDFs:

pwk
(wk) = const · exp(−ϕk(wk)) (8.41)

pvk(vk) = const · exp(−ψk(vk)) (8.42)

Additionally, we assume that we have some prior knowledge of the initial state of the system which is given in
terms of a prior probability distribution of x0 with PDF:

p0(x0) = const · exp(−Π0(x0)).

Note that for a zero-mean Gaussian prior as well as zero-mean Gaussian state and measurement noise with
covariance matrix Σ, we would have Π0(·) = ϕk(·) = ψk(·) = 1

2∥ · ∥2Σ−1 . With the more general formulation, it
is, however, possible to assume non-Gaussian noise distributions, e.g. Laplacian noise.

Let θ = (x0, . . . , xN ). The Full Information Estimation (FIE) [RM09] problem can then be formulated as:

θ̂FIE = θ∗ = argmin
θ

Π0(x0) +

N∑
k=0

ψk(yk − gk(xk)) +

N−1∑
k=0

ϕk(xk+1 − fk(xk)) (8.43)

If θ∗ = (x∗0, . . . , x
∗
N ) is the solution to the above optimization problem, then our current state estimate x̂FIE

[N |N ]

would be given by x∗N . In this formulation, we estimate the complete state trajectory (x0, . . . , xN ) given all the
available data (y0, . . . , yN ). Thus, the size of the FIE problem increases with every iteration. Eventually, solving
the above optimization problem will become computationally intractable. Especially for online state estimation,
where we have typically only very limited computation time available, we would require an estimation algorithm
whose computational cost is constant for every iteration.

To meet this requirement, we introduce Moving Horizon Estimation (MHE) which is an approximation of the
FIE problem. With MHE, we consider only a fixed number of measurements and summarize the contributions of
all previous measurements in an additional term which we call arrival cost.

Let θ = (xN−M , . . . , xN ) where M denotes the horizon length. The MHE problem is then defined as

θ̂MHE = argmin
θ

ΠN−M (xN−M ) +

N∑
k=N−M

ψk(yk − gk(xk)) +

N−1∑
k=N−M

ϕk(xk+1 − fk(xk)) (8.44)

The term ΠN−M (xN−M ) is called arrival cost and tries to summarize the contributions of the previous measure-
ments (y0, . . . , yN−M ) to the cost function.

In theory, the exact arrival cost is given by

ΠN−M (xN−M ) = min
x0,...,xN−M−1

Π0(x0) +

N−M−1∑
k=0

ψk(yk − gk(xk)) + ϕk(xk+1 − fk(xk)) (8.45)

where xN−M enters the optimization problem as a parameter. Note that the MHE problem (8.44) with true arrival
cost (8.45) is equivalent to the FIE problem (8.43). Obviously, computing the true arrival cost and then solving the
MHE problem is as expensive as solving the FIE problem.

There is, however, a special case in which we can compute the arrival cost analytically and that is the case of
linear systems with Gaussian state and measurement noise as well as a Gaussian prior. Under these assumptions,
the arrival cost and the MHE problem (and thus also the FIE problem) can be solved analytically, yielding the
linear Kalman filter.
For the general nonliner case, where computing the exact arrival cost is computationally intractable, we have to
use an approximation in order to obtain a state estimator whose computational cost is fixed for every iteration.

Two possible approximations are

• a zero arrival cost, where any contribution of measurements outside the MHE window are neglected, and,

• a quadratic arrival cost, i.e. ΠN−M (xN−M ) = 1
2 ∥xN−M − x̄N−M∥2P−1

N−M
. which implicitly means that

we assume a Gaussian distribution for xN−M ,

xN−M ∼ N (x̄N−M , PN−M ) .
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A quadratic approximation of the arrival cost has the advantage that the resulting MHE problem is a convex
optimization problem assuming that ϕk and ψk are convex functions as well. There are several approaches
for computing the values of x̄N−M and PN−M .

8.7 Maximum Likelihood Estimation for Linear Time Variant Systems
with Unknown Parameters and Covariances

In this section, we would like to provide an alternative approach to estimating the system parameters. We consider
a system with some uncertain initial states following a Gaussian distribution

x0 ∼ N (x̂0(θ), P0(θ)) (8.46)

and linear dynamics:

xk+1 = Ak(θ)xk + bk(θ) + wk (8.47)
yk = Ck(θ)xk + dk(θ) + vk (8.48)

where θ ∈ Rnθ is the unknown parameters, wk ∼ N (0,Wk(θ)) is the process noise and vk ∼ N (0, Vk(θ)) is the
measurement noise, both are independent.

Although the system state and measurement are dependent on the parameters θ, the rules of Kalman filter from
previous sections are still valid, and above that, we are able to make a decent prediction of the measurement at
each time step,

• State prediction

x̂[k|k−1] = Ak−1(θ)x̂[k−1|k−1] + bk−1(θ) (8.49)

P[k|k−1] = Ak−1(θ)P[k−1|k−1]Ak−1(θ)
T +Wk−1(θ) (8.50)

• Measurement prediction

ŷk = Ck(θ)x̂[k|k−1] + dk(θ) (8.51)

Sk = Ck(θ)P[k|k−1]Ck(θ)
T + Vk(θ) (8.52)

• Innovation update

P[k|k] =
(
P−1
[k|k−1] + Ck(θ)

TVk(θ)
−1Ck(θ)

)−1

(8.53)

x̂[k|k] = x̂[k|k−1] + P[k|k](θ)Ck(θ)
TVk(θ)

−1 (yk − ŷk) (8.54)

According to this formulation, the expressions for ŷk and Sk are obtained through the rollout of the Kalman
filter, more precisely, ŷk as a function of both the parameters θ and the sequence of the past measurement data
Yk−1 = (y1, . . . , yk−1); Sk as a function solely dependent on the parameters θ. Thus we denote them in explicit
form as ŷk(θ, Yk−1) and Sk(θ) respectively. It is worth noticing that the θ dependency is highly nonlinear.

As an interesting property of Kalman filter with Gaussian noise, given some system parameters θ, the pos-
terior distribution of measurement p(yk|θ, Yk−1) also follows a Gaussian distribution, centered at the prediction
ŷk(θ, Yk−1) and with a covariance Sk(θ):

p(yk|θ, Yk−1) = (det 2πSk(θ))
− 1

2 exp

(
−1

2
∥yk − ŷk(θ, Yk−1)∥2Sk(θ)−1

)
(8.55)

Now, for the sequence of all measurement data YN = (y1, . . . , yN ), its joint distribution can be computed through
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conditional probability law:

p(YN |θ) = p(YN−1, yN |θ) (8.56)
= p(YN−1|θ)p(yN |θ, YN−1) (8.57)
... (8.58)

=

N∏
i=1

p(yi|θ, Yi−1) (8.59)

=

N∏
i=1

(det 2πSi(θ))
− 1

2 exp

(
−1

2
∥yi − ŷi(θ, Yi−1)∥2Si(θ)−1

)
(8.60)

The maximum likelihood estimation (MLE) of system parameters θ is given by:

θ∗ = argmax
θ
p(YN |θ) (8.61)

And can be simplified as:

θ∗ = argmin
θ

[− log p(YN |θ)] (8.62)

= argmin
θ

N∑
i=1

[
1

2
log(det 2πSi(θ)) +

1

2
∥yi − ŷi(θ, Yi−1)∥2Si(θ)−1

]
(8.63)

= argmin
θ

N∑
i=1

[
1

2
log(2πny detSi(θ)) +

1

2
∥yi − ŷi(θ, Yi−1)∥2Si(θ)−1

]
(8.64)

= argmin
θ

N∑
i=1

[
log(detSi(θ)) + ∥yi − ŷi(θ, Yi−1)∥2Si(θ)−1

]
(8.65)

As this is a highly nonlinear optimization problem, it is, in the most cases, impossible to obtain an analytical
solution but one can solve it numerically. Interested readers are therefore recommended to refer to the “Numerical
Optimization” course or literatures in that field.
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Appendix A

Optimization

A.1 Newton-type optimization methods
Presented optimisation problems have as a common feature linearity on the estimator, i.e. the model M(x) de-
scribes the measurements yN as a linear function of x: M(x) = Φ · x.

Furthermore, it has always been assumed that there is Gaussian noise on the measurements which can be
modeled with a covariance matrix Σx. When both facts are combined, the classical Weighted Linear Least Squares
Problem appears, and its analytical solution x̂WLS = (Φ⊤ ·W · Φ)−1 · Φ⊤ ·W · y can be easily extracted.

In general, M(x) is not linear, and the measurement noise might not be Gaussian, which leads to a general
problem where a non-analytical solution needs to be found. In such cases, it is important to have a method which
can find a local or even global minimum of the problem. In order to present a general optimisation method, let us
first recall the general optimality conditions.

A.1.1 Optimality conditions
arg min

x∈Rd
f(x), f ∈ R (A.1)

Let (A.1) be a general optimisation problem, then the following conditions can be established:

• First order necessary condition (FONC):
If x⋆ minimizes (A.1) then ∇f(x⋆) = 0

• Second order necessaary condition (SONC):
If x⋆ minimizes (A.1) then ∇2f(x⋆) ⪰ 0

• Second order sufficient condition (SOSC):
If ∇2f(x⋆) ≻ 0 and ∇f(x⋆) = 0 then x⋆ minimizes (A.1).

• FONC for convex functions:
x⋆ is a global minimizer of (A.1) ⇐⇒ ∇f(x⋆) = 0 (if f(x) is convex).

A.1.2 Descent direction methods
Let again consider the general optimisation problem:

arg min
x∈Rd

f(x), f ∈ R (A.2)

By the optimisation conditions, we could calculate all the stationary points (∇f(x) = 0) and then evaluate their
Hessian to see whether it is positive definite. However, solving the set of equations ∇f(x) = 0 is usually a very
difficult task. Because of that, we will introduce an iterative algorithm for finding the stationary points instead of
trying to find the analytical solution. The iterative algorithms that we will present have the form of:

xk+1 = xk + tk · dk, k = 0, 1, 2, . . . (A.3)

85
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where dk ∈ Rd it is called a descent direction and tk ∈ R the stepsize. In order to choose the step size there
are many different algorithms, three popular of which are: constant step size, exact line search and backtracking.
However, since the scope of this lecture is not an optimisation class, we encourage those readers who are more
curious to take a look at one of the excellent textbooks [NW06], [BV04] or [Bec14]. In the case of a descent
direction, it is important however to look at its definition and one of its property, so any descent direction method
can be understood.

Definition 15 (Descent direction). A vector dk ∈ Rd is called a descent direction of f at x if the directional
derivative is negative:

f ′(x; d) = ∇f(x)⊤ · d < 0 (A.4)

One of the most important properties of descent directions is that steps small enough along this directions lead
to a decrease in the objective function:

Lemma 3 (descent property of descent direction). Let f be a continuous differentiable function over Rd, and let
x ∈ Rd. Let a vector dk ̸= 0 ∈ Rd be a descent direction of f at x. Then there exists and ϵ > 0 such that:

f(x+ t · dk) < f(x) (A.5)

for any t ∈ (0, ϵ].

With the last lemma in mind, it can be understood that the idea of algorithm (A.3) is to iterate over the objective
function, reducing its value at each iteration by choosing a descent direction and suitably short stepsize.

Gradient or Steepest Descent Method

It can be proved that the direction represented by the negative gradient dk = −∇f(x) is a descent direction. Thus,
one of the well-known implementation of algorithm (A.3) takes the form of:

xk+1 = xk − tk · ∇f(xk), k = 0, 1, 2, . . . (A.6)

Which is iterated until ∥∇f(xk+1)∥ < ϵ. One can show that the negative gradient points into the direction of
steepest descent in Euclidean space. Though this sounds like a good property, the gradient method suffers from
very slow convergence in practice.

A.1.3 Newton’s method
The steepest descent method only uses first order information. Let us now assume that f is twice continuously
differentiable, and let us introduce a method that uses second order information. The main idea is that this new
method tries to locally minimise the quadratic Taylor approximation of f(x) at some point xk. Considering first
the quadratic approximation of f(x) around the vicinity of xk:

f(x) = f(xk) +∇f(xk)⊤ · (x− xk) +
1

2
· (x− xk)

⊤∇2f(xk) · (x− xk) (A.7)

It can be easily calculated the point that minimises such a expression as:

xk+1 = arg min
x∈Rd

f(xk) +∇f(xk)⊤ · (x− xk) +
1

2
· (x− xk)

⊤∇2f(xk) · (x− xk) (A.8)

which is only defined if ∇2f(xk) is positive definite. The unique minimiser of (A.8) is given by

∇f(xk) +∇2f(xk) · (xk+1 − xk) (A.9)

which leads to the exact Newton method defined by:

xk+1 = xk − (∇2f(xk))
−1 · ∇f(xk) (A.10)

It can be seen that Newton’s method is just a special case of a scaled gradient method where the step size t is
substituted by the inverse of the Hessian. Computing the Hessian can be costly but in practice the Newton Method
performs better than the gradient method.
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Gauss-Newton method

If we have a general Non-linear Least Squares problem of the form:

arg min
x∈Rd

f(x) = arg min
x∈Rd

1

2
· ∥yN −M(x)∥22 (A.11)

a good and faster approximation of Newton’s iterative method is easy to prove and can be introduced.

Definition 16 (Gauss-Newton’s iterative method for finding stationary points). Let x̂ be the optimal solution of the
problem (A.11), then x̂ is also a stationary point of f(x), and can be found with the iterative method described
below:

xk+1 = xk −
(
∂M

∂x
(xk)

⊤
· ∂M
∂x

(xk)

)−1

· ∂M
∂x

⊤
(xk) · (M(xk)− y) =

= arg min
x∈Rd

1

2
· ∥(M(xk)− y) +

∂M

∂x
(xk) · (x− xk)∥

(A.12)

Proof: In order to use Newton’s method the Gradient ∇f(x) and the Hessian ∇2f(x) must be calculated, so
let’s derive an expression for them in the case of problem (A.11):

∇f(x) =

=
∂

∂x
[
1

2
(M(x)− yN )⊤ · (M(x)− yN )]⊤ =

=
∂M

∂x
(x)

⊤
· (M(x)− yN ) =

N∑
k=1

∇Mk(x) · (Mk(x)− y(k))

(A.13)

∇2f(x) =

=
∂

∂x
(
∂

∂x
[(M(x)− yN )⊤ · (M(x)− yN )]⊤) =

=
∂

∂x

[ N∑
k=1

∇Mk(x) · (Mk(x)− y(k))

]
=

=

N∑
k=1

∇2Mk(x) · (Mk(x)− y(k)) +

N∑
k=1

∇Mk(x) · ∇Mk(x)
⊤ ≈

≈ ∂M

∂x
(x)

⊤
· ∂M
∂x

(x)

(A.14)

Where the approximation
∑N

k=1 ∇2Mk(x) · (Mk(x)−y(k)) ≪
∑N

k=1 ∇Mk(x) · (∇Mk(x))
⊤ is made, which

is usually correct since normally either ∇2Mk(x) or (Mk(x)− y(k)) are small.
Taking into account these two results, Equation (A.12) is directly obtained substituting the values of ∇f(x)

and ∇2f(x) into the Newthon’s method algorithm defined by Equation (A.10).
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Appendix B

Dynamic System Classes and Different
Forms of Differential Equations

In Section 6.1.1 ordinary differential equations (ODE) are explained as the most important class of continuous
time systems. This appendix first gives an overview of dynamic system models in general, and then discusses
other interesting continuous time system classes that go beyond the class of ODE, namely differential algebraic
equations (DAE), partial differential equations (PDE), and delay differential equations (DDE).

B.1 Dynamic System Classes
In this section, let us go, one by one, through the many dividing lines in the field of dynamic systems.

Continuous vs Discrete Time Systems

Any dynamic system evolves over time, but time can come in two variants: while the physical time is continu-
ous and forms the natural setting for most technical and biological systems, other dynamic systems can best be
modelled in discrete time, such as digitally controlled sampled-data systems, or games.

We call a system a discrete time system whenever the time in which the system evolves only takes values on a
predefined time grid, usually assumed to be integers. If we have an interval of real numbers, like for the physical
time, we call it a continuous time system. In this lecture, we usually denote the continuous time by the variable
t ∈ R and write for example x(t). In case of discrete time systems, we typically use the index variable k ∈ N, and
write xk or x(k) for the state at time point k.

Continuous vs Discrete State Spaces

Another crucial element of a dynamic system is its state x, which often lives in a continuous state space, like the
position of the train, but can also be discrete, like the position of the figures on a chess game. We define the state
space X to be the set of all values that the state vector x may take. If X is a subset of a real vector space such as
Rnx or another differentiable manifold, we speak of a continuous state space. If X is a finite or a countable set, we
speak of a discrete state space. If the state of a system is described by a combination of discrete and continuous
variables we speak of a hybrid state space.

Finite vs Infinite Dimensional State Spaces

The class of continuous state spaces can be further subdivided into the finite dimensional ones, whose state can
be characterized by a finite set of real numbers, and the infinite dimensional ones, which have a state that lives in
function spaces. The evolution of finite dimensional systems in continuous time is usually described by ordinary
differential equations (ODE) or their generalizations, such as differential algebraic equations (DAE).

Infinite dimensional systems are sometimes also called distributed parameter systems, and in the continuous
time case, their behaviour is typically described by partial differential equations (PDE). An example for a con-
trolled infinite dimensional system is the evolution of the airflow and temperature distribution in a building that is

89
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controlled by an air-conditioning system. Systems with delay are another class of systems with infinite dimensional
state space.

Continuous vs Discrete Control Sets

We denote by U the set in which the controls u live, and exactly as for the states, we can divide the possible control
sets into continuous control sets and discrete control sets. A mixture of both is a hybrid control set. An example
for a discrete control set is the set of gear choices for a car, or any switch that we can can choose to be either on or
off, but nothing in between.

Time-Variant vs Time-Invariant Systems

A system whose dynamics depend on time is called a time-variant system, while a dynamic system is called time-
invariant if its evolution does not depend on the time and date when it is happening. As the laws of physics are
time-invariant, most technical systems belong to the latter class, but for example the temperature evolution of a
house with hot days and cold nights might best be described by a time-variant system model. While the class
of time-variant systems trivially comprises all time-invariant systems, it is an important observation that also the
other direction holds: each time-variant system can be modelled by a nonlinear time-invariant system if the state
space is augmented by an extra state that takes account of the advancement of time, and which we might call the
“clock state”.

Linear vs Nonlinear Systems

If the state trajectory of a system depends linearly on the initial value and the control inputs, it is called a linear
system. If the dependence is affine, one should ideally speak of an affine system, but often the term linear is used
here as well. In all other cases, we speak of a nonlinear system.

A particularly important class of linear systems are linear time invariant (LTI) systems. An LTI system can be
completely characterized in at least three equivalent ways: first, by two matrices that are typically called A and B;
second, by its step response function; and third, by its frequency response function. A large part of the research in
the control community is devoted to the study of LTI systems.

Controlled vs Uncontrolled Dynamic Systems

While we are in this lecture mostly interested in controlled dynamic systems, i.e. systems that have a control input
that we can choose, it is good to remember that there exist many systems that cannot be influenced at all, but that
only evolve according to their intrinsic laws of motion. These uncontrolled systems have an empty control set,
U = ∅. If a dynamic system is both uncontrolled and time-invariant it is also called an autonomous system.

Stable vs Unstable Dynamic Systems

A dynamic system whose state trajectory remains bounded in an arbitrarily small neighbourhood of an equilibrium
point for suitably bounded initial values and controls is called a stable system, and an unstable system otherwise.
For autonomous systems, stability of the system around a fixed point can be defined rigorously: for any arbitrarily
small neighborhood N around the fixed point there exists a region so that all trajectories that start in this region
remain in N . Asymptotic stability is stronger and additionally requires that all considered trajectories eventually
converge to the fixed point. For autonomous LTI systems, stability can be computationally characterized by the
eigenvalues of the system matrix.

Deterministic vs Stochastic Systems

If the evolution of a system can be predicted when its initial state and the control inputs are known, it is called a
deterministic system. When its evolution involves some random behaviour, we call it a stochastic system.

The movements of assets on the stockmarket are an example for a stochastic system, whereas the motion of
planets in the solar system can usually be assumed to be deterministic. An interesting special case of deterministic
systems with continuous state space are chaotic systems. These systems are so sensitive to their initial values that
even knowing these to arbitrarily high, but finite, precisions does not allow one to predict the complete future of the
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system: only the near future can be predicted. The partial differential equations used in weather forecast models
have this property, and one well-known chaotic system of ODE, the Lorenz attractor, was inspired by these.

Open-Loop vs Closed-Loop Controlled Systems

When choosing the inputs of a controlled dynamic system, one first way is to decide in advance, before the process
starts, which control action we want to apply at which time instant. This is called open-loop control in the systems
and control community, and has the important property that the control u is a function of time only and does not
depend on the current system state.

A second way to choose the controls incorporates our most recent knowledge about the system state which
we might observe with the help of measurements. This knowledge allows us to apply feedback to the system by
adapting the control action according to the measurements. In the systems and control community, this is called
closed-loop control, but also the more intuitive term feedback control is used. It has the important property that
the control action does depend on the current state or the latest measurements.

B.2 Differential Algebraic Equations (DAE)

As discussed above, continuous time systems can often be described by ODE, but sometimes they are described
by other forms of differential equations such as differential-algebraic equations (DAE). These are very similar to
ODE, the only difference is that besides the differential states x ∈ Rnx there are also the so called algebraic states
z ∈ Rnz . The main difference between them is that the derivative of z does not appear in the model equations, and
instead, z is implicitly determined by an algebraic equation. Thus, we can write the standard form of DAE (a so
called semi-explicit DAE, because the time derivative appears explicitly):

ẋ = f(x, z)

0 = g(x, z).

Here, the algebraic equations g(x, z) implicitly determine z. Obviously, z and g must have the same dimension,
i.e. g(x, z) ∈ Rnz . The difference with ẋ = f(x, z) is that whereas for each differential state there is one equation
determining its time derivative, g(x, z) determines z implicitly, i.e. all the equations have to be considered as a set,
and usually, the individual algebraic equations cannot be solved independently. In order to ensure uniqueness and
numerical solvability, the Jacobian ∂g

∂z ∈ Rnz×nz must be invertible (this is called ”index one”). There exist also
DAE with higher index, but they are beyond the topics of this course.

Equivalence of DAE with ODE

Any index-one DAE (invertible Jacobian) can in theory be differentiated to obtain a standard ODE, and that is why
index-one DAE can be also solved with an ODE solver. The procedure can be defined as follows: first take the
total time derivative of the algebraic equation w.r.t. time t, where we know that g is always equal to zero:

g(x, z) = 0 ⇒ dg

dt
(x, z) = 0. (B.1)

Here the right equation is equivalent to:

∂g

∂z
ż +

∂g

∂x
ẋ = 0 (B.2)

Using the property of index one, namely invertible Jacobian, ∂g
∂z is invertible, and we can write ż explicitly as:

ż = −
(
∂g

∂z

)−1
∂g

∂x
f(x, z) (B.3)

This whole procedure is called index reduction. After this index reduction, we obtain the following ODE (where
ODE could be interpreted as a DAE of index zero):
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ẋ = f(x, z)

ż = −
(
∂g

∂z

)−1
∂g

∂x
f(x, z)

In the way that this ODE was derived, the only thing that can be ensured is that dg
dt = 0, i.e. the value of

g(x(t), z(t)) remains constant along trajectories: g is an invariant. But, in order to have a complete valid model,
we have to ensure also the algebraic equation g(x, z) = 0 for all the trajectories. However, this algebraic equation
is satisfied for all t if it holds for the initial value, i.e. g(x(0), z(0)) = 0 has to be satisfied.

For even simpler cases, an expression of the form z = h(x) could be obtained directly by computer algebra
tools.

More General DAE Formulations

In practice there are two more generalisations or extensions of the DAE formulation, namely fully implicit DAE
and high index DAE, therefore it is important to take a look at these concepts.

Definition 17. A fully-implicit DAE is a DAE that is described by one large ”implicit” nonlinear equation system:

f(ẋ, x, z) = 0 (B.4)

with f(ẋ, x, z) ∈ R(nx+nz) and assuming that ∂f
∂(ẋ,z) is invertible (index one).

A very special case of this are implicit ODE f(ẋ, x) = 0.
Fully implicit DAE often appear in mechanical or chemical applications. Good examples are conservation equa-
tions, like the thermal energy in a basin of water: defining the water heat capacity k and the state x = [m,T ], with
water mass m(t) and temperature T (t), the fully implicit DAE can be derived from energy conservation Ė = 0 as:

0 = Ė = kṁT + kmṪ (B.5)

Fully-implicit equations can be easily solved in MATLAB using the ode15i solver. It takes as input all states
in one vector y = (x, z)⊤. Grammar: f(t, y, ẏ) = 0. So let’s look at the example:

f(t, y, ẏ) =

[
ẏ1 + y1 + y2 = 0
y2 − sin(t) = 0

]
(B.6)

where y2 is the algebraic state. We can simulate and solve this system in Matlab as follows:

1. Define implicit DAE:

function [ resid ] = mydae( t, y, ydot )
resid=zeros(2,1);
resid(1)=ydot(1)+y(1)+y(2);
resid(2)=y(2)-sin(t);
end

2. Create consistent initial values:

y0=[10;0];
ydot0=[-10;1];

3. Call solver (on time interval [0, 10]):

[tout, yout]=ode15i(@mydae,[0, 10], y0,ydot0)
plot(tout,yout)

The output of such a script can be seen on Figure B.1

Definition 18 (High Index DAE). We can define a high index DAE as a DAE of index n, where n ≥ 2, where index
refers to the number of total time derivatives that it takes to reduce the DAE to an index zero DAE, i.e. reduce to
an ODE.

In practice nobody reduces further than index one, since good DAE solvers exist already for index one e.g.
MATLAB ode15i.
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Figure B.1: Numerical solution for Matlab defined DAE

B.3 Partial Differential Equations (PDE)

Definition 19 (Partial Differential Equations). A Partial Differential Equations (PDE) is a differential equation
which has partial derivatives of several variables not only with respect of time t, but also with respect of some
spatial coordinates x. We can name the solution as u(t, x), which represents the vector of variables. Then, the
general expression of a PDE can be written as:

f(u,
∂u

∂t
, . . . ,

∂nu

∂tn
, x,

∂u

∂x
, . . . ,

∂mu

∂xm
) = 0 (B.7)

where n,m ∈ Z+. Please note that here u and x have totally different meaning than in the rest of the text, u is the
vector of variables, and x the set of spatial coordinates.

PDEs typically arise from spatially distributed parameters, and because of that they are also called ”distributed
parameter systems”. The easiest example we can illustrate is the heat (diffusion) equation in one dimension, also
known as Fick’s Second Law of Diffusion.

∂u

∂t
= D

∂2u

∂x2
(B.8)

with D diffusion constant
In order to solve any PDE, it is necessary to specify boundary conditions in space (what is happening at the

boundaries of the system) and initial conditions at time zero, i.e. the value for u(x, 0) must be known for any x.
Since in theory x is continuous, the set of initial conditions must be given by a profile in space, i.e. the initial
conditions form a set of infinite states.

Because solving the set of equations with infinitely initial conditions can be extremely hard, normally the
spatial derivatives are discretised keeping the time derivatives as continuous, so that we generate a set of ODEs,
where each ODE represents the numerical solution of the time evolution of one of these discretised u(k), and then
the ODE solver can be used. The method of discretising all variables but one to solve a PDE is called ”method of
lines”.

In order to discretise the spatial derivative many different algorithms exists, among the most famous ones, one
could name the Finite Element Method (FEM), the Finite Volume Method or the Finite Difference Method.
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B.3.1 Examples of systems described by a PDE

• Any temperature profile since it is described always by the Fick’s Second Law of Diffusion. The temperature
profile can be in a microchip, a water tank, a wall or even the inner part of the earth.

• Any fluid flow, since it is based on the Navier-Stokes PDE. For instance any airflow in a computer, or around
an airplane, in a building or in the atmosphere. The algorithm/field that takes care of such PDEs is know as
computational fluid dynamics (CFD).

• The growth of bacteria in a rotten vegetable.

• Chemical concentrations in a tubular reactor

Let us derive the PDE in the case of the Heat equation defined by Fick’s Second Law of Diffusion. We can
describe the heat equation as:

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
(B.9)

with x ∈ [0, 1], and with boundary conditions: u(0, t) = sin(t), u(1, t) = 0. We can imagine this situation as
having any sort of 1D heat transmission, where in one side the temperature remains constant and equal to 0, and
in the other side the temperature is a sine wave due to some outside temperature variations, e.g. due to the day and
night differences.

We can then apply the method of lines, i.e. keep the time derivatives while applying finite differences to
the spatial derivatives. If then we use a grid of size ∆x = 1/N , we can make a spatial discretisation of u as
uk ≈ u(k ·∆x, t) with k ∈ [1, N − 1]. Then, applying the approximation of a derivative for discrete variables∆u

∆x ,
the final discretised ODE is obtained:

u̇k = D
(uk+1 − 2uk + uk−1)

(∆x)2
(B.10)

where since k ∈ [1, N − 1], the values of u0 and uN are undefined but needed. However, they are given when we
incorporate the boundary conditions to the problem:

u0 = sin(t) and uN = 0 (B.11)

Finally we should set the initial condition, e.g. u(x, 0) = 0, i.e. u0(0) = u1(0) = . . . = uN (0) = 0. With that,
we obtain a ODE where each variable of the ODE represents one of the discretised spatial states of the problem,
and with such an ODE we can use for instance the solver ode15s from Matlab in order to simulate the system

B.3.2 MATLAB example

In order to see the whole procedure, it is good to solve the previous example using Matlab.

1. The first thing to do is to set the discretised ODE, which given a certain time and profile u calculates the
derivative of each of the discretised spatial states:

function [ udot] = mypde(t,u )
N=20; D=0.1; udot=zeros(N,1);
u0=sin(t);
udot(1)=N*N*D*(u0-2*u(1)+u(2));
for k=2:N-1
udot(k)=N*N*D*(u(k-1)-2*u(k)+u(k+1));
end
uN=0;
udot(N)=N*N*D*(uN-2*u(N)+uN);

2. Then, the initial conditions must be set for each of the states u: u0=zeros(20,0);
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3. Finally we can simulate each one of the spatial discretised states on a time interval calling the ODE solver:

[tout,uout]=ode15s(@mypde, [0 10], u0)
figure(1); plot(tout,yout);
figure(2); surf(tout,linspace(0,1,20),uout’)

On Figure B.2 we can observe the evolution of some of the states through time, only some of them are
represented for the sake of visualisation. We can see how the evolution through time is to follow the sine
wave that enters the system, but with a attenuation in each sequentially state. That is the expected behaviour
in any diffusion process, where the places with lower concentration (in this case temperature) get their
values increased from the places where the concentration is bigger, but unless the process last forever, the
concentrations never get to be equal.

Figure B.2: Numerical solution for some of the spatial state u(k) in the defined Heat Equation PDE

On Figure B.3 we can see an evolution on time and space in a 3D plot of the temperature. From it, we can
appreciate the boundary conditions at u(t, x = 0) = sin(t), u(t, x = 20) = 0 and the initial condition of
u(t = 0, x) = 0.

B.4 Delay Differential Equations (DDE)
A Delay Differential Equation (DDE) occurs if the rate of change of the current state depends on a state in the past.
One of the simplest form of DDE is the following, with one single delay d > 0:

ẋ(t) = f(x(t− d)) (B.12)

where x ∈ Rn represents the state vector of the system.
The main problem with DDE is the simulation, because in order to simulate the system, we need to know the

state x(t) on a complete continuous interval t ∈ [0, d]. Thus, as we had for PDE, now we have again infinitely
many initial conditions, since at the very beginning it is necessary to know a continuous path of the state x, from
x(0) until x(d).

In order to solve this problem we have to do the same as we did for PDE, namely discretize the problem. In
particular, we can model the time delay as a ”pipe flow”, where the pipe flow represents a flow of the state in time.
To do that, we can add an extra variable y ∈ [0, 1] representing the position inside the ”pipe”, and another variable
u representing the flow in the pipe: we can think of u as the continuous past memory of x flowing backwards
through the ”time pipe”, so that at the entrance of the pipe we will have the state x at the current time t, and in the
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Figure B.3: Numerical solution in 3D for the defined Heat Equation PDE

output of the pipe the state x will be state at some point in past (t − d) where d is the duration of travel through
the pipe. Considering that, we can set the PDE of this pipe flow representing the continuous memory as:

∂u

∂t
= −1

d

∂u

∂y

with u(0, t) = x(t) representing the input into pipe and x(t − d) = u(1, t) representing the output of the pipe.
Then, this PDE can be solved as we did in the previous section: we can spatially discretise the pipe. With such a
discretisation, when a special scheme called “upwind-discretization” is usde, the delay ends up being modelled by
a sequence of first oder delays (”PT1”), and we can refer to each one of these discretised states uk representing the
past memory as ”helper states”.

B.4.1 Example of DDE
We show a simple example with x ∈ R, where the scalar DDE is:

ẋ(t) = −x(t− d) (B.13)

To solve the problem we would have to introduce N ”helper states” [u1, . . . , uN ], which once we spatially discre-
tise the PDE modelling the pipe flow, we would end up with:

u̇k = −N
d
(uk − uk−1), ∀k ∈ [1, . . . , N ] : (B.14)

with the boundary conditions on the PDE u0(t) = x(t), and where d
N represents ∆u. As we have explained

already before, the last helper state would approximate the desired delayed value, i.e.:

x(t− d) ≈ uN (B.15)

What it is important to keep in mind is that in practice, often N = 2 to 5 approximate a real delay with sufficient
accuracy.

We can set as we did before the example in Matlab, and the represent the results in a figure.

1. The first thing to do is to set the discretised ODE. To understand the algorithm keep in mind that udot
represent the discretise partial derivates of the helper states, and the idea is since for the DDE properties
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x(t) = u0(t) and x(t− d) ≈ uN (t), and since the DDE is ẋ(t) = −x(t− d), it is clear that ẋ(t) = u̇0(t) ≈
uN (t), and that is represented by the last line udot(1) = −u(N).

function [ udot] = mydde(t, u)
d=1; N=20; udot=zeros(N,1);
for k=2:N
udot(k)=-N/d*(u(k)-u(k-1));
end
udot(1)= - u(N);
end

2. Then, we specify the initial conditions: u0=zeros(20,0); u0(1)=1

where we basically have that x(t = 0) = u0(t = 0) = 1, and then we see the evolution of the helper state
u0(t) = x(t).

3. Finally we can simulate each one of the spacial discretised states on a time interval calling the ODE solver:

[tout,uout]=ode15s(@mypde, [0 10], u0)
figure(1); plot(tout,yout);
figure(2); surf(tout,linspace(0,1,20),uout’)

As before we can check the simulation results. On Figure B.4 we can observe the evolution of the first helper
state u0(t), which represents the main state x(t), when the pipe is modelled as a discretisation of 3 helper states
(3 PT1). We would expect a delay at t = 1 since d was also set as 1. However, we can see that the delay is not
really perfect, nevertheless it delays the state almost up to t = 1. We can compare this result with the same value
for 10 helper states on Figure B.5, where we can see how adding more helper states, i.e. increasing the number of
discretised small delays, improves the approximation of the delay function.

Figure B.4: Numerical solution of x(t) = u0(t) DDE using 3 helper states

On Figure B.6 we can see the evolution on time of the three helper states, x(t) = u0(t), x(t − d/2) = u1(t)
and x(t−d) = u2(t). We can compare again this result with the approximation for 10 helper states on Figure B.7,
where once again we can see how the transition between the states is smoother (smaller first order delays, but more
amount of them leads to smother transitions between states, and thus to a better delay approximation).

Finally, on Figure B.8 we can see an evolution on time and space in a 3D plot of the 3 helper states. From it,
we can appreciate the boundary conditions u0(t = 0) = x(t = 0) = 1 and u1(t = 0) = u2(t = 0) = 0.
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Figure B.5: Numerical solution of x(t) = u0(t) DDE using 10 helper states

Figure B.6: Numerical solution of x(t) = u0(t), x(t− d/2) = u1(t) and x(t− d) = u2(t)
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Figure B.7: Numerical solution of of all the helper states using 10 helper states

Figure B.8: Numerical solution of the delay equation with 3 helper states in 3D
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Appendix C

Nonparametric and Frequency Domain
Identification Methods

As seen in the previous chapters, dynamics system models have inputs u(t) and outputs y(t) that can be measured.
We assume i.i.d. noise ϵ(t) that disturbs our experiments and an unknown system model illustrated below:

-
input u(k)

Dynamic System

?

stochastic noise ϵ(k)

6

initial conditions

6

parameters p

-
output y(k)

In nonparametric identification we do not model a physical representation of the system but we consider the
model as a ”black box”. We rather directly want to obtain the transfer function of the system. Thus, in this
approach neither the parameters nor initial conditions matter. Such a model is depicted below:

-
input u(k)

Dynamic System

?

stochastic noise ϵ(k)

-
output y(k)

The main features of a nonparametric identification problem are the following:

• Its aim is to make a prediction of the system without doing any real modelling work, related to the physical
laws involved in the system’s behaviour.

• The approach that follows is to choose a generic model class and then identify the ”black-box” model

101
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• For Linear time invariant (LTI) systems we get the nonparametric model by identifying the impulse response
function (see next section).

C.1 Nonparametric identification of LTI systems
A continuous time LTI system is a system that allows us to compute, for any horizon [0, T ] and control trajectory
u(t) for t ∈ [0, T ], the output trajectory y(t) for t ∈ [0, T ]. Typically, we assume the initial conditions to be zero.
Moreover, it is very easy to transform a continuous LTI system to a discrete one, and MATLAB provides an easy
interface to do so.

As already mentioned before, for LTI systems it is sufficient to identify the impulse response function to get
the transfer function of the system. Another tool to analyse the behaviour of an LTI system is the Bode diagram.

C.1.1 The impulse response and transfer function
If the impulse response function g(t) is known, the output for any input signal u(t) can be computed by a convo-
lution operation. Let y(t) be the output for a given input u(t), and g(t) be the impulse response, then the output
can be calculated as follows:

y(t) =

∫ ∞

0

g(τ)u(t− τ)dτ (C.1)

By transforming the input and impulse response functions into the Laplace domain, we get the output in the Laplace
domain by a simple multiplication:

Y (s) = G(s)U(s) (C.2)

where G(s) is the transfer function that characterises the system completely. It can be obtained directly with the
Laplace transform of the impulse response:

G(s) =

∫ ∞

0

e−stg(t)dt (C.3)

where s ∈ C, and G : C → C. As an example, we can take a look at the impulse response and the step response
of the transfer function G(s) = 1

a+s , which are illustrated in Figure C.1 and C.2.

Figure C.1: Impulse response for G(s) = 1
a+s
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Figure C.2: Step response for G(s) = 1
a+s

C.1.2 Bode diagram

Bode diagrams are a way to visualize the transfer function G(s). This kind of diagram shows the values of G(jω)
for all positive values of ω (where j is the imaginary unit, and ω is measured in rad/s and represented the frequency
of the input u(t).

The diagram consists of two parts, a magnitude and a phase plot, both with logarithmically spaced frequencies
ω on the x-axis. The magnitude plot shows the magnitudes |G(jω)| also in a logarithmic scale (log-log plot).
However, the phase plot shows the argument argG(jω) of the complex number G(jω), i.e. its angle in the
complex plane, in a normal scale.

A Bode diagram can be easily obtained in MATLAB using the command bode, which can generate the Bode
diagram of a known system. As an example, we can take a look on the Bode Plots of the transfer function
G(s) = 1

a+s , which is shown in Figure C.3
This plot is a different way to look at the system, but it is also very representative. It represent the behaviour of

the system for different frequencies. In the example plot, we see how the output is attenuated and the phase shifted
at high frequencies.

Bode diagram from Frequency Sweeps

One of the exciting results of LTI system theory is that whenever the system is excited with a sinusoidal input, the
output will be always sinusoidal. However, the sine at the output is shifted in phase and its amplitude is modified.

u(t) = A · sin(ω · t), y(t) = ∥G(j · ω)∥A · sin(ω · t+ α) (C.4)

The Bode diagram shows for any frequency ω the phase shift α and amplitude modification. A frequency sweep
goes trough all frequencies ω, waits till transients die out, and records phase and magnitude for all frequencies.
This method is not efficient, since it consumes a lot of time waiting in each iteration for the transients to die out.

C.1.3 Discrete time LTI systems

Recall from Section 6.3 the definition of a discrete LTI system. It is a system with discrete input u(k) and dis-
crete output y(k), with a time difference between the samples equal to the sampling time ∆T . Its most general
expression is defined by:
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Figure C.3: Bode plot for G(s) = 1
a+s

a0y(k) + . . .+ anay(k − na) = b0u(k) + . . .+ bnb
u(k − nb)

na, nb < 0, n = max(na, nb), t ∈ [n+ 1, n+ 2, . . .]

Initial conditions: y(1) = y1, . . . , y(n) = yn

u(1) = u1, . . . , u(n) = un.

(C.5)

In Section 6.3 we also saw the structure of its transfer function, which was defined by:

G(z) =
b0 + b1z

−1 + . . .+ bnb
z−nb

a0 + a1z−1 + . . .+ ana
z−na

(C.6)

however back then, we did not show how to compute such a function, and that is something that we look in detail
in this section.

The main idea is that if the so-called discrete time impulse response values g(0), g(1), . . . are known, the
general output can be computed by a linear combination of past inputs using the convolution equation presented
before, but adapted to discrete time (

∫
→∑

):

y(t) =

∞∑
k=0

g(k)u(t− k) (C.7)

In the discrete time domain, the z-transform replaces the Laplace-transform, and in the so called z-domain, a
convolution translates to a multiplication of the z-transforms:

Y (z) = G(z)U(z) (C.8)

Here, the z-transform of any signal, like g, u, y can be defined as:

G(z) :=

∞∑
t=0

z−tg(t) (C.9)

Remember the difference between FIR and IRR system: we have a finite impulse response (FIR) models if and
only if g(k) has finitely many non-zero values (the impulse response is finite), otherwise it means that the model
is an infinite impulse response (IIR).



i
i

“msi” — 2025/10/10 — 9:28 — page 105 — #105 i
i

i
i

i
i

C.2. THE DISCRETE FOURIER TRANSFORM 105

Experimental method to obtain the impulse response in discrete time

From a mathematical point of view, the impulse response of a system is nothing else but the derivative of the
step response. Therefore, one way to compute the impulse response of the system is to measure the step response
(which is typically easy):

h(t) =

t∑
k=0

g(k) · u(t− k) ·∆T =

t∑
k=0

g(k) ·∆T → g(t) =
h(t)− h(t− 1)

∆T
(C.10)

However this approach is very sensitive to noise.

Discrete time Bode diagrams

A discrete time Bode diagram shows the values of the complex function G(z) on the unit circle (instead of the
imaginary axis as in the Laplace-domain), i.e. z = ejω∆t where ∆t is the sampling time.

For values ω > 2π
∆t , the values of z are repeated. In fact, only the values on the upper semi-circle are plotted,

up to the so-called Nyquist frequency ωmax = π
∆t , so that the Bode diagram has a limited range of ω (in contrast

to continuous time). The Nyquist frequency is known from the Nyquist Theorem, which establishes that it is the
maximum frequency that can be resolved by sampling time ∆t.

Finally, it is important to note that G(ejω∆t) is given by:

G(ejωT ) :=

∞∑
k=0

e−jkωT g(k) (C.11)

This expression looks similar to the definition of the discrete Fourier Transform (DFT or FFT), that is intro-
duced in the following section.

C.2 The Discrete Fourier Transform

Everything we have defined in the previous section leads to the so-called transfer function, which when represented
on the imaginary axis or unit circle, leads to the so called Frequency Response Function (FRF).

The aim of nonparametric identification of LTI systems is to get the transfer function G(s), where the magni-
tudes and phases of G(jω) for different positive frequencies ω create the Bode Diagram. We also saw a funda-
mental fact of LTI systems: sinusoidal inputs u(t) = Re{U · ejωt} lead to sinusoidal outputs y(t) with a phase
shift and a new magnitude described by G(jω):

y(t) = Re{G(jω) · U · ejωt} = |G(jω)| · U · Re{ej[ωt+argG(jω)]} (C.12)

Precisely for this reason, G(jω) is called the Frequency Response Function (FRF). It is important to note that
all these concepts are only applicable to LTI systems. For non-linear or time dependent systems, the frequency
behaviour is more difficult to describe.

We can also recall from the last section the definition of Sine Wave Testing (a.k.a. Frequency Sweep). Remem-
ber that one way to obtain G(jω) for a specific frequency ω was to use a sine wave u(t) = U0 sin(ωt) as input and
record the magnitude Y0 and the phase shift ϕ of y(t) = Y0 sin(ωt+ ϕ) to form the following expression:

G(jω) =
Y0
U0
ejϕ

In the case of a frequency sweep, the previous procedure would be repeated through all frequencies ω, waiting
until transients had died out, and recording the magnitude and phase of the output for each frequency. The main
disadvantage of this procedure is that for each new frequency, we have to wait until transients died out, so that the
total measurement time is very long. The scope of this section is to introduce the Fourier Transform to find a more
efficient way to estimate the FRF.

Different names for the FRF can be found in the literature, among them empirical transfer function estimate
(ETFE) [Lju99].
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C.2.1 Laplace vs Fourier Transform

Before entering the definition of the Fourier transform it is interesting to see the differences between the Laplace
and the Fourier transform. In different fields they are used in place of each other because they represent the same
operation, however, there are subtle differences that we would like to point out.

We can recall from the previous section that G(s) = Y (s)
U(s) , where the Laplace transform G(s) was defined for

any g(t), g(t) that was defined as 0 for t < 0, as:

G(s) :=

∫ ∞

0

g(t)e−stdt =

∫ ∞

−∞
g(t)e−stdt (C.13)

where in the case of using the Laplace transform for the Frequency Response Function G(jω), we only need
pure imaginary values s = jω, for frequency ω, and therefore the final expression is defined by:

G(jω) =

∫ ∞

−∞
g(t)e−jωtdt (C.14)

This last expression is identical to the Fourier Transform (FT), defined for any function f : R → R by

F{f}(ω) :=
∫ ∞

−∞
f(t)e−jωtdt (C.15)

With that in mind we can go a bit deeper on the similarity and the subtle difference between them:

1. Both transformations basically contain the same information.

2. Both transform a time signal f(t) from the time domain into frequency domain.

3. Both transformations have inverse transformations that give the original time signal back.

4. Both transformations generate complex valued functions.

5. The Laplace transform has complex a input argument s ∈ C, while the Fourier transform has a real ω ∈ R
as input.

6. For the Laplace transform, all input signals are by definition zero for t < 0, while the Fourier transform
deals with functions defined for any t ∈ R (i.e. functions with infinite support)

7. The Laplace transform is often used by engineers, the Fourier transform more often used by mathematicians
and physicists

C.2.2 Inverse Fourier Transform

If we define the Fourier transform of the function f(t) as F (ω) = F{f}(ω), then f(t) can be recovered by the
inverse Fourier transformation F−1 given by:

f(t) = F−1{F}(t) := 1

2π

∫ ∞

−∞
F (ω)ejωtdω (C.16)

It is important to remark the similarity of normal and inverse FT: just the sign in the exponent and the factor are
different (some definitions even use twice the same factor, 1√

2π
, to make both expressions completely symmetric).

Furthermore it is clear that the inverse FT can be used to construct the inverse Laplace transform, since they
basically are the same.

One interesting related fact to the Fourier transform is that the Dirac-delta function is the superposition of all
frequencies with equal weight:

δ(t) =
1

2π

∫ ∞

−∞
ejωtdω. (C.17)
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C.2.3 Fourier Transform examples

In Figure C.4 we can see some of the most well-known functions on the time and frequency domain. Note that the
first example is exactly the Dirac-delta case explained before.

The second one is the rectangular function that leads to the sync function in the frequency domain. Notice that
the window width on the time domain is inversely proportional to the window width in the frequency domain, and
this fact is very exciting and important because it states that in any analysis, the more precise you need to have the
function in time domain, then the less precise will be the function in frequency domain.

The third example is the standard sinusoidal function in time domain, that leads to a single positive frequency.
Finally the last example is a set of impulse functions.

Figure C.4: Examples of various Fourier transformations.
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C.2.4 Estimating the FRF with the Fourier Transform

We can now use the previously explained concept as a practical tool to calculate the FRF. The idea behind this
method is that if we have recorded two arbitrary time signals, u(t) as the input and y(t) as the output signal of a
system, we can use their Fourier transforms to estimate the frequency response function (FRF) by the following
equation:

G(jω) =
F{y}(ω)
F{u}(ω) (C.18)

where this fact is implicitly used in sine wave testing with frequency ω0 to determine the frequency of the sine
wave. To show that let’s compute first the Fourier Transform of f1(t) = ejω0t

2π :

F{f1}(ω) =
1

2π

∫ ∞

−∞
ej(ω0−ω)tdt = δ(ω − ω0) (C.19)

then, considering that a real sine is described by f2(t) = ejω0t−e−jω0t

2π , its Fourier transform can be easily
calculated (by means of the distributive property of the Fourier Transform) as:

F{f2}(ω) = δ(ω − ω0)− δ(ω + ω0) (C.20)

Thus, whenever we want to obtain the frequency of any sine wave function, its Fourier transform can be applied
and since the 2 Dirac impulses of F will be located at ±ω0, ω0 can be easily obtained.

Nevertheless, in practice, this procedure has a huge disadvantage: in reality, even for sine waves of frequency
ω0 , the signals u(t) and y(t) will have finite duration, and thus the FT when applied to these finite signals will
also be finite. In order to avoid undefined expressions (such as division by 0), the computation of the FT should be
done only taking into account the finite values of F{y}(ω0) and F{y}(ω0):

G(jω0) =
F{y}(ω0)

F{y}(ω0)
(C.21)

Nevertheless this procedure of having to manually discard values does not seem good, since it is a waste of
testing time. Another drawback is the assumption of continuous time signals, since most of the signals nowadays
are digital and not analog, thus their values are discretised. We have seen that Fourier Transform works with
continuous time signals on infinite horizons, therefore two questions naturally arise (with their two answers):

1. How to compute FT in practice? Answer: by the Discrete Fourier Transform, which solves the problem of
finite time and discrete values.

2. Can we use an input with many frequencies to get many FRF values in a single experiment? Remember that
so far the only procedure was the frequency sweeping, which lead to high testing times due to repetition of
the process for each frequency. Answer: yes, we should then use “multisines”.

C.2.5 Discrete Fourier Transform

As we have mentioned, FT works with continuous time signals on infinite horizons, and this condition is most of
the time not satisfied: practical signals are very often discrete and finite. The Discrete Fourier Transform (DFT)
works with discrete signals on finite horizons, solving therefore the problem.

Basically, the main idea of the DFT is that it takes any vector of N numbers u(0), u(1), . . . , u(N − 1) and
generates a new vector U(0), . . . , U(N − 1) which also has N components (here we start with index zero for
convenience). Moreover, the DFT also has an inverse transformation that recovers the original vector.

Fast Fourier Transform (FFT)

One efficient algorithm to compute the DFT is called the Fast Fourier Transform (FFT), and in practise the DFT is
nearly always computed by the FFT algorithm, therefore many people (and MATLAB) use the word FFT synony-
mously with DFT. In MATLAB for instance, the commands fft and ifft provide an easy interface to compute
the DFT and its inverse, using the FFT algorithm.
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DFT definition

Given a vector of discrete values u(0), . . . , u(N − 1), the discrete fourier transform of them are represented by
U(0), . . . , U(N − 1), which are computed from u(0), . . . , u(N − 1) using the following equation:

U(m) :=

N−1∑
k=0

u(k)α−mk
N , with αN := ej

2π
N (C.22)

It is important to note that αN is an N -th complex root of 1, i.e. αN
N = 1 It is also important to note that

α−mk
N = e−j 2π

N mk and α−mk
N = αmk

N .

DFT properties

In the scope of this lecture we will only study the most important and useful properties of the DFT. The prop-
erties say that the DFT of a real valued signal consists of N complex numbers, but only the first half contain
useful information, since the second half of the vector are complex conjugates of the first half, and thus redundant
information:

U(N −m) = U(m) (C.23)

Proof.

U(N −m) =

N−1∑
k=0

u(k)α
−(N−m)k
N =

N−1∑
k=0

u(k)αmk
N =

N−1∑
k=0

u(k)α−mk
N (C.24)

This property is completely related to the Nyqvist theorem, which establishes the maximum frequency that can
be analysed given a certain sampling frequency That limitation is due to something called aliasing, and we will
treat it in the following sections.

As an example of this important property, Figure C.5 represents a DFT of some signal. On it we can see how
the second half of the values are a conjugate copy of the first half:

Figure C.5: DFT example to visualise DFT property
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C.2.6 Aliasing and Leakage Errors

In order to understand why the DFT is not that perfect, it is important to remember the differences between the FT
and the DFT, and what it implies in practice.

Basically, FT works on continuous time signals uc(t) with infinite support, whereas the DFT is forced to make
two approximations:

1. Sampling: the DFT has to work on sampled (discrete time) signals as:

ud(k) := uc(k ·∆t) (C.25)

where ∆t is the sampling time.

2. Windowing: DFT only uses only N samples, i.e. limits the signal to a finite window of horizon length
T = N∆t

Unfortunately these two approximations lead to characteristic errors, errors that we will define and explain in
the following sections.

Aliasing Errors

Sampling can introduce so called aliasing errors when the continuous time signal contained too high frequencies.
Basically if we introduce a sampling rate fs = 1

∆t , then any signal with frequencies higher than half the sampling
rate will suffer from aliasing. This limit on the maximum frequency that can be sampled is called the Nyquist
frequency, and represented by:

fNyquist =
1

2∆t
[Hz] or ωNyquist =

2π

2∆t
[rad/s] (C.26)

In Figure C.6 we can see this effect. There we can see three different sine waves, the first one with ω1 = 6 rad
s ,

a second one with ω2 = 20 rad
s , and a third one with ω3 = 60 rad

s . Since the sampling frequency is ωs = 62 rad
s <

2 · ω3, the third sine wave is not sampled correct and aliasing occurs. Note that already the second signal does not
look perfectly sinusoidal.

Figure C.6: Aliasing example



i
i

“msi” — 2025/10/10 — 9:28 — page 111 — #111 i
i

i
i

i
i

C.2. THE DISCRETE FOURIER TRANSFORM 111

Leakage Errors

Leakage is defined as the effect that occurs when the DFT spectrum shows frequencies that were not present in
original signal, but are close to the true frequencies. To understand the reason for that let us look at the difference
between the FT and the DFT:

∫ ∞

−∞
uc(t) · e−jωt dt ≈

N−1∑
k=0

ud(k) · e−jω(k·∆t)︸ ︷︷ ︸
=e−j 2π

N
km

·∆t (C.27)

where the integral represents the definition of the FT, and the sum the ideal translation to a discrete version.
From that it is clear that the FT and DFT expressions are only similar when:

−jω(k ·∆t) = −j 2π
N
km i.e. ω = m

2π

∆t ·N (C.28)

So from this last expression we get that the number of samples N , the sampling frequency ωs = 2π
∆T and

the signal frequency ω are interrelated, and unless their values are properly chosen to satisfy (C.28), then leakage
occurs and the DFT spectrum is not correct. This interaction says that the signal frequency must be a multiple of
a base frequency defined by 2π

∆t·N . The Figure C.7 illustrates this problem.

Figure C.7: The first graph shows leakage, and the second ones does not

The Base Frequency and its Harmonics

One of the concepts strongly related with the leakage effect is the Base Frequency and the Harmonics. We can
define the base frequency as:

ωbase :=
2π

N ·∆t =
2π

T
. (C.29)

This frequency represents the slowest sine that fits exactly into the sampling window N · ∆t. We can then
define a harmonic as follows: a sine signal sin(ωt) is called the m-th harmonic if ω = m · ωbase.

Leakage errors are produced because the DFT contains only the first N/2 harmonics of the base signal, thus
the frequency resolution (difference of two frequencies that are distinguished by the DFT) is equal to the base
frequency, and whenever the signal frequency is not a multiple of the base frequency, leakage will occur. On top
of that it is easy to identify that the highest harmonic that the DFT can resolve is the Nyquist frequency, ωNyquist.
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ωNyquist =
π

∆t
=
N

2

2π

N∆t
=
N

2
ωbase

In summary we can say that the finite length of the window limits the frequency resolution, because the longer
the time window, the smaller the base frequency, and thus the finer the frequencies that can be resolved in the
signal.

As an illustration, Figure C.8 represents the first 4 harmonics in time domain, and Figure C.9 does the same
for frequency domain.

Figure C.8: Base frequency, second, third and fourth harmonic in time domain

C.3 Multisine Excitation Signals
If u(t) is a superposition of a set of specially chosen sine waves, the u(t) is known as a multisine, and we can use
this input u(t) to excite and identify in a nonparametric way the LTI system under study.

The multisine is one of the best excitation signals for nonparametric identification. By using the multisine
excitation signal and applying the DFT to the input and output signals, we can identify the system in a faster way
than using a frequency sweep. In order to avoid both aliasing and leakage, the following three conditions have to
be met by a well chosen multisine:

1. The DFT window length T has to be an integer multiple of the sampling time ∆t, i.e. T = N ·∆t.

2. The multisine should contain only harmonics of the base frequency ωbase = 2π
T , i.e. it is periodic with

period T (or an integer fraction of T ).

3. The multisine does not contain any frequency higher than the Nyquist frequency ωNyquist =
π
∆t . In practice

the maximum frequency is chosen even lower, about one half of the Nyquist frequency.

On top of that, in order to achieve optimal excitation without too large input amplitudes, one chooses the
phases of the multisine carefully to avoid positive interference. The practical purpose of that is that systems have
a limitation on the maximum input amplitude. And if there is positive interference on the multisine, the maximal
amplitude of the input might be bigger than this limit, and the signal is clipped, obtaining a different input than the
desired.
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Figure C.9: Base frequency, second, third and fourth harmonic in frequency domain

One way to create a multisine in a programming language as Matlab is to define the discrete vector containing
the spectrum (which is very easy to define) of the multisine, defining each phase and amplitude, then doing the
inverse fourier transform of such a vector, the multisine is easy obtained.

As an illustration, Figure C.10 represents a multisine where positive interference occurs due to the fact that the
phases were initialised with the same value, therefore there are high peaks. In Figure C.11 we can see how this
signal when entering a system with a maximum input amplitude of 0.2 clips the multisine. Finally in Figure C.12
we can see a multisine whose phases were randomly chosen and thus no positive interference occurs.

C.3.1 The Crest Factor
One way to measure how good a multisine in the sense of how much positive interference it has, is to use the
so-called crest factor.

The crest factor can be defined as the ratio between the highest peak umax and the root mean square urms of
the input signal, and thus a measure of how nice and smooth a multisine is.

CCR :=
umax

urms
(C.30)

where

umax := max
t∈[0,T ]

|u(t)| (C.31)

and

urms :=

√
1

T

∫ T

0

u(t)2dt (C.32)

We can look at the previous section to obtain a rough estimator of the crest factor. It is obvious that the multiline
depicted by Figure C.10 will have a very bad crest factor, whereas that Figure C.12 will have a much better crest
factor.

C.3.2 Optimising Multisine for optimal crest factor
There are two topics that need to be addressed in order to have e good multisine in terms of crest factor:
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Figure C.10: Multsine with positive interference

1. Because most of the representation on nonparametric identification (like Bode diagrams) are done in log-
arithmic spaces, then it is not a good idea to choose the frequencies in a linear fashion. Instead, we can
choose approximately logarithmically spaced frequencies ωk+1/ωk ≈ 1.05 (many high frequencies are left
empty). In this case 1.05 is just an example, 1.1, 1.03, . . . can be also used instead. Keep also in mind that
the relation ωk+1/ωk ≈ 1.05 would produce very likely a frequency ωk+1 which is not a multiple of the
base frequency, therefore rounding must executed so that all the chosen frequencies are multiples of the base
frequency.

2. Optimise the phases to minimize the crest factor. Because this is a nonconvex problem, its solution re-
quires the use one of heuristics. Because of that reason, in practice often a random algorithm to choose the
phases is used instead. It is suboptimal, but still produces a much better result than having the signal in
synchronisation.

As an illustration, Figure C.13 (this figure was obtained from [?]) shows the example of a well designed
multisine. We see how the frequencies are after 10 [Hz] are equally spaced in a logarithmic scale. The fact that at
the beginning this is not the case is because of the rounding which makes use of all the harmonics. Furthermore, it
can be seen that the multisine is quite smooth because of the phase optimisation, leading to an optimal crest factor.

C.3.3 Multsine Identification Implementation Procedure

As a final recall we can summarise the procedure to design a multisine, and use it for nonparametric identification.
For that we can list the main 2 steps.

Multisine Procedure Step 1: Input Design

The first step is to choose and design the input u(t) as a periodic multisine, keeping in mind the 3 guidelines
pointed before to avoid aliasing and leakage errors. We can summarise this three guidelines as:

1. Choosing as window length T an integer multiple of the sampling time ∆t, i.e. T = N ·∆t, e.g. N = 4096.

2. Adding to the multisine only harmonics of the base frequency ωbase =
2π
T .

3. Not adding to the multisine any frequency higher than about half of the Nyquist frequency ωNyquist =
2π
2∆t
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Figure C.11: Multsine with positive interference clipped at the entrance

Furthermore, it is important to choose nonzero amplitudes only for those frequencies of interest. The most
clear example was to use P logarithmically spaced frequencies ωk(p) = ωbase · k(p), with k(p) being integers
between 1 and N/4, and p = 1, . . . , P , so that it matches the log-plots of Bode diagrams.

The final consideration when designing the multisine is to choose phases randomly (or smarter) to have a small
crest factor.

Multisine Procedure - Step 2: Experiment and Analysis

Once the multisine is designed, it is injected into the system in a periodic manner, i.e. the same multisine is injected
for many periods: u(1), . . . , u(m).

After that, it is necessary to wait until the transients died out, discard these first periods, and then record the
input/output data over the last M periods (e.g. M = 100) of duration T (i.e. in total NM time samples).

Once the data is recorded, the last M periods have to be averaged in time domain, so that the averages û(k),
ŷ(k), for k = 0, . . . , N − 1 can be obtained. After that, the DFT of û(k) and ŷ(k) must be taken to get Û(k) and
Ŷ (k) for k = 0, . . . , N − 1

Finally, with Û(k) and Ŷ (k) the transfer function can be estimated at the excited frequencies ωp by:

Ĝ(jωk(p)) =
Ŷ (k(p))

Û(k(p))
, p ∈ [1, . . . , P ] (C.33)

Finally the Bode diagram can be plotted for jωk(p) considering that the non-excited frequencies might contain
some noise.

C.3.4 Multsine Error Analysis
In general the multisine procedure is good, it leads to no leakage or aliasing errors, no transient effects (if we
waited long enough), however it still has to deal with noisy measurements of u and y, and thus, noisy averages of
û(k) and ŷ(k), so that the DFT of them is also noisy.

The main goal of this section is to analyse the estimator Ĝ(jωk), regarding one of the excited frequencies with
index k, ωk = ωbase · k, where Ĝ(jωk) is defined as:

Ĝ(jωk) =
Ŷ (k)

Û(k)
(C.34)
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Figure C.12: Multsine without positive interference, specially designed

Figure C.13: Multsine without positive interference

And with that goal, two main question regarding the estimator arise:

1. Is the estimate unbiased ?

2. How to estimate the variance of Ĝ(jωk) ?

Before continuing the analysis it is important to mention why the averaging step: due to linearity of DFT, the
average can be done right before or after computing the DFT, but never after the quotient, since division is not
a linear operation (remember resistance operation). Thus, two different flow executions are possible and lead to
identical results:

• Method 1:

1. Average windows of u, y in time domain

2. Take DFT of average to get Ŷ (k) and Û(k)

3. Build quotient of DFTs, i.e. compute

Ĝ(jωk) =
Ŷ (k)

Û(k)
(C.35)
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• Method 2:

1. Take DFT of each window

2. Average DFTs in frequency domain to get Ŷ (k) and Û(k)

3. Build quotient of average DFTs

Assumptions for Simplified Analysis

Before starting the analysis, some assumptions have to be made so that the analysis becomes simpler. The main
assumptions can be summarised as:

1. The noise in all M data windows is uncorrelated.

2. The noise on u(k) and y(k) is also uncorrelated.

3. After the DFT computation (linear transformation with complex numbers), the noise on each U(k) and
Y (k) is circular complex normally distributed (i.e. both real and imaginary parts are Gaussian with the
same variance and independent) with variances σ2

U (k) and σ2
Y (k)

4. Because of averaging over M independent samples, the noise on the averages, NÛ (k) and NŶ (k), is of

variance σ2
Û
(k) =

σ2
U (k)
M and σ2

Ŷ
(k) =

σ2
Y (k)
M (and assumed to have zero mean). Furthermore they enter the

model for analysis as:

Û(k) = U0(k) +NÛ (k) and Ŷ (k) = Y0(k) +NŶ (k) (C.36)

with U0 and Y0 the true periodic values

Simplified Analysis

Once the assumptions were made, we can proceed with the analysis. The transfer function considering the error
terms is:

Ĝ(jωk) =
Y0(k) +NŶ (k)

U0(k) +NÛ (k)
=
Y0(k)

U0(k)

(
1 +

NŶ (k)

)
Y0(k)

)
(
1 +

NÛ (k)

U0(k)

) (C.37)

Applying a Taylor expansion and considering only the first order terms, the final expression that we obtain is:

Ĝ(jωk) ≈ G0(jωk)
(
1 +

NŶ (k)

Y0(k)
− NÛ (k)

U0(k)

)
(C.38)

being

G0(jωk) =
Y0(k)

U0(k)
(C.39)

the true transfer function.
Because the noises are zero mean, it is clear that no bias exist (up to first order Taylor expansion). Considering

the first order Taylor expansion:

Ĝ(jωk) = G0(jωk)
(
1 +

NŶ (k)

Y0(k)
− NÛ (k)

U0(k)

)
(C.40)

The expected value of the transfer function is the true value of the transfer function, thus, we have an unbiased
estimator, i.e.:

E{Ĝ(jωk)} = G0(jωk) (C.41)

Regarding the variance of the transfer function, we have due to the independence of the 2 noise terms that:

σ2
Ĝ
(k) = |G0(jωk)|2

( σ2
Ŷ
(k)

|Y0(k)|2
+

σ2
Û
(k)

|U0(k)|2
)

(C.42)
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To this variance we still have to take the averaging into account, which gives a final variance for the transfer
function:

σ2
Ĝ
(k) =

|G0(jωk)|2
M

( σ2
Y (k)

|G0(k)U0(k)|2
+

σ2
U (k)

|U0(k)|2
)

(C.43)

Thus, we can conclude that the quality of the estimation is better for higher signal to noise ratio (SNR) |U0(k)|
σU (k) .

This obviously justifies our desire to choose high amplitudes for the frequencies of interest.

C.3.5 Practical guidelines
In reality, when implementing a excitation signal to identify the system, there are three different alternatives for
three different situations.

1. In theory, multisines are the most efficient way to get accuracy in limited time.

2. However, if the system is very fast compared to the human scale (almost infinite testing time is possible), then
a frequency sweep might be the easiest way of identification. For this reason, in high frequency electronic
applications frequency sweeps are used instead of multisines.

3. On the other hand, if the system is very slow compared to the human time scale, then a step response might
be more wise to identify the system, because for the multisines we have to wait until the transients die out,
and in very slow systems that might take many days. A step response won’t give an accurate estimate of the
system, but would give a first idea of the timing of the system, delays...

4. For those systems in the middle (Hz to kHz), multisines are definitely the most efficient practical method to
learn about a given (LTI) system.
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