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In this exercise, we repeat some tools from statistics and solve a simple estimation problem using
linear least squares.

Exercise Tasks

1. On Paper: The covariance matrix of a vector-valued random variable X ∈ Rn with mean
E{X} = µX is defined by

cov(X) := E{(X − µX) (X − µX)
⊤}.

Prove that the covariance matrix of a vector-valued variable Y = AX + b with constant
A ∈ Rm×n and b ∈ Rm is given by

cov(Y ) = A cov(X)A⊤.

(2 points)

2. On Paper: Let X ∈ Rn be a vector-valued random variable with mean µ ∈ Rn. Show that
the covariance matrix cov(X) can also be calculated by

cov(X) = E{XX⊤} − µXµX
⊤

(2 points)

3. On Paper: Suppose we are measuring a constant x0 ∈ R perturbed by random independent
noise ϵ with mean µϵ = 0 and variance σ2

ϵ > 0, i.e. we have

x = x0 + ϵ.

(a) State the mean µx and the variance σ2
x of the random variable x. (1 point)

(b) Let (x1, . . . , xn) denote a sample of n observations of x. The sample mean is given by
x̄[n] = 1

n

∑n
i=1 xi and it is an unbiased estimator of the mean µx.

What is the variance of x̄[n]? (1 point)

(c) Prove that the Least Squares (LS) estimate for x0 is the sample mean x̄[n]. State the
minimization problem explicitly. Is it convex? (2 bonus points)
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4. Consider the following experimental setup, where we measure the temperature-dependent
expansion of a fluid in a long transparent pipe, such as in a traditional thermometer. We
describe the length of the visible fluid with the affine model

m(T ; θ1, θ2) = θ1 · T + θ2. (1)

where T is the temperature in Celsius, and the parameters θ1 and θ2 relate to the specific
expansion coefficient of the material and the length of the fluid at temperature T = 0 ◦C,
respectively. Below, you find the measurements. Using the data, you will compute estimates
for the parameters θ1 and θ2.

k 1 2 3 4
Tk [◦C] 5 15 35 60
Lk [cm] 6.55 9.63 17.24 29.64

(a) Code: Plot the measurements Tk, Lk using ’x’ markers. (0.5 points)

(b) On Paper: Using the model from above, calculate the experimental values for the
parameters θ1 and θ2 by minimizing the sum of squared distances, i.e.

θ̂1, θ̂2 = argmin
θ1, θ2

4∑
k=1

(Lk −m(Tk; θ1, θ2))
2 ,

Give an analytical expression for the values of θ̂1 and θ̂2 with respect to the measurements
T1, . . . , T4 and L1, . . . , L4.

Hint: Compute the solution by setting the gradient of the objective function f(θ1, θ2) =∑
k(Lk−m(Tk, θ1, θ2))

2 with respect to the parameters (θ1, θ2) to zero, i.e. ∇f(θ1, θ2) = 0.
This will give you a 2× 2 linear system. Check if the objective function is convex!

Code: Calculate the values of θ̂1 and θ̂2 using the data. Plot the fit m(T ; θ̂1, θ̂2) =
θ̂1T + θ̂2 over the range [0, 100] in the same figure as before. (2 points)

(c) Code: Now, use a third order polynomial and fit it to the data using np.polyfit. Again
minimize the sum of squared distances to find optimal values for the coefficients of your
model equation. Plot the fit in the same figure as before. (0.5 point)

(d) Code: You take another measurement: At T = 70 ◦C you measure a length of L =
32.89 cm. You can use this additional datapoint to validate your fit. Add the measure-
ment to the existing plot.
On Paper: Which fit looks more reasonable to you?
Hint: The phenomenon of fitting a model to a data set which then does not pass validation
is called ’overfitting’. (1 point)

This sheet gives in total 10 points and 2 bonus points.
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