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In this exercise, we perform state estimation for a nonlinear system using the Extended Kalman Filter.
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We model the robot’s state x ∈ R5 by x = [p1, p2, β, v, ω]⊤ where p = (p1, p2) ∈ R2 denotes the position
of the robot in m, β ∈ [0, 2π] denotes its orientation in rad, v ∈ R denotes its forward velocity in m

s , and

ω ∈ R denotes the angular velocity in rad
s . Note that we omitted the time dependence for cleaner notation,

i.e. x = x(t). The time derivatives are given by

ṗ1 = v cos(β), ṗ2 = v sin(β), β̇ = ω, v̇ = c1

(
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)
, ω̇ = c2
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)
with control inputs u = (τR, τL)

⊤ ∈ R2 and constants c1 and c2 given by
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)−1

where m = 220 kg denotes the mass of the robot, R = 0.16 m denotes the wheel radius, 2 ·L = 0.64 m is the
axis width, I = 9.6 kg ·m2 denotes the moment of inertia around the center of mass, and Iw = 0.1 kg ·m2

denotes the combined moment of inertia of one driving wheel and an actuator’s rotating parts about a
wheel’s axis. We assume that the control inputs u are perfectly known.

1. On Paper: Discretize the continuous time model for the robot’s dynamics using a one-step Euler
integrator with step length h = 0.05 s.

(1 point)

We assume that the discrete time state dynamics, which we denote by F (xk, uk), are perturbed by additive
zero-mean Gaussian noise, i.e.

xk+1 = F (xk, uk) + χk

where χk ∼ N (0,Σχ). We assume

Σχp = 10−3 · I2 m2, Σχβ
= 2 · 10−4 rad2, Σχv = 10−6 m2/s2, Σχω = 10−6 rad2/s2.

The function F (xk, uk) is nonlinear. Thus, we can not apply the predict function from last week’s exercise
sheet. In order to predict the next state of the system x[k|k−1] given the current estimate x[k−1|k−1], we
evaluate F at x[k−1|k−1] and uk−1:

x[k|k−1] = F
(
x[k−1|k−1], uk−1

)
1



We approximate the covariance matrix of x[k|k−1] using a first order Taylor expansion:

P[k|k−1] = Ak−1P[k−1|k−1]A
⊤
k−1 +Σχ where Ak−1 = ∇x F (x[k−1|k−1], uk−1)

2. On Paper: Specify the matrix Σχ and compute the Jacobian ∇x F (x, u). (1 point)

3. Code: Write a function

(x_predict, P_predict) = predict(x_estimate, P_estimate, u, F, F_jacobian, W)

that computes the prediction x[k|k−1], P[k|k−1]. Also implement functions that compute F (x, u) and
it’s Jacobian ∇x F (x, u). (1 point)

We cannot observe the robot’s state directly. However, GPS data as well as measurements of the rotational
speeds of the robot’s wheels are available.
The rotational speeds of the left and right wheel, denoted by κL and κR respectively, are linked to the
robot’s forward velocity v and angular velocity ω via the following equations:

v =
RκR +RκL

2
, ω =

RκR −RκL
2L

Both GPS measurements and the measurements of the rotational speeds are perturbed by additive zero-
mean Gaussian noise with covariance matrices

Σγp = 10 · I2 m2 Σγκ = 10−6 · I2 rad2/s2

4. On Paper & Code: For all i ∈ {1, 2, 3} specify matrices C(i) and covariance matrices Σ
(i)
γ such that

the measurements y
(i)
k given by

y
(i)
k = C(i)xk + γ

(i)
k ,

with γ
(i)
k ∼ N

(
0,Σ

(i)
γ

)
correspond to

i = 1: the noisy GPS measurements of the robot’s position p.

i = 2: the noisy measurements of the angular velocities [κR, κL]
⊤.

i = 3: the noisy GPS measurements and the noisy measurements of the angular velocities.
(2 + 1 points)

5. Code: Compute the state estimates x[k|k] and state predictions x[k|k−1] where we assume an initial
state x0 ∼ N (xinit,Σinit) with

xinit = [0, 0,−π/2, 0, 0]⊤, Σpinit = Σγp , Σβinit
= Σvinit = Σωinit = 10−1

Hint: The measurement model is linear, thus, you can simply apply the update function from last
week’s exercise sheet. (1 point)

6. On Paper: Compare (and explain) the results you obtained for the different measurement models.
(1 point)

7. Code: Let’s investigate what happens if the initial guess of the robot’s state is wrong. Run your
code with the incorrect initial state

xinit = [−4, 2,−π/2, 0, 0]⊤

On Paper: Compare (and explain) your results. (2 point)

This sheet gives in total 10 points.
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