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v {−5, − 2.5, 0, 2.5, 5} m/s
w {−5, − 2.5, 0, 2.5, 5} m/s
p {−1, − 0.5, 0, 0.5, 1} rad/s
q {−1, − 0.5, 0, 0.5, 1} rad/s
r {−1, − 0.5, 0, 0.5, 1} rad/s

τL {0, 5, 10, 15, 20} N
τR {0, 5, 10, 15, 20} N
δL {−0.44, − 0.22, 0, 0.22, 0.44} rad
δR {−0.44, − 0.22, 0, 0.22, 0.44} rad
γ {−0.56, − 0.28, 0, 0.28, 0.56} rad
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U V W p q r Thrust_L Thrust_R Elevator Aileron_L Aileron_R Fx Fy Fz Mx My Mz

12 -5 -5 -1 -1 -1 0 0 -0.5585 -0.4363 0.4363 -7.5334 1.2727 18.1376 -1.5676 3.0999 0.4545

12 -5 -5 -1 -1 -1 0 0 -0.5585 -0.2182 0.2182 -7.0389 1.2727 18.0569 -0.9201 3.0815 0.3123

12 -5 -5 -1 -1 -1 0 0 -0.5585 0 0 -6.7569 1.2727 18.1919 0.3935 3.0675 -0.0757

12 -5 -5 -1 -1 -1 0 0 -0.5585 0.2182 -0.2182 -6.8273 1.2727 18.4724 1.7131 3.0749 -0.4551

12 -5 -5 -1 -1 -1 0 0 -0.5585 0.4363 -0.4363 -7.2508 1.2727 18.7708 2.3767 3.0849 -0.5738

12 -5 -5 -1 -1 -1 0 0 -0.2793 -0.4363 0.4363 -7.2801 1.2727 17.4247 -1.5676 2.7258 0.4545

12 -5 -5 -1 -1 -1 0 0 -0.2793 -0.2182 0.2182 -6.7855 1.2727 17.3440 -0.9201 2.7074 0.3123

12 -5 -5 -1 -1 -1 0 0 -0.2793 0 0 -6.5036 1.2727 17.4790 0.3935 2.6934 -0.0757

12 -5 -5 -1 -1 -1 0 0 -0.2793 0.2182 -0.2182 -6.5740 1.2727 17.7595 1.7131 2.7008 -0.4551

12 -5 -5 -1 -1 -1 0 0 -0.2793 0.4363 -0.4363 -6.9975 1.2727 18.0580 2.3767 2.7107 -0.5738

12 -5 -5 -1 -1 -1 0 0 0 -0.4363 0.4363 -7.4676 1.2727 15.8746 -1.5676 1.9368 0.4545

12 -5 -5 -1 -1 -1 0 0 0 -0.2182 0.2182 -6.9730 1.2727 15.7938 -0.9201 1.9185 0.3123

12 -5 -5 -1 -1 -1 0 0 0 0 0 -6.6910 1.2727 15.9288 0.3935 1.9045 -0.0757
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12 -5 -5 -1 -1 -1 0 0 0.2793 -0.4363 0.4363 -7.9044 1.2727 14.4375 -1.5676 1.2142 0.4545

12 -5 -5 -1 -1 -1 0 0 0.2793 -0.2182 0.2182 -7.4098 1.2727 14.3567 -0.9201 1.1958 0.3123

12 -5 -5 -1 -1 -1 0 0 0.2793 0 0 -7.1279 1.2727 14.4917 0.3935 1.1818 -0.0757
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Q: Do these 
Results make 
sense?



… Putting it all Together



·x =

·p
·v
·R
·ω

=

v

m−1 (RF̃aero,b(x, u)+Fg)
R [ω]×

J−1 (ω × Jω+M̃aero,b(x, u))

The Final Model
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