
Jakob Harzer, 21.01.2026

Estimating Airplane
Aerodynamics from Data
MSI Guest Lecture

Jakob Harzer

Jakob Harzer

2014 - 2018: Electrical Engineering

Jakob Harzer

2014 - 2018: Electrical Engineering

Jakob Harzer

2014 - 2018: Electrical Engineering

2018 - 2022: Embedded Systems Engineering 
Since 2022: PhD in with Prof. Diehl

Jakob Harzer

Airborne Wind Energy

Image from Kitepower

Image from Makani Power

Single vs Dual-Kite Systems

The MAWERO Project

Jakob Harzer

Systems Control and Optimization Laboratory

Prof. Moritz Diehl Jonas Keplinger

Jakob Harzer

Systems Control and Optimization Laboratory

Prof. Moritz Diehl Jonas Keplinger

Chair and Institute of Flight System Dynamics

Prof.  
Dieter Moormann

Kim Polkläser Sven Jackisch Johannes Schuler

Jakob Harzer

Systems Control and Optimization Laboratory

Prof. Moritz Diehl Jonas Keplinger

Chair and Institute of Flight System Dynamics

Prof.  
Dieter Moormann

Kim Polkläser Sven Jackisch Johannes Schuler

Maverix Flight System

Jakob Harzer

Systems Control and Optimization Laboratory

Prof. Moritz Diehl Jonas Keplinger

Chair and Institute of Flight System Dynamics

Prof.  
Dieter Moormann

Kim Polkläser Sven Jackisch Johannes Schuler

Maverix Flight System

m = 2.5 kg, A = 0.27 m2

UFR: Trajectory Optimization & Control

Power-Optimal Trajectory Control Experiments in the Drone Lab

UFR: Trajectory Optimization & Control

Power-Optimal Trajectory Control Experiments in the Drone Lab

UFR: Trajectory Optimization & Control

Power-Optimal Trajectory Control Experiments in the Drone Lab

For now: The Most Simple Case

For now: The Most Simple Case
• No tether

For now: The Most Simple Case
• No tether

• No wind

For now: The Most Simple Case
• No tether

• No wind

We need
 a model!

A Dynamic Model for an Airplane

A Dynamic Model for an Airplane

3D Rigid Body Physics

·x = f(x, u)

State-Space Model

·x = f(x, u)x =

p
v
R
ω

∈ ℝ18

State-Space Model

·x = f(x, u)x =

p
v
R
ω

∈ ℝ18

States

State-Space Model

·x = f(x, u)x =

p
v
R
ω

∈ ℝ18

Position [m] p ∈ ℝ3
States

State-Space Model

·x = f(x, u)x =

p
v
R
ω

∈ ℝ18

Position [m] p ∈ ℝ3

Velocity [m/s] v ∈ ℝ3

States

State-Space Model

·x = f(x, u)x =

p
v
R
ω

∈ ℝ18

Position [m] p ∈ ℝ3

Velocity [m/s] v ∈ ℝ3

Orientation R ∈ ℝ9

States

State-Space Model

·x = f(x, u)x =

p
v
R
ω

∈ ℝ18

Position [m] p ∈ ℝ3

Velocity [m/s] v ∈ ℝ3

Orientation R ∈ ℝ9

Rot. Vel. [rad/s] ω ∈ ℝ3

States

State-Space Model

·x = f(x, u)x =

p
v
R
ω

∈ ℝ18

Position [m] p ∈ ℝ3

Velocity [m/s] v ∈ ℝ3

Orientation R ∈ ℝ9

Rot. Vel. [rad/s] ω ∈ ℝ3

u =

τL
τR

δL

δR
γ

∈ ℝ5

States

State-Space Model

·x = f(x, u)x =

p
v
R
ω

∈ ℝ18

Position [m] p ∈ ℝ3

Velocity [m/s] v ∈ ℝ3

Orientation R ∈ ℝ9

Rot. Vel. [rad/s] ω ∈ ℝ3

u =

τL
τR

δL

δR
γ

∈ ℝ5

States Controls

State-Space Model

·x = f(x, u)x =

p
v
R
ω

∈ ℝ18

Position [m] p ∈ ℝ3

Velocity [m/s] v ∈ ℝ3

Orientation R ∈ ℝ9

Rot. Vel. [rad/s] ω ∈ ℝ3

Propellor Thrusts [N] τL, τR ∈ ℝ

u =

τL
τR

δL

δR
γ

∈ ℝ5

States Controls

State-Space Model

·x = f(x, u)x =

p
v
R
ω

∈ ℝ18

Position [m] p ∈ ℝ3

Velocity [m/s] v ∈ ℝ3

Orientation R ∈ ℝ9

Rot. Vel. [rad/s] ω ∈ ℝ3

Propellor Thrusts [N] τL, τR ∈ ℝ
Ailerons Position [rad] δL, δR ∈ ℝ

u =

τL
τR

δL

δR
γ

∈ ℝ5

States Controls

State-Space Model

·x = f(x, u)x =

p
v
R
ω

∈ ℝ18

Position [m] p ∈ ℝ3

Velocity [m/s] v ∈ ℝ3

Orientation R ∈ ℝ9

Rot. Vel. [rad/s] ω ∈ ℝ3

Propellor Thrusts [N] τL, τR ∈ ℝ
Ailerons Position [rad] δL, δR ∈ ℝ
Elevator Position [rad] γ ∈ ℝ

u =

τL
τR

δL

δR
γ

∈ ℝ5

States Controls

State-Space Model

State-Space Model

·x =

·p
·v
·R
·ω

=

v

m−1 (Faero(x, u) + Fg)
R⌊ω⌋

J−1 (ω × Jω+Maero(x, u))

State-Space Model

·x =

·p
·v
·R
·ω

=

v

m−1 (Faero(x, u) + Fg)
R⌊ω⌋

J−1 (ω × Jω+Maero(x, u))

State-Space Model

·x =

·p
·v
·R
·ω

=

v

m−1 (Faero(x, u) + Fg)
R⌊ω⌋

J−1 (ω × Jω+Maero(x, u))

State-Space Model

·x =

·p
·v
·R
·ω

=

v

m−1 (Faero(x, u) + Fg)
R⌊ω⌋

J−1 (ω × Jω+Maero(x, u))
?

Rotation Representation

x

y

z

Rotation Representation

x

y

z

ey
ex

ez

Rotation Representation

x

y

z

x

y

z
̂ez

̂ey
̂ex

ey
ex

ez

Rotation Representation

R =
1 0 0
0 0.866 0.5
0 −0.5 0.866

x

y

z

x

y

z
̂ez

̂ey
̂ex

ey
ex

ez

Rotation Representation

x

y

z

x

y

z
̂ez

̂ey
̂ex

R =
| | |
̂ex ̂ey ̂ez

| | |ey
ex

ez

Rotation Representation

• We can the describe every rotation by a rotation matrix

x

y

z

x

y

z
̂ez

̂ey
̂ex

R =
| | |
̂ex ̂ey ̂ez

| | |ey
ex

ez

Rotation Representation

• We can the describe every rotation by a rotation matrix

• The set of all possible rotations is given  
by the special orthogonal group SO(3):

x

y

z

x

y

z
̂ez

̂ey
̂ex

R =
| | |
̂ex ̂ey ̂ez

| | |ey
ex

ez

Rotation Representation

• We can the describe every rotation by a rotation matrix

• The set of all possible rotations is given  
by the special orthogonal group SO(3):

x

y

z

x

y

z
̂ez

̂ey
̂ex

R =
| | |
̂ex ̂ey ̂ez

| | |ey
ex

ez

Rotation Representation

• We can the describe every rotation by a rotation matrix

• The set of all possible rotations is given  
by the special orthogonal group SO(3):

x

y

z

x

y

z
̂ez

̂ey
̂ex

R =
| | |
̂ex ̂ey ̂ez

| | |ey
ex

ez

Rotation Representation

• We can the describe every rotation by a rotation matrix

• The set of all possible rotations is given  
by the special orthogonal group SO(3):

x

y

z

x

y

z
̂ez

̂ey
̂ex

R =
| | |
̂ex ̂ey ̂ez

| | |ey
ex

ez

Rotation Representation

• We can the describe every rotation by a rotation matrix

• The set of all possible rotations is given  
by the special orthogonal group SO(3):

x

y

z

x

y

z
̂ez

̂ey
̂ex

R =
| | |
̂ex ̂ey ̂ez

| | |ey
ex

ez

Rotation Representation

• We can the describe every rotation by a rotation matrix

• The set of all possible rotations is given  
by the special orthogonal group SO(3):

x

y

z

x

y

z
̂ez

̂ey
̂ex

R =
| | |
̂ex ̂ey ̂ez

| | |ey
ex

ez

Rotation Representation

• We can the describe every rotation by a rotation matrix

• The set of all possible rotations is given  
by the special orthogonal group SO(3):

x

y

z

x

y

z
̂ez

̂ey
̂ex

R =
| | |
̂ex ̂ey ̂ez

| | |ey
ex

ez

Rotation Representation

• We can the describe every rotation by a rotation matrix

• The set of all possible rotations is given  
by the special orthogonal group SO(3):

x

y

z

• Set: {R ∈ ℝ3×3 ∣ R⊤R = 𝕀3, det R = 1}

x

y

z
̂ez

̂ey
̂ex

R =
| | |
̂ex ̂ey ̂ez

| | |ey
ex

ez

Rotation Representation

• We can the describe every rotation by a rotation matrix

• The set of all possible rotations is given  
by the special orthogonal group SO(3):

x

y

z

• Set: {R ∈ ℝ3×3 ∣ R⊤R = 𝕀3, det R = 1}
• Associative Operation: Matrix Multiplication Ra = RbRcRd

x

y

z
̂ez

̂ey
̂ex

R =
| | |
̂ex ̂ey ̂ez

| | |ey
ex

ez

Rotation Representation

• We can the describe every rotation by a rotation matrix

• The set of all possible rotations is given  
by the special orthogonal group SO(3):

x

y

z

• Set: {R ∈ ℝ3×3 ∣ R⊤R = 𝕀3, det R = 1}
• Associative Operation: Matrix Multiplication Ra = RbRcRd

• Q: Neutral Element: RE = R, E =

x

y

z
̂ez

̂ey
̂ex

R =
| | |
̂ex ̂ey ̂ez

| | |ey
ex

ez

Rotation Representation

• We can the describe every rotation by a rotation matrix

• The set of all possible rotations is given  
by the special orthogonal group SO(3):

x

y

z

• Set: {R ∈ ℝ3×3 ∣ R⊤R = 𝕀3, det R = 1}
• Associative Operation: Matrix Multiplication Ra = RbRcRd

• Q: Neutral Element: RE = R, E = — “don't rotate”𝕀3

x

y

z
̂ez

̂ey
̂ex

R =
| | |
̂ex ̂ey ̂ez

| | |ey
ex

ez

Rotation Representation

• We can the describe every rotation by a rotation matrix

• The set of all possible rotations is given  
by the special orthogonal group SO(3):

x

y

z

• Set: {R ∈ ℝ3×3 ∣ R⊤R = 𝕀3, det R = 1}
• Associative Operation: Matrix Multiplication Ra = RbRcRd

• Q: Neutral Element: RE = R, E =

• Q: Inverse Element: IR = 𝕀3, I =
 — “don't rotate”𝕀3

x

y

z
̂ez

̂ey
̂ex

R =
| | |
̂ex ̂ey ̂ez

| | |ey
ex

ez

Rotation Representation

• We can the describe every rotation by a rotation matrix

• The set of all possible rotations is given  
by the special orthogonal group SO(3):

x

y

z

• Set: {R ∈ ℝ3×3 ∣ R⊤R = 𝕀3, det R = 1}
• Associative Operation: Matrix Multiplication Ra = RbRcRd

• Q: Neutral Element: RE = R, E =

• Q: Inverse Element: IR = 𝕀3, I = —“rotate back”R−1

 — “don't rotate”𝕀3

x

y

z
̂ez

̂ey
̂ex

R =
| | |
̂ex ̂ey ̂ez

| | |ey
ex

ez

World & Body Frame

Image from: https://reference.wolfram.com/system-modeler/libraries/Aircraft/Aircraft.Introduction.html

World & Body Frame
E

N

U

Image from: https://reference.wolfram.com/system-modeler/libraries/Aircraft/Aircraft.Introduction.html

World & Body Frame
E

N

U

Image from: https://reference.wolfram.com/system-modeler/libraries/Aircraft/Aircraft.Introduction.html

World & Body Frame
E

N

U

E

N

D

Image from: https://reference.wolfram.com/system-modeler/libraries/Aircraft/Aircraft.Introduction.html

ey

ex

ez

̂ex

̂ey
̂ez

World & Body Frame

NED World Frame

E

N

U

E

N

D

Image from: https://reference.wolfram.com/system-modeler/libraries/Aircraft/Aircraft.Introduction.html

ey

ex

ez

̂ex

̂ey
̂ez

zb
yb

xb̂ex

̂ey

̂ez

World & Body Frame

NED World Frame

E

N

U

E

N

D

NED Body Frame

Image from: https://reference.wolfram.com/system-modeler/libraries/Aircraft/Aircraft.Introduction.html

ey

ex

ez

̂ex

̂ey
̂ez

zb
yb

xb̂ex

̂ey

̂ez

World & Body Frame

NED World Frame

E

N

U

E

N

D

NED Body Frame

R

Image from: https://reference.wolfram.com/system-modeler/libraries/Aircraft/Aircraft.Introduction.html

ey

ex

ez

̂ex

̂ey
̂ez

zb
yb

xb̂ex

̂ey

̂ez

World & Body Frame

NED World Frame

E

N

U

E

N

D

NED Body Frame

R

R−1

Image from: https://reference.wolfram.com/system-modeler/libraries/Aircraft/Aircraft.Introduction.html

ey

ex

ez

̂ex

̂ey
̂ez

zb
yb

xb̂ex

̂ey

̂ez

World & Body Frame

NED World Frame

E

N

U

E

N

D

NED Body Frame

R

R−1

Image from: https://reference.wolfram.com/system-modeler/libraries/Aircraft/Aircraft.Introduction.html

vb

ey

ex

ez

̂ex

̂ey
̂ez

zb
yb

xb̂ex

̂ey

̂ez

World & Body Frame

NED World Frame

E

N

U

E

N

D

NED Body Frame

R

R−1

Image from: https://reference.wolfram.com/system-modeler/libraries/Aircraft/Aircraft.Introduction.html

vb

v

ey

ex

ez

̂ex

̂ey
̂ez

zb
yb

xb̂ex

̂ey

̂ez

World & Body Frame

NED World Frame

E

N

U

E

N

D

NED Body Frame

R

R−1

Image from: https://reference.wolfram.com/system-modeler/libraries/Aircraft/Aircraft.Introduction.html

vb

v

v

ey

ex

ez

̂ex

̂ey
̂ez

zb
yb

xb̂ex

̂ey

̂ez

World & Body Frame

NED World Frame

E

N

U

E

N

D

NED Body Frame

R

R−1

Image from: https://reference.wolfram.com/system-modeler/libraries/Aircraft/Aircraft.Introduction.html

v = Rvb

vb

v

v

ey

ex

ez

̂ex

̂ey
̂ez

zb
yb

xb̂ex

̂ey

̂ez

World & Body Frame

NED World Frame

E

N

U

E

N

D

NED Body Frame

R

R−1

Image from: https://reference.wolfram.com/system-modeler/libraries/Aircraft/Aircraft.Introduction.html

vb = R−1vv = Rvb

vb

v

v

·x = f(x, u)x =

p
v
R
ω

∈ ℝ18

Position [m]

Velocity [m/s]

Orientation

Rot. Vel. [rad/s]

p ∈ ℝ3

v ∈ ℝ3

R ∈ ℝ9

ω ∈ ℝ3

States

State-Space Model

·x = f(x, u)x =

p
v
R
ω

∈ ℝ18

Position [m]

Velocity [m/s]

Orientation

Rot. Vel. [rad/s]

p ∈ ℝ3

v ∈ ℝ3

R ∈ ℝ9

ω ∈ ℝ3

States

State-Space Model

in world frame

·x = f(x, u)x =

p
v
R
ω

∈ ℝ18

Position [m]

Velocity [m/s]

Orientation

Rot. Vel. [rad/s]

p ∈ ℝ3

v ∈ ℝ3

R ∈ ℝ9

ω ∈ ℝ3

States

State-Space Model

in world frame

in body frame

ω =
ωx
ωy
ωz

Rotational Dynamics

Image from: https://reference.wolfram.com/system-modeler/libraries/Aircraft/Aircraft.Introduction.html

ω =
ωx
ωy
ωz

Rotational Dynamics [ω]× =
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

Image from: https://reference.wolfram.com/system-modeler/libraries/Aircraft/Aircraft.Introduction.html

ω =
ωx
ωy
ωz

Rotational Dynamics [ω]× =
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

·R = R [ω]×

Image from: https://reference.wolfram.com/system-modeler/libraries/Aircraft/Aircraft.Introduction.html

ω =
ωx

0
0

Rotational Dynamics [ω]× =
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

·R = R [ω]×

Image from: https://reference.wolfram.com/system-modeler/libraries/Aircraft/Aircraft.Introduction.html

ω =
ωx

0
0

Rotational Dynamics [ω]× =
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

zb
yb

xb̂ex

̂ey

̂ez

·R = R [ω]×

ey

ex

ez

̂ex

̂ey
̂ez

Image from: https://reference.wolfram.com/system-modeler/libraries/Aircraft/Aircraft.Introduction.html

ω =
ωx

0
0

Rotational Dynamics [ω]× =
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

zb
yb

xb̂ex

̂ey

̂ez

·R = R [ω]×

ey

ex

ez

̂ex

̂ey
̂ez

Image from: https://reference.wolfram.com/system-modeler/libraries/Aircraft/Aircraft.Introduction.html

ω =
ωx

0
0

Rotational Dynamics

zb
yb

xb̂ex

̂ey

̂ez

·R = R [ω]×

[ω]× =
0 0 0
0 0 −ωx

0 ωx 0

ey

ex

ez

̂ex

̂ey
̂ez

Image from: https://reference.wolfram.com/system-modeler/libraries/Aircraft/Aircraft.Introduction.html

ω =
ωx

0
0

| | |
· ̂ex

· ̂ey
· ̂ez

| | |
= R

0 0 0
0 0 −ωx

0 ωx 0

Rotational Dynamics

zb
yb

xb̂ex

̂ey

̂ez

[ω]× =
0 0 0
0 0 −ωx

0 ωx 0

ey

ex

ez

̂ex

̂ey
̂ez

Image from: https://reference.wolfram.com/system-modeler/libraries/Aircraft/Aircraft.Introduction.html

ω =
ωx

0
0

| | |
· ̂ex

· ̂ey
· ̂ez

| | |
= R

0 0 0
0 0 −ωx

0 ωx 0

Rotational Dynamics

zb
yb

xb̂ex

̂ey

̂ez

[ω]× =
0 0 0
0 0 −ωx

0 ωx 0

ey

ex

ez

̂ex

̂ey
̂ez

Image from: https://reference.wolfram.com/system-modeler/libraries/Aircraft/Aircraft.Introduction.html

ω =
ωx

0
0

| | |
· ̂ex

· ̂ey
· ̂ez

| | |
= R

0 0 0
0 0 −ωx

0 ωx 0

Rotational Dynamics

zb
yb

xb̂ex

̂ey

̂ez

[ω]× =
0 0 0
0 0 −ωx

0 ωx 0

ey

ex

ez

̂ex

̂ey
̂ez

Image from: https://reference.wolfram.com/system-modeler/libraries/Aircraft/Aircraft.Introduction.html

ω =
ωx

0
0

| | |
· ̂ex

· ̂ey
· ̂ez

| | |
= R

0 0 0
0 0 −ωx

0 ωx 0

Rotational Dynamics

zb
yb

xb̂ex

̂ey

̂ez

[ω]× =
0 0 0
0 0 −ωx

0 ωx 0

ey

ex

ez

̂ex

̂ey
̂ez

Image from: https://reference.wolfram.com/system-modeler/libraries/Aircraft/Aircraft.Introduction.html

ω =
ωx

0
0

| | |
· ̂ex

· ̂ey
· ̂ez

| | |
= R

0 0 0
0 0 −ωx

0 ωx 0

Rotational Dynamics

zb
yb

xb̂ex

̂ey

̂ez

[ω]× =
0 0 0
0 0 −ωx

0 ωx 0

ey

ex

ez

̂ex

̂ey
̂ez

Image from: https://reference.wolfram.com/system-modeler/libraries/Aircraft/Aircraft.Introduction.html

ω =
ωx

0
0

| | |
· ̂ex

· ̂ey
· ̂ez

| | |
= R

0 0 0
0 0 −ωx

0 ωx 0

Rotational Dynamics

zb
yb

xb̂ex

̂ey

̂ez

[ω]× =
0 0 0
0 0 −ωx

0 ωx 0

ey

ex

ez

̂ex

̂ey
̂ez

Image from: https://reference.wolfram.com/system-modeler/libraries/Aircraft/Aircraft.Introduction.html

ω =
ωx

0
0

| | |
· ̂ex

· ̂ey
· ̂ez

| | |
= R

0 0 0
0 0 −ωx

0 ωx 0

Rotational Dynamics

zb
yb

xb̂ex

̂ey

̂ez

[ω]× =
0 0 0
0 0 −ωx

0 ωx 0

ey

ex

ez

̂ex

̂ey
̂ez

Image from: https://reference.wolfram.com/system-modeler/libraries/Aircraft/Aircraft.Introduction.html

ω =
ωx

0
0

| | |
· ̂ex

· ̂ey
· ̂ez

| | |
= R

0 0 0
0 0 −ωx

0 ωx 0

Rotational Dynamics

zb
yb

xb̂ex

̂ey

̂ez

[ω]× =
0 0 0
0 0 −ωx

0 ωx 0

ey

ex

ez

̂ex

̂ey
̂ez

Image from: https://reference.wolfram.com/system-modeler/libraries/Aircraft/Aircraft.Introduction.html

·x =

·p
·v
·R
·ω

=

v

m−1 (Faero(x, u) + Fg)
R [ω]×

J−1 (ω × Jω + Maero(x, u))

State-Space Model

·x =

·p
·v
·R
·ω

=

v

m−1 (Faero(x, u) + Fg)
R [ω]×

J−1 (ω × Jω + Maero(x, u))

State-Space Model

·x =

·p
·v
·R
·ω

=

v

m−1 (Faero(x, u) + Fg)
R [ω]×

J−1 (ω × Jω + Maero(x, u))

State-Space Model

·x =

·p
·v
·R
·ω

=

v

m−1 (Faero(x, u) + Fg)
R [ω]×

J−1 (ω × Jω + Maero(x, u))

State-Space Model

·x =

·p
·v
·R
·ω

=

v

m−1 (Faero(x, u) + Fg)
R [ω]×

J−1 (ω × Jω + Maero(x, u))

State-Space Model

·x =

·p
·v
·R
·ω

=

v

m−1 (Faero(x, u) + Fg)
R [ω]×

J−1 (ω × Jω + Maero(x, u))

State-Space Model

gyroscopic torque

State-Space Model

·x =

·p
·v
·R
·ω

=

v

m−1 (Faero(x, u) + Fg)
R [ω]×

J−1 (ω × Jω + Maero(x, u))

Faero(x, u) =
Fx(x, u)
Fy(x, u)
Fz(x, u)

Maero(x, u) =
Mx(x, u)
My(x, u)
Mz(x, u)

Aerodynamic Model

Computational
 Fluid Dynamics

[x
u]

Fx

Fy

Fz

Mx

My

Mz

Image from: https://www.linkedin.com/pulse/use-cfd-ga-aircraft-design-dave-stanbridge-hx1we/

Aerodynamic Model

Computational
 Fluid Dynamics

[x
u]

Fx

Fy

Fz

Mx

My

Mz

Image from: https://www.linkedin.com/pulse/use-cfd-ga-aircraft-design-dave-stanbridge-hx1we/

Aerodynamic Model

Computational
 Fluid Dynamics

[x
u]

Fx

Fy

Fz

Mx

My

Mz
∂
∂t

(ρu) + ∇ ⋅ (ρu ⊗ u + [p − ζ(∇ ⋅ u)]I − μ [∇u + (∇u)T −
2
3

(∇ ⋅ u)I]) = ρa

Image from: https://www.linkedin.com/pulse/use-cfd-ga-aircraft-design-dave-stanbridge-hx1we/

Aerodynamic Model

Computational
 Fluid Dynamics

[x
u]

Fx

Fy

Fz

Mx

My

Mz

Image from: https://www.linkedin.com/pulse/use-cfd-ga-aircraft-design-dave-stanbridge-hx1we/

Aerodynamic Model

Computational
 Fluid Dynamics

Image from: https://www.linkedin.com/pulse/use-cfd-ga-aircraft-design-dave-stanbridge-hx1we/

u
v
w
p
q
r
τL
τR

δL

δR
γ

Fx,b

Fy,b

Fz,b

Mx,b

My,b

Mz,b

Aerodynamic Model

δL

δR

γ

τR

τL

s =

u
v
w
p
q
r
τL
τR

δL

δR
γ

∈ ℝ11

Image from: Petrov, Nikolay & Yordzhev, Krasimir & Pavlov, Stancho. (2013). EQUATION OF THE FUNCTIONING OF AN AIRCRAFT AND ITS CRASH FUNCTION.

CFD Simulation Inputs

δL

δR

γ

τR

τL

s =

u
v
w
p
q
r
τL
τR

δL

δR
γ

∈ ℝ11

Image from: Petrov, Nikolay & Yordzhev, Krasimir & Pavlov, Stancho. (2013). EQUATION OF THE FUNCTIONING OF AN AIRCRAFT AND ITS CRASH FUNCTION.

plane velocity in  
NED body frame [m/s]CFD Simulation Inputs

δL

δR

γ

τR

τL

s =

u
v
w
p
q
r
τL
τR

δL

δR
γ

∈ ℝ11

Image from: Petrov, Nikolay & Yordzhev, Krasimir & Pavlov, Stancho. (2013). EQUATION OF THE FUNCTIONING OF AN AIRCRAFT AND ITS CRASH FUNCTION.

plane velocity in  
NED body frame [m/s]

plane angular velocity in  
NED body frame [1/s]

CFD Simulation Inputs

δL

δR

γ

τR

τL

s =

u
v
w
p
q
r
τL
τR

δL

δR
γ

∈ ℝ11

Image from: Petrov, Nikolay & Yordzhev, Krasimir & Pavlov, Stancho. (2013). EQUATION OF THE FUNCTIONING OF AN AIRCRAFT AND ITS CRASH FUNCTION.

plane velocity in  
NED body frame [m/s]

plane angular velocity in  
NED body frame [1/s]

Propellor thrusts [N]

CFD Simulation Inputs

δL

δR

γ

τR

τL

s =

u
v
w
p
q
r
τL
τR

δL

δR
γ

∈ ℝ11

Image from: Petrov, Nikolay & Yordzhev, Krasimir & Pavlov, Stancho. (2013). EQUATION OF THE FUNCTIONING OF AN AIRCRAFT AND ITS CRASH FUNCTION.

plane velocity in  
NED body frame [m/s]

plane angular velocity in  
NED body frame [1/s]

Propellor thrusts [N]

Aileron Angles

CFD Simulation Inputs

δL

δR

γ

τR

τL

s =

u
v
w
p
q
r
τL
τR

δL

δR
γ

∈ ℝ11

Image from: Petrov, Nikolay & Yordzhev, Krasimir & Pavlov, Stancho. (2013). EQUATION OF THE FUNCTIONING OF AN AIRCRAFT AND ITS CRASH FUNCTION.

plane velocity in  
NED body frame [m/s]

plane angular velocity in  
NED body frame [1/s]

Propellor thrusts [N]

Elevator Angle

Aileron Angles

CFD Simulation Inputs

u
v
w
p
q
r
τL
τR

δL

δR
γ

Computational
 Fluid Dynamics

Image from: https://www.linkedin.com/pulse/use-cfd-ga-aircraft-design-dave-stanbridge-hx1we/

Fx,b

Fy,b

Fz,b

Mx,b

My,b

Mz,b

Aerodynamic Model

What we do

What we do

What we do
1. RWTH Aachen samples the CFD simulation

What we do
1. RWTH Aachen samples the CFD simulation

2. We fit a polynomial on the data: 
  
 Fx,b(s) ≈ F̃x,b(s) = ϕ(s)⊤θFx

What we do
1. RWTH Aachen samples the CFD simulation

2. We fit a polynomial on the data: 
  
 Fx,b(s) ≈ F̃x,b(s) = ϕ(s)⊤θFx

3. We use the polynomials: 
 

 Faero,b(s) ≈ F̃aero,b(s) =

F̃x,b(s)

F̃y,b(s)

F̃z,b(w)

Maero,b(s) ≈ M̃aero,b(s) =

M̃x,b(s)

M̃y,b(s)

M̃z,b(s)

What we do
1. RWTH Aachen samples the CFD simulation

2. We fit a polynomial on the data: 
  
 Fx,b(s) ≈ F̃x,b(s) = ϕ(s)⊤θFx

3. We use the polynomials: 
 

 Faero,b(s) ≈ F̃aero,b(s) =

F̃x,b(s)

F̃y,b(s)

F̃z,b(w)

Maero,b(s) ≈ M̃aero,b(s) =

M̃x,b(s)

M̃y,b(s)

M̃z,b(s)

4. (Profit)

Estimating Aerodynamic Model
from Data

Sampling the CFD Simulation
Input Sampling Range Unit

u {12, 13, 14, 15, 16, 17, 18} m/s
v {−5, − 2.5, 0, 2.5, 5} m/s
w {−5, − 2.5, 0, 2.5, 5} m/s
p {−1, − 0.5, 0, 0.5, 1} rad/s
q {−1, − 0.5, 0, 0.5, 1} rad/s
r {−1, − 0.5, 0, 0.5, 1} rad/s

τL {0, 5, 10, 15, 20} N
τR {0, 5, 10, 15, 20} N
δL {−0.44, − 0.22, 0, 0.22, 0.44} rad
δR {−0.44, − 0.22, 0, 0.22, 0.44} rad
γ {−0.56, − 0.28, 0, 0.28, 0.56} rad

Sampling the CFD Simulation
Input Sampling Range Unit

u {12, 13, 14, 15, 16, 17, 18} m/s
v {−5, − 2.5, 0, 2.5, 5} m/s
w {−5, − 2.5, 0, 2.5, 5} m/s
p {−1, − 0.5, 0, 0.5, 1} rad/s
q {−1, − 0.5, 0, 0.5, 1} rad/s
r {−1, − 0.5, 0, 0.5, 1} rad/s

τL {0, 5, 10, 15, 20} N
τR {0, 5, 10, 15, 20} N
δL {−0.44, − 0.22, 0, 0.22, 0.44} rad
δR {−0.44, − 0.22, 0, 0.22, 0.44} rad
γ {−0.56, − 0.28, 0, 0.28, 0.56} rad

Sampling the CFD Simulation
Input Sampling Range Unit

u {12, 13, 14, 15, 16, 17, 18} m/s
v {−5, − 2.5, 0, 2.5, 5} m/s
w {−5, − 2.5, 0, 2.5, 5} m/s
p {−1, − 0.5, 0, 0.5, 1} rad/s
q {−1, − 0.5, 0, 0.5, 1} rad/s
r {−1, − 0.5, 0, 0.5, 1} rad/s

τL {0, 5, 10, 15, 20} N
τR {0, 5, 10, 15, 20} N
δL {−0.44, − 0.22, 0, 0.22, 0.44} rad
δR {−0.44, − 0.22, 0, 0.22, 0.44} rad
γ {−0.56, − 0.28, 0, 0.28, 0.56} rad

Sampling the CFD Simulation
Input Sampling Range Unit

u {12, 13, 14, 15, 16, 17, 18} m/s
v {−5, − 2.5, 0, 2.5, 5} m/s
w {−5, − 2.5, 0, 2.5, 5} m/s
p {−1, − 0.5, 0, 0.5, 1} rad/s
q {−1, − 0.5, 0, 0.5, 1} rad/s
r {−1, − 0.5, 0, 0.5, 1} rad/s

τL {0, 5, 10, 15, 20} N
τR {0, 5, 10, 15, 20} N
δL {−0.44, − 0.22, 0, 0.22, 0.44} rad
δR {−0.44, − 0.22, 0, 0.22, 0.44} rad
γ {−0.56, − 0.28, 0, 0.28, 0.56} rad

We receive:

We receive:
≈ 2.5 GB

U V W p q r Thrust_L Thrust_R Elevator Aileron_L Aileron_R Fx Fy Fz Mx My Mz

12 -5 -5 -1 -1 -1 0 0 -0.5585 -0.4363 0.4363 -7.5334 1.2727 18.1376 -1.5676 3.0999 0.4545

12 -5 -5 -1 -1 -1 0 0 -0.5585 -0.2182 0.2182 -7.0389 1.2727 18.0569 -0.9201 3.0815 0.3123

12 -5 -5 -1 -1 -1 0 0 -0.5585 0 0 -6.7569 1.2727 18.1919 0.3935 3.0675 -0.0757

12 -5 -5 -1 -1 -1 0 0 -0.5585 0.2182 -0.2182 -6.8273 1.2727 18.4724 1.7131 3.0749 -0.4551

12 -5 -5 -1 -1 -1 0 0 -0.5585 0.4363 -0.4363 -7.2508 1.2727 18.7708 2.3767 3.0849 -0.5738

12 -5 -5 -1 -1 -1 0 0 -0.2793 -0.4363 0.4363 -7.2801 1.2727 17.4247 -1.5676 2.7258 0.4545

12 -5 -5 -1 -1 -1 0 0 -0.2793 -0.2182 0.2182 -6.7855 1.2727 17.3440 -0.9201 2.7074 0.3123

12 -5 -5 -1 -1 -1 0 0 -0.2793 0 0 -6.5036 1.2727 17.4790 0.3935 2.6934 -0.0757

12 -5 -5 -1 -1 -1 0 0 -0.2793 0.2182 -0.2182 -6.5740 1.2727 17.7595 1.7131 2.7008 -0.4551

12 -5 -5 -1 -1 -1 0 0 -0.2793 0.4363 -0.4363 -6.9975 1.2727 18.0580 2.3767 2.7107 -0.5738

12 -5 -5 -1 -1 -1 0 0 0 -0.4363 0.4363 -7.4676 1.2727 15.8746 -1.5676 1.9368 0.4545

12 -5 -5 -1 -1 -1 0 0 0 -0.2182 0.2182 -6.9730 1.2727 15.7938 -0.9201 1.9185 0.3123

12 -5 -5 -1 -1 -1 0 0 0 0 0 -6.6910 1.2727 15.9288 0.3935 1.9045 -0.0757

12 -5 -5 -1 -1 -1 0 0 0 0.2182 -0.2182 -6.7614 1.2727 16.2093 1.7131 1.9118 -0.4551

12 -5 -5 -1 -1 -1 0 0 0 0.4363 -0.4363 -7.1849 1.2727 16.5078 2.3767 1.9218 -0.5738

12 -5 -5 -1 -1 -1 0 0 0.2793 -0.4363 0.4363 -7.9044 1.2727 14.4375 -1.5676 1.2142 0.4545

12 -5 -5 -1 -1 -1 0 0 0.2793 -0.2182 0.2182 -7.4098 1.2727 14.3567 -0.9201 1.1958 0.3123

12 -5 -5 -1 -1 -1 0 0 0.2793 0 0 -7.1279 1.2727 14.4917 0.3935 1.1818 -0.0757

We receive:
≈ 2.5 GB

U V W p q r Thrust_L Thrust_R Elevator Aileron_L Aileron_R Fx Fy Fz Mx My Mz

12 -5 -5 -1 -1 -1 0 0 -0.5585 -0.4363 0.4363 -7.5334 1.2727 18.1376 -1.5676 3.0999 0.4545

12 -5 -5 -1 -1 -1 0 0 -0.5585 -0.2182 0.2182 -7.0389 1.2727 18.0569 -0.9201 3.0815 0.3123

12 -5 -5 -1 -1 -1 0 0 -0.5585 0 0 -6.7569 1.2727 18.1919 0.3935 3.0675 -0.0757

12 -5 -5 -1 -1 -1 0 0 -0.5585 0.2182 -0.2182 -6.8273 1.2727 18.4724 1.7131 3.0749 -0.4551

12 -5 -5 -1 -1 -1 0 0 -0.5585 0.4363 -0.4363 -7.2508 1.2727 18.7708 2.3767 3.0849 -0.5738

12 -5 -5 -1 -1 -1 0 0 -0.2793 -0.4363 0.4363 -7.2801 1.2727 17.4247 -1.5676 2.7258 0.4545

12 -5 -5 -1 -1 -1 0 0 -0.2793 -0.2182 0.2182 -6.7855 1.2727 17.3440 -0.9201 2.7074 0.3123

12 -5 -5 -1 -1 -1 0 0 -0.2793 0 0 -6.5036 1.2727 17.4790 0.3935 2.6934 -0.0757

12 -5 -5 -1 -1 -1 0 0 -0.2793 0.2182 -0.2182 -6.5740 1.2727 17.7595 1.7131 2.7008 -0.4551

12 -5 -5 -1 -1 -1 0 0 -0.2793 0.4363 -0.4363 -6.9975 1.2727 18.0580 2.3767 2.7107 -0.5738

12 -5 -5 -1 -1 -1 0 0 0 -0.4363 0.4363 -7.4676 1.2727 15.8746 -1.5676 1.9368 0.4545

12 -5 -5 -1 -1 -1 0 0 0 -0.2182 0.2182 -6.9730 1.2727 15.7938 -0.9201 1.9185 0.3123

12 -5 -5 -1 -1 -1 0 0 0 0 0 -6.6910 1.2727 15.9288 0.3935 1.9045 -0.0757

12 -5 -5 -1 -1 -1 0 0 0 0.2182 -0.2182 -6.7614 1.2727 16.2093 1.7131 1.9118 -0.4551

12 -5 -5 -1 -1 -1 0 0 0 0.4363 -0.4363 -7.1849 1.2727 16.5078 2.3767 1.9218 -0.5738

12 -5 -5 -1 -1 -1 0 0 0.2793 -0.4363 0.4363 -7.9044 1.2727 14.4375 -1.5676 1.2142 0.4545

12 -5 -5 -1 -1 -1 0 0 0.2793 -0.2182 0.2182 -7.4098 1.2727 14.3567 -0.9201 1.1958 0.3123

12 -5 -5 -1 -1 -1 0 0 0.2793 0 0 -7.1279 1.2727 14.4917 0.3935 1.1818 -0.0757

We receive:
≈ 2.5 GB

Inputs

U V W p q r Thrust_L Thrust_R Elevator Aileron_L Aileron_R Fx Fy Fz Mx My Mz

12 -5 -5 -1 -1 -1 0 0 -0.5585 -0.4363 0.4363 -7.5334 1.2727 18.1376 -1.5676 3.0999 0.4545

12 -5 -5 -1 -1 -1 0 0 -0.5585 -0.2182 0.2182 -7.0389 1.2727 18.0569 -0.9201 3.0815 0.3123

12 -5 -5 -1 -1 -1 0 0 -0.5585 0 0 -6.7569 1.2727 18.1919 0.3935 3.0675 -0.0757

12 -5 -5 -1 -1 -1 0 0 -0.5585 0.2182 -0.2182 -6.8273 1.2727 18.4724 1.7131 3.0749 -0.4551

12 -5 -5 -1 -1 -1 0 0 -0.5585 0.4363 -0.4363 -7.2508 1.2727 18.7708 2.3767 3.0849 -0.5738

12 -5 -5 -1 -1 -1 0 0 -0.2793 -0.4363 0.4363 -7.2801 1.2727 17.4247 -1.5676 2.7258 0.4545

12 -5 -5 -1 -1 -1 0 0 -0.2793 -0.2182 0.2182 -6.7855 1.2727 17.3440 -0.9201 2.7074 0.3123

12 -5 -5 -1 -1 -1 0 0 -0.2793 0 0 -6.5036 1.2727 17.4790 0.3935 2.6934 -0.0757

12 -5 -5 -1 -1 -1 0 0 -0.2793 0.2182 -0.2182 -6.5740 1.2727 17.7595 1.7131 2.7008 -0.4551

12 -5 -5 -1 -1 -1 0 0 -0.2793 0.4363 -0.4363 -6.9975 1.2727 18.0580 2.3767 2.7107 -0.5738

12 -5 -5 -1 -1 -1 0 0 0 -0.4363 0.4363 -7.4676 1.2727 15.8746 -1.5676 1.9368 0.4545

12 -5 -5 -1 -1 -1 0 0 0 -0.2182 0.2182 -6.9730 1.2727 15.7938 -0.9201 1.9185 0.3123

12 -5 -5 -1 -1 -1 0 0 0 0 0 -6.6910 1.2727 15.9288 0.3935 1.9045 -0.0757

12 -5 -5 -1 -1 -1 0 0 0 0.2182 -0.2182 -6.7614 1.2727 16.2093 1.7131 1.9118 -0.4551

12 -5 -5 -1 -1 -1 0 0 0 0.4363 -0.4363 -7.1849 1.2727 16.5078 2.3767 1.9218 -0.5738

12 -5 -5 -1 -1 -1 0 0 0.2793 -0.4363 0.4363 -7.9044 1.2727 14.4375 -1.5676 1.2142 0.4545

12 -5 -5 -1 -1 -1 0 0 0.2793 -0.2182 0.2182 -7.4098 1.2727 14.3567 -0.9201 1.1958 0.3123

12 -5 -5 -1 -1 -1 0 0 0.2793 0 0 -7.1279 1.2727 14.4917 0.3935 1.1818 -0.0757

We receive:
≈ 2.5 GB

Inputs Outputs

U V W p q r Thrust_L Thrust_R Elevator Aileron_L Aileron_R Fx Fy Fz Mx My Mz

12 -5 -5 -1 -1 -1 0 0 -0.5585 -0.4363 0.4363 -7.5334 1.2727 18.1376 -1.5676 3.0999 0.4545

12 -5 -5 -1 -1 -1 0 0 -0.5585 -0.2182 0.2182 -7.0389 1.2727 18.0569 -0.9201 3.0815 0.3123

12 -5 -5 -1 -1 -1 0 0 -0.5585 0 0 -6.7569 1.2727 18.1919 0.3935 3.0675 -0.0757

12 -5 -5 -1 -1 -1 0 0 -0.5585 0.2182 -0.2182 -6.8273 1.2727 18.4724 1.7131 3.0749 -0.4551

12 -5 -5 -1 -1 -1 0 0 -0.5585 0.4363 -0.4363 -7.2508 1.2727 18.7708 2.3767 3.0849 -0.5738

12 -5 -5 -1 -1 -1 0 0 -0.2793 -0.4363 0.4363 -7.2801 1.2727 17.4247 -1.5676 2.7258 0.4545

12 -5 -5 -1 -1 -1 0 0 -0.2793 -0.2182 0.2182 -6.7855 1.2727 17.3440 -0.9201 2.7074 0.3123

12 -5 -5 -1 -1 -1 0 0 -0.2793 0 0 -6.5036 1.2727 17.4790 0.3935 2.6934 -0.0757

12 -5 -5 -1 -1 -1 0 0 -0.2793 0.2182 -0.2182 -6.5740 1.2727 17.7595 1.7131 2.7008 -0.4551

12 -5 -5 -1 -1 -1 0 0 -0.2793 0.4363 -0.4363 -6.9975 1.2727 18.0580 2.3767 2.7107 -0.5738

12 -5 -5 -1 -1 -1 0 0 0 -0.4363 0.4363 -7.4676 1.2727 15.8746 -1.5676 1.9368 0.4545

12 -5 -5 -1 -1 -1 0 0 0 -0.2182 0.2182 -6.9730 1.2727 15.7938 -0.9201 1.9185 0.3123

12 -5 -5 -1 -1 -1 0 0 0 0 0 -6.6910 1.2727 15.9288 0.3935 1.9045 -0.0757

12 -5 -5 -1 -1 -1 0 0 0 0.2182 -0.2182 -6.7614 1.2727 16.2093 1.7131 1.9118 -0.4551

12 -5 -5 -1 -1 -1 0 0 0 0.4363 -0.4363 -7.1849 1.2727 16.5078 2.3767 1.9218 -0.5738

12 -5 -5 -1 -1 -1 0 0 0.2793 -0.4363 0.4363 -7.9044 1.2727 14.4375 -1.5676 1.2142 0.4545

12 -5 -5 -1 -1 -1 0 0 0.2793 -0.2182 0.2182 -7.4098 1.2727 14.3567 -0.9201 1.1958 0.3123

12 -5 -5 -1 -1 -1 0 0 0.2793 0 0 -7.1279 1.2727 14.4917 0.3935 1.1818 -0.0757

We receive:
13

 6
71

 8
75

 L
in

es
≈ 2.5 GB

Inputs Outputs

δL

δR

γ

τR

τLFitting a Polynomial
1. Regressor Selection

Image from: Petrov, Nikolay & Yordzhev, Krasimir & Pavlov, Stancho. (2013). EQUATION OF THE FUNCTIONING OF AN AIRCRAFT AND ITS CRASH FUNCTION.

δL

δR

γ

τR

τLFitting a Polynomial
1. Regressor Selection

F̃x(s) = ϕ(s)⊤θ

s =

u
v
w
p
q
r
τL
τR

δL

δR
γ

∈ ℝ11

Image from: Petrov, Nikolay & Yordzhev, Krasimir & Pavlov, Stancho. (2013). EQUATION OF THE FUNCTIONING OF AN AIRCRAFT AND ITS CRASH FUNCTION.

δL

δR

γ

τR

τLFitting a Polynomial
1. Regressor Selection

F̃x(s) = ϕ(s)⊤θ

= θ1u + θ2u2 + θ3u3 + θ4v + θ5v2+…+θ32β3 + θ33

s =

u
v
w
p
q
r
τL
τR

δL

δR
γ

∈ ℝ11

Image from: Petrov, Nikolay & Yordzhev, Krasimir & Pavlov, Stancho. (2013). EQUATION OF THE FUNCTIONING OF AN AIRCRAFT AND ITS CRASH FUNCTION.

δL

δR

γ

τR

τLFitting a Polynomial
1. Regressor Selection

F̃x(s) = ϕ(s)⊤θ

= θ1u + θ2u2 + θ3u3 + θ4v + θ5v2+…+θ32β3 + θ33

ϕ(s) =

u
u2

u3

v
v2

⋮
β3

1

∈ ℝ33 s =

u
v
w
p
q
r
τL
τR

δL

δR
γ

∈ ℝ11

Image from: Petrov, Nikolay & Yordzhev, Krasimir & Pavlov, Stancho. (2013). EQUATION OF THE FUNCTIONING OF AN AIRCRAFT AND ITS CRASH FUNCTION.

δL

δR

γ

τR

τLFitting a Polynomial
1. Regressor Selection

F̃x(s) = ϕ(s)⊤θ

= θ1u + θ2u2 + θ3u3 + θ4v + θ5v2+…+θ32β3 + θ33

ϕ(s) =

u
u2

u3

v
v2

⋮
β3

1

∈ ℝ33 s =

u
v
w
p
q
r
τL
τR

δL

δR
γ

∈ ℝ11

Image from: Petrov, Nikolay & Yordzhev, Krasimir & Pavlov, Stancho. (2013). EQUATION OF THE FUNCTIONING OF AN AIRCRAFT AND ITS CRASH FUNCTION.

use ‘angle of attack’ as regressor

α = tan−1 (w
u) ≈

w
u

Expert Knowledge

ϕ(s) =

u
⋮

w/u
(w/u)2

(w/u)3

⋮
β3

1

∈ ℝ36

δL

δR

γ

τR

τLFitting a Polynomial
1. Regressor Selection

F̃x(s) = ϕ(s)⊤θ

= θ1u + θ2u2 + θ3u3 + θ4v + θ5v2+…+θ32β3 + θ33

s =

u
v
w
p
q
r
τL
τR

δL

δR
γ

∈ ℝ11

Image from: Petrov, Nikolay & Yordzhev, Krasimir & Pavlov, Stancho. (2013). EQUATION OF THE FUNCTIONING OF AN AIRCRAFT AND ITS CRASH FUNCTION.

use ‘angle of attack’ as regressor

α = tan−1 (w
u) ≈

w
u

Expert Knowledge

Fitting a Polynomial
2. Least-Squares Fitting Problem

N = 13 671 875
d = 33

Fitting a Polynomial
2. Least-Squares Fitting Problem

θ* = arg min
θ∈ℝd

N

∑
i=1

(F̃x(si) − Fx,i)2

N = 13 671 875
d = 33

Fitting a Polynomial
2. Least-Squares Fitting Problem

= arg min
θ∈ℝd

N

∑
i=1

(ϕ(si)⊤θ − Fx,i)2

θ* = arg min
θ∈ℝd

N

∑
i=1

(F̃x(si) − Fx,i)2

N = 13 671 875
d = 33

Fitting a Polynomial
2. Least-Squares Fitting Problem

= arg min
θ∈ℝd

N

∑
i=1

(ϕ(si)⊤θ − Fx,i)2

θ* = arg min
θ∈ℝd

N

∑
i=1

(F̃x(si) − Fx,i)2

N = 13 671 875
d = 33

= arg min
θ∈ℝd

1
2

Φ⊤θ − y
2

2

Fitting a Polynomial
2. Least-Squares Fitting Problem

= arg min
θ∈ℝd

N

∑
i=1

(ϕ(si)⊤θ − Fx,i)2

θ* = arg min
θ∈ℝd

N

∑
i=1

(F̃x(si) − Fx,i)2

N = 13 671 875
d = 33

= arg min
θ∈ℝd

1
2

Φ⊤θ − y
2

2

= (Φ⊤Φ)−1Φ⊤y

Computational Complexity
N = 13 671 875
d = 36

θ* = (Φ⊤Φ)−1Φ⊤y
—

—

—

𝒪(N ⋅ d2)

𝒪(N ⋅ d)

𝒪(d3)

Computational Complexity
N = 13 671 875
d = 36

θ* = (Φ⊤Φ)−1Φ⊤y
—

—

—

𝒪(N ⋅ d2)

𝒪(N ⋅ d)

𝒪(d3)

Q: How long does this takes to compute? 
 1ms vs. 1s vs. 1000s

Computational Complexity
N = 13 671 875
d = 36

θ* = (Φ⊤Φ)−1Φ⊤y
—

—

—

𝒪(N ⋅ d2)

𝒪(N ⋅ d)

𝒪(d3)

Computational Complexity
N = 13 671 875
d = 36

θ* = (Φ⊤Φ)−1Φ⊤y
(A) Compute Φ⊤Φ —

—

—

𝒪(N ⋅ d2)

𝒪(N ⋅ d)

𝒪(d3)

Computational Complexity
N = 13 671 875
d = 36

θ* = (Φ⊤Φ)−1Φ⊤y
(A) Compute Φ⊤Φ

(B) Compute Φ⊤y

—

—

—

𝒪(N ⋅ d2)

𝒪(N ⋅ d)

𝒪(d3)

Computational Complexity
N = 13 671 875
d = 36

θ* = (Φ⊤Φ)−1Φ⊤y
(A) Compute Φ⊤Φ

(B) Compute Φ⊤y

(C) Solve (Φ⊤Φ)θ = Φ⊤y

—

—

—

𝒪(N ⋅ d2)

𝒪(N ⋅ d)

𝒪(d3)

Computational Complexity
N = 13 671 875
d = 36

θ* = (Φ⊤Φ)−1Φ⊤y
(A) Compute Φ⊤Φ

(B) Compute Φ⊤y

(C) Solve (Φ⊤Φ)θ = Φ⊤y

Φ ∈ ℝN×d

y ∈ ℝN

—

—

—

𝒪(N ⋅ d2)

𝒪(N ⋅ d)

𝒪(d3)

Q: Which is the most expensive step?

Computational Complexity
N = 13 671 875
d = 36

θ* = (Φ⊤Φ)−1Φ⊤y
(A) Compute Φ⊤Φ

(B) Compute Φ⊤y

(C) Solve (Φ⊤Φ)θ = Φ⊤y

Φ ∈ ℝN×d

y ∈ ℝN

—

—

—

𝒪(N ⋅ d2)

𝒪(N ⋅ d)

𝒪(d3)

Q: Which is the most expensive step?

Computational Complexity
N = 13 671 875
d = 36

θ* = (Φ⊤Φ)−1Φ⊤y
(A) Compute Φ⊤Φ

(B) Compute Φ⊤y

(C) Solve (Φ⊤Φ)θ = Φ⊤y

Φ ∈ ℝN×d

y ∈ ℝN

—

—

—

𝒪(N ⋅ d2)

𝒪(N ⋅ d)

𝒪(d3)

Q: Which is the most expensive step?

Computational Complexity
N = 13 671 875
d = 36

θ* = (Φ⊤Φ)−1Φ⊤y
(A) Compute Φ⊤Φ

(B) Compute Φ⊤y

(C) Solve (Φ⊤Φ)θ = Φ⊤y

Φ ∈ ℝN×d

y ∈ ℝN

—

—

—

𝒪(N ⋅ d2)

𝒪(N ⋅ d)

𝒪(d3)

Q: Which is the most expensive step?

Computational Complexity
N = 13 671 875
d = 36

θ* = (Φ⊤Φ)−1Φ⊤y
(A) Compute Φ⊤Φ

(B) Compute Φ⊤y

(C) Solve (Φ⊤Φ)θ = Φ⊤y

Φ ∈ ℝN×d

y ∈ ℝN

—

—

—

𝒪(N ⋅ d2)

𝒪(N ⋅ d)

𝒪(d3)

Q: Which is the most expensive step?

(A) > (B) >> (C)

Fitting a Polynomial
2. Least-Squares Fitting Problem

θ* = arg min
θ∈ℝd

N = 13671875
d = 36

Image from: https://en.wikipedia.org/wiki/Norm_(mathematics)

1
2

∥Φ⊤θ − y∥2
2

Fitting a Polynomial
2. Least-Squares Fitting Problem

θ* = arg min
θ∈ℝd

N = 13671875
d = 36

with Lasso Regularization

Image from: https://en.wikipedia.org/wiki/Norm_(mathematics)

1
2

∥Φ⊤θ − y∥2
2

Fitting a Polynomial
2. Least-Squares Fitting Problem

θ* = arg min
θ∈ℝd

N = 13671875
d = 36

with Lasso Regularization

+γ∥θ∥1

Image from: https://en.wikipedia.org/wiki/Norm_(mathematics)

1
2

∥Φ⊤θ − y∥2
2

Fitting a Polynomial
2. Least-Squares Fitting Problem

θ* = arg min
θ∈ℝd

N = 13671875
d = 36

with Lasso Regularization

+γ∥θ∥1
we want sparse solutions

Image from: https://en.wikipedia.org/wiki/Norm_(mathematics)

1
2

∥Φ⊤θ − y∥2
2

Fitting a Polynomial
2. Least-Squares Fitting Problem

θ* = arg min
θ∈ℝd

N = 13671875
d = 36

with Lasso Regularization

+γ∥θ∥1
we want sparse solutions

Image from: https://en.wikipedia.org/wiki/Norm_(mathematics)

Q: Why does this give a sparse solution?

1
2

∥Φ⊤θ − y∥2
2

Fitting a Polynomial
2. Least-Squares Fitting Problem

θ* = arg min
θ∈ℝd

N = 13671875
d = 36

with Lasso Regularization

+γ∥θ∥1
we want sparse solutions

Image from: https://en.wikipedia.org/wiki/Norm_(mathematics)

Q: Why does this give a sparse solution?

1
2

∥Φ⊤θ − y∥2
2

∥θ∥2 ∥θ∥1

Fitting a Polynomial
3. Solving the Problem

θ* = arg min
θ∈ℝd

∥Φ⊤θ − y∥2
2 +γ∥θ∥1

N = 13 671 875
d = 36

Fitting a Polynomial
3. Solving the Problem

θ* = arg min
θ∈ℝd

∥Φ⊤θ − y∥2
2 +γ∥θ∥1

Implementation

N = 13 671 875
d = 36

Fitting a Polynomial
3. Solving the Problem

θ* = arg min
θ∈ℝd

∥Φ⊤θ − y∥2
2 +γ∥θ∥1

Implementation

N = 13 671 875
d = 36

Fitting a Polynomial
3. Solving the Problem

θ* = arg min
θ∈ℝd

∥Φ⊤θ − y∥2
2 +γ∥θ∥1

Implementation

N = 13 671 875
d = 36

Fitting a Polynomial
3. Solving the Problem

θ* = arg min
θ∈ℝd

∥Φ⊤θ − y∥2
2 +γ∥θ∥1

Implementation

N = 13 671 875
d = 36

Fitting a Polynomial
3. Solving the Problem

θ* = arg min
θ∈ℝd

∥Φ⊤θ − y∥2
2 +γ∥θ∥1

Implementation

N = 13 671 875
d = 36

Fitting a Polynomial
3. Solving the Problem

θ* = arg min
θ∈ℝd

∥Φ⊤θ − y∥2
2 +γ∥θ∥1

linear_model.Lasso()

Implementation

N = 13 671 875
d = 36

Fitting a Polynomial
3. Solving the Problem

θ* = arg min
θ∈ℝd

∥Φ⊤θ − y∥2
2 +γ∥θ∥1

linear_model.Lasso()

which uses coordinate gradient descent

Implementation

N = 13 671 875
d = 36

Fitting a Polynomial
3. Solving the Problem

θ* = arg min
θ∈ℝd

∥Φ⊤θ − y∥2
2 +γ∥θ∥1

linear_model.Lasso()

which uses coordinate gradient descent

Implementation

Solution

N = 13 671 875
d = 36

Fitting a Polynomial
3. Solving the Problem

F̃x(s) = − 1.145 ⋅ u
+0 ⋅ u2

+0 ⋅ u3

+0 ⋅ v
−0.0498 ⋅ v2

+0 ⋅ v2

⋮
+0 ⋅ β3

+15.3012 ⋅ 1

θ* = arg min
θ∈ℝd

∥Φ⊤θ − y∥2
2 +γ∥θ∥1

linear_model.Lasso()

which uses coordinate gradient descent

Implementation

Solution

N = 13 671 875
d = 36

δL

δR

γ

τR

τL

Fitting Results
F̃x(s) = F̃x(u, v, w, p, q, r, τL, τR, δL, δR, γ)

δL

δR

γ

τR

τL

Fitting Results
F̃x(s) = F̃x(u, v, w, p, q, r, τL, τR, δL, δR, γ)

= F̃x(18 m/s,0,w,0,0,0,15 N,15 N,0,0,0)

δL

δR

γ

τR

τL

Fitting Results
F̃x(s) = F̃x(u, v, w, p, q, r, τL, τR, δL, δR, γ)

°4 °2 0 2 4

w [m/s]

°80

°60

°40

°20

0

20

F
or

ce
[N

]

Fx

Fy

Fz

F̃ x

F̃ y

F̃ z

Body Forces vs w, u = 18 m/s, øR,L = 15 N, other inputs are zero
= F̃x(18 m/s,0,w,0,0,0,15 N,15 N,0,0,0)

δL

δR

γ

τR

τL

Fitting Results
F̃x(s) = F̃x(u, v, w, p, q, r, τL, τR, δL, δR, γ)

°4 °2 0 2 4

w [m/s]

°80

°60

°40

°20

0

20

F
or

ce
[N

]

Fx

Fy

Fz

F̃ x

F̃ y

F̃ z

Body Forces vs w, u = 18 m/s, øR,L = 15 N, other inputs are zero
= F̃x(18 m/s,0,w,0,0,0,15 N,15 N,0,0,0)

Q: Do these
Results make
sense?

… Putting it all Together

·x =

·p
·v
·R
·ω

=

v

m−1 (RF̃aero,b(x, u)+Fg)
R [ω]×

J−1 (ω × Jω+M̃aero,b(x, u))

The Final Model

[Figure with Results]

[Figure with Results]

