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From Wikipedia, the free encyclopedia

This article is about basic notions of groups in mathematics. For a more advanced treatment

In mathematics, a group is a set with an operation that combines any two elements of the set
to produce a third element within the same set and the following conditions must hold: the
operation is associative, it has an identity element, and every element of the set has an
inverse element.
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Input | Sampling Range Unit
u | {12,13,14,15,16,17,18) m/s
v | {=5,-25,0,2.5,5) m/s
w | {=5, -25,0,2.5,5) m/s
D {—1, —0.5,0,0.5,1} rad/s
q {—1, —0.5,0,0.5,1} rad/s
r {—1, —0.5,0,0.5,1} rad/s
7, | {0,5,10,15,20} N
% | {0.,5,10,15,20} N
5, | {—0.44, —0.22,0,0.22,0.44} rad
5. | {—0.44, —0.22,0,0.22,0.44) rad

y | 1-0.56, —0.28,0,0.28,0.56) rad



We recelive:

fullresults.csv



.. =2.5GB

We recelive:

fullresults.csv



We recelive:

fullresults.csv

) \'} w p q r Thrust_L | Thrust_R Elevator | Aileron_L | Aileron_R Fx Fy Fz Mx My Mz

12 -5 -5 -1 -1 -1 0 0 -0.5585 -0.4363 0.4363 -7.5334 1.2727 18.1376 -1.5676 3.0999 0.4545
12 -5 -5 -1 -1 -1 0 0 -0.5585 -0.2182 0.2182 -7.0389 1.2727 18.0569 -0.9201 3.0815 0.3123
12 -5 -5 -1 -1 -1 0 0 -0.5585 0 0 -6.7569 1.2727 18.1919 0.3935 3.0675 -0.0757
12 -5 -5 -1 -1 -1 0 0 -0.5585 0.2182 -0.2182 -6.8273 1.2727 18.4724 1.7131 3.0749 -0.4551
12 -5 -5 -1 -1 -1 0 0 -0.5585 0.4363 -0.4363 -7.2508 1.2727 18.7708 2.3767 3.0849 -0.5738
12 -5 -5 -1 -1 -1 0 0 -0.2793 -0.4363 0.4363 -7.2801 1.2727 17.4247 -1.5676 2.7258 0.4545
12 -5 -5 -1 -1 -1 0 0 -0.2793 -0.2182 0.2182 -6.7855 1.2727 17.3440 -0.9201 2.7074 0.3123
12 -5 -5 -1 -1 -1 0 0 -0.2793 0 0 -6.5036 1.2727 17.4790 0.3935 2.6934 -0.0757
12 -5 -5 -1 -1 -1 0 0 -0.2793 0.2182 -0.2182 -6.5740 1.2727 17.7595 1.7131 2.7008 -0.4551
12 -5 -5 -1 -1 -1 0 0 -0.2793 0.4363 -0.4363 -6.9975 1.2727 18.0580 2.3767 2.7107 -0.5738
12 -5 -5 -1 -1 -1 0 0 0 -0.4363 0.4363 -7.4676 1.2727 15.8746 -1.5676 1.9368 0.4545
12 -5 -5 -1 -1 -1 0 0 0 -0.2182 0.2182 -6.9730 1.2727 15.7938 -0.9201 1.9185 0.3123
12 -5 -5 -1 -1 -1 0 0 0 0 0 -6.6910 1.2727 15.9288 0.3935 1.9045 -0.0757
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We recelive:

Inputs

fullresults.csv

S

- ' Anils ai

= <o

Outputs

S ai

j U \') W P q r Thrust L | Thrust R Elevator | Aileron L | Aileron_ R " Fx Fy Fz Mx My Mz ;
; " p P p B P 0 0 05585 | -04363 | 0.4363 75334 | 12727 | 181376 | -1.5676 | 3.0999 | 0.4545 ”
1 5 5 -1 -1 -1 0 0 05585 | -0.2182 | 02182 | 70880 | 12727 | 180569 | -0.9201 | 30815 | 03123 §
' 12 5 5 -1 -1 -1 0 0 -0.5585 0 0 67569 | 12727 | 181919 | 03935 | 30675 | -0.0757 §
! N
f 12 5 5 -1 -1 -1 0 0 05585 | 02182 | -0.2182 f§ 68273 | 12727 | 184724 | 17181 | 3.0749 | -0.4551 {
; 12 5 5 -1 -1 -1 0 0 05585 | 04363 | -0.4363 72508 | 12727 | 187708 | 2.3767 | 3.0849 | -0.5738 |
j 12 5 5 1 -1 -1 0 0 02793 | -04363 | 04363 § 72801 | 12727 | 17.4247 | -1.5676 | 27258 | 04545 |
’j 12 5 5 -1 -1 -1 0 0 02793 | -02182 | 02182 N -67855 | 1.2727 | 17.3440 | -0.9201 | 27074 | 03123 \
12 5 5 -1 -1 -1 0 0 -0.2793 0 0 65036 | 12727 | 174790 | 03935 | 26034 | -0.0757 §
j 12 5 5 -1 -1 -1 0 0 02793 | 02182 | -02182 § 65740 | 12727 | 17.7585 | 17131 | 27008 | -0.4551 '
12 5 5 -1 -1 -1 0 0 02793 | 04363 | -0.4363 69975 | 12727 | 18.0580 | 2.3767 | 27107 | -0.5738 '
’1 12 5 5 -1 -1 -1 0 0 0 04363 | 0.4363 ,,1 7.4676 | 12727 | 158746 | -1.5676 | 19368 | 0.4545
1 12 5 5 -1 1 1 0 0 0 02182 | 02182 § 69730 | 12727 | 157938 | -09201 | 19185 | 03123 §
f 12 5 5 -1 -1 1 0 0 0 0 0 g 66010 | 12727 | 159288 | 03935 | 1.9045 | -0.0757 ’
§ 1




We recelive:

N

Q
=
|
LO
NS
0O
—
NS
©
QP
)

nputs

fullresults.csv

S

- ' Anils ai

= <o

Outputs

S ai

j U '/ W p q r Thrust_ L | Thrust_ R | Elevator | Aileron_L | Aileron_R ' Fx Fy Fz Mx My Mz ;
..% 12 -5 -5 -1 -1 -1 0 0 -0.5585 -0.4363 0.4363 ‘ -7.5334 1.2727 18.1376 -1.5676 3.0999 0.4545 ”
| - § ;
'1 12 -5 -5 -1 -1 -1 0 0 -0.5585 -0.2182 0.2182 'f -7.0389 1.2727 18.0569 -0.9201 3.0815 0.3123 I,
‘, 3 12 -5 -5 -1 -1 -1 0 0 -0.5585 0 0 “ -6.7569 1.2727 18.1919 0.3935 3.0675 -0.0757 '
! ; !
'3: 12 -5 -5 -1 -1 -1 0 0 -0.5585 0.2182 -0.2182  § -6.8273 1.2727 18.4724 1.7131 3.0749 -0.4551
" i 12 -5 -5 -1 -1 -1 0 0 -0.5585 0.4363 -0.4363 ' ' -7.2508 1.2727 18.7708 2.3767 3.0849 -0.5738 |' |
‘j; 12 -5 -5 -1 -1 -1 0 0 -0.2793 -0.4363 0.4363 _‘ -7.2801 1.2727 17.4247 -1.5676 2.7258 0.4545 :'
’j 12 -5 -5 -1 -1 -1 0 0 -0.2793 -0.2182 0.2182 -6.7855 1.2727 17.3440 -0.9201 2.7074 0.3123 E
‘ 12 -5 5 -1 -1 -1 0 0 -0.2793 0 0 -6.5036 | 1.2727 | 17.4790 | 03935 | 206934 | -0.0757 "
,j 12 -5 -5 -1 -1 -1 0 0 -0.2793 0.2182 -0.2182 ' ’ -6.5740 1.2727 17.7595 1.7131 2.7008 -0.4551 I
15 5 5 -1 1 g 0 0 -0.2793 0.4363 -0.4363 ‘ -6.9975 1.2727 18.0580 | 2.3767 2.7107 _0.5738
f? 12 -5 -5 -1 -1 -1 0 0 0 -0.4363 0.4363 . -7.4676 1.2727 15.8746 -1.5676 1.9368 0.4545 ;
\E 12 -5 -5 -1 -1 -1 0 0 0 -0.2182 0.2182 -6.9730 1.2727 15.7938 -0.9201 1.9185 0.3123 ; »

X | 13
f 12 -5 -5 -1 -1 -1 0 0 0 0 0 A b 6.6010 | 1.2727 | 159288 | 0.3935 1.9045 | -0.0757 “
" D) I~ I~ 4 4 4 n A n A N40N0 A N400 ;’ A 704 4 N7n~ 10 NAAN 4 7474 1 0440 A NEEA
| }
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2. Least-Squares Fitting Problem

N
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N >
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2. Least-Squares Fitting Problem

N

. ~ 2
0 =iy 3 (7)< 1)
. Al T 2
= arg gelg}l lzzl (qb(sl-) 0 — Fx’i)
= arg min l O'9—y 2
ocR? 2 2

— ((I)T(D)—lq)_l_y
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Tms vs. 1s vs. 1000s



N=13671875
- . d = 36
Computational Complexity

O = (d' D) 'd'y



N=13671875
- . d = 36
Computational Complexity

O = (d' D) 'd'y

(A) Compute © '@



N=13671875
- . d = 36
Computational Complexity

O = (d' D) 'd'y

(A) Compute © '@

(B) Compute CI)Ty



N=13671875
- . d = 36
Computational Complexity

O = (d' D) 'd'y

(A) Compute ® ' d
(B) Compute CI)Ty
(C) Solve (®'®)d =Py



N=13671875
- - d = 36
Computational Complexity y € RV

% = (d'd)'d'y

(A) Compute ® ' d
(B) Compute @'y
(C) Solve (®'®)d =Py

Q: Which is the most expensive step?



N=13671875
- - d = 36
Computational Complexity y € RV

O = (d'd)"'d'y

(A) Compute ®'®
(B) Compute @'y — O(N - d)
(C) Solve (®'®)d =Py

Q: Which is the most expensive step?



N=13671875
- - d = 36
Computational Complexity y € RV

O = (d'd)"'d'y

(A) Compute ®'® — O(N - d?)
(B) Compute @'y — O(N - d)
(C) Solve (®'®)d =Py

Q: Which is the most expensive step?



Computational Complexity

O = (d' D) Py

(A) Compute © '@ — O(N - d?)
(B) Compute @'y — O(N - d)
(C) Solve (®'P)9 = D'y — O(d)

Q: Which is the most expensive step?

N =13671875
d =36

y e RY
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N =13671875

d = 36
Computational Complexity ve RN
d € RM
O = (d' D) Py
(A) Compute ®'® — O(N - d?)
(B) Compute CI)Ty — O(N - d) (A) > (B) >> (C)
(C) Solve (®'D)Y = D'y — 0(d”)

Q: Which is the most expensive step?
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2. Least-Squares Fitting Problem with Lasso Regularization

1
0* = arg min —HCDTH—yH% +71101;
ocR? 2
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Q: Why does this give a sparse solution?
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2. Least-Squares Fitting Problem with Lasso Regularization

S 5 - _we want sparse solutions
0* = argmin —||®'0 —y||5 +7IO0fTy4
9cR? 2

1011 101l

oY @

Q: Why does this give a sparse solution?
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0* = argmin |®'0 — y||3 +7[¢]],
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Implementation

. 8 linear_model.Lasso()

which uses coordinate gradient descent
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3. Solving the Problem Solution

~J

F(s)=—-—1.145-u

X

0 = arg min |70 — y|3 +7110] 101
OcR4
+0 -

U
U
+0-v
—0.0498 - v

.

Implementation
) +0 -

+0 - p°
+15.3012 - 1

. 8 linear_model.Lasso()

which uses coordinate gradient descent



Fitting Results

Fx(S) — Fx(u, V. W,p,q,7r, TL? TR? 5L’ 5R’ }/)




Fitting Results

Fx(S) — Fx(ua VoW, Ps g5 s Ty T 5L’ 5R’ }/) 4
= F (18 m/s,0,%,0,0,0,15N,15 N,0,0,0) s




Fitting Results

FX(S) — Fx(u, V, W,p, q, r, TL, TR, 5L, 5R, }/)
= FX(IS m/s,0,1,0,0,0,15 N,15 N,0,0,0)




Fitting Results

FX(S) — Fx(u, V, W,p, q, r, TL, TR, 5L, 5R, }/)
= FX(IS m/s,0,1,0,0,0,15 N,15 N,0,0,0)

Q: Do these
Results make
sense?



... Putting it all Together



The Final Model
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